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Abstract: People provide their information to distributed systems to receive the desired services.

This information may be disclosed to the agents of the system as part of messages transmitted

among them. As the agents of the system are smart, they can infer new information from their

obtained information, that they may not be authorized to know. So preserving privacy in such

systems is an important and yet challenging issue. We study the problem of analyzing the disclo-

sure of private information in distributed asynchronous systems. Our approach to prevent private

information disclosure is to require the system to follow knowledge-related policies defined for

the system at design time. To achieve this, we construct a model of the system and assume the

policies as the system properties and check whether these properties are satisfied in the system or

not. In order to construct a model of the system, we extend the actor model, which is a well known

reference model for distributed asynchronous systems, by enriching actors by the knowledge base

and inference capability. As our knowledge-related policies should not be violated in any state of

the system, we propose an efficient invariant model checking algorithm to verify the satisfaction

of the policies in our actor model.
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1 Introduction

Today, the use of distributed systems, as in Internet of Things (IoT) or microservice
architectures, is growing and people provide their information to these systems to receive
the desired services. In these systems, personal information is collected by various
processes and devices. The information may be shared with many service providers to
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be analyzed or reported for further objectives [Samani, 2015]. The information may also
be provided to other parties for various intentions such as research or marketing. In such
systems, if there is no sufficient control over the transmitted data among agents, a personal
data breach may happen, so preserving privacy in such systems is an important and yet
challenging issue. For example, a patient provides her personal information to a health
care system for treatment, but if this information is sent to a research organization without
the patient’s consent, a personal data breach has occurred. General Data Protection
Regulation (GDPR) [GDPR, 2020] defines personal data breach as “a breach of security
leading to the accidental or unlawful destruction, loss, alteration, unauthorized disclosure
of, or access to, personal data transmitted, stored or otherwise processed”. As an example
in the field of IoT, the use of smart home applications has provided useful facilities
to users and improved their quality of life, however has also raised potential privacy
challenges because of the vast amount of collected personal and sensitive data [Bugeja et
al., 2021, Zeng and Roesner, 2019]. Home applications integrate smart locks, thermostats,
switches, surveillance systems, and appliances and allow users to monitor and interact
with their living spaces from anywhere. These applications have access to private data,
such as information about when the user sleeps, who others are at home, or when others
are at home that could lead to privacy issues if disclosed to unauthorized persons [Celik
et al., 2019]. The information transmitted by an object probably will not cause any
privacy issues on its own. However, when pieces of information from different objects
are joined, grouped, and analyzed, they can reveal sensitive information [Chanal and
Kakkasageri, 2020]. Therefore, it is necessary to have methods that can control such
disclosure of information. Based on [Schneider, 2018], privacy cannot be enforced
uniquely by technical means.

Moreover, in today’s distributed systems, a large amount of data is produced and
consumed by various components, which causes emerging network problems. To deal
with these problems, computing paradigms such as edge computing and fog computing
have been proposed and many efforts have been made to improve their performance.
For instance, studies such as [Dong et al., 2023, Mohajer et al., 2022A, Mohajer et al.,
2022B], have been done in the field of effective transmission strategies and optimization
of resource allocation and energy consumption in edge computing. On the other hand,
these new paradigms cause new privacy concerns. For instance, in edge computing,
there may be honest but curious adversaries (such as edge data centers, infrastructure
providers, services providers, or some users) that are usually authorized entities that
intend to obtain more sensitive information while playing their role in the system [Zhang
et al., 2018, Bi et al., 2020]. Such issues require more attention to privacy concerns in
today’s distributed systems.

Privacy violations can happen in different ways. Information collection, information
processing, information dissemination, and invasions are different types of privacy vio-
lations [Solove, 2006]. Disclosure is a special form of information dissemination, which
means “making private information known outside the group of individuals expected to
know it” [Tschantz and Wing, 2009]. For example, knowing the salary information is
allowed for members of a family, but it is not allowed for a colleague [Samani, 2015].
A useful method to prevent private information disclosure would be to define policies
which control the disclosure of this information in the system and require the system to
follow those policies. As stated in [Ronne, 2012], if the policies for protecting the privacy
of individuals are violated, it is not only harmful to the individuals whose information is
being disclosed, but can also be damaging to the organization that violates these policies.
Therefore, having a framework with formal foundation to ensure that the system works
according to its defined policies, is valuable.
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Privacy is correlated with the interaction aspects of distributed systems [Samani,
2015]. Disclosure of personal information occurs when an agent receives information.
The ways in which an agent can receive information about other agents can be classified
into three categories: direct receive, indirect receive, or receive by inference [Riahi et al.,
2017, Blanke, 2020]. The difference between direct and indirect receives is that in the first
case, the owner of personal information directly sends its information to another agent,
but in the second case an agent sends the personal information of another agent to a third
one. In receive by inference, the agent infers other agents’ personal information based on
the information received previously from other agents. We introduce an approach that
checks the disclosure of sensitive information as the result of inference, as well as direct
and indirect receive, in the distributed systems.

We use model checking to analyze information disclosure, i.e., policies, in the
presence of inference capability for the agents in the domain of distributed systems. We
need a modeling notation that is suitable for specifying and analyzing such systems.
We base our modeling approach on Actor model [Agha, 1985], which is a well known
computation model for concurrent and distributed systems. An actor model consists of a
set of active objects called actors, which encapsulate data, communicate via asynchronous
message passing, and have no shared data. These characteristics are naturally suitable
for modeling distributed systems in the real world. The actor model guarantees delivery
of the messages, but the order in which the actors execute and the order of receiving
messages, which are sent by different actors to a specific actor, are nondeterministic.
This nondeterminism models the delays and effects of the network in sending messages.
There are a number of actor-based programming and modeling languages like Erlang
[Armstrong, 2007], Rebeca [Sirjani et al., 2004], Ptolemy II [Eker et al., 2003], and
ABS [Johnsen et al., 2012a, ABS, 2022] proposed for different design concerns. For
example, Rebeca and ABS are designed for analysis and code generation [Boer et al.,
2017], while Erlang is optimized for efficient execution. However, modeling and analysis
of privacy and information disclosure have not been the design concern of any of them.
In the actor model, the actors’ information can be disclosed among other actors as part
of the transmitted messages, so it is essential to protect actors’ private information from
disclosure to unauthorized actors.

In [Riahi et al., 2017], we addressed the analysis of data disclosure policies in actor
model by considering direct and indirect receives. The actor model used in that research
does not support modeling the knowledge and inference capabilities of the actors. So, the
receive by inference has not been addressed in that work. The existing actor modeling
languages do not have the ability to model the knowledge and inference capabilities of the
actors either. To tackle this problem, in the current paper, we propose Inference-Enabled
Actor model (Inferactor for short) which enables us to model the actors’ knowledge
and inference capability and define policies that enable one to specify restrictions over
the actors’ knowledge to avoid disclosure of private information to unauthorized actors.
As these policies are defined and checked on the actors’ knowledge, we call them
knowledge-related policies.

In Inferactor, we extend the Actor model with a knowledge-based logic. In this way,
we made it possible for actors’ knowledge to play a role in defining actors’ behavior,
which means that the actors can do something based on the knowledge they have or make
inferences using their defined inference rules. Compared to the existing actor modeling
languages, Inferactor enables modeling the knowledge and inference capabilities of
the actors, but in terms of actor computation, it does not add much to the existing
modeling languages and it is almost similar to Rebeca. Tomodel the knowledge, inference
capabilities, and knowledge-related policies, we define a knowledge-based logic based on
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first-order epistemic logic [Fagin et al., 2003] and the knowledge-based logic presented
in [Pardo et al., 2017]. As we present the formal syntax and semantics for defining
policies, our policies are categorized as machine-readable privacy policies, according to
[Morel and Pardo, 2020]. Our knowledge-related policies are invariant properties, so we
provide an efficient invariant model checking algorithm to verify the satisfaction of the
policies in an Inferactor model that checks the satisfaction of policies by reachable states
constructed through a Breadth-First Search (BFS). Our algorithm is efficient in such a
way that it does not maintain all the states visited during BFS, and in each state it checks
the policies only for the actor whose knowledge has changed compared to the previous
state. Our method can identify privacy violations from the system model in design time.
Furthermore, it can be used for a system that has been implemented to identify privacy
violations by analyzing the model of that system.

The main contribution of this paper is that we have presented a method that can model
distributed systems in which the agents have the ability to infer, and can verify privacy
requirements on the model with a policy-based method. To this end, the following items
are proposed:

– We propose a formal model, called Inferactor, which enables us to model the knowl-
edge and inference capabilities of the actors as well as their usual behavior. An
overview of the main parts of Inferactor and the running example that will be used
throughout this paper are introduced in Sect. 2. The formal description of Inferactor
syntax and operational semantics are presented in Sect. 4 and Sect. 5, respectively.

– We define a knowledge-based logic to specify actors’ knowledge and inference
capabilities and to reason about the actors’ knowledge. Our knowledge-based logic
is based on first-order epistemic logic [Fagin et al., 2003] and the knowledge-based
logic presented in [Pardo et al., 2017]. These logics cover more formulas than we
need in our work. Therefore, we define a subset of these logics that is sufficient for
modeling the knowledge and inference capabilities of the actors as well as provid-
ing the possibility of reasoning on the actors’ knowledge to cover their inference
capabilities, as our knowledge-based logic. The syntax and semantics of our defined
knowledge-based logic are presented in Sect. 3 and Sect. 6, respectively.

– We define a subset of our knowledge-based logic to specify knowledge-related
policies which made it possible to define policies globally for the entire system.
The knowledge-related policies impose restrictions on information (about other
actors and their knowledge) that an actor can access. The syntax and semantics of
knowledge-related policies are presented in Sect. 7.

– We propose an efficient model checking algorithm to check the satisfaction of the
policies and prove that our method is correct. Our algorithm is efficient in two
respects 1) it does not maintain all the states visited during BFS, and 2) it only
checks the policies for the actor of states whose knowledge has changed using the
static information of the model. Our model checking algorithm is proposed in Sect.
8.

2 Inference-Enabled Actor Model

Due to the use of various IoT applications and services, a large amount of personal
information, such as location, health, and energy consumption information, is available



466 Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ...

to data consumers. In addition, data consumers can infer new information based on
the information they have received. For example, specific appliances (such as medical
devices) that are used by a person can be inferred by mining the signatures of that person’s
electricity consumption [Lisovich et al., 2010]. Data consumers can also combinemultiple
data items and/or with other information obtained from external data sources and thus
infer new information based on their inference capabilities. For example, suppose Alice
falsely claims that she lives alone. In this case, any data consumer who has access to both
her location and electricity consumption metadata can infer that Alice lied by identifying
the usage of some specific devices (such as microwaves and TVs) when Alice’s location
is not her home [Chaaya et al., 2019]. The inference capabilities increase the possible
privacy risks, and in many studies, such as [Chaaya et al., 2019], [Wang et al., 2022],
and [Yeom et al., 2018], the inference and the importance of considering it have been
discussed. Therefore, it is very important to have methods to detect the information
that is inferred. The modeling and analysis of information disclosure in the presence of
actors’ inference capabilities have not been the design concern of any of the existing actor
models. Therefore, in our proposed model, we provide the ability to model the actors’
inference capabilities in addition to the usual computations. To determine whether these
inference capabilities can lead to the inference of new information, the information that
users obtain directly or indirectly, should be kept. The usual way to do this is to define
users’ knowledge and store it in a knowledge base (Like in [Fagin et al., 2003, Pardo
and Schneider, 2014, Pardo and Schneider, 2017]).

In this section, we define our model (based on Actor model [Agha, 1985]), called
Inference-Enabled Actor model (Inferactor for short), which is enriched by actors’
knowledge and inference capability. In addition to the basic properties of actors in Actor
model, the actors in Inferactor have some new features including:

– Each actor has a knowledge base for keeping the knowledge obtained during model
execution.

– An actor can use the knowledge saved in its knowledge base when handling messages.

– An actor can infer new knowledge from its obtained knowledge based on its defined
inference rules.

An overview of the actor’s structure in Inferactor, taking into account the actors’
knowledge base and inference rules, along with their basic properties, is shown in Fig. 1.
In this section, we informally describe the computation model of Inferactor, the concepts
of knowledge and inference capabilities of the actors, and also the running example
which will be used throughout this paper. The formal syntax and formal semantics of
Inferactor are presented in the next sections.

2.1 Computation model of Inferactor

A model of a system consists of a set of entities that communicate with each other. Since
our model is based on the Actor model, each entity is modeled by an actor. For example,
in the running example (which will be described later in this section), there are four
entities: consumer, smart meter, utility, and analyzer, and each of them is modeled as
an actor. Like in the Actor model, there is no intra-object concurrency in Inferactor and
each actor has only one execution thread as shown in Fig. 1. The actors have no shared
data, and the only way to transfer data between the actors is to send messages to each
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other. These actors may have their own personal information, and the actors’ personal
information may propagate to other actors as part of transmitted messages.

As described earlier, the actors communicate via asynchronous message passing.
Communications among the actors are modeled by messages, and the required com-
putations are modeled by the methods defined to serve the messages. The received
messages are put in the message queue of the receiver actor. An actor takes a message
from its message queue and executes the method defined to serve this message and then
it proceeds by processing the next message in this queue (Methods and Message Queue
in Fig. 1). A message may contain information about an actor in the system, so receiving
and taking a message by an actor, can increase the knowledge of the actor.

By information about an actor, we mean the information whose subject actor is iden-
tifiable. The concept of identity of an individual person has been defined in [Pfitzmann
and Hansen, 2010] as: “an identity is any subset of attribute values of an individual
person which sufficiently identifies this individual person within any set of persons”. We
model the identity of the actor by the actor’s name. We assume the set ID which is the
set of all actor identifiers in Inferactor model.

2.2 Knowledge and Inference Capabilities of the Actors

The actors may have initial knowledge and can obtain new knowledge through their
interactions with other actors. We model a knowledge base for each actor to keep its
obtained knowledge (Knowledge Base in Fig. 1). The knowledge base of each actor
contains the knowledge that the actor directly obtains through interactions with other
actors.

In addition to the knowledge that is explicitly in the knowledge bases of the actors,
the actors may have inference capabilities that enable them to infer new knowledge that
can be derived from their current knowledge in their knowledge bases. For example, if
one knows the working hours of an employee in a project and the hourly basis for her,
then she can infer the salary of that employee in that project. To model the inference
capabilities of the actors, we explicitly specify the inference capabilities of each actor in
the actor’s body, in terms of inference rules (Inference Rules in Fig. 1). An inference
rule specifies that an actor can infer new knowledge from its existing knowledge.

The actor can save the obtained knowledge on its knowledge base, query the desired
knowledge from its knowledge base and behave accordingly. We refer to these operations
by save, query, and conditional operations.

2.3 Running Example

We describe a simple Inferactor model as the running example which will be used
throughout this paper. Smart grid is one of the areas where privacy is a main and
challenging issue. Due to the distributed nature of smart grids and the importance of
protecting privacy of the people whose information is transmitted and revealed through
the communications among different components of the smart grids, we define our
running example in the domain of smart grid and smart metering. We first give a brief
overview of the privacy concerns in smart grids, and then define the running example.

The most important mechanism in smart grids is smart metering. Smart metering
is used to obtain information from, and control the behavior of consumer’ devices and
appliances [Fang et al., 2012]. The data collected by smart meters may be used to
invade consumers’ privacy. For example, analysis of energy consumption traces can
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Figure 1: An overview of the actor’s structure in Inferactor.

reveal the consumers’ smart appliances (based on their load signatures). Data mining
algorithms can also be used to invade the privacy of consumers by revealing their life-
styles and economic status [Asghar et al., 2017]. Many techniques have been introduced
for appliance load monitoring to infer information about consumers’ behavior, habits
or preferences [Giaconi et al., 2020]. This information includes the time they eat, when
they watch TV, the periods that they are home, etc. [Cardenas and Safavi-Naini, 2012].
In addition, aggregating data from multiple sources in smart grids can reveal consumers’
personal information.

Smart meters cannot transmit any sensitive data such as consumer name or address,
and use a smart meter ID number to transmit sensitive data [Zabkowski and Gajowniczek,
2013]. The three major participants in the smart grid are consumers, utilities and third
party service providers [Simmhan et al., 2011]. The information sent from the consumer’s
smart meter to the utility includes smart meter ID number, meter readings on different
granularity levels, type of information transmitted, date and time, and payment details
(for the customers using prepayment meter) [Zabkowski and Gajowniczek, 2013].

The smart meter data is also attractive to other people such as insurance companies
(to determine premiums), marketers (to profile customers for targeted advertisements),
advisory companies (to promote energy conservation and awareness), criminals (to
identify best times for a burglary, or valuable appliances to steal) [Gunduzl et al., 2015].

Based on the above explanations, we define a simple scenario in smart grids, with
an emphasis on inference capabilities of the actors and aggregating data from multiple
sources. We assume each smart meter has a unique identifier, and each smart meter is
related to the corresponding consumer by this identifier. In this scenario the consumers’
smart meters send their electricity consumption (e-consumption for short) traces to a
utility. The utility sends the smart meter identifier, e-consumption trace, and the city
of some consumers to an analyzer to perform analysis on electricity consumption of
consumers based on their cities. To do this, the utility first sends the cities of some
consumers and then the e-consumption traces of those consumers to the analyzer. Upon
receiving any of this information, the analyzer saves it in its knowledge base. The analyzer
also sends a message to consumer to request consumer’s personal information including
consumer’s name and smart meter identifier. The running example modeled in Inferactor
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is presented in Sect. 4.

3 Knowledge-based Logic

We intend to model actors’ knowledge and inference capabilities along with their other
capabilities, so we need to define a logic which provides the formal semantics of actors’
knowledge and inference capabilities, and also provides the ability to reason about
the actors’ knowledge. In addition, our policies are closely connected with the actors’
knowledge. So, epistemic logic [Fagin et al., 2003, Meyer and van der Hoek, 1995], or
the logic of knowledge, which is used for modelling and reasoning about knowledge, is
the suitable logic for our model. Based on [Pardo and Schneider, 2017], epistemic logic
provides great precision and granularity for modelling and reasoning about the knowledge
of the agents in a system. Epistemic logic has played the main role in the modeling of
knowledge in artificial intelligence and distributed computing [Hsu et al., 2001]. Many
studies (such as [Hsu et al., 2001, Van Der Hoek and Verbrugge, 2002, Halpern and
O’Neill, 2008, Pucella, 2013, Lehnherr et al., 2022]) have been done on the use of
epistemic logic in various fields. The standard semantics of epistemic logic is defined
over Kripke models (possible-worlds model).

Epistemic logic makes it possible to model knowledge and inference capabilities of
the actors, and the privacy policies (by defining properties for actors’ knowledge), so we
define a knowledge-based logic (called IKBL) based on epistemic logic [Fagin et al.,
2003], and define the semantics of our knowledge-based logic over Inferactor.

3.1 Terms and Facts

We use the concept of term, to model the information in Inferactor model, as in studies like
[Pardo et al., 2017] and [Pavlovic and Meadows, 2011]. A term is a piece of information
about an actor. We denote the set of all terms in the model as STerm. Each term consists
of a term name and a sequence of arguments.

A term that all its arguments have specified values is called fact. Facts are used to
model the knowledge of the actors. The set of all facts in the model is denoted as SFact.
For example, ‘Alice is 30 years old’ is a fact and we use the notation age(“Alice”, 30) to
denote this fact. Based on the definitions of facts and terms, we have SFact ⊆ STerm.

3.2 Knowledge-based Logic Syntax

The knowledge-based logic is used to specify the knowledge of the actors. The knowledge
of an actor consists of the knowledge about data or about the knowledge of the other actors.
The actors may have inference capabilities that enable them to infer new knowledge,
based on their current knowledge. The inference rules are specified in the body of an
actor, and then translated to logic formulas.

We define the knowledge-based logic IKBL for Inferactor, based on the knowledge-
based logic presented in [Pardo et al., 2017] which itself is based on first-order epistemic
logic [Fagin et al., 2003]. These logics cover more formulas than we need, including
predicates to encode permissions and connections between agents and modal operators
for common knowledge and distributed knowledge that are not needed in our work. Our
knowledge-based logic is a subset of the logic defined in [Pardo et al., 2017] which is
sufficient for modeling the knowledge and inference capabilities of the actors as well as
providing the possibility of reasoning on the actors’ knowledge to cover their inference
capabilities.
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Definition 3.1 (Knowledge-based Logic Syntax) Given i ∈ ID, x ∈ Var and f ∈
STerm, the syntax of the knowledge-based logic IKBL is defined as:

ϕ ::= ψ | ϕ ∧ ϕ | ¬ϕ | ∀x.ϕ
ψ ::= Kiψ | f

We use the shorthand notation ∀{x, y, z}.ϕ to represent ∀x.∀y.∀z.ϕ. The notation
(modal operator)Kiψ denotes actor i knows ψ, and the Inferactor model satisfiesKiψ
if and only if ψ is in the knowledge base of actor i, or actor i can infer ψ from its
knowledge base and its inference rules, using the S5 axiomatisation of epistemic logic.
The S5 axiomatisation of epistemic logic ([Fagin et al., 2003] and [Pardo and Schneider,
2014]) is based on the following set of axioms:

– A1. All (instances of) first-order tautologies

– A2. (Kiϕ ∧Ki(ϕ⇒ ψ)) ⇒ Kiψ (Distribution Axiom)

– A3.Kiϕ⇒ ϕ (Knowledge Axiom)

– A4.Kiϕ⇒ KiKiϕ (Positive Introspection Axiom)

– A5. ¬Kiϕ⇒ Ki¬Kiϕ (Negative Introspection Axiom)

Along with the axioms, S5 includes the following three derivation rules:

– From ϕ and ϕ⇒ ψ, infer ψ (Modus Ponens)

– From ϕ inferKiϕ, where ϕ must be provable from no assumptions (Necessitation)

– From ϕ infer ∀x · ϕ(x), where x does not occur in ϕ (Generalization)

We employ IKBL logic to model actors’ knowledge and inference rules. The axiom
system of the logic enables us to define the semantics of statements (query and conditional
statements in Sect. 5) that deal with the knowledge of the actors. We also use a subset of
this logic to define privacy policies (Sect. 7).

As an example of IKBL logic about how to infer knowledge based on existing
knowledge and inference rules, suppose Alice knows that Bob and Charlie are classmates:

KAliceclassmates(Bob,Charlie)

Alice also knows that if two persons are classmates and one of them studies at a
university, then the other one also studies at that university:

∀x, y, u ·KAlice(classmates(x, y) ∧ university(x, u) ⇒ university(y, u))

Now, if Alice knows that Bob’s university is “U” (i.e., university(Bob, U)), she can
infer that Charlie’s university is also “U” (i.e., university(Charlie, U)).

The set of all well-formed IKBL formulae is called FIKBL. We will define the
semantics of the knowledge-based logic over the Inferactor in terms of a set of satisfaction
relations in Sect. 6, after describing the formal syntax and semantics of Inferactor in the
following two sections.
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4 Formal Description of Inferactor Syntax

In this section, we first present the grammar of Inferactor and then provide an abstract
specification of an Inferactor model’s syntax. An Inferactor model consists of a number
of actor declarations and a main block specifying initial messages to the actors.

Note that, like in Actor model, there is no intra-object concurrency in Inferactor
and each actor has only one execution thread. To keep the presentation of Inferactor
semantics simple, the current version of Inferactor is object-based, although we can
easily extend the language to support classes of objects.

4.1 Notation

Here, we review the standard notations used in this paper for working with sequences
and functions. The empty sequence is denoted by ε. The set of all finite sequences
over elements of the set A is denoted by A∗. The ith element of a sequence a ∈ A∗ of
length n (1 ≤ i ≤ n), is denoted by ai, and 〈a1, . . . , an〉 is another presentation for
the elements of a sequence a ∈ A∗ of length n. For two sequences σ, σ′ ∈ A∗, σ ⊕ σ′

denotes the sequence obtained by appending σ′ to the end of σ, and 〈h|T 〉 denotes a
sequence which h ∈ A is its first element and T ∈ A∗ consists of the elements in
the rest of the sequence. For a function f : X → Y , f [x 7→ y] denotes the function
{(a, b) ∈ f |a 6= x} ∪ {(x, y)} and f |S denotes the function {x 7→ f(x)|x ∈ S} where
S ⊆ X . f [η] denotes the function {(a, b) ∈ f |a /∈ dom(η)} ∪ η for two functions
f : X → Y and η : X → Y . For two sequences a and b of the same size n (assuming
that the elements of a are distinct), the functionmap(a, b) denotes the mapping of the
elements of a into b, formally,map(a, b) = {ai 7→ bi|1 ≤ i ≤ n}.

4.2 Inferactor Syntax

The grammar of Inferactor in EBNF notation is shown in Fig. 2. In an actor’s body,
first the state variables are declared, then the constructor of the actor (for initializing
variables and specifying the initial knowledge of the actor), some methods which serve
the messages, and an inference block containing inference rules are defined, respectively.

In this grammar, exprk denotes boolean expressions defined by the knowledge-
based logic IKBL, and expr denotes integer expressions defined over usual arithmetic
operators (with no side effects), boolean expressions defined over usual relational and
logical operators, or string constants enclosed in double-quotes.

Now, we present the running example modeled based on the above grammar. To keep
the state space small, we only model one consumer, and ignore unnecessary interactions
and data transmissions. Fig. 3 illustrates the running example. By execution of main
block, the messages sendECT and reqInfo are put in the message queues of actors
smartmeter and analyzer, respectively, and the messages sendConsumerCity and
reqAnalysis are put in the message queue of actor utility. The notation ‘!’ denotes
sending of a message to an actor. An actor takes a message from its message queue and
executes the corresponding method to process it. When actor smartmeter takes message
sendECT , method sendECT (lines 6-8) is executed andmessage getECT is sent to utility.
This message transmits smart meter identifier and the consumer’s e-consumption trace
to the utility (we abstract knowing the e-consumption trace data structure by assuming
the fact econs(i) which indicates knowing the consumer’s e-consumption trace with the
smart meter identifier i). When analyzer takes message reqInfo, method reqInfo (lines
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〈model〉 ::= 〈actor〉* 〈main〉

〈actor〉 ::= ‘actor’ 〈actor-id〉 ‘{’ 〈variables〉 〈constructor〉 (〈method〉)* 〈infer-rules〉 ‘}’

〈variables〉 ::= (〈var-decl〉 ‘;’)*

〈var-decl〉 ::= 〈type〉 〈var〉

〈type〉 ::= ‘string’ | ‘int’ | ‘bool’

〈constructor〉 ::= 〈actor-id〉 ‘{’ ( 〈assignment〉 ‘;’| 〈remember〉 ‘;’)* ‘}’

〈method〉 ::= ‘def’ 〈message〉 ‘(’ 〈param-list〉 ‘)’ ‘{’ 〈stat-list〉 ‘}’

〈infer-rules〉 ::= ‘inference’ ‘{’ (〈infer-rule〉)* ‘}’

〈param-list〉 ::= ε | 〈var〉 (‘,’ 〈var〉)*

〈stat-list〉 ::= ( 〈var-decl〉 ‘;’ | 〈statement〉 ‘;’)*

〈statement〉 ::= 〈assignment〉 | 〈send〉 | 〈remember〉 | 〈query〉 | 〈conditional〉

〈assignment〉 ::= 〈var〉 ‘=’ 〈expr〉

〈send〉 ::= 〈actor-id〉 ‘!’ 〈message〉 ‘(’ 〈arg-list〉 ‘)’

〈arg-list〉 ::= ε | 〈expr〉 (‘,’ 〈expr〉)*

〈remember〉 ::= ‘remember’ ‘(’ 〈fact〉 ‘)’

〈fact〉 ::= (‘K_’‘{’〈actor-id〉‘}’)* 〈fname〉 ‘(’ 〈arg-list〉 ‘)’

〈fname〉 ::= 〈identifier〉

〈query〉 ::= ‘forall’ ‘(’ 〈qfact〉 ‘)’ ‘{’ 〈stat-list〉 ‘}’

〈qfact〉 ::= ‘K_’‘{’〈actor-id〉‘}’)* 〈fname〉 ‘(’ ε | (〈var〉 | ‘?’ 〈var〉) ( ‘,’ 〈var〉 | ‘,’ ‘?’ 〈var〉)*
‘)’

〈conditional〉 ::= ‘if’ ‘(’ 〈expr_k〉 ‘)’ ‘{’ 〈stat-list〉 ‘}’ (ε | ‘else’ ‘{’ 〈stat-list〉 ‘}’)

〈infer-rule〉 ::= (〈fact〉 (‘,’ 〈fact〉)*) ‘->’ 〈fact〉 ‘.’

〈main〉 ::= ‘main’ ‘{’ (〈send〉 ‘;’)* ‘}’

〈expr〉 ::= Expressions over usual (side-effect free) operators.

〈expr_k〉 ::= Boolean expressions over knowledge-based logic IKBL

〈message〉 ::= 〈identifier〉

〈actor-id〉 ::= 〈identifier〉

〈var〉 ::= 〈identifier〉

〈identifier〉 ::= A string of characters, numbers, and symbols

Figure 2: The grammar of Inferactor Model in EBNF – the detailed syntax for

expressions is omitted
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29-31) is executed and message sendInfo is sent to consumer to request name and smart
meter identifier of consumer. Actor consumer replies to this message by sending its
name and smart meter identifier as the parameters of message getInfo.

When utility takes getECT , only the received e-consumption trace is saved in its
knowledge base (‘remember’ statement in line 44). By taking sendConsumerCity, utility
sends the city of consumer to analyzer (lines 53-58), and analyzer saves this fact
upon processing the message inputCity (lines 26-28). When utility takes reqAnalysis,
for each of its known consumer’s e-consumption trace econs(i), if it also knows the fact
kanalyzercity(i), then this e-consumption trace is sent to analyzer (lines 46-52). Actor
analyzer saves the received information by taking message inputECT (lines 23-25).

Due to the concurrent execution of the actors, the order of processing the messages
is non-deterministic. For example, after the execution of the main block, the actors
smartmeter, utility and analyzer have messages in their message queues and the
order in which these actors execute and process their messages is non-deterministic. As
another example, the order in which inputCity and getInfo are received by analyzer is
non-deterministic and depends on the order in which the previous messages were sent.

We assume if analyzer knows e-consumption trace of a smart meter, then it can infer
the smart appliances related to that smart meter. This inference capability of analyzer
is modeled by the first inference rule (line 36) in the inference block of analyzer. We
also assume if analyzer knows the smart appliances related to a smart meter and the
name of the owner of that smart meter, then it can infer the economic status of the owner
(consumer). This inference capability of analyzer is modeled by the second inference
rule (lines 37-38) in the inference block of analyzer.

The economic status of a consumer is personal information, and we assume analyzer
is not allowed to know the economic status of consumer. So, one of the knowledge-
related policies defined for the running example is “analyzer is not allowed to know the
economic status of consumer”. We also define another policy “utility is not allowed
to know the name of the consumer that is the owner of a smartmeter”.

4.3 Abstract Syntax

In this section, we present an abstract specification of an Inferactor model’s syntax.

4.3.1 Types of Variables

The variables in our model are typed variables, including Int, Bool, and String variables
(as shown in the grammar of Inferactor). We assume the set Var contains all variables. By
this assumption, the names of all variables, including state variables and local variables,
in different actors must be unique. We can simply handle this problem by prefixing
a variable name with the name of the actor and the name of the method this variable
belongs to (the actor name for state variables and the actor name along with the method
name for local variables of the methods). We assume the set Val contains all possible
values that can be assigned to the variables or to be used within the expressions (i.e.,
Val = Z ∪ {True,False} ∪ {The finite sequences of characters}).

For simplicity, in the definition of the semantics of Inferactor, we ignore the type of
variables and assume that the type of a variable is specified when that variable is declared
and the type checking is done in static semantics.
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1 actor smartmeter{
2 int id;
3 smartmeter{
4 id = 100;
5 }
6 def sendECT(){
7 utility!getECT(id);
8 }
9 }
10 actor consumer{
11 string name;
12 int meterid;
13 consumer{
14 meterid = 100;
15 name = "C1";
16 }
17 def sendInfo(){
18 analyzer!getInfo(
19 meterid,name);}
20 }
21 actor analyzer{
22 analyzer{}
23 def inputECT(x){
24 remember (econs(x));
25 }
26 def inputCity(i){
27 remember (city(i));
28 }
29 def reqInfo(){
30 consumer!sendInfo();
31 }
32 def getInfo(i,n){

33 remember (name(i,n));
34 }
35 inference{
36 econs(x) -> applst(x).
37 applst(x) , name(x,y)
38 -> economicstatus(y).
39 }
40 }
41 actor utility{
42 utility{}
43 def getECT(i){
44 remember (econs(i));
45 }
46 def reqAnalysis(){
47 forall (econs(?i)){
48 if (k_{analyzer} city(i)){
49 analyzer!inputECT(i);
50 }
51 }
52 }
53 def sendConsumerCity(){
54 analyzer!inputCity(100);
55 remember
56 (k_{analyzer} city(100));
57 }
58 }
59 main{
60 smartmeter!sendECT();
61 analyzer!reqInfo();
62 utility!sendConsumerCity();
63 utility!reqAnalysis();
64 }

Figure 3: The running example modeled in Inferactor

4.3.2 Term and Fact

As described earlier, we use the concept of term to model the information in Inferactor
model. A term is a piece of information of an actor, and STerm denotes the set of all terms
in the model. Each term consists of a term name and a sequence of its arguments. We
define a term as a pair (tn, α) ∈ DTName× Expr∗, where tn is the term name and α is
the sequence of its arguments. Expr denotes the set of integer-valued expressions defined
over usual arithmetic operators (with no side effects), boolean expressions defined over
usual relational and logical operators, or string constants enclosed in double-quotes.

A term that all its arguments have specified values is called fact. Facts are used to
model the knowledge of the actors. A fact is defined as the pair (tn, α) ∈ DTName×Val∗,
and the set of all facts in themodel is denoted as SFact. For example, ‘Alice is 30 years old’
is a fact and we use the notation age(“Alice”, 30) to denote (age, 〈“Alice”, 30〉) ∈ SFact.
More generally, f(v1, ..., vn) denotes (f, 〈v1, ..., vn〉) ∈ SFact.

In addition to this type of information, we want to keep the knowledge of an actor
about the knowledge of the other actors. To model this type of information, we introduce
‘compound term’ and ‘compound fact’. The set of all compound terms and the set of all
compound facts in the model are denoted as CTerm and CFact, respectively. So, the set
of all terms in the model is denoted as Term, and Term = STerm ∪ CTerm, and the set
of all facts in the model is denoted as Fact, and Fact = SFact ∪ CFact.
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A compound term is defined as a pair (a, t) ∈ ID∗×STerm, in which a is a sequence
of actor IDs and t is a term. Following the common notation used in epistemic logic,
we use the notation ka1

ka2
...kan

t as an alternative to (〈a1, a2, ..., an〉, t). A compound
term that all its arguments have specified values is called a compound fact, which is
defined as a pair (a, f) ∈ ID∗ × SFact. For example, ‘Bob knows Alice is 30 years old’
is a compound fact, and we use the notation kBobage(“Alice”, 30) to denote it.

In the rest of this paper, the word ‘fact’ refers to both types of fact. We refer to a term

(a member of Term) using the notation ktn(α), in which k is empty (for the members of
STerm) or a sequence of kai

operators (for the members of CTerm), and tn(α) ∈ STerm.

4.3.3 Inference Rules

An actor can infer a new fact based on its current known facts and its inference rules.
For example, if one knows the working hours of an employee in a project and the hourly
basis for her, then she can infer the salary of that employee in that project. We write this
inference rule as:

workinghours(id, h), userhourlybasis(id, j) → salary(id, h× j).

Each inference rule is defined as the tuple (lterms, rterm) ∈ 2Term × Term, where
lterms contains the premised terms, and rterm is the conclusion and must be a single
term. We can also abstract the computation in inference rules, and rewrite the above
inference rule as:

workinghours(id), userhourlybasis(id) → salary(id).

The inference rules written in the body of the actors are translated to logic formulas.
The inference rules are written in the body of the actors by the following syntax:

kt1(a1, ..., am), ..., ktn(a
′
1, ..., a

′
p) → kt(a′′1 , ..., a

′′
q )

We assume a set TArgs which contains the set of all arguments of the premised
terms in the above inference rule, i.e., TArgs = {a1, ..., am, ..., a′1, ..., a′p}. Since all the
variables in the conclusion also appear in the premised terms, we define TArgs as the set
of all arguments of the premised terms. Our goal is to analyze disclosure of the actors
information due to the message passing among them, and there is no global knowledge in
the model, so each actor can infer based on its own local knowledge. The above inference
rule, written in the body of an actor i ∈ ID, is translated to IKBL formula as:

∀{v ∈ TArgs ∩ Var}.kt1(a1, ..., am) ∧ ... ∧ ktn(a′1, ..., a′p) ⇒ kt(a′′1 , ..., a
′′
q )

For example, the inference rule defined for salary of an employee is translated to:

∀id.workinghours(id) ∧ userhourlybasis(id) ⇒ salary(id)

Linking the available information from multiple data sources, based on their common
information, can identify individuals and disclose sensitive information [Samani, 2015].
We can model this type of information disclosure (or linking attack) by defining suitable
inference rules. For instance, we suppose an example, stated in [Halvorsen et al., 2022],
about information disclosure associated with publishing COVID-19 infection rates in
Denmark. In this example, a medical record contains 5 field: name, zip code, birthday, sex,
and diagnosis. Themedical record (calledMRec) can be sent to others after anonymisation
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by dropping the name field (called AMRec). It is assumed that users have not consented
to their diagnosis being disclosed. There is also a public knowledge that can be available
to everyone, which is represented by a public record (called PRec) and contains 4 fields:
name, zip codes, birthdays, and sex. These records are modeled as follow:

MRec(name, zipcode, birthday, sex, diagnosis)
AMRec(zipcode, birthday, sex, diagnosis) PRec(name, zipcodes, birthdays, sex)

By joining the information of anonymized medical record (AMRec) and public record
(PRec), the name of the person to whom the medical record belongs is revealed, and as a
result, it is determined whether that person is ill or not. We model this linking attack by
defining an inference rule:

AMRec(z, b, s, d) ∧ PRec(n, z, b, s) ⇒ MRec(n, z, b, s, d)

We assume the set IRule is the set of all inference rules in the model.

4.3.4 Methods

Each method is defined as the tuple (m, p, lv, b) ∈ MName × Var∗ × Var∗ × Stat∗,
wherem is the name of the message the method is used to serve, p is the sequence of the
names of the formal parameters, lv is the set of local variables defined in the scope of the
method, b contains the sequence of statements comprising the body of the method, and
MName is the set of all method names. The setMtd subsumes all method declarations in
the model.

4.3.5 Actors

Each actor is an instance of the type Actor = ID × 2Var × 2Mtd × 2IRule. An actor
(id, vars,mtds, inferrules) has the identifier id, the set of variables vars, the set ofmethods
mtds, and the set of inference rules inferrules. The set vars contains the state variables
(defined at the beginning of the actor’s body) and the local variables (defined in the
actor’s methods) of the actor.

4.3.6 Statements

We first define the statements that are common in actor models, like assignment, and
message sending statements. The assignment and send statements are defined as bellow:

– Assign = Var × Expr is the set of assignment statements. We use the notation
var := expr as an alternative to (var, expr).

– Send = ID ×MName × Expr∗ is the set of send statements. We use the notation
x!m(v) as an alternative to (x,m, v).

In addition to the above statements, we define three other statements to deal with the
knowledge of the actors in Inferactor. These statements, which are used to save a fact in
the knowledge base of an actor, query the parameters of a fact from the knowledge of an
actor, and choose different path of execution based on the knowledge of an actor, are
defined as bellow:
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– Save statement. The actors in Inferactor can save a fact in their knowledge-base.
For example, an actor can save the fact ‘Alice is 30 years old’ by execution of
the statement remember (age(“Alice”, 30)). Formally, Save = Term is the set of
statements which save a fact in the knowledge base of the actor. We use the notation

remember (ktn(α)) for save statement which adds the fact ktn(α) to the knowledge
base of the actor.

– Query statement. The actors in Inferactor can query the arguments of a fact from
their knowledge bases. For example, an actor can query the age of Alice by the
statement forall (age(“Alice”, ?x)) which assigns the age of Alice to variable x.
Formally, Query = Term× Stat∗ is the set of query statements. The fact that is the
query statement parameter is called the input fact, and a variable in the arguments of
the input fact whose value is set by the query statement, is called output variable and

marked with ‘?’ symbol before its name. We use the notation forall (ktn(α)) σ as
an alternative to (ktn(α), σ). This statement assigns some values to the arguments
which are prefixed by ? (output variables), based on the knowledge of the actor. As
the number of query results can be different (zero, one, or more), we use a loop
structure for handling a query. In each iteration of this loop, the corresponding
values are assigned to the output variables based on one of the possible query
results. For example, an actor can query those who are 30 years old by the statement
forall (age(?x, 30)), and in each iteration, the name of one who is 30 years old is
assigned to variable x.

– Conditional statement. The actors in Inferactor can select different path of ex-
ecution based on the facts they know. For example, actor A is responsible for
collecting data in a research. When A receives a data item (d), if the sender (ac-
tor B) has already registered, this data will be sent to the researcher (actor C).
Otherwise, the sender is first asked to register. This scenario can be modeled by
if (registered(B)) {C!newdata(d); } else {B!registerationreq(); }. Formally,
Cond = Exprk × Stat∗ × Stat∗ is the set of conditional statements, where Exprk
denotes the set of boolean expressions defined over the knowledge-based logic
IKBL. We use the notation if (exprk) σ else σ′ as an alternative to (exprk, σ, σ

′),
which determines whether exprk holds based on the knowledge of the actor this
statement belongs to, and based on that, one of the two sequences of statements σ or
σ′ is executed.

We also define another statement, called endm, which is implicitly added to the
end of each method. This statement executes after the last statement of the method, and
removes the formal parameters and the local variables added by this method, from the
set of variables of the actor this method belongs to. So, the set of statements in Inferactor
is defined as Stat = Assign ∪ Send ∪ Save ∪ Query ∪ Cond ∪ {endm}.

4.3.7 Inferactor Model

The main block is specified by Send∗, and consists of a sequence of message send
statements. Note that since there may be more than one message to the same actor, the
send statements are ordered in a sequence and not just a set of statements.

Having the above definitions, the set of Inferactor models is specified by 2Actor ×
Send∗, where the second component corresponds to the main block. The set Inferactor
is the set of all Inferactor models.
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4.3.8 Auxiliary Functions

We define the following auxiliary functions to be used in defining the formal semantics:

– body : ID×MName → Stat∗, where body(x,m) returns the body of the methodm
of the actor identified by x, appended by the special statement endm, which denotes
the end of the method.

– params : ID × MName → Var∗, where params(x,m) returns the list of formal
parameters of the methodm of the actor identified by x.

– lvars : ID × MName → 2Var, where lvars(x,m) returns the names of the local
variables of the methodm of the actor identified by x.

– svars : ID → 2Var where svars(x) returns the names of the state variables of the
actor identified by x.

– init : 2Var → (Var → {0, False, ε}), where init(vars) is a function mapping the
variable names in the input set vars to their initial values (zero, false, or empty
string) depending on their types.

– constrv : ID → (Var → Val), where constrv(x) updates init(svars(x)) based on
the assignment statements of the constructor of actor x.

– constrk : ID → 2Fact, where constrk(x) returns the set of initial knowledge of actor
x based on the remember statements of its constructor.

– q0 : ID × Send∗ → Msg∗, where q0(x, σ) returns the message queue for actor
identified by x, results from the sequence of send statements σ. This function is
used to construct the initial message queues of the actors from the sequence of send
statements in the main block of an Inferactor.

– irules : ID → 2IRule, where irules(x) returns the set of inference rules of the actor
identified by x.

– kn : ID → 2Fact, where kn(x) returns the set of facts are in the knowledge-base of
the actor identified by x.

4.3.9 Static Semantics

The following rules define the well-formedness of Inferactor model which is hard to (or
cannot be) described in the Inferactor grammar, but must be statically checked. Some of
these rules are similar to the usual well-formedness rules in such formal models (like in
[Khamespanah, 2018]), and others are specially defined for Inferactor. Note that these
rules can be formally defined in abstract syntax, but as the formal definition of these
rules is not in line with the goal of this paper, we only provide the informal definitions
of them.

– Unique Identifiers. The actor identifiers are unique within an Inferactor model.

– Unique State Variables. The names of the state variables of an actor are unique
within all variables used in that actor, including state variables, message parameters,
local variables, and variables in the arguments of the terms in inference block.
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– Unique Methods. The names of the methods of an actor are unique within all method
names in that actor.

– Unique Parameters and Local Variables. The names of the formal parameters and
the local variables of a method are unique within that method, and different from
the state variable names of the enclosing actor.

– Well-Typed Receiver. The receiver of a message has a method with the same name
as the message.

– Well-Formed Arguments. Well-formedness is defined for arguments of messages
and terms:

• The list of actual arguments passed to a message send statement conforms to the
list of formal parameters of the corresponding method, in both length and type.

• The list of arguments of a term in a query statement conforms to the list of the
arguments of the corresponding facts saved in the knowledge base of the actor.

– Limitations of Main Block. The arguments of the send statements in the main block
can only be constant expressions.

– Limitation of Inference Block. There is no need to declare the variables in the
arguments of the terms in inference block. The names of the variables in inference
block of an actor are different from the state variable names of the enclosing actor.

– Well-Typed Assignments. The assignments are well-typed, i.e., two sides of an
assignment statement have to be of the same type.

– Well-Typed Expressions. The expressions are well-typed, i.e., all variables and
constants used in an expression have to be of the same type.

5 Formal Description of Inferactor Semantics

The goal of this paper is to find potential unauthorized accesses to information. We check
statically whether an Inferactor model will possibly run into a state where information is
not accessed based on specified policies. Therefore, we present the operational semantics
of Inferactor, that describes how the model actually runs dynamically, so that we can
statically check such a situation using our proposed analysis solution. In this section, we
describe the formal semantics of Inferactor models in terms of transition systems. Before
that, we make a few definitions and assumptions.

In order to convert the facts stored in the actors’ knowledge base into the knowl-
edge defined by IKBL, we define a function which converts (〈a1, a2, ..., an〉, t) to
Ka1

Ka2
...Kan

t.
As the main focus is on the message passing and interleavings of actors’ execution,

we abstract away the semantics of expressions by assuming the function evalv : Expr →
Val evaluates an expression within a specific context v : Var → Val. We assume
evalv is overloaded to evaluate a sequence of expressions: evalv(〈e1, e2, . . . , en〉) =
〈evalv(e1), evalv(e2), . . . , evalv(en)〉.

We also define another function evalx : Exprk → {True,False} to evaluate a
knowledge-based logic expression based on the knowledge of actor x (its knowledge
base and its inference rules) under the axiom system S5.
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As defined earlier, the actors can execute a query (Query statement) on their knowl-
edge. The type of a query result is Var → Val, which is a mapping of values to
the output variables. We abstract the execution of the query by assuming a function
qresultx : Term → (Var → Val)∗ which returns the sequence of all query results
according to the knowledge of actor x under the axiom system S5. We use the nota-

tion qresultx(ktn(α)) for computing the set of all results for ktn(α) according to the
knowledge of actor x.

5.1 States

We assume actors communicate via message passing and queue their incoming messages
in a FIFOmailbox.We define the type for themessages asMsg = MName×(Var → Val).
In a message (m, a) ∈ Msg,m is the name of the message and a is a function mapping
argument names to their values. The mailbox of an actor is defined as a sequence of
messages, written as Msg∗. The actor’s knowledge base is represented by a set of facts
defined in Sect. 4.3.

The global state of an Inferactor system is represented by a function s : ID →
(Var → Val)×Msg∗ × Stat∗ × 2Fact, which maps an actor’s identifier to the local state
of the actor. The set of all global states is called State. The local state of an actor is
defined by a tuple like (v, q, σ, κ), where v : Var → Val gives the values of the state
variables and local variables of the actor, q : Msg∗ is the mailbox of the actor, σ : Stat∗

contains the sequence of statements the actor is going to execute to finish the service to
the message currently being processed, and κ : 2Fact is the knowledge base of the actor.

The knowledge of an actor includes both the facts saved in its knowledge base (κ),
and the facts which can be inferred by inference rules (irules(x)). Note that, the inferred
facts are not saved in the knowledge base.

5.2 Transitions

The transitions between the states occur as the results of actors’ actions including: taking
a message from the mailbox, executing a statement, and ending the execution of a
method. The set of all transitions is defined as Tran : State × Label × State where
Label : (ID×Mtd) ∪ {τ}. The transitions for taking a message are labeled by members
of ID×Mtd and the other transitions are labeled with τ . We use the notation s

l→ s′ to
denote (s, l, s′) ∈ Tran. The SOS rules for the transitions are defined as follow.

5.2.1 Message take

The actors take one message, execute the corresponding method to the end, and then take
another message. By taking messagem by actor x, the formal parameters of messagem
and the local variables of methodm are added to the variables of actor x. The label for
taking messagem by actor x is defined by the notation x : m which denotes (x,m).

s(x) = (v, 〈(m, a)|T 〉, ε, κ)
s

x:m−→ s[x 7→ (v ∪ a ∪ init(lvars(x,m)), T, body(x,m), κ)]
(message take)
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5.2.2 Assignment

When an actor executes an assignment statement var := expr, the value of variable var
is updated by the output of function evalv(expr).

s(x) = (v, q, 〈var := expr|σ〉, κ)
s

τ−→ s[x 7→ (v[var 7→ evalv(expr)], q, σ, κ)]
(assignment)

5.2.3 Message send

When the actor x executes the send statement y!m(e), message m is appended to the
message queue of actor y and the formal parameters of the methodm of actor y are set
by the output of function evalv(e).

s(x) = (v, q, 〈y!m(e)|σ〉, κ) ∧ s(y) = (v′, q′, σ′, κ′) ∧ p = params(y,m)

s
τ−→ s[x 7→ (v, q, σ, κ)][y 7→ (v′, q′ ⊕ 〈(m,map(p, evalv(e)))〉, σ′, κ′)]

(send)

5.2.4 End of method

When the actor x executes the endm statement, the formal parameters and the local
variables of the method which were previously added to the variables of x, are removed.
We define this action by the projection of variables of x on its state variables (v|svars(x)
denotes this projection).

s(x) = (v, q, 〈endm〉, κ)
s

τ−→ s[x 7→ (v|svars(x), q, ε, κ)]
(end-of-method)

5.2.5 Save

By execution of remember ktn(α), the fact ktn(α) is added to the knowledge base of
the actor this statement belongs to.

s(x) = (v, q, 〈remember ktn(α)|σ〉, κ)
s

τ−→ s[x 7→ (v, q, σ, κ ∪ {ktn(evalv(α))})]
(save)

5.2.6 Query

By executing the query statement forall ktn(α) do σ′ by actor x, first the sequence
of all results (sequence γ) is computed by function qresultx(ktn(α)) based on the
knowledge of actor x. Then, for each result in this sequence, one iteration of statements
included in query statement is executed.We specify these iterations by defining a function
qloop : ((Var → Val)∗ × Stat∗) → ((Var → Val)× Stat∗), which iterates until the γ
sequence is empty.

s(x) = (v, q, 〈forall ktn(α) do σ′|σ〉, κ) ∧ γ = qresultx(ktn(α))

s
τ−→ s[x 7→ (v, q, 〈qloop(γ, σ′)|σ〉, κ)]

(query)
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s(x) = (v, q, 〈qloop(〈η|T 〉, σ′)|σ〉, κ)
s

τ−→ s[x 7→ (v[η], q, σ′ ⊕ 〈qloop(T, σ′)〉 ⊕ σ, κ)]
(qloop-iterate)

s(x) = (v, q, 〈qloop(ε, σ′)|σ〉, κ)
s

τ−→ s[x 7→ (v, q, σ, κ)]
(qloop-end)

5.2.7 Conditional

By executing conditional statement if exprk then σ else σ′ by actor x, the knowledge-
based logic expression exprk is evaluated in the context of the knowledge of actor x. If
exprk is evaluated to true, then the sequence of statements σ is executed, and otherwise,
the sequence of statements σ′ is executed.

s(x) = (v, q, 〈if exprk then σ else σ′|σ′′〉, κ) ∧ evalx(exprk) = True

s
τ−→ s[x 7→ (v, q, σ ⊕ σ′′, κ)]

(conditionalT )

s(x) = (v, q, 〈if exprk then σ else σ′|σ′′〉, κ) ∧ evalx(exprk) = False

s
τ−→ s[x 7→ (v, q, σ′ ⊕ σ′′, κ)]

(conditionalF )

5.3 Transition System

The transition system semantics for an Inferactor model IM is defined as TS(IM) =
(State,→,Label, s0), where:

– State is the set of global states defined in previous subsection,

– → is the transition relation Tran defined in previous subsection,

– Label is the set of transition labels defined in the previous subsection, and

– s0 is the initial state.

In the initial state, the state variables of all actors have their initial values (depending
on their types), the knowledge bases of the actors are empty sets, and the message queues
of the actors contain the messages specified in the main block. So, the initial state for
the actor x is defined as s0(x) = (constrv(x), q0(x, σ), ε, constrk(x)), where σ is the
sequence of send statements specified in the main block.

The transition system semantics we have defined so far, is the small-step transition
system semantics. Another type of transition system semantics, which is also used in
actor-based languages like Rebeca [Sirjani et al., 2004] and Ptolemy [Eker et al., 2003],
is big-step transition system semantics. In big-step semantics, it is assumed that when an
actor is in the middle of processing a message, the other actors are not doing anything.
In this case the execution of the methods are non-preemptive, i.e., when an actor takes
a message, it executes the entire body of the corresponding method before starting
execution of another method.

In Inferactor, as the knowledge of the actors can only be increased, there is no
possibility for a knowledge-related policy to be violated in the middle of the execution of
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a method, but be satisfied at the end of the execution of that method, so switching from
the small-step to the big-step semantics has no effect on the evaluation of the policies.
Since we want to keep the state space small, we define the big-step transition system
semantics for Inferactor. In this case, many of the unnecessary interleavings that were
created in small-step semantics, are removed and the state space becomes significantly
smaller.

5.3.1 Big-step Semantics

The big-step transition system semantics for an Inferactor model IM is defined as
T(IM) = (State, ↪→,Label, s0). In this definition, State, Label and s0 are the same
as in the small-step semantics. To define the big-step transition relation ↪→, we act in the
same way as the authors in [Khamespanah, 2018] used to define the big-step semantics
of Timed Rebeca. An actor is idle, if it is not in the middle of processing of a message,
and a global state s is idle, if all the actors are idle in s. An idle state is defined as:

idle(s) ⇐⇒ ∀x ∈ ID · s(x) = (v, q, ε, κ)

As in [Khamespanah, 2018], we use the notation idle(s, x) and idle(s) to denote the
actor identified by x is idle in state s, and the state s is idle, respectively. Note that the
outgoing transitions from an idle state can only be the “message take” transitions.

The transition relation ↪→⊂ State×Label×State, which occurs between two idle state,
specifies an actor takes a message from its message queue and executes the corresponding
method completely to the end. In this case, the state of the system is updated at the end
of the execution of a method. Two global states s and s′ are in relation ↪→ iff both of
them are idle, and there is a path between s and s′ in TS(IM) such that the first transition
on the path is taking a messagem by an actor x and all other transitions in this path are
related to the execution of the statements of methodm, and so all other actors are idle

throughout this path. Formally, s
x:m
↪→ s′ iff

– idle(s) ∧ idle(s′), and

– ∃s1, s2, . . . sk ∈ State, x ∈ ID · s = s1
x:m−→ s2 → . . . → sk = s′ ∧ (∀n, 1 < n <

k · ¬idle(sn, x)) ∧ (∀y ∈ ID \ {x}, 1 ≤ j ≤ k · idle(sj , y))

It is notable that in big step semantics, there is no need to keep the local variables of
the actor’s methods in the local state of the actor. Therefore, in big step semantics, the
variable part of the local state of the actor (i.e., function v in (v, q, σ, κ)) only contains
the state variables of the actor.

6 Knowledge-based Logic Semantics over Inferactor

The syntax of the knowledge-based logic IKBL has been defined in Sect. 3, and the
Inferactor syntax and semantics have been defined in Sect. 4 and Sect. 5, respectively.
Now, we define the semantics of knowledge-based logic IKBL. Since there is no global
knowledge in Inferactor model and the inference rules are defined and applied locally to
an actor’s knowledge base, we define the semantics of knowledge-based logic IKBL
over an actor in Inferactor model.
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Definition 6.1 (Knowledge-based Logic Semantics) For a given Inferactor model IM,
a state s ∈ T (IM), actors i, j ∈ ID, a logic formulae ϕ ∈ FIKBL, a fact f ∈ STerm
and x ∈ Var, the satisfaction of the logic formulae ϕ by the actor’s state s(i) is defined
as:

s(i) |= f ⇐⇒ (irules(i), kn(i)) ` f
s(i) |= Kjϕ ⇐⇒ (irules(i), kn(i)) ` Kjϕ

s(i) |= ϕ1 ∧ ϕ2 ⇐⇒ s(i) |= ϕ1 ∧ s(i) |= ϕ2

s(i) |= ¬ϕ ⇐⇒ s(i) 6|= ϕ
s(i) |= ∀x.ϕ ⇐⇒ ∀v ∈ Val. ϕ[v 7→ x] ∈ Fact ⇒ s(i) |= ϕ[v 7→ x]

The knowledge of an actor includes the facts in its knowledge base and the facts
which are derived from the knowledge base by applying its inference rules, using the
axiom system S5. Given the set of facts η ∈ 2Fact and a set of inference rules ν ∈ 2IRule,
we write (ν, η) ` ϕ to denote ϕ can be derived from ν and η under the axiom system S5.

In [Pardo et al., 2017], two assumptions, called knowledge consistency and self-
awareness are defined for the knowledge base of the agents.We assume these assumptions
for the actors’ knowledge. Knowledge consistency means that, ϕ and ¬ϕ cannot be
derivable from an actor knowledge. Knowledge consistency is held in Inferactor, because
the actors cannot save the negation of a fact in their knowledge bases, and the inference
rules do not allow the actors to infer the negation of the facts. Self-awareness means
the actors aware of their knowledge, i.e., if ϕ is derivable from the knowledge of an
actor,Kiϕ is also derivable ((irules(i), kn(i)) ` ϕ⇒ (irules(i), kn(i)) ` Kiϕ). Self-
awareness is held in Inferactor, based on the second derivation rule presented in Sect.
3.2.

7 Knowledge-Related Policies

Privacy policies help users understand how companies collect, use and share their data
[Reidenberg et al., 2015]. Based on [He and Anton, 2003], “Capturing and modeling
privacy requirements in the early stages of system development is essential to provide
high assurance of privacy protection to both stakeholders and consumers”. Privacy
policies may be defined based on the privacy preferences of data owners or based on
the constraints defined according to laws, regulations, and best practices adopted by
organizations to handle personal data [Masellis et al., 2015]. After the privacy policies
are specified based on the privacy requirements in the system, they are modeled using a
privacy policy specification language. We present our policy specification language in
this section.

Since we intend to check the satisfaction of the policies in the system, we assumed
the policies as system properties, and by providing formal semantics for them, on the
one hand, we have prevented ambiguity in the definition of policies, and on the other
hand, we have provided the possibility of using formal verification techniques to check
the satisfaction of them in the model.

Knowledge-related policies are used for reasoning about the knowledge of the actors.
In fact, knowledge-related policies define restrictions on the actors’ knowledge, such
as who is not allowed to know certain information about another actor, the conditions
under which they are allowed or not, and so on. For example, the policies defined for the
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running example are “analyzer is not allowed to know economic status of consumer”,
and “utility is not allowed to know the name of the consumer that is the owner of a
smartmeter”. We can also define more complex policies for the running example such
as “analyzer is not allowed to know both of appliances list of a smartmeter and the
name of the consumer that is the owner of that smartmeter in the same time”. Privacy
policies are often described in natural language. To enable formal verification of these
policies, they need to be expressed explicitly and unambiguously [Tokas and Owe, 2020].
There have been some earlier approaches in the literature to incorporate epistemic logic
to specify security and privacy policies, such as in [Pardo and Schneider, 2014], [Pardo
et al., 2017] and [Moezkarimi et al., 2022]. We also use epistemic logic to specify our
policies, and define a subset of it that is suitable for specifying our knowledge-related
policies. The formal syntax and semantics of our knowledge-related policies are defined
in this section.

7.1 Syntax of Knowledge-Related Policies

Privacy policies are defined for actors’ knowledge, so facts alone are not used in describ-
ing policies, and a fact must be considered within the scope of an actor’s knowledge.
We therefore define a subset of IKBL logic to describe policies in which the possibility
of defining fact alone is excluded from IKBL. The syntax of the knowledge-related
policies, based on the knowledge-based logic IKBL, defined for Inferactor is presented
in Def. 7.1. To specify actors’ information, in knowledge-related policies, irrespective to
the values of their arguments, we allow facts with the symbol ‘_’ in their arguments. In
this case, we mean the fact with any value for the symbols of ‘_’ in its arguments and
define Fact_ = DTName× (Val ∪ Var ∪ {_})∗.

Definition 7.1 (Knowledge-Related Policy Syntax) Given i ∈ ID, and f ∈ Fact_, the
syntax of knowledge-related policies is defined as:

Φ ::= π | Φ ∧ Φ | ¬Φ | ∀x.Φ
π ::= Kiπ | Kif

The set of all knowledge-related policies is denoted by KnPolicy. It is notable that
policies in form of Φ1 ⇒ ¬Φ2 are also definable by our policy language (we can write
this type of policies as ¬(Φ1 ∧ Φ2)).

Based on the defined syntax for knowledge-related policies, the defined policies for
the running example are specified as ¬Kanalyzereconomicstatus(“C1”) (analyzer is not al-
lowed to know economic status of consumer whose name is “C1”),¬Kutilityname(100, _)
(utility is not allowed to know the name of the consumer that is the owner of the smart-
meter with the meterid of 100), and ∀m.¬(Kanalyzerapplst(m) ∧Kanalyzername(m, _))
(analyzer is not allowed to know both of appliances list of a smartmeter and the name of
the consumer that is the owner of that smartmeter in the same time).

7.2 Semantics of Knowledge-Related Policies

The formal semantics of knowledge-related policies in terms of satisfaction relations
over Inferactor is presented in Def. 7.2.
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Definition 7.2 (Knowledge-Related Policy Semantics) For a given actor i ∈ ID in
Inferactor model IM, the state s ∈ T (IM), the fact f ∈ Fact_, and a knowledge-related
policy ϕ ∈ KnPolicy, the satisfaction relation |= ⊆ State×KnPolicy is defined as:

s |= Kif ⇐⇒ (irules(i), kn(i)) ` f
s |= Kiπ ⇐⇒ (irules(i), kn(i)) ` π

s |= Φ1 ∧ Φ2 ⇐⇒ s |= Φ1 ∧ s |= Φ2

s |= ¬Φ ⇐⇒ s 6|= ¬Φ
s |= ∀x.Φ ⇐⇒ ∀v ∈ Val. Φ[v 7→ x] ∈ Fact ⇒ s |= Φ[v 7→ x]

And the satisfaction of a set of knowledge-related policies KnPset : 2KnPset by an
Inferactor model IM is defined as:

IM |= KnPset ⇐⇒ ∀s ∈ T (IM),∀π ∈ KnPset · s |= π

If a defined policy contains a fact t(α, _), this fact is first translated to IKBL formula
∀x · t(α, x) and then the satisfaction of the policy is checked.

For example, suppose an actor j within a recommendation system that has also access
to some external data sets (some scenarios of privacy violationwithin the recommendation
databases are illustrated in [Sitti et al., 2017]) and a given policy¬Kjphone(“Alice”, _).
We assume actor j with the knowledge base and set of inference rules as follow:
kn(j) = {postalcode(“Alice”, 12345), age(“Alice”, 30), profile(0987, 12345, 30)}
irules(j) = {postalcode(x, y), age(x, z), profile(w, y, z) → phone(x,w).}

The arguments of profile fact are the phone number, postal code, and age of a user.
According to the knowledge base and inference rule actor j knows, it can infer the
fact phone(“Alice”, 0987). So, based on the definition of knowledge-related policy
semantics, the defined policy is not satisfied in this example.

8 Verification of Knowledge-Related Policies

For analyzing knowledge-related policies, we need to analyze the disclosure of actors’
information in the actor system, i.e., to determine the information that each actor can
access in the system. As we have explained in [Riahi et al., 2017], an actor can receive
private information in three ways: directly, indirectly, or by inference. The difference
between direct and indirect receive is that in the first case, the owner of the private
information directly sends its information to another actor, but in the second case an actor
sends the private information of another actor to a third one. In receiving by inference,
the actor infers other actors’ private information based on its knowledge base and its set
of inference rules.

In [Riahi et al., 2017], we addressed the analysis of data disclosure policies in actor
models by addressing direct and indirect receives, but as the actor model in [Riahi et al.,
2017] was not designed for modeling the knowledge and inference capabilities of the
actors, the receive by inference has not been considered in that work.

As knowledge-related policies should never be violated, we can check them as
invariant properties. To verify invariant properties, they must hold for all reachable states
[Baier and Katoen, 2008]. We use Breadth First Search (BFS) for constructing the state
space, and for each state, we check whether the knowledge of each actor (considering
its inference power) satisfies the knowledge-related policies upon its construction. We
propose an invariant model checking algorithm that is efficient in two respects 1) we
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only maintain a subset of visited states during our BFS, 2) we only check the policies for
those actors of states whose knowledge has changed using the static information of the
model.

8.1 Efficient Algorithm for Knowledge-Related Policy Verification

We use BFS to construct the state space, starting from the initial state. When a state is
generated, we verify the policies and then compute its next states. We maintain those
states that their next states have to be computed, in a list called active state list, denoted
by ActvSt. We keep all the generated states in a set called VisitedSt. Initially, we add
the model’s initial state (as defined in Section 5.3) to the active state list, which should
satisfy the given policies. We explore the state at the head of the active state list and
compute all its next states using our SOS rules. The newly generated states, not visited
before, are added to the active state list to be explored if they satisfy the policies. The
visited set grows as the states are explored which may prohibit our invariant checking in
cases with a large state space. To tackle this problem, we only keep a subset of visited
states, those that may be reached again on other paths during BFS to improve the space
efficiency of the algorithm. We approximate the reachability of a state in the future using
a heuristic based on the knowledge of actors of the state (the knowledge of the state for
short). As actors in our model do not forget their acquired knowledge, facts are only
added to their knowledge bases and cannot be removed; when the knowledge of a visited
state is less than the knowledge of active states, i.e., ActvSt, it cannot be reached again
as the next state of any active state. A state s can possibly reach the state r, if and only if
the knowledge of each actor in s is a subset (or equal) of the knowledge of that actor in
r, denoted by s v r.

Definition 8.1 (v relation) For a given Inferactor model IM with the set of actors ID,
and two states s, r ∈ T (IM), the formal definition for v relation is defined as below:

s v r ⇐⇒ ∀x ∈ ID · s(x) = (v, q, σ, κ) ∧ r(x) = (v′, q′, σ′, κ′) ⇒ κ ⊆ κ′

Trivially, v relation is a pre-order relation. From s v r, it is possible that s reach r over
a path over which its knowledge increases.

We keep a state in VisitedSt as long as it is not completely explored yet or is possibly
reachable again. Formally, a state s is possibly reachable when there exists at least
one active state s′ where s′ v s. So, a state s can be removed from VisitedSt, if @s′ ∈
ActvSt · s′ v s. Please note that each state is added to both ActvSt and VisitedSt upon its
creation. So, a state cannot be removed from VisitedSt while it belongs to ActvSt (as the
mentioned condition does not hold). In other words, ActvSt ⊆ VisitedSt. We prove that
our method is correct.

Furthermore, we make our algorithm efficient when it checks whether a newly created
state satisfies the knowledge-related policies. The knowledge of an actor can only be
increased when a remember statement is executed, so the knowledge-related policies
should only be checked in those states created as the consequence of executing a method
that contains the remember statement. In addition, in the destination state of a transition,
only the knowledge of the actor that caused this transition may be increased and the
knowledge of other actors remains unchanged. So, in each state, we only need to check
the satisfaction of the policies that are related to this actor. We define two auxiliary
functions to be used in model checking algorithm:

– msgremember : Inferactor → 2MName. Themsgremember(IM) returns the set of
all method names in IM which includes a remember statement.
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– policyset : 2KnPolicy × ID → 2KnPolicy. The policyset(pset, x) returns the set of all
knowledge-related policies in pset that are related to actor x.

We explain Algorithm 1 in detail. For a given Inferactor model IM and a set of
knowledge-related policies KnPset, first it creates the initial state (line 3). The initial
state is added to ActvSt if it satisfies KnPset (lines 4-7). Then, until ActvSt is not empty,
a state is taken (and removed) from the head of ActvSt, and all its possible transitions
are added to the set Trset (lines 9-10). For each transition tr (made as a result of the
execution of a method belonging to actor x) and its destination state s, if s has been
created previously (i.e. s ∈ VisitedSt), nothing else is done about s. Otherwise (i.e.
s /∈ VisitedSt), s is added to VisitedSt (line 13-14) and it is determined whether s
satisfies the set of policies policyset(KnPset, x) or not (lines 15-20), and then s is added
to ActvSt (line 21). For each state r in the visited states, the algorithm checks whether r
can be removed from the set based on the condition we define for removing a state (lines
22-26). If removable flag in line 23 is set to false, it means that there exists at least one
state in ActvSt which can reach r, then r cannot be removed. But, if removable flag is
set to true, state r is removed from VisitedSt (lines 27-28).

In Algorithm 1, the function Dest(tr) returns the destination state of transition tr.
The function Lmname : Tran → MName returns the method name part of a transition
label, and the function Lsender : Tran → ID returns the sender part of a transition
label. For example, for transition tr with label A : m, we have Lmname(tr) = m and
Lsender(tr) = A.

The correctness of the defined condition for removing a state from the state space
during the construction of the state space, is proved by Lemma 1.

Lemma 1 If a state is removed by Algorithm 1 from the state space of an Inferactor,
then there is no possibility to create it again in the rest of the state space construction.

Proof. We prove this lemma by contradiction. We assume the state r is removed by
Algorithm 1, but there is a state w which reaches r, so, r will be created again later. So,
it holds that r v w. Two cases can be distinguished:

– At the time r is removed, w ∈ ActvSt: according to our condition for removing a
state in line 25, r could not be removed.

– w has created after r was removed: in this case, at the time r was removed, there
was a state u ∈ ActvSt which later led to the creation of w directly or through some
other states, i.e., u→ ... → w.

When there is a transition x → y, we can conclude x v y and the relation v is a
transitive relation, so:

u→ ... → w ⇒ u v w

From our assumption that w could have transition to r, we have w v r, and because
of the transitivity property of v, we have:

u v w ∧ w v r ⇒ u v r

At the time r was removed, u ∈ ActvSt ∧ u v r, so, according to line 25 of
Algorithm 1, r could not be removed.

In both cases, r could not be removed and this contradicts our assumption. Therefore,
the initial assumption, that there is a state w which can reach r and so r will be created
again later, must be false. ut

Here, we discuss the efficiency of our proposed algorithm from two respects:
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Algorithm 1 Efficient knowledge-related policies analysis algorithm

Input: The Inferactor model IM and the set of knowledge-related policies KnPset
Output:Whether the Inferactor model IM satisfies the set of knowledge-related policies KnPset,
and the counterexample is returned

1: ActvSt ← 〈〉
2: VisitedSt ← ∅
3: s0 ← ComputeInitialState(IM)
4: For each ϕ ∈ KnPset
5: If s0 6|= ϕ
6: return false
7: add(ActvSt, s0)
8: While ActvSt 6= ∅ do
9: u← head(ActvSt) //u is removed from ActvSt
10: Trset ← ComputeAllNextTransitions(u)
11: For Each tr ∈ Trset do
12: s← Dest(tr)
13: If s /∈ VisitedSt
14: VisitedSt ← VisitedSt ∪ {s}
15: x← Lsender(tr)
16: If Lmname(tr) ∈ msgremember(IM)
17: For each ϕ ∈ policyset(KnPset, x)
18: If s 6|= ϕ
19: counterexample = (x, ϕ, s)
20: return false
21: ActvSt ← add(ActvSt, s)
22: For each state r ∈ VisitedSt
23: removable = true
24: For each state w ∈ ActvSt
25: If w v r
26: removable = false
27: If removable == true
28: VisitedSt ← VisitedSt \ {r}
29: return true

– Algorithm 1 only checks policies of the states in which the knowledge of an actor has
increased as a consequence of executing a method with a remember statement (line
16) and only checks the policies for the actor whose knowledge has changed (line
17). We assume that N is the total number of states in the model, N1 is the number
of states created as a result of executing a method m, which includes remember
statements (i.e., m ∈ msgremember(IM)), and N2 is the number of states created
as a result of executing a methodm /∈ msgremember(IM) (we have N = N1 + N2).
Therefore, instead of performing O(N × |KnPset|) checks, the number of checks
whether a state satisfies a policy has the following order:

O(N1 ×maxx∈ID(|policyset(KnPset, x)|))

– Algorithm 1 does not maintain all the states visited during BFS. We will not keep
the states that have been checked before and do not affect the further construction
of the state space. In this way, the number of states and as a result the order of
the space required to run the algorithm is reduced. The number of states that are
removed from the state space based on our algorithm depends on how to increase
the knowledge of the actors in the system model. For an iteration of the algorithm,
assume that n1 is the number of states like r ∈ VisitedSt that there exists a state
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w ∈ ActvSt such that w v r, and n2 is the number remaining states in VisitedSt (we
have |VisitedSt| = n1 + n2). In this iteration, n2 states are removed from VisitedSt
which improves the memory consumption of the algorithm.

To show the steps of the execution of Algorithm 1, we first define a more simpler
and abstract scenario for the running example, with an emphasis on the non-deterministic
order of messages due to the concurrent execution of the actors. In this scenario, the
electricity consumers send their electricity consumption to a utility, and they expect this
information is not disclosed to anyone else. The utility may send this information to an
analyzer to receive the result of the analysis. In this case, the utility performs an operation
on the information, for example, adds a fixed value to it, so the analyzer does not have
access to the actual consumer’s information. Also, to test how the analyzer and the utility
interact, the analyzer can send its information to the utility and then the next steps can
be done on it. The important issue in this scenario is that if the analyzer information
is among the information that the utility sends to the analyzer, then the analyzer can
compare the value she sent to the utility and the value she received, and in this way she
can also find the actual values of other consumers’ information.

To keep the state space small, we only model one consumer and ignore some un-
necessary interactions. Fig. 4 illustrates the second scenario for the running example.
By execution of the main block, messagesm4 andm5 are put in the message queues of
actors consumer and analyzer, respectively.When actor consumer takes messagem4,
methodm4 (lines 3-5) is executed and messagem1 is sent to utility. When analyzer
takes messagem5, methodm5 (lines 9-11) is executed and messagem2 is sent to utility.
Due to the concurrent execution of actors, the order of sendingm1 andm2 to utility
is non-deterministic and as the result the order of messages in the mailbox of utility is
non-deterministic. When utility takesm1, only the received information is saved in its
knowledge-base (‘remember’ statement in line 23). By taking m2, first utility saves
the received information and then sends all its known information (by sending message
m3 for each information) to analyzer (lines 27-29). So, the order of receivingm1 and
m2 in utility affects the number of data sent to analyzer by utility. Actor analyzer
saves the received information by taking messagem3. We assume if analyzer knows
known(“d1”) and known(“d2”) then it can infer known(“d3”). This inference capa-
bility of analyzer is modeled by the inference rule in lines 16-17. The knowledge-related
policy for this example is “analyzer is not allowed to know know(“d3”).

The complete state space constructed for this example by assuming the big-step
semantics (described in Sect. 5.3) is presented in Fig. 5. Each state in Fig. 5, has three
columns specifying the state of actors consumer, analyzer and utility, respectively
from left to right, and the number in top left of each state specifies the order of creating
the states. The actor’s message queue is shown by 〈〉 notation, and the actor’s knowledge
base is shown by {} notation. Note that none of the actors in the example have state
variable, so the states in Fig. 5 do not contain state variable part.

The executing of Algorithm 1 for each transition in the state space presented in
Fig. 5 is shown in Table 1. The leftmost column specifies the order of creating the
transitions. The rightmost column indicates whether the set of knowledge-related policies
(KnPset) is satisfied in the current point of the model checking algorithm. Here,KnPset =
{¬Kanalyzerknown(“d3”)}.

When state 2 is created and the transition from state 1 to state 2 is added to the state
space (row 1), the visited states are 1 and 2, and both of them are active. At this point,
KnPset is satisfied. By adding the transition from 6 to 9, first, the set of visited states is
{1, 2, 3, 4, 5, 6, 7, 8, 9} and the set of active states is {7, 8, 9}, but since the knowledge
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1 actor consumer{
2 consumer{}
3 def m4(){
4 utility!m1("d1");
5 }
6 }
7 actor analyzer{
8 analyzer{}
9 def m5(){
10 utility!m2("d2");
11 }
12 def m3(x){
13 remember (known(x));
14 }
15 inference{
16 known("d1"), known("d2")
17 -> known("d3").
18 }
19 }

20 actor utility{
21 utility{}
22 def m1(x){
23 remember (known(x));
24 }
25 def m2(x){
26 var y;
27 remember (known(x));
28 forall (known(?y)){
29 analyzer!m3(y);
30 }
31 }
32 }

34 main{
35 consumer!m4();
36 analyzer!m5();
37 }

Figure 4: The running example (second scenario) modeled in Inferactor

Figure 5: The state space constructed for running example

of state 1 is less than the knowledge of the states in active state list, 1 cannot be reached
again from any active state, then 1 is removed from the VisitedSt. By the same reasoning,
states 2, 3, 4, and 6 are also removed from VisitedSt, so VisitedSt is updated to {5, 7, 8, 9}.
Finally, when state 16 is created (row 19), the knowledge base of actor analyzer is
updated to {known(“d1”), known(“d2”)} and based on the inference rule defined for
analyzer (lines 15-18 of Fig. 4), analyzer can infer known(“d3”). Since analyzer is
not allowed to know known(“d3”), a policy violation occurs and the counterexample
is set to (analyzer,¬Kanalyzerknown(“d3”), 16).



492 Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ...

Step Transition VisitedSt ActvSt KnPset
1 1→ 2 {1, 2} 〈1, 2〉 X
2 1→ 3 {1, 2, 3} 〈2, 3〉 X
3 2→ 4 {1, 2, 3, 4} 〈2, 3, 4〉 X
... ... ... ... X
8 5→ 8 {1, 2, 3, 4, 5, 6, 7, 8} 〈6, 7, 8〉 X
9 6→ 9 {5, 7, 8, 9} 〈7, 8, 9〉 X
10 7→ 9 {5, 7, 8, 9} 〈7, 8, 9〉 X
... ... ... ... X
17 12→ 15 {10, 13, 14, 15} 〈13, 14〉 X
18 13→ 15 {14} 〈14〉 X
19 14→ 16 {} 〈〉 ×

Table 1: The execution of Algorithm 1 for the running example

9 Related Work

There are a number of actor-based programming and modeling languages, such as Erlang
[Armstrong, 2007], Rebeca [Sirjani et al., 2004], Ptolemy II [Eker et al., 2003], and
Abstract Behavioral Specification (ABS) [Johnsen et al., 2012a, ABS, 2022], have been
presented for modeling, designing, and reasoning about a wide range of concurrent and
distributed systems. Compared to the existing actor modeling languages, our Inferactor
model enables modeling the knowledge and inference capabilities of the actors, but in
terms of actor computation, it does not add much to the existing modeling languages and
is almost similar to Rebeca. In this way, we have made it possible to reason about the
knowledge of the actors using Inferactor model. The ABS language supports the modeling
of time-sensitive and resource-sensitive behaviors. In [Johnsen et al., 2012b], a Real-Time
ABS model for resource-aware applications is presented to model virtualized systems in
a cloud environment. In [Kamburjan et al., 2016], ABS has been extended to express
scheduling policies based on required communication ordering, to verify communication
correctness in a concurrency model of the core ABS language. In [Kamburjan et al.,
2019], ABS has been extended with Hybrid Active Objects for modeling cyber-physical
systems. Ptolemy II [Eker et al., 2003] is a software framework that supports actor-based
modeling and design. In [Baldwin et al., 2004], an extension of Ptolemy II has been
used for the modeling and simulation of wireless sensor networks. In [Lasnier et al.,
2013], Ptolemy II is used as part of a framework for distributed simulation of cyber-
physical systems. In [Kamaleswaran and Eklund, 2011], Ptolemy II has been used for
simulating real-time components and generating the respective Java code for interactive
hypothesis testing of a clinical decision support system. Rebeca [Sirjani et al., 2004] is
an actor-based modeling language used to model concurrent and distributed systems.
Some extensions of Rebeca are Timed Rebeca [Reynisson et al., 2014] and Probabilistic
Timed Rebeca [Jafari et al., 2014] which extend Rebeca to model real-time systems and
to capture probabilistic behaviors, respectively. In [Moradi et al., 2020], Timed Rebeca
has been used for security analysis of cyber-physical systems at the design phase. Erlang
[Armstrong, 2007] is an actor programming language designed for concurrent real-time
distributed applications, and supports a huge number of independent actors. As we aim to
analyze knowledge-related policies, we propose Inferactor (based on Actor model [Agha,
1985]), which enables us to model the actors’ knowledge and inference capability.

As stated in [Tschantz andWing, 2009], formal methods are useful in finding security
vulnerabilities at the code level, especially when combined with static analysis techniques.
Our proposed approach to analyzing knowledge-related policies belongs to the category
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of static analysis techniques because it verifies all the execution paths of a program
without actually executing it. Static analysis techniques have been widely applied to
various types of properties. In the context of privacy, static analysis of privacy makes it
possible to detect potential leaks during design time before the system is deployed [Ferrara
and Spoto, 2018]. In [Ferrara and Spoto, 2018] the focus is on the GDPR and static
analysis. They have combined taint analyses and backward-slicing algorithms to produce
reports useful for GDPR compliance. [Wang, 2022] has introduced a static analyzer,
via abstract interpretation, to support compliance verification between a program and a
policy. This approach encodes policies as abstract values and uses the standard Python
interpreter to perform abstract interpretation. In [Tokas et al., 2022], a type and effect
system is developed for an object-oriented, distributed modeling language supporting
both asynchronous and synchronous method interactions. The privacy policies for data
types and methods are encoded within the program. This approach checks statically a
program’s compliance with privacy policies at the compile time using the type system.
In [Baramashetru et al., 2023], privacy concepts have been integrated into a core active
object language. The syntax and operational semantics of this language are presented and
it is proven that all the executions following the defined operational semantics are privacy
compliant. In [Kouzapas and Philippou, 2015] and [Kokkinofta and Philippou, 2016],
a framework for statically ensuring that a privacy policy is satisfied by an information
system is developed. This framework is based on the π-calculus and accompanied by a
type system and a privacy language for capturing privacy requirements and expressing
privacy policies, respectively. This framework performs type checking of the system
against a typing and produce a permission interface and if the produced permission
interface satisfies a policy, the system satisfies that policy. In [Samani, 2015], a framework
for modeling and analyzing privacy concerns in distributed systems has been presented.
This framework is applied to the interaction protocols. In this framework, depending on
the sequence of messages in the interaction protocol and the identified privacy concern,
an adequate protection mechanism, such as anonymization or encryption, is applied. In
[Riahi et al., 2017], an approach for data disclosure policies analysis in the actor model
has been presented. The model checking and data dependence analysis are used to ensure
that the actors do nothing that violates the defined policies. Among the studies reviewed
in this field, [Tokas et al., 2022] and [Riahi et al., 2017] are the most relevant to our work.
[Tokas et al., 2022] defines privacy policies for data types and methods and checks their
compliance using a type system. In contrast, we define policies for the knowledge of
the actors and check their satisfaction through model checking. The actor model used in
[Riahi et al., 2017] does not support modeling the knowledge and inference capabilities
of the actors. While, we have proposed Inferactor model which supports the modeling of
actors’ knowledge and inference capability.

Access control is a useful defense mechanism organizations can deploy to meet
legal compliance with data privacy. The most widely used access control strategies fall
into Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC)
categories [Golightly et al., 2023, You et al., 2023]. Access control policies prevents
unauthorized access to data. While, our privacy policies describe the required privacy of
the system and we check the satisfaction of these policies in the system by verifying them
in the system model. Since we consider secondary access to data (or data usage), access
to data through inference, and access to data about the knowledge of the other actors, we
need to model actors’ knowledge and their inference capabilities. Our defined privacy
policies can be considered as generalized access and usage control policies related to the
knowledge of the actors.

In the following, we review the works that addressed the knowledge of the agents in
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the areas close to our concern in this paper. In [Lager, 2019], a web logic programming
language, called Web Prolog, has been introduced, which extends Prolog [Sterling and
Shapiro, 1986] with some features of actor programming language Erlang [Armstrong,
2007] to provide some primitives that support concurrency, distribution and intraprocess
communication. Web Prolog is a programming language with many details, but we
introduce a modeling language and try to make it as simple as possible for modeling and
analyzing the actor systems, and easy to learn for the users.

One group of work considers the knowledge of agents in social networks. For example
in [Pardo and Schneider, 2014], a formal privacy policy framework (PPF) based on
epistemic logic [Fagin et al., 2003] to specify and reason about privacy policies in social
networks has been presented. Then in [Pardo et al., 2017], the authors have extended the
PPF framework by considering a deductive engine for agents which enables the agents
to perform knowledge inferences. They provide a set of template operational semantic
rules for each social network to model its dynamics. These rules are conditioned by the
privacy policies, specified by epistemic formulae. In [Pardo and Schneider, 2017], the
problem of verifying knowledge properties over social network models (SNMs) has been
considered. In [Moezkarimi et al., 2022], an epistemic framework is introduced for social
networks to verify privacy in social networks. This framework takes into account the
ability of agents to infer knowledge by considering the sequence of observed messages,
while in our approach the actors infer knowledge based on their obtained information.

Modeling the knowledge of agents has also been considered in evaluation of security
protocols. For example in [Chen et al., 2008], formal analysis of secure transaction
protocols has been studied. The authors have proposed a logical framework, including
the axioms and inference rules, and a verification model, including the inference engine
and the knowledge base, to enable protocol analysis. In [Pavlovic and Meadows, 2011]
and [Pavlovic and Meadows, 2012], a logical framework for reasoning about security
of protocols has been presented. The authors have proposed Actor-Network Procedure
(ANP) for formalizing security ceremonies and the Procedure Derivation Logic (PDL)
to reason logically about ANPs. The authors in [González-Burgueño and Ölveczky,
2019] have extended ANPs to support explicitly specifying the nodes’ capabilities for
heterogeneous devices and have also modify PDL to take into account the knowledge
of participants at different points in time. Their model does not have an executable
formal semantics and they use a non-automatic manner for proving the properties. The
authors in [González-Burgueño and Ölveczky, 2021] have defined ANPs with capabilities
(ANP-Cs), which extends ANPs with an explicit specification of the capabilities of the
different nodes. They have defined two variations of PDL logic called PDL-CK and
PDL-CKL. PDL-CK supports global reasoning about the system and PDL-CKL supports
local reasoning from the perspective of a single node, based only on what that node can
observe. In [Kamkuemah, 2022], an approach to analyze security protocols has been
introduced which uses epistemic logic (to specify security requirements of a protocol)
and Z [Spivey and Abrial, 1992] specification language (to specify the protocols). This
approach considers assumptions about the cryptographic primitives and the capabilities
of adversaries that attack the protocols, and reasons algebraically that protocols achieve
the security properties under the assumption. Since we want to support concurrency and
its resulting nondeterminism in our model, this approach is not suitable for us.

Table 2 presents a comparison of the closest work to ours based on a set of metrics.
These metrics include target systems, modeling formalism, knowledge modeling, support-
ing inference capability, policy specification, and the method to analyze privacy policies
in the system. As our domain of focus is asynchronous message passing distributed
systems, one can model the inference capability of computing agents (actors) based
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Reference System type Model
Knowledge
modeling

Inference
Policy

specification
Analysis method

[Pardo et al.,
2017]

Social network
service (SNS)

Social network
model (SNM)

X X X Model checking

[Riahi et al.,
2017]

Distributed
system (Actor

model)
Rebeca × × X

Model checking and
data dependence

analysis

[Tokas et al.,
2022]

Distributed
system (active

object
paradigm)

A small
language based
on the active

object paradigm

× × X
Static type checking
(define a type and
effect system)

Current work
Distributed
system (Actor

model)
Inferactor X X X Model checking

Table 2: Comparison with the most related work

on communicated information embedded in messages to analyze the effect of inferred
knowledge by agents. In the approach in the first row of Table 2, the template operational
rules of the framework must be concretized with respect to the features of the given
instance of social network. The privacy policies defined for a given social network are
embedded within the concrete operational semantic rules. When policy rules are changed,
the semantic rules have to be revised accordingly. In our approach, the semantic rules of
our framework are not affected by the instance of the distributed system. The second and
third rows do not consider the knowledge and inference capabilities of agents, so they
cannot find privacy violations due to inferred knowledge achieved by agents through
communication.

10 Conclusions and Future Work

One of the most important reasons for privacy violations in distributed systems is related
to the lack of control over the information that agents of the system transmit to each
other. In this paper, we provide a formalism to model the knowledge of the actors along
with their other characteristics. In this way, we can speak about the actors’ knowledge in
presence of their inference capabilities, as well as their asynchronous communications
and interleaving of their executions.

We considered a knowledge base for each actor and defined some operations through
some statements to manipulate/use it. The knowledge base of each actor contains the
knowledge that is directly obtained through interactions with other actors. The inference
capability of an actor, which enables the actor to infer new knowledge based on its current
knowledge (using S5 axiomatization of epistemic logic), is explicitly specified in the
actor’s body. We defined knowledge-based logic IKBL to specify the actors’ knowledge
and inference capabilities. We extended IKBL to specify knowledge-related policies.
Such policies can be considered as generalized access and usage control policies related to
the knowledge of the actors by imposing restrictions on the knowledge of an actor about
the knowledge of the other actors. We proposed an efficient model checking algorithm, to
check the satisfaction of knowledge-related policies for an Inferactor. Using our method,
we can ensure that in a distributed asynchronous system there is no knowledge-related
policy violation.

We intend to develop an automatic tool for model checking the defined policies
in Inferactor models. This tool includes an epistemic engine to support the epistemic
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features in addition to the usual characteristics of the actor model (including computation
and communication). The tool enables us to elaborate more complex examples. We also
aim to define another type of inference rule to consider the inference capabilities of the
actors based on the received messages in addition to the known facts. In this case, in
addition to making inferences based on knowledge, actors can also make inferences
based on the behavior they observe from the other actors. This type of inference rules
for an actor can be defined based on the received messages of that actor or based on the
information from messages exchanged among other actors. In the second case, since
the view of the actors is local and they only know about the interactions in which they
participate, a mechanism is needed to inform an actor about the messages sent between
the other actors. This extension is beneficial to reason about scenarios in which agent has
observability capabilities due to their special roles and so accesses in the system. The
purpose of using private information is an important aspect of privacy policies which
complements the access and usage policy rules [Tschantz et al., 2012]. We intend to
enrich our approach with the specification and analysis of purpose-based privacy policies.
The specification of purpose-based privacy policies requires the definition of the purpose
model, and the analysis of these policies requires that the conformance of the system
model with the purpose model is also defined.

References

[ABS, 2022] Abstract Behavioral Specification (ABS) language, http://abs-models.org.

[Agha, 1985] Agha, G.A.: “Actors - a model of concurrent computation in distributed systems”;
MIT Press series in artificial intelligence, MIT Press (1985).

[Armstrong, 2007] Armstrong, J.: “Programming Erlang, Software for Concurrent World”; Prag-
matic Bookshelf (2007).

[Asghar et al., 2017] Asghar, M.R., Dán, G., Miorandi, D., and Chlamtac, I.: “Smart Meter
Data Privacy: A Survey”; IEEE Communications Surveys and Tutorials, Vol. 19, No. 4, (2017),
2820–2835.

[Baier and Katoen, 2008] Baier, C. and Katoen, J.P.: “Principles of Model Checking”; MIT Press,
Cambridge, Massachusetts, London, England (2008).

[Baldwin et al., 2004] Baldwin, P., Kohli, S., Lee, E.A., Liu, X., and Zhao, Y.: “Modeling of
Sensor Nets in Ptolemy II”; In proceedings of Information Processing in Sensor Networks (IPSN),
April (2004), 359–368.

[Baramashetru et al., 2023] Baramashetru, C., Tapia Tarifa, S.L., and Owe, O.: Integrating Data
Privacy Compliance in Active Object Languages. Research report http://urn.nb.no/URN:NBN:
no-35645. (2023).

[Bi et al., 2020] Bi, M., Wang, Y., Cai, Z., and Tong, X.: A privacy-preserving mechanism based
on local differential privacy in edge computing. China communications, Vol. 17, Issue 9, (2020),
50–65.

[Blanke, 2020] Blanke, J.M.: “Protection for ‘Inferences Drawn’: A Comparison Between the
General Data Protection Regulation and the California Consumer Privacy Act’’; Global Privacy
Law Review, Vol. 1, Issue 2, (2020), 81–92.

[Boer et al., 2017] Boer, F.D., Serbanescu, V., Hähnle, R., Henrio, L., Rochas, J., Din, C.C.,
Johnsen, E.B., Sirjani, M., Khamespanah, E., Fernandez-Reyes, K., and Yang, A.M.: “A survey of
active object languages”; ACM Computing Surveys (CSUR), Vol. 50, No. 5, (2017), 1–39.

[Bugeja et al., 2021] Bugeja, J., Jacobsson, A., and Davidsson, P.: “PRASH: a framework for
privacy risk analysis of smart homes”; Sensors, Vol. 21, Issue 19, p.6399 (2021).

http://abs-models.org
http://urn.nb.no/URN:NBN:no-35645
http://urn.nb.no/URN:NBN:no-35645


Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ... 497

[Cardenas and Safavi-Naini, 2012] Cardenas, A. and Safavi-Naini, R.: “Security and Privacy in
the Smart Grid”; Handbook on Securing Cyber-Physical Critical Infrastructure (2012).

[Celik et al., 2019] Celik, Z.B., Fernandes, E., Pauley, E., Tan, G., and McDaniel, P.: “Program
analysis of commodity IoT applications for security and privacy: Challenges and opportunities’’;
ACM Computing Surveys (CSUR), Vol. 52, Issue 4, Article No. 74, (2019), 1–30.

[Chaaya et al., 2019] Chaaya, K.B., Barhamgi, M., Chbeir, R., Arnould, P., and Benslimane, D.:
Context-aware system for dynamic privacy risk inference: Application to smart IoT environments.
Future Generation Computer Systems, Vol. 101, (2019), 1096–1111.

[Chanal and Kakkasageri, 2020] Chanal, P.M. and Kakkasageri, M.S.: “Security and privacy in
IOT: a survey’’; Wireless Personal Communications, Vol. 115, (2020), 1667–1693.

[Chen et al., 2008] Chen, Q., Zhang, C., and Zhang, S.: “Secure Transaction Protocol Analy-
sis: Models and Applications”; Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Heidelberg (2008).

[Dong et al., 2023] Dong, S., Zhan, J., Hu, W., Mohajer, A., Bavaghar, M. and Mirzaei, A.:
Energy-efficient hierarchical resource allocation in uplink-downlink decoupled NOMA HetNets.
IEEE Transactions on Network and Service Management, (2023).

[Eker et al., 2003] Eker, J., Janneck, J., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S.,
Sachs, S., and Xiong, Y.: “Taming heterogeneity - the Ptolemy approach”; Proceedings of the
IEEE, Vol. 91, Issue 1, January (2003), 127–144.

[Fagin et al., 2003] Fagin, R., Halpern, J.Y., Moses, Y., and Vardi, M.Y.: “Reasoning About
Knowledge”; MIT press Cambridge (2003).

[Fang et al., 2012] Fang, X., Misra, S., Xue, G., and Yang, D.: “Smart Grid - The New and
Improved Power Grid: A Survey”; IEEE Communications Surveys and Tutorials (2012).

[Ferrara and Spoto, 2018] Ferrara, P. and Spoto, F.: “Static Analysis for GDPR Compliance”;
The Second Italian Conference on Cyber Security (ITASEC18), CEUR Workshop Proceedings,
Vol. 2058, (2018).

[GDPR, 2020] General Data Protection Regulation (GDPR), available at: https://gdpr-info.eu/.

[Giaconi et al., 2020] Giaconi, G., Gund, D., and Poor, H.V.: “Smart Meter Data Privacy”; CoRR
abs/2009.01364 (2020).

[Golightly et al., 2023] Golightly, L., Modesti, P., Garcia, R., and Chang, V.: “Securing Dis-
tributed Systems: A Survey on Access Control Techniques for Cloud, Blockchain, IoT and SDN”;
Cyber Security and Applications, Vol. 1, p.100015 (2023).

[González-Burgueño and Ölveczky, 2019] González-Burgueño A. and Ölveczky, P.C.: “Formal-
izing and Analyzing Security Ceremonies with Heterogeneous Devices in ANP and PDL”; 8th
IPM International Conference on Fundamentals of Software Engineering (FSEN), (2019), 96–110.

[González-Burgueño and Ölveczky, 2021] González-Burgueño, A. and Ölveczky, P.C.: “Formal-
izing and analyzing security ceremonies with heterogeneous devices in ANP and PDL”; Journal of
Logical and Algebraic Methods in Programming, Vol. 122, August (2021).

[Gunduzl et al., 2015] Gunduzl, D., Kalogridis, G., and Mustafa, M.: “Privacy in Smart Metering
Systems”; 7th IEEE International Workshop on Information Forensics and Security (IEEE WIFS
2015), Rome, Italy (2015).

[Halpern and O’Neill, 2008] Halpern, J. and O’Neill, K.: “Secrecy in multiagent systems”; ACM
Transactions on Information and System Security, Vol. 12, Issue 1, No. 5, (2008), 1–47.

[Halvorsen et al., 2022] Halvorsen, L., Steffensen, S.L., Rafnsson, W., Kulyk, O., and Pardo, R.:
“How Attacker Knowledge Affects Privacy Risks: An Analysis Using Probabilistic Programming”;
In Proceedings of the 2022 ACM on International Workshop on Security and Privacy Analytics,
(2022), 55–65.

https://gdpr-info.eu/


498 Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ...

[He and Anton, 2003] He, Q. and Anton, A.I.: A framework for modeling privacy requirements
in role engineering. In Proc. of REFSQ, Vol. 3, (2003), 137–146.

[Hsu et al., 2001] Hsu, TS., Liau, CJ., and Wang, DW.: “A Logical Model for Privacy Protec-
tion”; In: International Conference on Information Security, Springer, Berlin, Heidelberg (2001),
110–124.

[Jafari et al., 2014] Jafari, A., Khamespanah, E., Sirjani, M., and Hermanns, H.: “Performance
Analysis of Distributed and Asynchronous Systems using Probabilistic Timed Actors”; Electronic
Communication of the European Association of Software Science and Technology 70 (2014).

[Johnsen et al., 2012a] Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: “ABS:
a core language for abstract behavioral specification”; Formal Methods for Components and
Objects: 9th International Symposium, FMCO 2010, Graz, Austria, November 29-December 1,
2010, Revised Papers 9, Springer Berlin Heidelberg, (2012), 142–164.

[Johnsen et al., 2012b] Johnsen, E.B., Schlatte, R., and Tapia Tarifa, S.L.: “Modeling resource-
aware virtualized applications for the cloud in Real-Time ABS’’; In Formal Methods and Software
Engineering: 14th International Conference on Formal Engineering Methods, ICFEM 2012, Kyoto,
Japan, November 12-16, Springer Berlin Heidelberg, (2012), 71–86.

[Kamaleswaran and Eklund, 2011] Kamaleswaran, R. and Eklund, M.: “A method for interactive
hypothesis testing for Clinical Decision Support Systems using Ptolemy II”; In: 24th Canadian
Conference on Electrical and Computer Engineering (CCECE), IEEE (2011), 001278–001281.

[Kamburjan et al., 2016] Kamburjan, E., Din, C.C., and Chen, T.C.: “Session-based compositional
analysis for actor-based languages using futures’’; In Formal Methods and Software Engineering:
18th International Conference on Formal Engineering Methods, ICFEM 2016, Tokyo, Japan,
November 14-18, 2016, Springer International Publishing, (2016), 296–312.

[Kamburjan et al., 2019] Kamburjan, E., Mitsch, S., Kettenbach, M., and Hähnle, R.: “Modeling
and verifying cyber-physical systemswith hybrid active objects’’; arXiv preprint arXiv:1906.05704,
(2019).

[Kamkuemah, 2022] Kamkuemah, M.N.: “An analysis of security protocols for lightweight sys-
tems”; Ph.D. dissertation, Stellenbosch University, (2022).

[Khamespanah, 2018] Khamespanah, E.: “Modeling, Verification, and Analysis of Timed Actor-
Based Models”; Ph.D. dissertation, Reykjavik University School of Computer Science (2018).

[Kokkinofta and Philippou, 2016] Kokkinofta, E. and Philippou, A.: “Type Checking Purpose-
Based Privacy Policies in the π-Calculus”; Web Services, Formal Methods, and Behavioral Types
(WS-FM 2014/WS-FM 2015), Springer International Publishing Switzerland (2016), 122–142.

[Kouzapas and Philippou, 2015] Kouzapas, D. and Philippou, A.: “Type Checking Privacy Poli-
cies in the Π-calculus”; FORTE 2015: Formal Techniques for Distributed Objects, Components,
and Systems, (2015), 181–195.

[Lager, 2019] Lager, T.: “Intro to Web Prolog for Erlangers”; In proceedings of the 18th ACM
SIGPLAN International Workshop on Erlang (Erlang ’19), (2019), 18–29.

[Lasnier et al., 2013] Lasnier, G., Cardoso, J., Siron, P., Pagetti, C., and Derler, P.: “Distributed
simulation of heterogeneous and real-time systems”; In: 2013 IEEE/ACM 17th International
Symposium on Distributed Simulation and Real Time Applications, (2013), 55–62.

[Lehnherr et al., 2022] Lehnherr, D., Ognjanović, Z., and Studer, T.: “A Logic of Interactive
Proofs”; In: Artemov S., Nerode A. (eds) International Symposium on Logical Foundations of
Computer Science. Lecture Notes in Computer Science, Vol. 13137, Springer, Cham (2022),
143–155.

[Lisovich et al., 2010] Lisovich, M.A., Mulligan, D.K., and Wicker, S.B.: Inferring personal
information from demand-response systems. IEEE Security and Privacy, Vol. 8, Issue 1, (2010),
11–20.



Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ... 499

[Masellis et al., 2015] Masellis, R.D., Ghidini, CH., and Ranise, S.: A Declarative Framework
for Specifying and Enforcing Purpose-Aware Policies. In: Foresti, S. (eds.) Security and Trust
Management. LNCS, vol. 9331, Vienna, Austria, (2015), 55–71.

[Meyer and van der Hoek, 1995] Meyer, J.J.Ch. and van der Hoek, W.: “Epistemic Logic for
AI and Computer Science”; volume 41 of Cambridge Tracts in Theoretical Computer Science,
Cambridge University Press (1995).

[Moezkarimi et al., 2022] Moezkarimi, Z., Ghassemi, F. and Mousavi, M.R.: “A policy-aware
epistemic framework for social networks”; Journal of Logic and Computation, Vol. 32, Issue 6,
September (2022), 1234–1271.

[Mohajer et al., 2022A] Mohajer, A., Daliri, M.S., Mirzaei, A., Ziaeddini, A., Nabipour, M., and
Bavaghar, M.: Heterogeneous computational resource allocation for NOMA: Toward green mobile
edge-computing systems. IEEE Transactions on Services Computing, Vol. 16, Issue 2, (2022),
1225–1238.

[Mohajer et al., 2022B] Mohajer, A., Sorouri, F., Mirzaei, A., Ziaeddini, A., Rad, K.J. and Bav-
aghar, M.: Energy-aware hierarchical resource management and backhaul traffic optimization in
heterogeneous cellular networks. IEEE Systems Journal, Vol. 16, Issue 4, (2022), 5188–5199.

[Moradi et al., 2020] Moradi, F., Abbaspour Asadollah, S., Sedaghatbaf, A., Čaušević, A., Sirjani,
M., and Talcott, C.: “An actor-based approach for security analysis of cyber-physical systems”;
In International Conference on Formal Methods for Industrial Critical Systems, Springer, Cham
(2020), 130–147.

[Morel and Pardo, 2020] Morel, V. and Pardo, R.: “SoK: Three Facets of Privacy Policies”; In
WPES (2020).

[Pardo and Schneider, 2014] Pardo, R. and Schneider, G.: “A Formal Privacy Policy Framework
for Social Networks”; In: Giannakopoulou D., Salaün G. (eds) Software Engineering and Formal
Methods (SEFM 2014), LNCS, Vol. 8702, Springer, Cham (2014).

[Pardo and Schneider, 2017] Pardo, R. and Schneider, G.: “Model Checking Social Network
Models”; In proceedings of the Eighth International Symposium on Games, Automata, Logics and
Formal Verification, GandALF’17, Vol. 256, (2017), 238–252.

[Pardo et al., 2017] Pardo, R., Balliu, M., and Schneider, G.: “Formalising Privacy Policies in
Social Networks”; Journal of Logical and Algebraic Methods in Programming, Vol. 90, (2017),
125–157.

[Pavlovic and Meadows, 2011] Pavlovic, D. and Meadows, C.: “Actor-network procedures: Mod-
eling multi-factor authentication, device pairing, social interactions”; CoRR abs/1106.0706 (2011).

[Pavlovic and Meadows, 2012] Pavlovic, D. and Meadows, C.: “Actor-Network Procedures”;
Distributed Computing and Internet Technology (ICDCIT), LNCS, Vol. 7154, (2012), 7–26.

[Pfitzmann and Hansen, 2010] Pfitzmann, A. and Hansen, M.: “A terminology for talking
about privacy by data minimization: Anonymity, Unlinkability, Undetectability, Unobservabil-
ity, Pseudonymity, and Identity Management”; (2010) available at: http://www.maroki.de/pub/
dphistory/2010_Anon_Terminology_v0.34.pdf.

[Pucella, 2013] Pucella, R.: “Knowledge and Security”; arXiv preprint, arXiv: 1305.0876 (2013).

[Reidenberg et al., 2015] Reidenberg, J.R., et al.: Disagreeable privacy policies: Mismatches
between meaning and users’ understanding. Berkeley Technology Law Journal, Vol. 30, No. 1,
(2015), 39–88.

[Reynisson et al., 2014] Reynisson, A.H., Sirjani, M., Aceto, L., Cimini, M., Jafari, A., Ingolfs-
dottir, A., and Sigurdarson, S.H.: “Modelling and Simulation of Asynchronous Real-Time Systems
Using Timed Rebeca”; Science of Computer Programming, Vol. 89, (2014), 41–68.

[Riahi et al., 2017] Riahi, Sh., Khosravi, R., and Gassemi, F.: “Purpose-based Policy Enforcement
in Actor-based Systems”; 7th International Conference on Fundamentals of Software Engineering
(FSEN), LNCS, Springer (2017), 196–211.

http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf
http://www.maroki.de/pub/dphistory/2010_Anon_Terminology_v0.34.pdf


500 Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ...

[Ronne, 2012] Ronne, J.: “Leveraging Actors for Privacy Compliance”; In: Proceedings of the
2nd edition on Programming systems, languages and applications based on actors, agents, and
decentralized control abstractions (AGERE! 2012), ACM (2012), 133–136.

[Samani, 2015] Samani, A.: “Privacy in Cooperative Distributed Systems: Modeling and Protec-
tion Framework”; Ph.D. dissertation, The University of Western Ontario (2015).

[Schneider, 2018] Schneider, G.: “Is Privacy by Construction Possible?”; 8th International Sym-
posium, ISoLA 2018, Limassol, Cyprus, November 5-9 (2018).

[Simmhan et al., 2011] Simmhan, Y., Kumbhare, A.G., Cao, B., and Prasanna, V.: “An Analysis
of Security and Privacy Issues in Smart Grid Software Architectures on Clouds”; 4th International
Conference on Cloud Computing, IEEE (2011).

[Sirjani et al., 2004] Sirjani, M., Movaghar, A., Shali, A., and de Boer, F.: “Modeling and verifi-
cation of reactive systems using Rebeca”; Fundamenta Informaticae 63, (2004), 385–410.

[Sitti et al., 2017] Sitti, S., Riyana, S., and Riyana, N.: “Scenario of privacy violation within the
recommendation databases”; International Conference on Digital Arts, Media and Technology
(ICDAMT), (2017), 383–388.

[Solove, 2006] Solove, D.J.: “A Taxonomy of Privacy”; University of Pennsylvania Law Review,
Vol. 154, No. 3, (2006), 477–560.

[Spivey and Abrial, 1992] Spivey, J. M. and Abrial, J.: “The Z notation”; Prentice Hall Hemel
Hempstead, (1992).

[Sterling and Shapiro, 1986] Sterling, L. and Shapiro, E.: “The Art of Prolog: Advanced Program-
ming Techniques”; MIT Press, Cambridge MA (1986).

[Tokas and Owe, 2020] Tokas, S. and Owe, O.: “A formal framework for consent management”;
In Formal Techniques for Distributed Objects, Components, and Systems. 40th IFIP WG 6.1
International Conference, FORTE 2020, Held as Part of the 15th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15–19, Proceedings
40, Springer International Publishing (2020), 169–186.

[Tokas et al., 2022] Tokas, S., Owe, O., and Ramezanifarkhani, T.: “Static checking of GDPR-
related privacy compliance for object-oriented distributed systems”; Journal of Logical and Alge-
braic Methods in Programming, 125:100733 (2022).

[Tschantz and Wing, 2009] Tschantz, M. and Wing, J.: “Formal Methods for Privacy”; In: 2nd
World Congress on Formal Methods, Springer-Verlag, Berlin, Heidelberg (2009), 1–15.

[Tschantz et al., 2012] Tschantz, M.C., Datta, A., and Wing, J.M.: Formalizing and enforcing pur-
pose restrictions in privacy policies. IEEE Symposium on Security and Privacy, (2012), 176–190.

[Van Der Hoek and Verbrugge, 2002] Van Der Hoek, W. and Verbrugge, R.: “Epistemic logic:
A survey”; Game theory and applications, Vol. 8, (2002), 53–94.

[Wang et al., 2022] Wang, D., Ren, J., Wang, Z., Zhang, Y. and Shen, X.S.: PrivStream: A
privacy-preserving inference framework on IoT streaming data at the edge. Information Fusion,
Vol. 80, (2022), 282–294.

[Wang, 2022] Wang, L.: Towards Privacy-Preserving and Regulation-Compliant Data Analysis.
Ph.D. thesis, University of California, Berkeley, (2022).

[Yeom et al., 2018] Yeom, S., Giacomelli, I., Fredrikson, M. and Jha, S.: Privacy risk in machine
learning: Analyzing the connection to overfitting. In 2018 IEEE 31st computer security foundations
symposium (CSF), (2018), 268–282.

[You et al., 2023] You, M., Yin, J., Wang, H., Cao, J., Wang, K., Miao, Y., and Bertino, E.: “A
knowledge graph empowered online learning framework for access control decision-making”;
World Wide Web, Vol. 26, Issue 2, (2023), 827–848.



Riahi Sh., Khosravi R., Ghassemi F.: Knowledge-Related Policy Analysis in ... 501

[Zabkowski and Gajowniczek, 2013] Zabkowski, T. and Gajowniczek, K.: “Smart metering and
data privacy issues”; Information Systems in Management, Vol. 2(3), (2013), 239–249.

[Zeng and Roesner, 2019] Zeng, E. and Roesner, F.: “Understanding and Improving Security and
Privacy in Multi-User Smart Homes: A Design Exploration and In-Home User Study”; In USENIX
Security Symposium, August (2019), 159–176.

[Zhang et al., 2018] Zhang, J., Chen, B., Zhao, Y., Cheng, X., and Hu, F.: Data security and
privacy-preserving in edge computing paradigm: Survey and open issues. IEEE access, Vol. 6,
(2018), 18209–18237.


	Introduction
	Inference-Enabled Actor Model
	Computation model of Inferactor
	Knowledge and Inference Capabilities of the Actors
	Running Example

	Knowledge-based Logic
	Terms and Facts
	Knowledge-based Logic Syntax

	Formal Description of Inferactor Syntax
	Notation
	Inferactor Syntax
	Abstract Syntax
	Types of Variables
	Term and Fact
	Inference Rules
	Methods
	Actors
	Statements
	Inferactor Model
	Auxiliary Functions
	Static Semantics


	Formal Description of Inferactor Semantics
	States
	Transitions
	Message take
	Assignment
	Message send
	End of method
	Save
	Query
	Conditional

	Transition System
	Big-step Semantics


	Knowledge-based Logic Semantics over Inferactor
	Knowledge-Related Policies
	Syntax of Knowledge-Related Policies
	Semantics of Knowledge-Related Policies

	Verification of Knowledge-Related Policies
	Efficient Algorithm for Knowledge-Related Policy Verification

	Related Work
	Conclusions and Future Work

