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Abstract: In the contemporary landscape of industrial manufacturing, the concept of computer 
numerical control (CNC) has emerged due to the optimization of conventional machinery, 
distinguished by its remarkable precision and expeditious processing capabilities. These inherent 
advantages have seamlessly paved the way for the pervasive integration of CNC machines across 
a myriad of industrial manufacturing sectors. The present study embarks upon a comprehensive 
inquiry, delving into the intricate analysis of a specialized prototype CNC molding machine, 
encompassing a meticulous assessment of its structural rigidity, robustness, and propensity for 
vibrational occurrences. Moreover, an insightful exploration is undertaken to discern the intricate 
interplay between vibrational signals and intricate machining processes, particularly under 
diverse conditions such as the presence or absence of the cutting tool, and at varying rotational 
speeds denoted in revolutions per minute (RPM). The trajectory of this research voyage 
encompasses an extensive array of empirical experiments meticulously conducted on the 
prototype CNC machine, with synchronous real-time acquisition of vibrational data. This 
empirical journey starts by generating two distinct datasets, each meticulously designed to 
encompass an assemblage of seven distinct rotational speeds, spanning the spectrum from 18000 
to 30000 RPM, thereby facilitating enhanced diversity within the dataset. In parallel, a secondary 
dataset is meticulously derived from the CNC machine operating in the absence of the cutting 
tool, thereby encapsulating an exhaustive range of 20 discrete RPM values. The extraction of 
pivotal features aimed at discerning between the vibrational signals arising from distinct 
conditions (i.e., those emanating from situations involving the presence or absence of the cutting 
tool) and the associated variance in CNC machine speeds is facilitated through an innovative 
framework grounded in co-occurrence matrices. The culmination of this methodological 
framework is the identification of discernible co-occurrence matrices, thereby facilitating the 
subsequent computation of Heralick features. The classification effort was performed 
systematically using 10-fold cross-validation analysis, covering a number of different machine 
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learning models. The outcomes emanating from this intricate sequence of systematic 
methodologies underscore remarkable achievements. Specifically, the classification of 
vibrational signals corresponding to varying CNC machine speeds, contingent upon the presence 
or absence of the cutting tool, yields commendable accuracy rates of 94.27% and 94.16%, 
respectively. Notably, an exemplary accuracy rate of 100% is attained when classifying differing 
conditions (i.e., situations involving the presence or absence of the cutting tool) across specific 
RPM settings, prominently at 22000  24000  26000  28000  and 30000 RPM. 
 
Keywords: CNC, classification, Heralick features, machine learning, vibration signal 
Categories: I.4.7, I.5, I.6.4, I.2.6 
DOI: 10.3897/jucs.106543 

1 Introduction 

In the wake of substantial advancements within the realms of science and technology 
in recent years, a proliferation of industrial products has materialized, accompanied by 
a heightened demand for innovations and novel applications across diverse domains. 
This burgeoning necessity for innovation has found particular resonance within the 
manufacturing sector, prompting a surge in research endeavors tailored to fulfill its 
exigencies. Among the indispensable assets within the contemporary manufacturing 
landscape, computer numerical control (CNC) machines have garnered widespread 
utilization, primarily because of their capacity to execute high-precision operations at 
remarkable speeds during machining processes. Consequently, the ascendancy of CNC 
workbenches within manufacturing operations is becoming increasingly pronounced, 
effectively supplanting conventional workbenches [Uyar et al., 2010, Jeong et al., 2016, 
Fei et al., 2019]. Of the myriad domains in which CNC machine tools are deployed 
prominently, mold design and manufacturing stand out as particularly prominent. This 
has prompted a cadre of researchers to undertake studies encompassing process 
modeling, mold design, dimensional and surface quality control, prototype production, 
and mold manufacturing, underpinned by advanced mechanical, electrical, and 
electronic methodologies [Imani et al., 2019, Bhogal et al., 2015, Elangovan et al., 
2015]. The intricacies inherent in the machinability of numerous surfaces encountered 
in industrial applications stem from their intricate irregular curvature structures. The 
integration of 5-axis workbenches into these operations has heralded an impressive 
reduction in processing time, often by as much as 85%, achieved through the 
implementation of sophisticated cutting trajectories [Dere et al., 2019, Yurtkuran et al., 
2016, Kuncan et al., 2018, Sheltami et al., 1998]. Among the merits offered by 5-axis 
CNC machines are heightened surface quality, flexibility in machining procedures, 
reduced operational duration, minimized setup requirements, and decreased operational 
costs. However, within the purview of recent research efforts, a salient pre-occupation 
has emerged: the optimization of cutting trajectories to attain the pinnacle of surface 
quality. Concurrently, significant emphasis is placed on the meticulous selection of 
optimal processing parameters, a pivotal determinant in the production of high-quality 
artifacts, and the delineation of parameters capable of mitigating the harmful impacts 
stemming from external factors [Kim et al., 2015, Du et al., 2019, Du et al., 2019]. 
Conversely, the evolution of technology has engendered an amplified demand for 
diverse CNC machines encompassing 3, 4, and 5 axes, a necessity precipitated by the 
expansive integration of mold manufacturing technology into diverse sectors. In recent 
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times, methods of mold machining have found application in various domains such as 
the aviation sector, automotive industry, prosthetics, footwear, tire manufacturing, and 
others. The ascendancy of mold manufacturing and cutting tool production has been 
notably underscored, with a significant proportion of these applications being rendered 
feasible through the use of 5-axis CNC machine tools [Khoshdarregi et al., 2014, 
Abuthakeer et al., 2010, Eski, 2012]. Of paramount significance within the domain of 
5-axis milling lies the dual imperative of concomitantly controlling tool orientation and 
position during the machining of contoured and undulating surfaces. It merits attention 
that the intricate compositions of machine tools can contribute to anomalies within the 
tool, encompassing manufacturing discrepancies, assembly aberrations, quasi-static 
faults, and deviations in kinematic parameters. These machines evince a heightened 
susceptibility to angular aberrations, which can only be comprehensively defined 
through an accurate comprehension of the genuine kinematic nature of the machine 
tool. A particularly demanding sphere that requires enhanced surface quality and 
grapples with intricate machinability is tire manufacturing. The widespread 
proliferation of motor vehicle usage has translated to a substantial increase in tire 
consumption and demand. Within the automotive sector, a paramount parameter for the 
realization of vehicles characterized by diminished fuel consumption and heightened 
safety pertains to the judicious management of friction between the tire and the road 
surface. 

The reduction of friction to a minimal threshold hinge on meticulous tire design 
and the attendant parameters. Concomitantly, the diminution of road-holding 
capabilities and braking distances, which are pivotal from a safety standpoint, serves to 
accentuate the significance of precise tire design processing. Concurrently, the facile 
accessibility of information regarding tire models, specifications, production dates, and 
origins by both dealers and consumers is deemed imperative. In this context, one 
noteworthy challenge pertains to the clear and consistent rendition of such information 
onto molds intended for diverse tire types. Broadly speaking, manufacturers operating 
within the tire industry require the intricate engraving of diverse patterns onto intricate 
molds using specialized tire pattern machines. In this context, CNC benches have 
emerged as indispensable tools for executing pattern engravings on molds [Kus et al., 
2017, Yurdakul et al., 2016, Yan et al., 2016, Kuncan et al., 2016, Kuncan et al., 2015, 
Bakbak et al., 2016, Lin et al., 2012, Kuncan et al., 2018]. Chu C. H. et al. proposed a 
parametric methodology for the design of 3D tire molds, in which they established a 
foundational framework for the standardization of rubber mold design, alongside 
parameterizing the evolving surface model. Moreover, they introduced geometric 
algorithms to discern and subsequently rectify superfluous groove geometries that tend 
to manifest during the design process [Krishnakumar et al., 2018, Shen et al., 2019, 
Kaya et al., 2020]. This investigation was translated into practical implementation 
within a CAD/CAM system for real-time mold production. In their test samples, the 
authors presented a proficient approach aimed at curtailing the requisite processing time 
while concurrently enhancing tire quality within the paradigms of mold development 
and design processes [Chu et al., 2006]. In a similar vein, Chen H. C. et al. developed 
a computer-aided machining planning system tailored for the creation of numerical 
control (NC) tool paths for intricate shoe molds. The outcome of their endeavor was a 
transformative shift from traditional shoe mold production methodologies toward an 
automated production continuum. Notably, this approach facilitated the achievement of 
accelerated production and consistent quality outcomes through the automated 
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generation of tool paths. The authors emphasized the efficacy of their proposed 
algorithm in minimizing processing and programming editing times for the tool path, 
thereby optimizing overall operational efficiency [Chen et al., 2012]. 

In the domain of CNC machine operations, whether accompanied by tools or not, 
the magnitude of vibration amplitude emerges as a salient determinant of machining 
quality. In fact, the monitoring of vibrations has a profound import in gaging surface 
roughness. This critical aspect has been the subject of extensive inquiry within the 
pertinent literature. Plaza et al. concentrated on signal statistical value measurements, 
examining frequency bands inherent in vibration signals and their correlative 
relationship to surface roughness. In essence, the authors investigated four distinct 
methods for extracting signal features: power spectral density (PSD), single-spectrum 
analysis (SSA), time-direct analysis (TDA), and wavelet packet transformation (WPT). 
The outcome of their research substantiated the heightened efficacy of certain methods 
(SSA and WPT) in optimal extraction of vibration signals. Moreover, they underscored 
the pre-eminence of the WPT method as the most effective technique for real-time 
surface monitoring in CNC machining, distinguished by its precision, reliability, and 
economical computational demands [Plaza et al., 2019].  

Within the framework of this research, a novel classification methodology was 
devised to assess the quality of machining operations across varying circumstances, 
encompassing conditions involving the presence or absence of a tool and distinct 
operational speeds. The primary objective here is to introduce an innovative 
classification scheme tailored for this purpose. In essence, this study entails the 
compilation of distinct datasets derived from a specially engineered CNC molding 
machine. Central to the proposed approach is a newly conceived model that harnesses 
the potential of co-occurrence matrices to extract Heralick features, which are integral 
for the classification of vibration signals. These vibration signals are meticulously 
collected across different conditions, pertinently encompassing scenarios with and 
without a tool, as well as varying operational speeds, all emanating from the specialized 
CNC machine tool. The empirical validation of the approach involves the use of two 
discrete datasets, effectively substantiating the efficacy of the proposed methodology. 
As a corollary to this innovative approach, the model demonstrates notable success 
rates in classifying vibration signals arising from various conditions and speeds. The 
outcomes of this study thus underscore the potential of this novel classification scheme 
in enhancing the comprehension and assessment of machining quality across diverse 
operational scenarios. 

 
2 Related Studies 

An additional study conducted by Palani and Natarajan harnessed the capabilities of an 
artificial neural network (ANN) model to deliver an automated, non-contact system for 
the flexible estimation of milled part roughness. Using a 2-D Fourier transform 
approach, they harnessed the ability to generate images of milled surfaces and 
subsequently extracted pertinent image texture features within the spatial frequency 
domain. Empirical outcomes demonstrated the potential for predicting the surface 
roughness of milled parts using the ANN method across a diverse spectrum of 
machining conditions. Notably, the precision of these predictions rivalled that of 
traditional probe-based methodologies. The authors touted the viability of their 
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proposed method, positing it for achieving automated surface roughness estimation 
with a commendable accuracy rate of 97.53% [Palani et al., 2011]. In parallel, Simon 
and Deivanathan embarked on an inquiry into the feasibility of pre-detecting tool wear. 
By examining vibration signals in the context of drilling stainless steel plates, the 
authors devised a technique for appraising tool performance. By leveraging statistical 
attributes, they achieved a notable classification of tool wear conditions, as evidenced 
by a success rate of 79.56% with the k-star classifier [Simon et al., 2019].  Moreover, 
several researchers have extended their investigations to encompass diverse machine 
learning methodologies beyond artificial neural networks. Caydas and Ekici, for 
instance, introduced three distinct variants of support vector machine (SVM) 
techniques, namely, least-square SVM (LS-SVM), spider SVM, and k-means SVM 
(SVM-KM), in tandem with an ANN model to predict the roughness values of 
austenitic stainless-steel surfaces in CNC processes. The input variables encompassed 
rotational cutting speed, feed rate, and depth of cutting. Notably, all SVM models 
outperformed their ANN counterparts, exhibiting robust correlations between 
predictive and experimental values [Çaydaş et al., 2012]. In a similar vein, Grzenda and 
Bustillo proposed a semi-supervised model designed to leverage partially unlabeled 
data, thus enhancing the precision of the model. Vibrational data coupled with 
roughness measurements were harnessed to bolster the accuracy of the prediction 
models. Their semi-supervised paradigm ingeniously employed k-nearest neighbors 
and random forest techniques to achieve an effective classification scheme [Grzenda et 
al., 2019]. Chen and Chen, in their pursuit of tool breakage detection, devised an online, 
process-centric monitoring system based on vibration data. This system was 
successfully implemented in the milling operations. The authors highlighted the 
comparative ease of installation and the absence of any necessary mechanism alteration, 
differentiating their approach from other online methods reliant on dynamometers or 
acoustic emission sensors. Empirical validation illustrated the practical utility of their 
tool break detection system across diverse cutting parameters [Chen et al., 1999]. 

Huang et al. introduced a hybrid tool wear prediction paradigm based on 
multidomain features and convolutional neural networks (CNN). They harnessed 
multidimensional signals encompassing 3D cutting force and vibration data to 
determine the health condition of tool wear. Experimental validation was performed 
using malfunctioning datasets procured from a high-speed CNC machine operating 
under milling conditions. The results underscored the notably superior prediction 
accuracy of the proposed method vis-à-vis alternative advanced methodologies [Huang 
et al., 2019]. Following a comprehensive review of the literature, it becomes evident 
that feature extraction and AI methodologies within the CNC machine milieu are 
predominantly used for predicting surface roughness accuracy or evaluating tool wear 
conditions [Ford et al., 2014].  

3 Experimental Test Setup 

This study utilized vibration data acquired from a specifically designed CNC machine 
tailored to produce tire sidewall molds. The operational framework of the experiments 
is visually outlined in Figure 1 [Kuncan et al., 2018], and the process of obtaining the 
vibration signals is elucidated in Figure 2. To facilitate data collection, a PCB 352C65 
accelerometer sensor was strategically positioned within a dedicated aperture on the 
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CNC spindle motor bearing. Signal conditioners, in conjunction with the sensors, were 
employed to modulate and amplify the vibration signals. The signals were meticulously 
recorded over a duration of 10 s, employing a sampling frequency of 24 kHz facilitated 
by a NIDAQ 6211 data acquisition card. These acquired signals were then 
systematically stored within the computer’s memory, subsequently culminating in the 
creation of comprehensive datasets. 

 

Figure 1: Schematic flow diagram of the operating system 

 

Figure 2: Scheme for obtaining vibration signal from CNC machine 

To verify this study, two datasets were generated using vibration signals. The first 
dataset was obtained from the CNC mold machine with a tool that was operated at 
different speeds. The dataset has signals obtained at speeds of 18000, 20000, 22000, 
24000, 26000, 28000, and 30000 RPM. The second dataset was obtained from the same 
CNC machine without a tool at 20 different speeds. The signals at different speeds with 
and without tools are illustrated in Figures 3–5. 
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Figure 3: Signals obtained from the operation without a tool. (1) 1000  (2) 2000  (3) 
3000  (4) 4000  (5) 6000  (6) 8000  (7) 10000  (8) 12000  (9) 14000  (10) 16000 RPM 

 

Figure 4: Signals obtained from the operation without a tool: (11) 18000 (12) 20000  
(13) 22000  (14) 24000  (15) 26000  (16) 28000  (17) 30000  (18) 32000  (19) 34000  

(20) 36000 RPM 
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Figure 5: Signals obtained from the operation with a tool: (1) 18000  (2) 20000  (3) 
22000  (4) 24000  (5) 26000  (6) 28000  (7) 30000 RPM 

4 Method 

This section elucidates the envisioned feature extraction methodology based on co-
occurrence matrices, developed to classify CNC vibration signals garnered from 
various scenarios, encompassing distinct conditions involving the presence or absence 
of a tool, as well as varying operational speeds. The exposition starts by offering a 
comprehensive overview of the theoretical underpinnings of this approach, which is 
aptly presented through a well-defined block diagram. Subsequently, an in-depth 
exploration of the one-dimensional co-occurrence matrices was undertaken, furnishing 
a holistic comprehension of the core framework. 
 
4.1 Proposed approach 

This study proposes a new scheme for classifying vibration signals obtained from a 
CNC machine under different conditions. The vibration signals obtained from an 
industrial CNC machine were used to test the proposed approach for the cases in both 
the operation of the CNC machine at different speeds and in the operation of the CNC 
machine with or without tools. The flowchart of the proposed approach is given in 
Figure 6. 

 

Figure 6: Signals obtained from the operation with a tool: (1) 18000  (2) 20000  (3) 
22000  (4) 24000  (5) 26000  (6) 28000  (7) 30000 RPM 



   371 
 

Kuncan M., Kaplan K., Kaya Y., Minaz M.R., Ertunç H.M.: Classification of ... 

 
Figure 6 shows a meticulously designed multi-step approach to summarize the complex 
process of vibration signal classification. Each separate phase contributes meaningfully 
to the overall methodology. The specific tasks of the individual blocks are briefly 
described as follows: 
 
Block 1: This initiatory stage entails the collection of vibration signals, which are 
systematically acquired under diverse scenarios encompassing both tool-equipped and 
toolless conditions, at varying speeds. 

Block 2: Building upon the acquired signals, the subsequent stage entails a pivotal 
normalization process that culminates in their conversion into a standardized range 
ranging from 0 to 255. This normalization protocol, governed by Equation (1), is 
instrumental in rendering the signals compatible for further analyses. 

 

𝑁𝑒𝑤	𝑋! = 𝑟𝑜𝑢𝑛𝑑 ,- "!#$!%(")
$()(")#$!%(")

. 𝑥2552                      (1) 

The transformed signals collected at 18000 RPM under both tool and toolless 
conditions are visually showcased in Figure 7. A discerning observation reveals that 
while the form of the tool signals acquired from the CNC machine with the tool remains 
largely unchanged, a marked divergence becomes evident in the signals derived from 
the toolless machine after the transformation. 
Block 3: The ensuing stage generates the calculation of co-occurrence matrices from 
the normalized signals. This mathematical operation, expounded upon in Section 3.2, 
yields matrices that encapsulate the interrelationship between signal values, which is 
inherently contingent upon the distance (d) parameter intrinsic to the signal. 
 
Block 4: Within this pivotal stage, the co-occurrence matrices come into play, serving 
as the bedrock for extracting the Heralick features. These derived features then assume 
the role of input vectors, systematically channeled into machine learning models. 
 
Block 5: Using the calculated Heralick features, the classification process is performed 
using the 10-fold cross-validation test. BayesNet (BN), Naive Bayes (NB), artificial 
neural network (ANN), logistic regression (LR), and random forest (RF) models were 
used to obtain performance metrics. 
 
In summary, this comprehensive approach holistically navigates through these distinct 
stages, each contributing substantially to the overarching goal of classifying vibration 
signals. Through meticulous normalization, matrix calculations, and feature extraction, 
this methodology is poised to unravel the intricate complexities inherent to vibration 
signal analysis. 
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Figure 7: Conversion of signals to values in the range 0–255. (A) original signals at 
18000 RPM with tools, (B) transformed signals at 18000 RPM with tools, (C) original 

signal at 18000 RPM without tool, (D) transformed signals at 18000 RPM without 
tool 

4.2 Gray Level Co-Occurrence Matrices 

The gray level co-occurrence matrix (GLCM) method was initially introduced by 
Heralick et al. in 1973 for the classification of distinct tissues [Heralick et al., 1973]. 
This method hinges on the notion of a gray-level dependence matrix, which is 
predicated on the spatial relationships among neighboring pixels within an image. 
Essentially, GLCM matrices are computed by evaluating the density of pixel pairs 
within an image that possess specific values and spatial relationships. The texture of an 
image is subsequently characterized by extracting statistical metrics from these 
matrices. In addition, GLCM furnishes second-order matrices encapsulating statistical 
texture features. The computation of the GLCM matrix is contingent on the distance 
(D) and angle (0º, 45º, 90º, and 135º) between pixels. Prior to calculating the GLCM 
matrix, the image is standardized to grayscale values. These matrices are pivotal in 
deriving the average correlation degree between pairs of pixels situated at various 
distances and angles. The summation of consecutive pixel counts at specified angles 
and distances using the GLCM matrix is subsequently mapped onto the rescaled 
grayscale image. Within the scope of this study, the proposed feature technique is 
adapted for time-series one-dimensional (1D) signals. Initially, the vibration signals 
undergo normalization to span the range of 0 to 255. Subsequently, GLCM matrices 
are computed based on these processed signals. It's worth noting that these matrices are 
characterized by angle values but do not incorporate distance values. A schematic 
representation of this method is aptly depicted in Figure 8. In Figure 8(A), imagine a 
signal fluctuating between four distinct pattern values (0 - 3). The co-occurrence matrix 
for the signal depicted in Figure 8(A) can be computed as depicted in Figure 8(B). Here 
#(i, j) signifies the number of instances that fulfill the specified distance condition (d = 
1). 
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Figure 8: Process of calculating the co-occurrence matrix 

Multiple co-occurrence matrices can be generated by varying the distance parameter. 
This parameter dictates the neighbors within the signal from which the relationships are 
sought. The use of the "d" parameter is elucidated in Figure 9, visually demonstrating 
its role and impact. 

 

Figure 9: Usage of the d parameter 

Figure 10 (A) explains how to obtain the co-occurrence matrices from a signal for 
different d parameters (d = {1, 2, 3 and 4}.) 

 

Figure 10: Generation of identical co-occurrence matrices for different distances 
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Subsequently, these co-occurrence matrices undergo a normalization process. 
Normalization involves dividing each value within the matrix by the total number of 
pixels within the corresponding cell. This normalization procedure enhances the 
interpretability of the matrices. Using Heralick features, distinct characteristic co-
occurrence matrices are derived. The computation of the Heralick features involves 
Equations (2) to (18), enabling the extraction of these distinctive matrix attributes. 
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In Equations (2)–(18), the parameters of δx, δy, μx, μy, HX and HY are the standard 
deviation, means, and entropy values of Px and Py, respectively. 
 

4.3 Performance metrics 

To measure the performance rate of classification models, metrics such as accuracy, 
recall, precision, and f1-score were used in this study. The equations for defining the 
performance metrics are given in Equations (19)–(23). 
 

 Accuracy = 67268
67268297298

                   (19) 

                                        Error	rate = 97298
67268297298

                                  (20) 

                                        Precision = TN/(TN + FP)                    (21) 

                                        Recall = TP/(TP + FN)                     (22) 

  f1 − Score = (2𝑥𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)/(𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)     (23) 

5 Experimental Results 

The present study encompasses the acquisition of vibration data sourced from a CNC 
machine previously developed as a culmination of a prior investigation [Kuncan et al., 
2018]. During the data acquisition phase, vibrational signals were captured through the 
operation of CNC machines under disparate conditions—both with and without tools—
at varying rotations per minute (RPM) settings. To effectively probe the distinctive 
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facets of the phenomenon under examination, two discrete datasets were meticulously 
curated. The first dataset encompasses signals procured from the CNC machine 
operated with a tool across a spectrum of 7 distinct velocities, namely 18000, 20000, 
22000, 24000, 26000, 28000, and 30000 RPM. The second dataset was meticulously 
generated through the CNC machine’s operation in the absence of a tool, spanning 20 
different RPM configurations. 

In the preliminary phase of the study, a comprehensive analysis was conducted to 
discern the feasibility of distinguishing signals corresponding to varying speeds in both 
tool-operated and tool-less operation scenarios. The pivotal classification mechanism 
is underpinned using Heralick features, a set of distinctive attributes characterizing the 
signals. This classification framework is effectively realized using a diverse array of 
intelligent models, including Bayesian Network (BN), Naive Bayes (NB), Artificial 
Neural Network (ANN), Logistic Regression (LR), and Random Forest (RF). The 
evaluation of the classification models is gaged by deploying performance metrics, 
which is facilitated by a 10-fold cross-validation methodology leveraging the open-
source Weka software platform. The salient outcomes of this performance evaluation 
are summarized in Table 1, which presents the achieved accuracy rates for each distinct 
method employed. 

 
Vibration Signal BN NB ANN LR RF 

With tool 93.22 91.14 92.70 92.18 94.27 
Without Tool 89.58 87.5 91.25 93.33 94.16 

 Table 1: Accuracy rates of each classification model 

With reference to the informative data presented in Table 1, the endeavor of 
classification was executed employing an array of sophisticated models, including 
Bayesian Network (BN), Naive Bayes (NB), Artificial Neural Network (ANN), 
Logistic Regression (LR), and Random Forest (RF), each tailored to address the 
intricacies of datasets characterized by the presence or absence of tools. For the dataset 
encompassing tool-operated scenarios, the RF model emerged as particularly robust, 
culminating in a notable success rate of 94.27%. This achievement is the highest among 
the diverse classification models employed in the analysis. In stark contrast, NB model 
exhibited a comparatively lower success rate of 91.14%, thereby constituting a less 
favourable outcome in this context. A parallel observation of the dataset devoid of tool 
operations reveals a similar trend. Once again, the RF model showcased its potency by 
achieving the highest success rate of 94.16%. Conversely, the NB model, which 
demonstrated lower efficacy, yielded the least favourable outcome with a success rate 
of 87.50%. 

Supplementing these insightful findings, the comprehensive evaluation of 
performance metrics, specifically focusing on the RF model, encompassed diverse 
aspects of both tool-operated and toolless operation scenarios. The intricate details of 
these additional performance measures are meticulously tabulated and expounded upon 
in Table 2, further enriching the comprehension of the outcomes achieved through the 
use of this model. 

Vibration Signal TP Rate FP Rate Precision Recall F-Measure 
With tool 0.943 0.008 0.944 0.943 0.943 

Without Tool 0.942 0.003 0.944 0.942 0.942 

Table 2: Performance metrics 
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In the pursuit of identifying the quintessential Heralick features that wield the 
utmost efficacy in classifying velocities within the datasets with and without tools, an 
exhaustive endeavor was undertaken. This undertaking involved subjecting each 
distinct Heralick feature to the classification process, thereby systematically evaluating 
their individual contributions to the success of the classification task. The culmination 
of this analysis, which delineates the success rates achieved by each individual feature, 
is meticulously documented in Table 3. 

 
Feature Name With Tool Without Tool 
Angular Second Moment 39.58 25.41 
Contrast 62.5 41.25 
Correlation 86.98 83.33 
Variance 53.12 10.83 
Inverse Different Moment 73.43 37.91 
Sum Average 38.54 16.875 
Sum Variance  39.06 11.04 
Sum Entropy 64.06 41.66 
Entropy 62.5 23.95 
Difference Variance 61.97 41.45 
Difference Entropy 60.41 38.75 
Information Measures of Correlation 1 61.45 35.00 
Information Measures of Correlation 2 61.45 38.54 
Maximal Correlation Coefficient 86.98 47.50 

Table 3: Individual success rates of Heralick features for datasets with and without 
tools 

Upon meticulous examination of the insights encapsulated within Table 3, it becomes 
evident that the features labeled as 'Correlation' and 'Maximal Correlation Coefficient' 
emerge as the most potent contributors to classification success. Remarkably, the 
deployment of only one of these features leads to an admirable success rate of 86.98%. 
Conversely, among the Heralick features under scrutiny, the 'Sum Average' feature 
demonstrates the lowest success rate, underscoring its relatively diminished efficacy 
within the classification framework. In alignment with the findings delineated in Table 
3, it emerges that the 'Maximal Correlation Coefficient' feature stands as the pinnacle 
achiever in the context of the dataset without a tool, yielding an impressive success rate 
of 47.50%. Collectively synthesizing these observations, it becomes clear that 
comprehensive utilization of all Heralick features yields optimal classification 
performance. The datasets encompass 7 distinct speeds of vibration signals with tools 
and 20 diverse speeds of vibration signals without tools. A noteworthy aspect of the 
investigation involves the comparison of identical speeds of CNC machine rotation in 
the presence and absence of a tool. This meticulous analysis, aimed at discerning 
whether these speeds are distinguishable from each other, is exhaustively elaborated 
upon in Table 4. The classification process for this endeavor was meticulously executed 
using RF methodology. 

18000 
RPM 

20000 
RPM 

22000 
RPM 

24000 
RPM 

26000 
RPM 

28000 
RPM 

30000 
RPM 

97.91 97.91 100 100 100 100 100 

Table 4: Success rate of classification of signals with and without tools 
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In perusing the insights encapsulated in Table 4, a conspicuous trend emerges: a near-
perfect success rate characterizes most operations conducted across distinct speeds with 
and without tools. However, a relatively modest success rate of 97.91% was noted 
solely for the datasets associated with 18000 and 20000 RPM. Considering these 
observations, it becomes clear that the vibrational signals emanating from diverse 
speeds, whether with or without tools, exhibit clear discernibility, bolstering the notion 
that these signals are effectively distinguishable from one another. The proposed 
method introduces a pivotal parameter denoted as "distance (d)," which bestows the 
opportunity to extract different features contingent upon varying "d" values. To discern 
the influence of this parameter on the classification process across datasets both with 
and without tools, a systematic exploration was undertaken. Different distance 
parameters, specifically d={1, 2, 3, 4, and 5}, were adopted to calculate the success 
rates. The outcomes of this comprehensive analysis, delineating the success rates 
corresponding to distinct "d" parameters, are thoughtfully documented in Table 5, 
enriching our understanding of the impact of this parameter on the classification 
endeavor. 

d (distance) With Tool Without Tool 

d=1 94.27 94.16 

d=2 82.29 92.08 

d=3 89.06 93.54 

d=4 86.45 93.54 

d=5 88.02 89.16 

Total  95.31 95.83 

Table 5: Success rate of classification of signals with and without tools 

The comprehensive analysis depicted in Table 5 underscores the notable 
achievement of high success rates across a spectrum of distance values. This finding 
serves to emphasize the robustness of the proposed method in effectively distinguishing 
between different scenarios. Specifically, for the dataset without tools, the highest 
success rate of 94.16% was achieved. Notably, an even higher success rate of 95.83% 
was observed when all features derived from various distances were integrated, 
underscoring the potency of this collective approach. 

Likewise, the dataset involving tool operations repeats a similar trend, with the 
highest success rate of 94.27% attained for the "d = 1" parameter. However, the 
collective employment of all features across various distances further elevated the 
success rate to 95.31%, substantiating the efficacy of combining these distinct features. 

The synthesis of features from diverse distances emerges as a paramount strategy, 
yielding the most optimal classification outcomes across the spectrum of operational 
scenarios, thereby consolidating the robustness and effectiveness of the proposed 
approach. 
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6 Conclusions 

CNC machines represent a paradigm shift stemming from the optimization of 
conventional machinery, which is characterized by their heightened precision and rapid 
processing capabilities. These attributes have led to their widespread integration within 
the contemporary manufacturing landscape. Of notable significance is the aspiration 
for reduced vibration levels among CNC users, which is a key determinant in mitigating 
surface roughness across workpiece materials. Consequently, the operational and idle 
modes of CNCs are anticipated to exhibit reasonable vibration levels, which are 
essential for facilitating precise and expeditious operations. Within this study, the focal 
point was a prototype CNC molding machine, upon which an all-encompassing 
investigation was embarked. This encompassed an assessment of the machine’s 
rigidity, robustness, and vibration characteristics, effectively harnessing vibration data 
amassed at varying speeds. Building upon this foundational analysis, an innovative 
feature extraction framework was devised that is grounded in the concept of co-
occurrence matrices. This ingenious approach aimed to classify vibration signals 
contingent upon different scenarios, encompassing the presence or absence of tools and 
distinct operational speeds extracted from the CNC machine. 

The workflow was initiated with the normalization of vibration signal values, 
subsequently transforming them into a normalized range spanning 0 to 255. Thereafter, 
co-occurrence matrices were constructed from these recalibrated signals, forming the 
bedrock for calculating the Heralick features. Diverse machine learning models were 
then enlisted to facilitate the classification process. Each model was evaluated across 
disparate datasets, characterized by varying conditions and speeds, thereby affording a 
comprehensive assessment of the proposed approach. 

The velocity of the CNC spindle motor directly affects the characteristics of the 
bearing spectrum. Therefore, determination of the velocity of the experimental setup 
plays an important role in diagnosing various faults. Because of this meticulous study, 
remarkable findings have emerged that prove the robustness of the proposed method. 
An impressive 94.27% success rate was achieved in classifying vibration signals 
obtained from CNC machines equipped with tools, and a similar success rate of 94.16% 
was attained for toolless CNC machine operations. Of particular significance is the 
observation that the classification of CNC machines, both with and without tools, 
achieved an impeccable 100% success rate at identical speeds (22000 RPM, 24000 
RPM, 26000 RPM, 28000 RPM, and 30000 RPM). This collective achievement 
distinctly substantiates the efficacy of the proposed approach in classifying diverse 
vibration signals stemming from distinct tool and speed configurations. 

This study has thus succeeded in delineating the acceptability of vibration levels 
within CNC machines under varying tool and speed contexts, while concurrently 
establishing the notable influence of these factors on vibration generation. These 
insights are of utmost relevance in deciphering the intricate interplay between vibration 
signals and the machining process. Looking ahead, future endeavors are poised to delve 
into the ramifications of diverse machining conditions on surface quality and machining 
efficacy, further enhancing our understanding of this intricate nexus. 
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