

Journal of Universal Computer Science, vol. 30, no. 2 (2024), 221-241
submitted: 25/7/2023, accepted: 26/9/2023, appeared: 28/2/2024 CC BY-ND 4.0

Recommendation of Machine Learning Techniques for
Software Effort Estimation using Multi-Criteria Decision

Making

Ajay Kumar
(Department of Information Technology, KIET Group of Institutions,

Delhi-NCR, Ghaziabad-201206, India
https://orcid.org/0000-0003-0126-7172, ajaygarg100@gmail.com)

Abstract: For the development of the software industry, Software Effort Estimation (SEE) is one
of the essential tasks. Project managers can overcome budget and time overrun issues by
accurately estimating a software project's development effort in the software life cycle. In prior
studies, a variety of machine learning methods for SEE modeling were applied. The outcomes
for various performance or accuracy measures are inconclusive. Therefore, a mechanism for
assessing machine learning approaches for SEE modeling in the context of several contradictory
accuracy measures is desperately needed. This study addresses selecting the most appropriate
machine learning technique for SEE modeling as a Multi-Criteria Decision Making (MCDM)
problem. The machine learning techniques are selected through a novel approach based on
MCDM. In the proposed approach, three MCDM methods- Weighted Aggregated Sum Product
Assessment (WASPAS), Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) were applied
to determine the ranking of machine learning techniques on SEE performance based on multiple
conflicting accuracy measures. For validating the proposed method, an experimental study was
conducted over three SEE datasets using ten machine-learning techniques and six performance
measures. Based on MCDM rankings, Random Forest, Support Vector Regression, and Kstar are
recommended as the most appropriate machine learning techniques for SEE modeling. The
results show how effectively the suggested MCDM-based approach can be used to recommend
the appropriate machine learning technique for SEE modeling while considering various
competing accuracy or performance measures altogether.

Keywords: Software Effort Estimation (SEE); Multi-Criteria Decision Making (MCDM);
WASPAS; TOPSIS; VIKOR
Category: D.2, D.2.9
DOI: 10.3897/jucs.110051

1 Introduction
In the process of development of software, the goal of estimating effort is to estimate
the labor and time required to complete a project successfully within the specified
budget and time [Ali and Gravino 2019]. Usually, SEE is expressed in terms of person-
hours or person-months. Because of the continuously increasing need for complex and
large-scale software systems, managers have identified SEE as one of the essential tasks
directly linked to the failure or success of the entire software development process.
Accurate estimation of a software project's development effort assists project managers
in overcoming budget and time overrun issues. Because of several problems in

https://orcid.org/0000-0003-0126-

222

Kumar A.: Recommendation of Machine Learning Techniques for ...

achieving reliable SEE results, software effort estimation research has been ongoing
since the 1960s.

Initially, expert judgment and analogy-based methods were used to perform
software effort estimation. By consulting experts who have previously finished similar
projects, the effort estimate is done in the expert judgment method. When estimating
by analogy, the current projects are compared to previously finished similar projects
for estimating software efforts. Later, researchers were interested in using machine
learning models for estimating software effort, which has been widely utilized since
1991 [Ali and Gravino 2019].

[Rijwani and Jain 2016] proposed the usage of ANNs for SEE modeling. They
conducted an experimental study using three software effort datasets to validate the
proposed model. [Tayyab et al. 2018] developed a model for estimating software efforts
using the multilayer perceptron technique. [Arslan 2019] reviewed machine learning
techniques for software effort estimation. The authors used thirteen machine learning
techniques over two software effort datasets in the study to develop SEE models.
Machine learning models for software effort estimation have been thoroughly
investigated and found useful for software project management as per the study
conducted by [Varshini et al. 2021]. [Akhbardeh and Reza 2021] focused on the
difficulties of software effort estimation using traditional approaches. For constructing
SEE models, they emphasized the usage of machine learning techniques. [Mahmood et
al. 2022] conducted a review study to examine several machine learning algorithms for
modeling software effort estimation. Apart from these, described above, various
researchers have spent a lot of effort demonstrating the use and efficiency of machine
learning techniques for software effort estimation (as described in detail in section 2).

The predictive capabilities of machine learning approaches vary significantly for
various performance measures across software effort datasets of different software
systems. No single predictive model exists for a particular application domain that
performs better than other models considering all performance measures as per the No
Free Lunch Theorem [Wolpert and Macready 1995]. Thus, it becomes challenging for
a software project manager to choose which machine learning technique to employ for
SEE modeling. So, it is necessary to propose a method for selecting the most
appropriate machine learning technique for SEE modeling, considering various
performance measures.

This work suggests a novel MCDM-based approach for recommending the best
appropriate machine learning technique for SEE modeling, considering many
competing performance or accuracy measures. MCDM is one of the most well-known
subfields of decision-making. MCDM finds the most suitable choice among the many
possibilities accessible, taking into account multiple competing criteria [Thakkar 2022].
Distinct criteria may conflict with one another since they signify different aspects of
the options. For instance, cost and profit may conflict, etc. As multiple contradictory
accuracy or performance measures are involved in assessing a machine learning
technique, the problem of choosing the most appropriate approach for SEE modeling
can be formulated as an MCDM problem.

The machine learning techniques are selected through a novel MCDM-based
approach. In the proposed approach, three MCDM methods (WASPAS, VIKOR, and
TOPSIS) were used to determine ranking scores of machine learning techniques on
SEE performance based on multiple conflicting accuracy measures. The following is a
summary of this paper's key contribution.

 223

Kumar A.: Recommendation of Machine Learning Techniques for ...

• This research proposes an MCDM-based method for recommending
machine learning techniques for developing models for software effort
estimation considering several conflicting accuracy measures altogether.

• In the proposed approach, three MCDM methods- WASPAS, VIKOR, and
TOPSIS were employed to determine the individual ranking score of
machine learning techniques for SEE modeling. Next, the machine learning
technique, ranked first by all three MCDM methods, is recommended as
the best machine learning technique for SEE modeling.

• This study conducts an experimental study to validate the proposed
approach using ten machine learning techniques and six conflicting
performance measures over three software effort datasets (open-source).

The following is how the remaining part of the paper is organized. Section 2

describes the relevant work, whereas Section 3 describes the proposed method, selected
machine learning techniques, MCDM methods, and performance measures used in this
study. The datasets used in this paper and the experimental procedure used to validate
the proposed approach are discussed in section 4. The results, discussion, and the
MCDM-based ranking of machine learning techniques are presented in Section 5.
Section 6 presents the practical implications of the study, Section 7 concludes the paper,
and future research directions are presented in section 8.

2 Related Work
This section highlights previous research on SEE modeling by various researchers. [Seo
et al. 2013] developed a model for software effort estimation using multiple linear
regression with recursive data partitioning. [Pai et al. 2013] focused on using Artificial
Neural networks (ANN) in software effort estimation modeling. [Fedotova et al. 2013]
conducted a review study on Multiple Linear Regression (MLR) in software effort
estimation modeling. They compared the software effort estimation capability of MLR
with that of the traditional expert judgment method in terms of performance metrics
MMRE and PRED (0.25). They concluded that MLR-based models are superior at
estimating software effort than the standard expert judgment method.

[Anandhi and Chezian 2014] developed two software effort estimation models
using machine learning techniques M5 and linear regression. The COCOMO dataset
was used in the experimental study. They determined that the M5 algorithm
outperformed the linear regression based on the results of two performance metrics,
MMRE and MdMRE. [Satapathy et al. 2016] employed the random forest for
estimating software development efforts. They compared the software effort prediction
capability of random forest with that of the other four machine learning techniques,
namely, Stochastic Gradient Boosting (SGB), Radial Base Function Network (RBFN),
Multi-layer Perceptron (MLP), and Log-linear regression (LLR) based on two
performance measures MMRE and PRED. For the software effort estimation, [Sharma
and Singh 2018] employed three machine learning techniques: multilayer perceptron,
random forest, and support vector machines. These three machine-learning techniques
were examined on four software effort datasets. After analyzing the results, the authors
conclude that random forest is better than the other two techniques.

224

Kumar A.: Recommendation of Machine Learning Techniques for ...

[Amaral et al. 2019] developed a model for estimating software efforts using the
decision tree. They evaluated the proposed model over four software effort datasets in
terms of two performance measures PRED (0.25) and MMRE. [Sakhrawi et al. 2020]
used four machine-learning techniques for developing SEE models. Four machine
learning techniques are Gradient Boosting Regressor (GBR), SVR, Ada Boost
Regressor, and random forest. They compared the results of software effort predictions
produced by these four machine learning techniques for two performance measures,
MAE and MSE. The results of the experimental study show that random forest
outperforms the other three machine learning techniques.

[Sakhrawi et al. 2021] et al., in their survey study, underlined the importance of
choosing the most appropriate machine learning technique for estimating software
effort among various available machine learning techniques. They reviewed roughly
thirty research publications on machine learning-based software effort estimation
models that were published between 1995 and 2020. [Goyal 2021] conducts an
empirical study for the evaluation of machine learning techniques for software effort
estimation. The author compares the performance of generalized linear regression,
support vector regressor, and artificial neural network for estimating software efforts
on five software effort datasets. The author uses the two performance measures namely,
MMRE and mean absolute error (MAR) for the comparative study. However, both
accuracy measures were used separately.

[Mahmood et al. 2022] conducted a review study to examine several machine
learning algorithms for modeling software effort estimation. They focused on single
machine learning techniques and a machine learning-based ensemble strategy for
predicting software effort in the study. The study included two parts: first, they used
machine learning techniques to investigate state-of-the-art in the domain of SEE
modeling. Second, they employed the commonly known performance measurements
MMRE and PRED (0.25) to assess various machine learning algorithms.

[Sharma and Vijayvargiya 2022] perform a comparative study to evaluate the
software effort estimation performance of four soft computing-based models- GEHO-
based NFN (GEHO-NFN), Adaptive GA-based neural network (AGANN), Neuro-
fuzzy logic (NFL), and Localized Neighborhood Mutual Information based neural
network (LNI-NN). Five different datasets, including the promise database's
cocomo81, cocomonasa1, and cocomonasa2 were used to test and validate each of the
four modelling approaches. Four performance measures- RMSE, PRED, MdMRE, and
MMRE were used for the comparative study. However, they have not considered four
performance measures altogether.

[Kumar and Srinivas 2023] suggest a model namely, accurate analogy-based
software effort estimation model (AA-SEE) based on machine learning techniques and
hybrid optimization to further improve effort estimate. They evaluate their proposed
model through different software effort datasets using various performance measures
such as MMER, MMRE, MdMMRE, and MdMMER. However, they have considered
one performance measure one at a time. [Abnane et al. 2023] proposed a model for
improving software effort estimation by replacing missing values using ensemble
imputation techniques. They evaluate the proposed model on various datasets using five
performance metrics- logarithmic standard deviation (LSD), mean inverted balanced
relative error (MIBRE), mean balanced relative error (MBRE), Pred (0.25), and
standardized accuracy (SA). However, they have not considered these five performance
measures taken into account altogether. [Sanchez et al. 2023] developed software effort

 225

Kumar A.: Recommendation of Machine Learning Techniques for ...

estimation models using four machine learning techniques- ensemble learning,
adaboost, random forest, and decision tree. They compared the performance of these
four machine learning techniques for software effort estimation using the performance
measures- MSE, MMRE, MdMRE, and Pred (0.25). However, they have not
considered these four performance measures altogether.

After a thorough review of research done in software effort estimation modeling,

the following observations can be concluded.

• Various researchers have spent a lot of effort demonstrating the use and
efficiency of machine learning techniques for software effort estimation.

• In some cases, researchers have used only single performance measures to
evaluate the machine learning techniques. Some studies consider multiple
performance measures to evaluate machine learning techniques for software
effort estimation, but these studies do not consider the simultaneous
optimization of all performance measures.

• In previous studies, no one has emphasized selecting the most suitable

machine learning technique for software effort estimation modeling
considering various performance measures taken into account altogether using
MCDM approach.

This paper proposes an MCDM based approach for recommending most suitable
machine learning technique for software effort estimation modeling by taking into
account more than one conflicting performance measure considering simultaneous
optimization of all performance measures. To the best of the authors' knowledge, no
other research has considered the problem of evaluating machine learning techniques
for SEE modeling in the presence of more than one conflicting performance or accuracy
measure using the MCDM approach.

3 Research Methodology
This section describes the proposed method, selected machine learning techniques,
performance measures, and MCDM methods used in this study.

3.1 Proposed Method

This paper suggests an MCDM-based method for recommending the best machine
learning technique for estimating software effort in the presence of many competing
accuracy measures. The proposed approach used three MCDM methods to rank ten
machine learning techniques on SEE performance considering six performance
measures. An experimental study was conducted over three open-source SEE datasets
to validate the proposed approach. Fig. 1 provides an overview of the proposed method.

226

Kumar A.: Recommendation of Machine Learning Techniques for ...

Figure 1: The process of generating a ranking index for SEE models using the
MCDM-based approach

3.2 Machine Learning Techniques

Considering a large number of machine learning techniques, it is not possible to take
all machine learning techniques into consideration for the validation of the proposed
approach. This study has applied ten machine learning techniques used in previous
studies (as discussed in the related work section) for building SEE models. These
machine learning techniques are Multiple Linear Regression (MLR), Isotonic
Regression (IR), Pace Regression (PR), K-Nearest Neighbors (KNN), Support Vector
Regression (SVR), KSTAR, Decision Table (DT), M5Rules, M5P, and Random
Forests (RF).

Criteria

Apply on Three
Software Effort

Dataset
Machine Learning

Techniques for SEE
Modeling

Calculate Results in
Terms of Performance

Measures

Decision Matrix Alternatives

Apply MCDM
Method-

WASPAS

Apply MCDM
Method-
VIKOR

Apply MCDM
Method-
TOPSIS

Ranks produced
by WASPAS

Ranks
produced by

TOPSIS

Ranks
produced by

VIKOR

Recommendation of machine learning technique for SEE
modeling based on ranks produced by three MCDM methods

 227

Kumar A.: Recommendation of Machine Learning Techniques for ...

3.3 Performance Measures

This study chooses six performance measures to evaluate machine learning techniques
for SEE modeling. Depending on the type of performance measure, the MCDM
methodology classifies these six performance measures as six conflicting criteria (cost
criteria or benefits criteria). A performance measure for which a minimum value is
desired can be considered a cost criterion. On the other hand, performance measures
where the maximum value is desired can be considered as benefit criteria. All six
performance measures are listed in Table 1, followed by a brief description of each
performance measure.

Performance Measures (as criteria) Abbreviation Type of Criteria

Root Mean Square Error RMSE Cost Criteria
Mean Magnitude of Relative Error MMRE Cost Criteria
Median of Absolute Residual Error MDARE Cost Criteria
Mean Balanced Relative Error MBRE Cost Criteria
Pearson Correlation Coefficient r Benefit Criteria
PRED (0.25) PRED (0.25) Benefit Criteria

Table 1: Performance Measures

Given n is the total number of observations. For ith observation, ui represents actual
effort, and vi represents estimated effort. All six performance measures can be explained
as follows:

• RMSE represents the root mean square error and can be calculated as follows:

 RMSE=

(1)

• MMRE [Menzies 2014] represents the mean value of the magnitude of relative
error and can be calculated as follows:

 MMRE=
(2)

• MDARE is the median value of all absolute residual error (AREi), where
AREi can be calculated as follows:

 AREi= (3)

• MBRE [Kumar 2023] represents the mean value of balanced relative error and
can be calculated as:

 MBRE= (4)

2

1
()

n

i i
i
u v

n
=

-å

1

1 n
i i

i i

u v
n u=

-
å

i iu v-

1

1
min(,)

n
i i

i i i

u v
n u v=

-
å

228

Kumar A.: Recommendation of Machine Learning Techniques for ...

• Pearson Correlation Coefficient (r) [Sheskin 2011] measures the linear
correlation between actual values and predicted values. This performance
measure can be calculated as follows:

 r= (5)

• PRED (0.25) [Menzies 2014] represents the fraction of predicted values with
a magnitude of relative error (MRE) less than 0.25. Where MRE can be
calculated as follows:

 MREi=
(6)

3.4 MCDM Methods

When decisions must be made based on conflicting criteria, a variety of MCDM
methods are available. There are benefits and drawbacks to every MCDM method.
There is currently no approach exist that permits a specific MCDM method to be
selected. Many MCDM methods will produce a more trustworthy ranking of machine
learning techniques than a single MCDM method. In this study, we have chosen three
MCDM approaches for evaluating machine learning models in SEE modeling:
WASPAS, TOPSIS, and VIKOR.

3.4.1 WASPAS

WASPAS method [Zavadskas et al. 2012] combines the results of two different MCDM
methods, namely the weighted product model (WPM) and the weighted sum model
(WSM). A detailed stepwise description of WASPAS method is given below.

Step1: Construction of Decision Matrix as the input for WASPAS method.
Prepare a decision matrix, Da×c; here, a denotes the number of machine learning
techniques for SEE modeling as alternatives, and c represents the number of
performance measures as criteria. In this research, the value of c is six, and the value of
a is ten. In the matrix Da×c, each entry dij denotes the value of the jth accuracy measure
for the corresponding ith machine learning technique.

Step2: Normalization of Decision Matrix
Calculate the normalized value of each entry dij of the decision matrix Da×c, using Eq.
(7) and Eq. (8).

(For Beneficiary criteria, where the maximum value is desired):

1 1 1

2 2 2 2

1 1 1 1

() ()()

() ()

n n n

i i i i
i i i

n n n n

i i i i
i i i i

n u v u v

n u u n v v

= = =

= = = =

-

é ù é ù- -ê ú ê ú
ë û ë û

å å å

å å å å

i i

i

u v
u
-

 229

Kumar A.: Recommendation of Machine Learning Techniques for ...

 (7)

 (For Cost criteria, where the minimum value is desired):

 (8)

Step3: Compute the WSM factor (Qiwsm) and WPM factor (Qiwpm) for each alternative
using Eq. (9) and Eq. (10), respectively.

 (9)

 (10)

Where wj = [w1, w2…wc] represents the weights of performance measures. In this study,
we have considered equal weightage of each criterion (performance measure).

Step4: Compute the Aggregation measure Qi for each alternative using Eq. (11).

(11)

Step5: Rank the alternatives in decreasing order of aggregation measure. The higher
the value of the aggregation measure higher will be the rank.

3.4.2 TOPSIS

TOPSIS [Hwang and Yoon 1981] is a well-known MCDM technique for rating
available methods to address a decision problem with competing criteria. This
technique chooses the alternative that is closest to the ideal alternative. An ideal
alternative is defined as the alternative with the best possible criterion value. It is the
Euclidean distance that is utilized for distance measure. Below is a step-by-step
procedure.

Step1: Construction of Decision Matrix as the input for TOPSIS method.
[Description] same as described in step1 of previous section 3.4.1.

Step2: Normalized decision matrix 𝑉!×# is obtained by using Eq. (12); here, each entry
vij denotes the normalized value of dij.

* ; 1 to , 1 to } if criteria is benefit criteria
max

ij
ij

iji

d
d i a j c j

d
= = =

*
min

; 1 to , 1 to } if criteria is cost criteria
iji

ij
ij

d
d i a j c j

d
= = =

*

1
 ; 1 to

c
wsm
i ij j

j
Q d w i a

=

= =å

*

1

() ; 1 to j
c

wwpm
i ij

j

Q d i a
=

= =Õ

()
; 1,2,.....

2

wsm wpm
i i

i
Q Q

Q i a
+

= =

230

Kumar A.: Recommendation of Machine Learning Techniques for ...

 (12)

Step3: Weighted normalized decision matrix 𝑇!×# is obtained by using Eq. (13), where
tij represents the weighted normalized value of dij.

 (13)

Here 𝑤$ is the weight assigned to criteria j. The values of weights are the same as in the
case of WASPAS.

Step4: Calculate Ideal Solutions [PIS]c×1 and [NIS]c×1

The best value each criterion may achieve is determined as the positive ideal solution
(PIS). The least/worst value each criterion can achieve is used to calculate the negative
ideal solution (NIS). They can be calculated using Eq (14) and Eq. (15).

 (14)

(15)

Where z is related to beneficial criteria and z' is related to cost criteria.

Step5: Euclidean Distance
For each alternative Euclidean distance ED+ from PIS and Euclidean distance ED- from
NIS are calculated using (16) and (17), respectively.

 (16)

 (17)

Step6: Find Relative Closeness [RC]a×1
Relative closeness for each alternative with respect to the NIS and PIS can be calculated
using Eq. (18).

(18)

Step7: Selection of the best alternative
Rank the alternatives (in this study, machine learning techniques for SEE modeling)
according to the value of relative closeness obtained in step 6. The machine learning
technique with the highest value of relative closeness (RC) will be recommended as the
most appropriate alternative.

2

1

 ; j=1,2.....cij
ij a

ij
i

d
v

d
=

=

å

ij ij jt v w= ´

{ }
1 2 3

(max /), (min / ') for i=1,2.....a

 { , , ,..... }
ij ij

c

PIS T j z T j z

T T T T+ + + +

= Î Î

=

{ }
1 2 3

(min /), (max / ') for i=1,2.....a

 { , , ,..... }
ij ij

c

NIS T j z T j z

T T T T- - - -

= Î Î

=

2

1
() for i=1 to a

c

i ij j
j

ED T T+ +

=

ì üï ï= -í ý
ï ïî þ
å

2

1
() for i=1 to a

c

i ij j
j

ED T T- -

=

ì üï ï= -í ý
ï ïî þ
å

()
i

i
i i

ED
RC

ED ED

-

- +=
+

 231

Kumar A.: Recommendation of Machine Learning Techniques for ...

3.4.3 VIKOR

VIKOR is one of the most popular MCDM methods. This method produces the ranking
index of alternatives based on a particular measure of closeness to the ideal solution in
the presence of conflicting criteria. Following is the detailed procedure of the VIKOR
method [Opricovic and Tzeng 2004].

Step1: Construction of Decision Matrix as the input for VIKOR method.
[Description] same as described in step1 of WASPAS and TOPSIS in previous sections
3.4.1 and 3.4.2, respectively.

Step2: Find the best 𝑑$% and worst 𝑑$& values for each criterion by using the following
formula.

 , For benefit criteria (19)

 , For cost criteria (20)

Step3: The utility measure Si and regret measure Ri can be computed as follows:

(21)

 (22)

Where 𝑤$ is the weight of criteria j. The values of weights are the same as in the case
of WASPAS and TOPSIS.

Step4: Calculate the values (𝑆∗	, 𝑆&) and (𝑅∗	, 𝑅&) by using the following relations.

 (23)

 (24)

Step5: Now compute the value of VIKOR index 𝑄) for each alternative as follows:

 (25)

Step6: Rank the alternatives in order of 𝑄) value, with a smaller 𝑄) value indicating a
higher rank.

max , d min ; 1 to , 1 to }j ij j ijii
d d d i a j c+ -= = = =

min , d max ; 1 to , 1 to }j ij j iji i
d d d i a j c+ -= = = =

1

()
 ; 1 to , 1 to

()

c
j j ij

i
j j j

w d d
S i a j c

d d

+

+ -
=

-
= = =

-
å

()
max ; 1 to , 1 to

()
j j ij

i j
j j

w d d
R i a j c

d d

+

+ -

é ù-
= = =ê ú

-ê úë û

* min S , S = maxS ; 1 to i ii i
S i a-= =

* min , R = max ; 1 to i ii i
R R R i a-= =

* *

* *
() ()1 ; 1,2,.....

2 () ()
i i

i
S S R R

Q i a
S S R R- -

é ù- -
= + =ê ú

- -ë û

232

Kumar A.: Recommendation of Machine Learning Techniques for ...

4 Experimental Study
This section is further divided into two subsections. Subsection 4.1 discusses the brief
description of software effort datasets used in this study. Subsection 4.2 presents the
detailed experimental procedure for validating the proposed method, as described in
section 3.1.

4.1 SEE Datasets

In this study, we used three datasets easily available in the public domain and have been
widely used in previous studies [Ali and Gravino 2019, Rijwani and Jain 2016, Anandhi
and Chezian 2014, Satapathy et al. 2016, Sharma and Singh 2018, Arslan 2019,
Sakhrawi et al. 2020, Sharma and Vijayvargiya 2022] for software effort estimation
modeling. Three SEE datasets are: cocomo81, cocomonasa1, and cocomonasa2, taken
from the software engineering data repository PROMISE [Promise Repository]. Details
of the datasets are as follows:

• The cocomo81 dataset contains information about 63 software projects. This

dataset has seventeen attributes. All seventeen attributes are numeric, in which
fifteen attributes are the effort multiplier, one attribute is lines of code (LOC),
and one attribute is the actual effort (dependent variable).

• The cocomonasa1 dataset contains information about 60 software projects.
This dataset also has seventeen attributes (all numeric), including fifteen effort
multiplier attributes, one attribute for LOC, and one is the dependent variable
(actual effort).

• The cocomonasa2 dataset contains information about 93 software projects.
This dataset has twenty-four attributes. Fifteen attributes are standard discrete
effort multipliers, seven attributes describe the projects, one attribute is for
LOC, and one is the actual effort (dependent variable).

4.2 Experimental Design

Machine learning techniques create SEE models based on the data describing projects
completed in the past. In this study, we made the assumption that historical datasets of
previously completed projects at a software company are available to estimate the
software efforts for the new project.

The following procedure is used for experimental design.

Input: Three software effort estimation datasets as described in the previous section
(section 4.1).

Output: Ranking Index for machine learning techniques for SEE modeling.

Step 1: Three datasets described in section 4.1 are preprocessed to select the relevant
features. Feature selection is a preprocessing operation used to find and eliminate
unnecessary and irrelevant data from datasets. Correlation-based Feature Selection
(CFS) [Hall 1999], a well-known feature selection algorithm, is used in this study.

 233

Kumar A.: Recommendation of Machine Learning Techniques for ...

According to the CFS process, a feature is advantageous if it has a strong correlation
with the dependent variable but not with other features.

Step 2: Apply ten machine learning techniques as described in section 3.2 to build ten
SEE models for each dataset. Open-source tool Weka version 3.8.3 [Hall et al. 2009]
was used to implement these ten machine-learning techniques.

Step 3: Results of six performance measures are obtained for ten machine learning
techniques used for SEE modeling. The results for each dataset are stored in a 10×6
matrix.

Step 4: Use the 10× 6 matrix for each dataset obtained from step 3 as the decision
matrix to apply three MCDM methods, WASPAS, TOPSIS, and VIKOR.

Step 5: A 10×1 matrix is obtained as the output of each MCDM method representing
the ranking score of ten machine learning techniques for SEE modeling for each dataset.

Step 6: Recommend the machine learning technique for SEE modeling based on the
rank produced by all three MCDM methods.

The graphical representation of the experimental design is shown in Fig. 2.

Figure 2: Graphical Representation of the Experimental Study

10×6 Matrix for
Dataset3

(cocomonasa2)

Ranking index of machine learning techniques produced by three MCDM
methods WASPAS, VIKOR and TOPSIS for each dataset.

Recommendations of machine learning techniques for SEE

Ten Machine Learning Techniques
for SEE Modeling

Calculate six Performance Measures

Dataset1
(cocomo81)

Dataset3
(cocomonasa2)

Dataset2
(cocomonasa1)

10×6 Matrix for
Dataset1

(cocomo81)

10×6 Matrix for
Dataset2

(cocomonasa1)

234

Kumar A.: Recommendation of Machine Learning Techniques for ...

5 Results and Discussion
There are two subparts to this section. In the first part, we review the software effort
estimation results of ten machine-learning techniques for each dataset. In the second
part, the proposed MCDM-based method ranks the machine learning techniques for
SEE modeling.

5.1 SEE Results

Table 2 to Table 4 display the results of the ten machine learning techniques for SEE
modeling in terms of the six performance measures as described in section 3.3.

Table 2: Results of Dataset1 (cocomo81)

Table 3: Results of Dataset2 (cocomonasa1)

Machine
Learning
Technique

RMSE MMRE MDARE MBRE r PRED
(0.25)

MLR 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459
IR 0.2557 2.6348 0.0690 3.3705 0.7048 0.2295
PR 0.2095 6.8142 0.1140 2.3206 0.8081 0.2459
SVR 0.2183 3.4522 0.0770 1.7052 0.7898 0.2131
KNN 0.2964 2.6744 0.0790 4.6908 0.6590 0.0984
KSTAR 0.2524 1.9772 0.0600 2.3773 0.7291 0.1639
DT 0.3329 2.3050 0.1280 2.9554 0.4554 0.2131
M5Rules 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459
M5P 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459
RF 0.2299 2.1056 0.0670 2.3966 0.7629 0.2295

Machine
Learning
Technique

RMSE MMRE MDARE MBRE r PRED
(0.25)

MLR 0.1095 0.4476 0.0450 0.5226 0.9466 0.4915
IR 0.1377 0.4191 0.0290 0.5200 0.9160 0.5254
PR 0.1092 0.4455 0.0430 0.4987 0.9468 0.4746
SVR 0.1055 0.3235 0.0280 0.3619 0.9511 0.5593
KNN 0.1546 0.3606 0.0280 0.4798 0.8939 0.5593
KSTAR 0.1424 0.4551 0.0270 0.5364 0.9292 0.4576
DT 0.1756 0.8435 0.0340 1.0376 0.8636 0.4237
M5Rules 0.1078 0.4207 0.0390 0.4322 0.9482 0.4746
M5P 0.1075 0.4180 0.0450 0.4279 0.9486 0.4915
RF 0.1125 0.3898 0.0310 0.4201 0.9459 0.5932

 235

Kumar A.: Recommendation of Machine Learning Techniques for ...

Table 4: Results of Dataset3 (cocomonasa2)

• Table 2 shows that for the cocomo81 dataset, the SEE model PR performs the

top for the accuracy measures PRED (0.25), r, and RMSE. For performance
measures, MMRE and MDARE, SEE model KSTAR performs the best. SEE
model SVR is best for performance measure MBRE. The most appropriate
SEE models for accuracy measure PRED (0.25) are M5P, M5Rules, and MLR.

• Table 3 shows that, for the cocomonasa1 dataset, the SEE model SVR
performs the top for accuracy measures MBRE, RMSE, r, and MMRE. For
performance measure, MDARE, SEE model KSTAR is the best. For accuracy
measure PRED (0.25), SEE model RF outperforms all other SEE models.

• Table 4 shows that, for the cocomonasa2 dataset, the SEE model MLR is most
appropriate for performance measures r and RMSE. For performance measure,
MMRE, SEE model IR is the best. SEE model KNN is most appropriate for
performance measures MDARE and PRED (0.25). For performance measure,
MBRE, SEE model KSTAR is the best.

According to the above findings, no one machine learning technique for SEE modeling
can be chosen as the optimal machine learning technique for any dataset when six
performance measures are considered together. Consequently, this motivates us to
evaluate machine learning techniques for software effort estimation considering
several performance metrics using the MCDM-based approach.

5.2 MCDM Ranking

Three MCDM methods, WASPAS, VIKOR, and TOPSIS (as described in section 3.4),
are used for generating the ranking index for ten machine learning techniques for
software effort estimation considering multiple conflicting performance measures.
Table 5-7 shows the ranking index for machine learning techniques for SEE modeling
for three datasets cocomo81, cocomonasa1, and cocomonasa2.

Machine
Learning
Technique

RMSE MMRE MDARE MBRE r PRED
(0.25)

MLR 0.1917 2.0065 0.0670 1.8013 0.8170 0.2967
IR 0.2617 1.1522 0.1140 1.6820 0.6290 0.2088
PR 0.1924 2.0150 0.0670 1.8301 0.8156 0.2857
SVR 0.2105 1.6595 0.0970 1.7831 0.7753 0.3736
KNN 0.2323 2.5644 0.0430 4.6168 0.7514 0.3956
KSTAR 0.2183 1.3567 0.0730 1.6331 0.7889 0.3626
DT 0.2638 1.6885 0.0620 2.0522 0.6367 0.3187
M5Rules 0.1997 1.9831 0.0780 1.7468 0.8003 0.2747
M5P 0.1983 1.9870 0.0830 1.7550 0.8031 0.2747
RF 0.2229 2.1609 0.0510 2.5223 0.7520 0.3187

236

Kumar A.: Recommendation of Machine Learning Techniques for ...

Machine
Learning
Techniques

Ranking Generated by Three MCDM Methods

WASPAS TOPSIS VIKOR

WASPAS-
Score

WASPAS-
Rank

TOPSIS-
Score

TOPSIS-
Rank

VIKOR-
Score

VIKOR-
Rank

MLR 0.7231 6 0.5213 6 0.7092 6
IR 0.7844 4 0.6793 4 0.3547 4
PR 0.7265 5 0.5210 9 0.7052 5
SVR 0.8519 2 0.8054 2 0.0693 2
KNN 0.6159 10 0.4419 10 0.9730 9
KSTAR 0.8477 3 0.7660 3 0.3108 3
DT 0.6522 9 0.5307 5 1.0000 10
M5Rules 0.7231 6 0.5213 6 0.7092 6
M5P 0.7231 6 0.5213 6 0.7092 6
RF 0.8870 1 0.8529 1 0.0000 1

Table 5: Ranking index of machine learning techniques for SEE modeling for dataset
cocomo81

Machine
Learning
Techniques

Ranking Generated by Three MCDM Methods

WASPAS TOPSIS VIKOR

WASPAS-
Score

WASPAS-
Rank

TOPSIS-
Score

TOPSIS-
Rank

VIKOR-
Score

VIKOR-
Rank

MLR 0.7940 9 0.6702 9 0.6879 9
IR 0.8328 5 0.7569 5 0.3115 3
PR 0.8015 8 0.6921 8 0.6129 7
SVR 0.9844 1 0.9617 1 0.0000 1
KNN 0.8599 3 0.7726 3 0.4686 5
KSTAR 0.8077 7 0.7013 7 0.5535 6
DT 0.6065 10 0.1481 10 1.0000 10
M5Rules 0.8422 4 0.7618 4 0.4553 4
M5P 0.8321 6 0.7207 6 0.6637 8
RF 0.9146 2 0.8838 2 0.0470 2

Table 6: Ranking index of machine learning techniques for SEE modeling for dataset
cocomonasa1

 237

Kumar A.: Recommendation of Machine Learning Techniques for ...

Machine
Learning
Techniques

Ranking Generated by Three MCDM Methods

WASPAS TOPSIS VIKOR

WASPAS-
Score

WASPAS-
Rank

TOPSIS-
Score

TOPSIS-
Rank

VIKOR-
Score

VIKOR-
Rank

MLR 0.8031 2 0.6996 2 0.2068 2
IR 0.7104 10 0.5561 9 1.0000 10
PR 0.7947 4 0.6896 4 0.2289 3
SVR 0.7962 3 0.6556 6 0.3859 6
KNN 0.7305 9 0.4278 10 0.8027 8
KSTAR 0.8604 1 0.7884 1 0.0000 1
DT 0.7464 8 0.6935 3 0.8479 9
M5Rules 0.7727 5 0.6575 5 0.3237 4
M5P 0.7666 6 0.6411 8 0.3314 5
RF 0.7618 7 0.6443 7 0.4458 7

Table 7: Ranking index of machine learning techniques for SEE modeling for dataset

cocomonasa2

The following inferences are drawn from Table 5-7.

• For the dataset cocomo81, it is observed that Random Forest (RF) is the most
appropriate machine learning technique for SEE modeling after optimization
of all conflicting accuracy measures.

• Support Vector Regression (SVR) is suggested as the most appropriate
machine learning technique for SEE modeling on the cocomonasa1 data set
after optimization of all competing performance measures.

• After taking into account and optimizing all conflicting accuracy measures, it

is found that KSTAR is the most appropriate machine learning technique for
SEE modeling on the cocomonasa2 dataset.

From the above inferences, it can be observed that the advantage of applying the
proposed MCDM-based approach is that the proposed method can be used as an
efficient tool for selecting the most appropriate machine learning techniques for SEE
modeling by optimizing various contradictory performance measures taken into
account altogether. Although most of the researchers in previous studies [Varshani et
al. 2021, Fedotova et al. 2013, Anandhi and Chezian 2014, Sharma and Singh 2018,
Arslan 2019, Sakhrawi et al. 2020, Sharma and Vijayvargiya 2022, Kumar and Srinivas
2023] took into account multiple performance measures to assess the various available
SEE models, it can be observed that in their study, they presented the best SEE model
by simply taking into consideration one performance measure at a time.

238

Kumar A.: Recommendation of Machine Learning Techniques for ...

6 Practical Implication
Successful project management involves precise software development effort
estimation. Several types of machine learning techniques for estimating software
development efforts have been examined in prior studies. There may be inconsistencies
in the software effort estimation modeling performance of machine learning techniques.
As a result, the choice of the optimum machine learning technique becomes challenging
for a software manager since different machine learning techniques have inconsistent
prediction capability with respect to multiple performance measures. If a software
manager has a reason for emphasizing a particular performance measure, he/she may
choose the machine learning technique more likely to perform best for this measure. In
contrast, if it is unclear which performance measure should be emphasized, he/she can
be interested in a solution that offers a decent trade-off between many performance
measures. The proposed MCDM-based method provides a unique framework to aid the
software manager in selecting the most suitable machine learning technique for SEE
modeling, considering various performance measures and taking them into account
altogether.

7 Conclusion
Many studies have focused on developing various models for accurate software effort
estimation using machine learning approaches, as described in the related work section
of this paper. However, the selection of the most appropriate machine-learning
technique for SEE is still in the infant stage. In this study, we propose an MCDM-based
framework to address the issue of selecting a machine-learning technique for SEE
modeling using MCDM. To validate the proposed approach, we have chosen three
datasets from PROMISE repository, which are freely available and widely used by
various researchers in the past for SEE modeling (described in detail in section 4.1).

In the proposed method, the values of six performance metrics for ten machine
learning techniques on each dataset are obtained first. For any dataset, according to the
results of six performance metrics for the applied machine learning techniques, as
discussed in section 5.1, no machine learning technique can be recommended
considering all performance metrics. Consequently, it is necessary to evaluate machine
learning techniques by optimizing all six-performance metrics. In the proposed
approach, three MCDM methods are implemented to produce individual ranking scores
of machine learning techniques based on six performance metrics. Three datasets were
used for analysis to validate the proposed method. Experimental results indicate that
machine learning technique RF is best suited for the cocomo81 dataset, machine
learning technique SVR is the most appropriate for the cocomonasa1 dataset, and
machine learning technique KSTAR is best suited for the cocomonasa2 dataset.

8 Future Research Direction
As an extension, the proposed MCDM-based approach can be used to recommend the
most appropriate machine learning technique for solving various types of software cost
and quality prediction problems in software engineering, such as software defect
prediction problems, etc. Furthermore, the proposed method can be extended to solve

 239

Kumar A.: Recommendation of Machine Learning Techniques for ...

various types of decision-making problems in other domains related to software
engineering. For example, during the various stages of the software development life
cycle, the proposed approach may be used to choose the best software testing technique
from among the various testing approaches that are available. As the proposed approach
is based on the MCDM methods, using hybrid MCDM methods may be another future
work for solving various decision problems in the context of software engineering. This
study can also be further extended to a large number of software effort estimation
datasets.

References

[Abnane et al. 2023] Abnane, I., Idri, A., Chlioui, L., Abran, A.: "Evaluating ensemble imputation
in software effort estimation"; Empirical Software Engineering, 28, 2, (2023).

[Akhbardeh and Reza 2021] Akhbardeh, F., Reza, H.: “A Survey of Machine Learning Approach
to Software Cost Estimation”; Proc. International Conference on Electro Information Technology
(EIT), IEEE (2021), 405-408.

[Ali and Gravino 2019] Ali, A., Gravino, C.: “A systematic literature review of software effort
prediction using machine learning methods”; Journal of software: evolution and process, 31, 10
(2019).

[Amaral et al. 2019] Amaral, W., Rivero, L., Junior, G. B., Viana, D.: “Using Machine Learning
Technique for Effort Estimation in Software Development”; Proc. XVIII Brazilian Symposium
on Software Quality, (2019), 240-245.

[Anandhi and Chezian 2014] Anandhi, V., Chezian, R. M.: “Regression techniques in software
effort estimation using cocomo dataset”; Proc. International Conference on Intelligent
Computing Applications, IEEE (2014), 353-357.

[Arslan 2019] Arslan, F.: “A review of machine learning models for software cost estimation”;
Review of Computer Engineering Research, 6, 2 (2019) 64-75.

[Fedotova et al. 2013] Fedotova, O., Teixeira, L., Alvelos, H.: “Software Effort Estimation with
Multiple Linear Regression: Review and Practical Application”; Journal of Information Science
and Engineering, 29, 5 (2013), 925-945.

[Goyal 2021] Goyal, S.: "Comparative Analysis of Machine Learning Techniques for Software
Effort Estimation"; in Proceeding of ICTSES, Springer Nature Singapore, 2021.

[Hall 1999] Hall, M. A.: “Correlation-based feature selection for machine learning”; (1999).

[Hall et al. 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I. H.:
“The WEKA Data Mining Software: An Update”; SIGKDD Explorations, 11, 1 (2009).

[Hwang and Yoon 1981] Hwang, C. L., Yoon, K.: “Methods for Multiple Attribute Decision
Making”; Proc. Multiple Attribute Decision Making, Springer, Berlin, Heidelberg, (1981), 58–
191.

[Kumar 2023] Kumar, A.: “Recommendation of Regression Models for Real Estate Price
Prediction using Multi-Criteria Decision Making”; Journal of Communications Software and
Systems, 19, 3 (2023) 220-229.

[Kumar and K. Srinivas 2023] Kumar, K. H., Srinivas, K.:“An accurate analogy-based software
effort estimation using hybrid optimization and machine learning techniques”; Multimedia Tools
and Applications, (2023).

240

Kumar A.: Recommendation of Machine Learning Techniques for ...

[Mahmood et al. 2022] Mahmood, Y., Kama, N., Azmi, A., Khan, A. S., Ali, M.: “Software effort
estimation accuracy prediction of machine learning techniques: A systematic performance
evaluation”; Software: Practice and Experience, 52, 1 (2022), 39-65.

[Menzies 2014] Menzies, T., Kocaguneli, E., Turhan, B., Minku, L., Peters, F.: “Sharing data
and models in software engineering”; Morgan Kaufmann (2014).

[Opricovic and Tzeng 2004] Opricovic, S., Tzeng, G. H.: Compromise solution by MCDM
methods: “A comparative analysis of VIKOR and TOPSIS”; European journal of operational
research, 156, 2 (2004), 445-455.

[Pai et al. 2013] Pai, D. R., McFall, K. S., Subramanian, G. H.: “Software effort estimation using
a neural network ensemble”; Journal of Computer Information Systems, 53, 4 (2013), 49-58.

[Promise Repository] http://promise.site.uottawa.ca/SERepository

[Rahman et al. 2023] Rahman, M., Roy, P. P., Ali, M., Gonc, T., Sarwar, H.: “Software Effort
Estimation using Machine Learning Technique”; International Journal of Advanced Computer
Science and Applications, 14, 4(2023), 822-827.

[Rijwani and Jain 2016] Rijwani, P., Jain, S.: “Enhanced software effort estimation using multi
layered feed forward artificial neural network technique”; Procedia Computer Science, 89
(2016), 307-312.

[Sakhrawi et al. 2020] Sakhrawi, Z., Sellami, A., Bouassida, N.: “Software Enhancement Effort
Estimation using Machine Learning Regression Methods”; International Journal of Computer
Information Systems and Industrial Management Applications, 12 (2020), 412-423.

[Sakhrawi et al. 2021] Sakhrawi, Z., Sellami, A., Bouassida, N.: “Software Enhancement Effort
Prediction Using Machine-Learning Techniques: A Systematic Mapping Study”; SN Computer
Science, 2, 6 (2021), 1-15.

[Sanchez et al. 2023] Sanchez, E. R., Santacruz, E. F. V., Maceda, H. C.:"Effort and Cost
Estimation Using Decision Tree Techniques and Story Points in Agile Software
Development," Mathematics, 11, 6, (2023).

[Satapathy et al. 2016] Satapathy, S. M., Acharya, B. P., Rath, S. K.: “Early-stage software effort
estimation using random forest technique based on use case points”; IET Software, 10, 1 (2016),
10-17.

[Seo et al. 2013] Seo, Y. S., Bae, D. H., Jeffery, R.: “AREION: Software effort estimation based
on multiple regressions with adaptive recursive data partitioning”; Information and Software
technology, 55, 10 (2013), 1710-1725.

[Sharma and Singh 2018] Sharma, P., Singh, J.: “Machine Learning Based Effort Estimation
using Standardization”; Proc. International Conference on Computing, Power and
Communication Technologies, IEEE (2018), 716-720.

[Sharma and Vijayvargiya] Sharma, S., Vijayvargiya, S.:“Modeling of software project effort
estimation: a comparative performance evaluation of optimized soft computing-based
methods”; International Journal of Information Technology, 14, 5, (2022), 2487–2496.

[Sheskin 2011] Sheskin, D. J.: “Handbook of parametric and nonparametric statistical
procedures”; Chapman and Hall/CRC (2011).

[Tayyab et al. 2016] Tayyab, M. R., Usman, M., Ahmad, W.: “A Machine Learning Based Model
for Software Cost Estimation”; Proc. SAI Intelligent Systems Conference, Springer (2016), 402-
414.

http://promise.site.uottawa.ca/SERepository

 241

Kumar A.: Recommendation of Machine Learning Techniques for ...

[Thakkar 2022] Thakkar, J. J.: Multi-Criteria Decision Making, 1st ed. Singapore, Singapore:
Springer, 2022.

[Varshini et al. 2021] Varshini, A. P., Kumari, K. A., Janani, D., Soundariya, S.: “Comparative
analysis of Machine learning and Deep learning algorithms for Software Effort Estimation”;
Journal of Physics: Conference Series, 1767, 1 (2021), 012019.

[Wolpert and Macready 1995] Wolpert, D. H., Macready, W. G.: “No free lunch theorems for
search”; Technical Report SFI-TR-95-02-010, Santa Fe Institute, 10 (1995).

[Zavadskas et al. 2012] Zavadskas, E. K., Turskis, Z., Antucheviciene, J., Zakarevicius, A.:
“Optimization of weighted aggregated sum product assessment”; Electronics and Electrical
Engineering, 122, 6 (2012), 3-6.

