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Abstract: For the development of the software industry, Software Effort Estimation (SEE) is one 
of the essential tasks. Project managers can overcome budget and time overrun issues by 
accurately estimating a software project's development effort in the software life cycle. In prior 
studies, a variety of machine learning methods for SEE modeling were applied. The outcomes 
for various performance or accuracy measures are inconclusive. Therefore, a mechanism for 
assessing machine learning approaches for SEE modeling in the context of several contradictory 
accuracy measures is desperately needed. This study addresses selecting the most appropriate 
machine learning technique for SEE modeling as a Multi-Criteria Decision Making (MCDM) 
problem. The machine learning techniques are selected through a novel approach based on 
MCDM. In the proposed approach, three MCDM methods- Weighted Aggregated Sum Product 
Assessment (WASPAS), Technique for Order Preference by Similarity to Ideal Solution 
(TOPSIS), and VIseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) were applied 
to determine the ranking of machine learning techniques on SEE performance based on multiple 
conflicting accuracy measures. For validating the proposed method, an experimental study was 
conducted over three SEE datasets using ten machine-learning techniques and six performance 
measures. Based on MCDM rankings, Random Forest, Support Vector Regression, and Kstar are 
recommended as the most appropriate machine learning techniques for SEE modeling. The 
results show how effectively the suggested MCDM-based approach can be used to recommend 
the appropriate machine learning technique for SEE modeling while considering various 
competing accuracy or performance measures altogether. 
 
Keywords: Software Effort Estimation (SEE); Multi-Criteria Decision Making (MCDM); 
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1 Introduction 
In the process of development of software, the goal of estimating effort is to estimate 
the labor and time required to complete a project successfully within the specified 
budget and time [Ali and Gravino 2019]. Usually, SEE is expressed in terms of person-
hours or person-months. Because of the continuously increasing need for complex and 
large-scale software systems, managers have identified SEE as one of the essential tasks 
directly linked to the failure or success of the entire software development process. 
Accurate estimation of a software project's development effort assists project managers 
in overcoming budget and time overrun issues. Because of several problems in 
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achieving reliable SEE results, software effort estimation research has been ongoing 
since the 1960s. 

Initially, expert judgment and analogy-based methods were used to perform 
software effort estimation. By consulting experts who have previously finished similar 
projects, the effort estimate is done in the expert judgment method. When estimating 
by analogy, the current projects are compared to previously finished similar projects 
for estimating software efforts. Later, researchers were interested in using machine 
learning models for estimating software effort, which has been widely utilized since 
1991 [Ali and Gravino 2019]. 

[Rijwani and Jain 2016] proposed the usage of ANNs for SEE modeling. They 
conducted an experimental study using three software effort datasets to validate the 
proposed model. [Tayyab et al. 2018] developed a model for estimating software efforts 
using the multilayer perceptron technique. [Arslan 2019] reviewed machine learning 
techniques for software effort estimation. The authors used thirteen machine learning 
techniques over two software effort datasets in the study to develop SEE models. 
Machine learning models for software effort estimation have been thoroughly 
investigated and found useful for software project management as per the study 
conducted by [Varshini et al. 2021]. [Akhbardeh and Reza 2021] focused on the 
difficulties of software effort estimation using traditional approaches. For constructing 
SEE models, they emphasized the usage of machine learning techniques. [Mahmood et 
al. 2022] conducted a review study to examine several machine learning algorithms for 
modeling software effort estimation. Apart from these, described above, various 
researchers have spent a lot of effort demonstrating the use and efficiency of machine 
learning techniques for software effort estimation (as described in detail in section 2).  

The predictive capabilities of machine learning approaches vary significantly for 
various performance measures across software effort datasets of different software 
systems. No single predictive model exists for a particular application domain that 
performs better than other models considering all performance measures as per the No 
Free Lunch Theorem [Wolpert and Macready 1995]. Thus, it becomes challenging for 
a software project manager to choose which machine learning technique to employ for 
SEE modeling. So, it is necessary to propose a method for selecting the most 
appropriate machine learning technique for SEE modeling, considering various 
performance measures. 

This work suggests a novel MCDM-based approach for recommending the best 
appropriate machine learning technique for SEE modeling, considering many 
competing performance or accuracy measures. MCDM is one of the most well-known 
subfields of decision-making. MCDM finds the most suitable choice among the many 
possibilities accessible, taking into account multiple competing criteria [Thakkar 2022]. 
Distinct criteria may conflict with one another since they signify different aspects of 
the options. For instance, cost and profit may conflict, etc. As multiple contradictory 
accuracy or performance measures are involved in assessing a machine learning 
technique, the problem of choosing the most appropriate approach for SEE modeling 
can be formulated as an MCDM problem. 

The machine learning techniques are selected through a novel MCDM-based 
approach. In the proposed approach, three MCDM methods (WASPAS, VIKOR, and 
TOPSIS) were used to determine ranking scores of machine learning techniques on 
SEE performance based on multiple conflicting accuracy measures. The following is a 
summary of this paper's key contribution. 
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• This research proposes an MCDM-based method for recommending 
machine learning techniques for developing models for software effort 
estimation considering several conflicting accuracy measures altogether. 

• In the proposed approach, three MCDM methods- WASPAS, VIKOR, and 
TOPSIS were employed to determine the individual ranking score of 
machine learning techniques for SEE modeling. Next, the machine learning 
technique, ranked first by all three MCDM methods, is recommended as 
the best machine learning technique for SEE modeling. 

• This study conducts an experimental study to validate the proposed 
approach using ten machine learning techniques and six conflicting 
performance measures over three software effort datasets (open-source).  

 
The following is how the remaining part of the paper is organized. Section 2 

describes the relevant work, whereas Section 3 describes the proposed method, selected 
machine learning techniques, MCDM methods, and performance measures used in this 
study. The datasets used in this paper and the experimental procedure used to validate 
the proposed approach are discussed in section 4. The results, discussion, and the 
MCDM-based ranking of machine learning techniques are presented in Section 5. 
Section 6 presents the practical implications of the study, Section 7 concludes the paper, 
and future research directions are presented in section 8. 

2 Related Work  
This section highlights previous research on SEE modeling by various researchers. [Seo 
et al. 2013] developed a model for software effort estimation using multiple linear 
regression with recursive data partitioning. [Pai et al. 2013] focused on using Artificial 
Neural networks (ANN) in software effort estimation modeling. [Fedotova et al. 2013] 
conducted a review study on Multiple Linear Regression (MLR) in software effort 
estimation modeling. They compared the software effort estimation capability of MLR 
with that of the traditional expert judgment method in terms of performance metrics 
MMRE and PRED (0.25). They concluded that MLR-based models are superior at 
estimating software effort than the standard expert judgment method.  

[Anandhi and Chezian 2014] developed two software effort estimation models 
using machine learning techniques M5 and linear regression. The COCOMO dataset 
was used in the experimental study. They determined that the M5 algorithm 
outperformed the linear regression based on the results of two performance metrics, 
MMRE and MdMRE. [Satapathy et al. 2016] employed the random forest for 
estimating software development efforts. They compared the software effort prediction 
capability of random forest with that of the other four machine learning techniques, 
namely, Stochastic Gradient Boosting (SGB), Radial Base Function Network (RBFN), 
Multi-layer Perceptron (MLP), and Log-linear regression (LLR) based on two 
performance measures MMRE and PRED. For the software effort estimation, [Sharma 
and Singh 2018] employed three machine learning techniques: multilayer perceptron, 
random forest, and support vector machines. These three machine-learning techniques 
were examined on four software effort datasets. After analyzing the results, the authors 
conclude that random forest is better than the other two techniques.  
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[Amaral et al. 2019] developed a model for estimating software efforts using the 
decision tree. They evaluated the proposed model over four software effort datasets in 
terms of two performance measures PRED (0.25) and MMRE. [Sakhrawi et al. 2020] 
used four machine-learning techniques for developing SEE models. Four machine 
learning techniques are Gradient Boosting Regressor (GBR), SVR, Ada Boost 
Regressor, and random forest. They compared the results of software effort predictions 
produced by these four machine learning techniques for two performance measures, 
MAE and MSE. The results of the experimental study show that random forest 
outperforms the other three machine learning techniques.  

[Sakhrawi et al. 2021] et al., in their survey study, underlined the importance of 
choosing the most appropriate machine learning technique for estimating software 
effort among various available machine learning techniques. They reviewed roughly 
thirty research publications on machine learning-based software effort estimation 
models that were published between 1995 and 2020. [Goyal 2021] conducts an 
empirical study for the evaluation of machine learning techniques for software effort 
estimation. The author compares the performance of generalized linear regression, 
support vector regressor, and artificial neural network for estimating software efforts 
on five software effort datasets. The author uses the two performance measures namely, 
MMRE and mean absolute error (MAR) for the comparative study. However, both 
accuracy measures were used separately.  

[Mahmood et al. 2022] conducted a review study to examine several machine 
learning algorithms for modeling software effort estimation. They focused on single 
machine learning techniques and a machine learning-based ensemble strategy for 
predicting software effort in the study. The study included two parts: first, they used 
machine learning techniques to investigate state-of-the-art in the domain of SEE 
modeling. Second, they employed the commonly known performance measurements 
MMRE and PRED (0.25) to assess various machine learning algorithms.  

[Sharma and Vijayvargiya 2022] perform a comparative study to evaluate the 
software effort estimation performance of four soft computing-based models- GEHO-
based NFN (GEHO-NFN), Adaptive GA-based neural network (AGANN), Neuro-
fuzzy logic (NFL), and Localized Neighborhood Mutual Information based neural 
network (LNI-NN). Five different datasets, including the promise database's 
cocomo81, cocomonasa1, and cocomonasa2 were used to test and validate each of the 
four modelling approaches. Four performance measures- RMSE, PRED, MdMRE, and 
MMRE were used for the comparative study. However, they have not considered four 
performance measures altogether. 

[Kumar and Srinivas 2023] suggest a model namely, accurate analogy-based 
software effort estimation model (AA-SEE) based on machine learning techniques and 
hybrid optimization to further improve effort estimate. They evaluate their proposed 
model through different software effort datasets using various performance measures 
such as MMER, MMRE, MdMMRE, and MdMMER. However, they have considered 
one performance measure one at a time. [Abnane et al. 2023] proposed a model for 
improving software effort estimation by replacing missing values using ensemble 
imputation techniques. They evaluate the proposed model on various datasets using five 
performance metrics- logarithmic standard deviation (LSD), mean inverted balanced 
relative error (MIBRE), mean balanced relative error (MBRE), Pred (0.25), and 
standardized accuracy (SA). However, they have not considered these five performance 
measures taken into account altogether. [Sanchez et al. 2023] developed software effort 
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estimation models using four machine learning techniques- ensemble learning, 
adaboost, random forest, and decision tree. They compared the performance of these 
four machine learning techniques for software effort estimation using the performance 
measures- MSE, MMRE, MdMRE, and Pred (0.25). However, they have not 
considered these four performance measures altogether. 

 
After a thorough review of research done in software effort estimation modeling, 

the following observations can be concluded. 
    

• Various researchers have spent a lot of effort demonstrating the use and 
efficiency of machine learning techniques for software effort estimation. 
 

• In some cases, researchers have used only single performance measures to 
evaluate the machine learning techniques. Some studies consider multiple 
performance measures to evaluate machine learning techniques for software 
effort estimation, but these studies do not consider the simultaneous 
optimization of all performance measures. 

 
• In previous studies, no one has emphasized selecting the most suitable 

machine learning technique for software effort estimation modeling 
considering various performance measures taken into account altogether using 
MCDM approach.  

 
This paper proposes an MCDM based approach for recommending most suitable 
machine learning technique for software effort estimation modeling by taking into 
account more than one conflicting performance measure considering simultaneous 
optimization of all performance measures. To the best of the authors' knowledge, no 
other research has considered the problem of evaluating machine learning techniques 
for SEE modeling in the presence of more than one conflicting performance or accuracy 
measure using the MCDM approach. 

3 Research Methodology    
This section describes the proposed method, selected machine learning techniques, 
performance measures, and MCDM methods used in this study. 

3.1 Proposed Method 

This paper suggests an MCDM-based method for recommending the best machine 
learning technique for estimating software effort in the presence of many competing 
accuracy measures. The proposed approach used three MCDM methods to rank ten 
machine learning techniques on SEE performance considering six performance 
measures. An experimental study was conducted over three open-source SEE datasets 
to validate the proposed approach. Fig. 1 provides an overview of the proposed method. 
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Figure 1:  The process of generating a ranking index for SEE models using the 
MCDM-based approach 

3.2 Machine Learning Techniques 

Considering a large number of machine learning techniques, it is not possible to take 
all machine learning techniques into consideration for the validation of the proposed 
approach. This study has applied ten machine learning techniques used in previous 
studies (as discussed in the related work section) for building SEE models. These 
machine learning techniques are Multiple Linear Regression (MLR), Isotonic 
Regression (IR), Pace Regression (PR), K-Nearest Neighbors (KNN), Support Vector 
Regression (SVR), KSTAR, Decision Table (DT), M5Rules, M5P, and Random 
Forests (RF). 
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3.3 Performance Measures 

This study chooses six performance measures to evaluate machine learning techniques 
for SEE modeling. Depending on the type of performance measure, the MCDM 
methodology classifies these six performance measures as six conflicting criteria (cost 
criteria or benefits criteria). A performance measure for which a minimum value is 
desired can be considered a cost criterion. On the other hand, performance measures 
where the maximum value is desired can be considered as benefit criteria. All six 
performance measures are listed in Table 1, followed by a brief description of each 
performance measure. 
 

Performance Measures (as criteria) Abbreviation  Type of Criteria  

Root Mean Square Error RMSE Cost Criteria 
Mean Magnitude of Relative Error MMRE Cost Criteria 
Median of Absolute Residual Error MDARE Cost Criteria 
Mean Balanced Relative Error MBRE Cost Criteria 
Pearson Correlation Coefficient r Benefit Criteria 
PRED (0.25) PRED (0.25) Benefit Criteria 

 
Table 1: Performance Measures 

 
Given n is the total number of observations. For ith observation, ui represents actual 
effort, and vi represents estimated effort. All six performance measures can be explained 
as follows: 

• RMSE represents the root mean square error and can be calculated as follows: 

 
            RMSE=      

(1) 

• MMRE [Menzies 2014] represents the mean value of the magnitude of relative 
error and can be calculated as follows: 

                MMRE=   
(2) 

• MDARE is the median value of all absolute residual error (AREi), where 
AREi can be calculated as follows:  

   AREi=    (3) 

• MBRE [Kumar 2023] represents the mean value of balanced relative error and 
can be calculated as: 

        MBRE=   (4) 
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• Pearson Correlation Coefficient (r) [Sheskin 2011] measures the linear 
correlation between actual values and predicted values. This performance 
measure can be calculated as follows:  

       r=    (5) 

• PRED (0.25) [Menzies 2014] represents the fraction of predicted values with 
a magnitude of relative error (MRE) less than 0.25. Where MRE can be 
calculated as follows: 

 MREi=  
(6) 

 

3.4 MCDM Methods 

When decisions must be made based on conflicting criteria, a variety of MCDM 
methods are available. There are benefits and drawbacks to every MCDM method. 
There is currently no approach exist that permits a specific MCDM method to be 
selected. Many MCDM methods will produce a more trustworthy ranking of machine 
learning techniques than a single MCDM method. In this study, we have chosen three 
MCDM approaches for evaluating machine learning models in SEE modeling: 
WASPAS, TOPSIS, and VIKOR.  

3.4.1 WASPAS 

WASPAS method [Zavadskas et al. 2012] combines the results of two different MCDM 
methods, namely the weighted product model (WPM) and the weighted sum model 
(WSM). A detailed stepwise description of WASPAS method is given below. 
 
Step1: Construction of Decision Matrix as the input for WASPAS method. 
Prepare a decision matrix, Da×c; here, a denotes the number of machine learning 
techniques for SEE modeling as alternatives, and c represents the number of 
performance measures as criteria. In this research, the value of c is six, and the value of 
a is ten. In the matrix Da×c, each entry dij denotes the value of the jth accuracy measure 
for the corresponding ith machine learning technique. 
 
Step2: Normalization of Decision Matrix  
Calculate the normalized value of each entry dij of the decision matrix Da×c, using Eq. 
(7) and Eq. (8). 
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       (7) 

 (For Cost criteria, where the minimum value is desired):  
 

 
 (8) 

Step3: Compute the WSM factor (Qiwsm) and WPM factor (Qiwpm) for each alternative 
using Eq. (9) and Eq. (10), respectively. 
 

 
 (9) 

 
 (10) 

Where wj = [w1, w2…wc] represents the weights of performance measures. In this study, 
we have considered equal weightage of each criterion (performance measure). 
 
Step4: Compute the Aggregation measure Qi for each alternative using Eq. (11). 
 

 

 
(11) 

Step5: Rank the alternatives in decreasing order of aggregation measure. The higher 
the value of the aggregation measure higher will be the rank. 

3.4.2 TOPSIS 

TOPSIS [Hwang and Yoon 1981] is a well-known MCDM technique for rating 
available methods to address a decision problem with competing criteria. This 
technique chooses the alternative that is closest to the ideal alternative. An ideal 
alternative is defined as the alternative with the best possible criterion value. It is the 
Euclidean distance that is utilized for distance measure. Below is a step-by-step 
procedure. 
 
Step1: Construction of Decision Matrix as the input for TOPSIS method. 
[Description] same as described in step1 of previous section 3.4.1. 
 
Step2: Normalized decision matrix 𝑉!×# is obtained by using Eq. (12); here, each entry 
vij denotes the normalized value of dij. 
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 (12) 

Step3: Weighted normalized decision matrix 𝑇!×# is obtained by using Eq. (13), where 
tij represents the weighted normalized value of dij. 

  (13) 

Here 𝑤$ is the weight assigned to criteria j. The values of weights are the same as in the 
case of WASPAS. 
 
Step4: Calculate Ideal Solutions [PIS]c×1 and [NIS]c×1 

The best value each criterion may achieve is determined as the positive ideal solution 
(PIS). The least/worst value each criterion can achieve is used to calculate the negative 
ideal solution (NIS). They can be calculated using Eq (14) and Eq. (15). 

  (14) 

 
 

(15) 

Where z is related to beneficial criteria and z' is related to cost criteria. 
 
Step5: Euclidean Distance  
For each alternative Euclidean distance ED+ from PIS and Euclidean distance ED- from 
NIS are calculated using (16) and (17), respectively. 
 

  (16) 

    (17) 

 
Step6: Find Relative Closeness [RC]a×1 
Relative closeness for each alternative with respect to the NIS and PIS can be calculated 
using Eq. (18). 

  
(18) 

Step7: Selection of the best alternative  
Rank the alternatives (in this study, machine learning techniques for SEE modeling) 
according to the value of relative closeness obtained in step 6. The machine learning 
technique with the highest value of relative closeness (RC) will be recommended as the 
most appropriate alternative. 
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3.4.3 VIKOR 

VIKOR is one of the most popular MCDM methods. This method produces the ranking 
index of alternatives based on a particular measure of closeness to the ideal solution in 
the presence of conflicting criteria. Following is the detailed procedure of the VIKOR 
method [Opricovic and Tzeng 2004]. 
 
Step1: Construction of Decision Matrix as the input for VIKOR method. 
[Description] same as described in step1 of WASPAS and TOPSIS in previous sections 
3.4.1 and 3.4.2, respectively. 
 
Step2: Find the best 𝑑$% and worst 𝑑$& values for each criterion by using the following 
formula.        

 , For benefit criteria (19) 

 , For cost criteria (20) 

 
Step3: The utility measure Si and regret measure Ri can be computed as follows: 

  

 

(21) 

    (22) 

Where 𝑤$ is the weight of criteria j. The values of weights are the same as in the case 
of WASPAS and TOPSIS. 
 
Step4: Calculate the values (𝑆∗	, 𝑆&	) and (𝑅∗	, 𝑅&	) by using the following relations. 
 

  (23) 

  (24) 

Step5: Now compute the value of VIKOR index  𝑄) for each alternative as follows: 

  (25) 

 
Step6: Rank the alternatives in order of  𝑄) value, with a smaller  𝑄) value indicating a 
higher rank. 
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4 Experimental Study    
This section is further divided into two subsections. Subsection 4.1 discusses the brief 
description of software effort datasets used in this study. Subsection 4.2 presents the 
detailed experimental procedure for validating the proposed method, as described in 
section 3.1. 

4.1 SEE Datasets 

In this study, we used three datasets easily available in the public domain and have been 
widely used in previous studies [Ali and Gravino 2019, Rijwani and Jain 2016, Anandhi 
and Chezian 2014, Satapathy et al. 2016, Sharma and Singh 2018, Arslan 2019, 
Sakhrawi et al. 2020, Sharma and Vijayvargiya 2022] for software effort estimation 
modeling. Three SEE datasets are: cocomo81, cocomonasa1, and cocomonasa2, taken 
from the software engineering data repository PROMISE [Promise Repository]. Details 
of the datasets are as follows: 

 
• The cocomo81 dataset contains information about 63 software projects. This 

dataset has seventeen attributes. All seventeen attributes are numeric, in which 
fifteen attributes are the effort multiplier, one attribute is lines of code (LOC), 
and one attribute is the actual effort (dependent variable). 

• The cocomonasa1 dataset contains information about 60 software projects. 
This dataset also has seventeen attributes (all numeric), including fifteen effort 
multiplier attributes, one attribute for LOC, and one is the dependent variable 
(actual effort). 

• The cocomonasa2 dataset contains information about 93 software projects. 
This dataset has twenty-four attributes. Fifteen attributes are standard discrete 
effort multipliers, seven attributes describe the projects, one attribute is for 
LOC, and one is the actual effort (dependent variable). 

4.2 Experimental Design 

Machine learning techniques create SEE models based on the data describing projects 
completed in the past. In this study, we made the assumption that historical datasets of 
previously completed projects at a software company are available to estimate the 
software efforts for the new project. 
     
The following procedure is used for experimental design. 
 
Input: Three software effort estimation datasets as described in the previous section 
(section 4.1). 
 
Output: Ranking Index for machine learning techniques for SEE modeling. 
  
Step 1: Three datasets described in section 4.1 are preprocessed to select the relevant 
features. Feature selection is a preprocessing operation used to find and eliminate 
unnecessary and irrelevant data from datasets. Correlation-based Feature Selection 
(CFS) [Hall 1999], a well-known feature selection algorithm, is used in this study. 
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According to the CFS process, a feature is advantageous if it has a strong correlation 
with the dependent variable but not with other features. 
 
Step 2: Apply ten machine learning techniques as described in section 3.2 to build ten 
SEE models for each dataset. Open-source tool Weka version 3.8.3 [Hall et al. 2009] 
was used to implement these ten machine-learning techniques.   
 
Step 3: Results of six performance measures are obtained for ten machine learning 
techniques used for SEE modeling. The results for each dataset are stored in a 10×6 
matrix. 
 
Step 4: Use the 10× 6 matrix for each dataset obtained from step 3 as the decision 
matrix to apply three MCDM methods, WASPAS, TOPSIS, and VIKOR.   
 
Step 5: A 10×1 matrix is obtained as the output of each MCDM method representing 
the ranking score of ten machine learning techniques for SEE modeling for each dataset. 
 
Step 6: Recommend the machine learning technique for SEE modeling based on the 
rank produced by all three MCDM methods.  
 
The graphical representation of the experimental design is shown in Fig. 2. 

 
Figure 2:  Graphical Representation of the Experimental Study 
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5 Results and Discussion    
There are two subparts to this section. In the first part, we review the software effort 
estimation results of ten machine-learning techniques for each dataset. In the second 
part, the proposed MCDM-based method ranks the machine learning techniques for 
SEE modeling. 

5.1 SEE Results 

Table 2 to Table 4 display the results of the ten machine learning techniques for SEE 
modeling in terms of the six performance measures as described in section 3.3. 

 
Table 2: Results of Dataset1 (cocomo81) 

 
Table 3: Results of Dataset2 (cocomonasa1) 

 

Machine 
Learning 
Technique 

RMSE MMRE MDARE MBRE r PRED 
(0.25) 

MLR 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459 
IR 0.2557 2.6348 0.0690 3.3705 0.7048 0.2295 
PR 0.2095 6.8142 0.1140 2.3206 0.8081 0.2459 
SVR 0.2183 3.4522 0.0770 1.7052 0.7898 0.2131 
KNN 0.2964 2.6744 0.0790 4.6908 0.6590 0.0984 
KSTAR 0.2524 1.9772 0.0600 2.3773 0.7291 0.1639 
DT 0.3329 2.3050 0.1280 2.9554 0.4554 0.2131 
M5Rules 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459 
M5P 0.2144 6.8414 0.1070 2.4122 0.7979 0.2459 
RF 0.2299 2.1056 0.0670 2.3966 0.7629 0.2295 

Machine 
Learning 
Technique 

RMSE MMRE MDARE MBRE r PRED 
(0.25) 

MLR 0.1095 0.4476 0.0450 0.5226 0.9466 0.4915 
IR 0.1377 0.4191 0.0290 0.5200 0.9160 0.5254 
PR 0.1092 0.4455 0.0430 0.4987 0.9468 0.4746 
SVR 0.1055 0.3235 0.0280 0.3619 0.9511 0.5593 
KNN 0.1546 0.3606 0.0280 0.4798 0.8939 0.5593 
KSTAR 0.1424 0.4551 0.0270 0.5364 0.9292 0.4576 
DT 0.1756 0.8435 0.0340 1.0376 0.8636 0.4237 
M5Rules 0.1078 0.4207 0.0390 0.4322 0.9482 0.4746 
M5P 0.1075 0.4180 0.0450 0.4279 0.9486 0.4915 
RF 0.1125 0.3898 0.0310 0.4201 0.9459 0.5932 
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Table 4: Results of Dataset3 (cocomonasa2) 

 
• Table 2 shows that for the cocomo81 dataset, the SEE model PR performs the 

top for the accuracy measures PRED (0.25), r, and RMSE. For performance 
measures, MMRE and MDARE, SEE model KSTAR performs the best. SEE 
model SVR is best for performance measure MBRE. The most appropriate 
SEE models for accuracy measure PRED (0.25) are M5P, M5Rules, and MLR.  

• Table 3 shows that, for the cocomonasa1 dataset, the SEE model SVR 
performs the top for accuracy measures MBRE, RMSE, r, and MMRE. For 
performance measure, MDARE, SEE model KSTAR is the best. For accuracy 
measure PRED (0.25), SEE model RF outperforms all other SEE models.  

• Table 4 shows that, for the cocomonasa2 dataset, the SEE model MLR is most 
appropriate for performance measures r and RMSE. For performance measure, 
MMRE, SEE model IR is the best. SEE model KNN is most appropriate for 
performance measures MDARE and PRED (0.25). For performance measure, 
MBRE, SEE model KSTAR is the best. 

 
According to the above findings, no one machine learning technique for SEE modeling 
can be chosen as the optimal machine learning technique for any dataset when six 
performance measures are considered together. Consequently, this motivates us to 
evaluate machine learning techniques for software effort estimation considering 
several performance metrics using the MCDM-based approach. 

5.2 MCDM Ranking 

Three MCDM methods, WASPAS, VIKOR, and TOPSIS (as described in section 3.4), 
are used for generating the ranking index for ten machine learning techniques for 
software effort estimation considering multiple conflicting performance measures. 
Table 5-7 shows the ranking index for machine learning techniques for SEE modeling 
for three datasets cocomo81, cocomonasa1, and cocomonasa2. 
 

Machine 
Learning 
Technique 

RMSE MMRE MDARE MBRE r PRED 
(0.25) 

MLR 0.1917 2.0065 0.0670 1.8013 0.8170 0.2967 
IR 0.2617 1.1522 0.1140 1.6820 0.6290 0.2088 
PR 0.1924 2.0150 0.0670 1.8301 0.8156 0.2857 
SVR 0.2105 1.6595 0.0970 1.7831 0.7753 0.3736 
KNN 0.2323 2.5644 0.0430 4.6168 0.7514 0.3956 
KSTAR 0.2183 1.3567 0.0730 1.6331 0.7889 0.3626 
DT 0.2638 1.6885 0.0620 2.0522 0.6367 0.3187 
M5Rules 0.1997 1.9831 0.0780 1.7468 0.8003 0.2747 
M5P 0.1983 1.9870 0.0830 1.7550 0.8031 0.2747 
RF 0.2229 2.1609 0.0510 2.5223 0.7520 0.3187 
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Machine 
Learning 
Techniques 

Ranking Generated by Three MCDM Methods 

WASPAS TOPSIS VIKOR 

WASPAS-
Score 

WASPAS-
Rank 

TOPSIS-
Score 

TOPSIS-
Rank 

VIKOR-
Score 

VIKOR-
Rank 

MLR 0.7231 6 0.5213 6 0.7092 6 
IR 0.7844 4 0.6793 4 0.3547 4 
PR 0.7265 5 0.5210 9 0.7052 5 
SVR 0.8519 2 0.8054 2 0.0693 2 
KNN 0.6159 10 0.4419 10 0.9730 9 
KSTAR 0.8477 3 0.7660 3 0.3108 3 
DT 0.6522 9 0.5307 5 1.0000 10 
M5Rules 0.7231 6 0.5213 6 0.7092 6 
M5P 0.7231 6 0.5213 6 0.7092 6 
RF 0.8870 1 0.8529 1 0.0000 1 

Table 5: Ranking index of machine learning techniques for SEE modeling for dataset 
cocomo81 

 

Machine 
Learning 
Techniques 

Ranking Generated by Three MCDM Methods 

WASPAS TOPSIS VIKOR 

WASPAS-
Score 

WASPAS-
Rank 

TOPSIS-
Score 

TOPSIS-
Rank 

VIKOR-
Score 

VIKOR-
Rank 

MLR 0.7940 9 0.6702 9 0.6879 9 
IR 0.8328 5 0.7569 5 0.3115 3 
PR 0.8015 8 0.6921 8 0.6129 7 
SVR 0.9844 1 0.9617 1 0.0000 1 
KNN 0.8599 3 0.7726 3 0.4686 5 
KSTAR 0.8077 7 0.7013 7 0.5535 6 
DT 0.6065 10 0.1481 10 1.0000 10 
M5Rules 0.8422 4 0.7618 4 0.4553 4 
M5P 0.8321 6 0.7207 6 0.6637 8 
RF 0.9146 2 0.8838 2 0.0470 2 

Table 6: Ranking index of machine learning techniques for SEE modeling for dataset 
cocomonasa1 
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Machine 
Learning 
Techniques 

Ranking Generated by Three MCDM Methods 

WASPAS TOPSIS VIKOR 

WASPAS-
Score 

WASPAS-
Rank 

TOPSIS-
Score 

TOPSIS-
Rank 

VIKOR-
Score 

VIKOR-
Rank 

MLR 0.8031 2 0.6996 2 0.2068 2 
IR 0.7104 10 0.5561 9 1.0000 10 
PR 0.7947 4 0.6896 4 0.2289 3 
SVR 0.7962 3 0.6556 6 0.3859 6 
KNN 0.7305 9 0.4278 10 0.8027 8 
KSTAR 0.8604 1 0.7884 1 0.0000 1 
DT 0.7464 8 0.6935 3 0.8479 9 
M5Rules 0.7727 5 0.6575 5 0.3237 4 
M5P 0.7666 6 0.6411 8 0.3314 5 
RF 0.7618 7 0.6443 7 0.4458 7 

 
Table 7: Ranking index of machine learning techniques for SEE modeling for dataset 

cocomonasa2 
 
The following inferences are drawn from Table 5-7. 
 

• For the dataset cocomo81, it is observed that Random Forest (RF) is the most 
appropriate machine learning technique for SEE modeling after optimization 
of all conflicting accuracy measures. 
 

• Support Vector Regression (SVR) is suggested as the most appropriate 
machine learning technique for SEE modeling on the cocomonasa1 data set 
after optimization of all competing performance measures. 

 
• After taking into account and optimizing all conflicting accuracy measures, it 

is found that KSTAR is the most appropriate machine learning technique for 
SEE modeling on the cocomonasa2 dataset. 

 
From the above inferences, it can be observed that the advantage of applying the 
proposed MCDM-based approach is that the proposed method can be used as an 
efficient tool for selecting the most appropriate machine learning techniques for SEE 
modeling by optimizing various contradictory performance measures taken into 
account altogether. Although most of the researchers in previous studies [Varshani et 
al. 2021, Fedotova et al. 2013, Anandhi and Chezian 2014, Sharma and Singh 2018, 
Arslan 2019, Sakhrawi et al. 2020, Sharma and Vijayvargiya 2022, Kumar and Srinivas 
2023] took into account multiple performance measures to assess the various available 
SEE models, it can be observed that in their study, they presented the best SEE model 
by simply taking into consideration one performance measure at a time. 
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6 Practical Implication 
Successful project management involves precise software development effort 
estimation. Several types of machine learning techniques for estimating software 
development efforts have been examined in prior studies. There may be inconsistencies 
in the software effort estimation modeling performance of machine learning techniques. 
As a result, the choice of the optimum machine learning technique becomes challenging 
for a software manager since different machine learning techniques have inconsistent 
prediction capability with respect to multiple performance measures. If a software 
manager has a reason for emphasizing a particular performance measure, he/she may 
choose the machine learning technique more likely to perform best for this measure. In 
contrast, if it is unclear which performance measure should be emphasized, he/she can 
be interested in a solution that offers a decent trade-off between many performance 
measures. The proposed MCDM-based method provides a unique framework to aid the 
software manager in selecting the most suitable machine learning technique for SEE 
modeling, considering various performance measures and taking them into account 
altogether.   

7 Conclusion  
Many studies have focused on developing various models for accurate software effort 
estimation using machine learning approaches, as described in the related work section 
of this paper. However, the selection of the most appropriate machine-learning 
technique for SEE is still in the infant stage. In this study, we propose an MCDM-based 
framework to address the issue of selecting a machine-learning technique for SEE 
modeling using MCDM. To validate the proposed approach, we have chosen three 
datasets from PROMISE repository, which are freely available and widely used by 
various researchers in the past for SEE modeling (described in detail in section 4.1).    

In the proposed method, the values of six performance metrics for ten machine 
learning techniques on each dataset are obtained first. For any dataset, according to the 
results of six performance metrics for the applied machine learning techniques, as 
discussed in section 5.1, no machine learning technique can be recommended 
considering all performance metrics. Consequently, it is necessary to evaluate machine 
learning techniques by optimizing all six-performance metrics. In the proposed 
approach, three MCDM methods are implemented to produce individual ranking scores 
of machine learning techniques based on six performance metrics. Three datasets were 
used for analysis to validate the proposed method. Experimental results indicate that 
machine learning technique RF is best suited for the cocomo81 dataset, machine 
learning technique SVR is the most appropriate for the cocomonasa1 dataset, and 
machine learning technique KSTAR is best suited for the cocomonasa2 dataset.   

8 Future Research Direction 
As an extension, the proposed MCDM-based approach can be used to recommend the 
most appropriate machine learning technique for solving various types of software cost 
and quality prediction problems in software engineering, such as software defect 
prediction problems, etc. Furthermore, the proposed method can be extended to solve 
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various types of decision-making problems in other domains related to software 
engineering. For example, during the various stages of the software development life 
cycle, the proposed approach may be used to choose the best software testing technique 
from among the various testing approaches that are available. As the proposed approach 
is based on the MCDM methods, using hybrid MCDM methods may be another future 
work for solving various decision problems in the context of software engineering. This 
study can also be further extended to a large number of software effort estimation 
datasets. 
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