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Abstract: Automated root cause analysis of performance problems in modern cloud computing
infrastructures is of a high technology value in the self-driving context. Those systems are evolved
into large scale and complex solutions which are core for running most of today’s business appli-
cations. Hence, cloud management providers realize their mission through a “total” monitoring
of data center flows thus enabling a full visibility into the cloud. Appropriate machine learning
methods and software products rely on such observation data for real-time identification and
remediation of potential sources of performance degradations in cloud operations to minimize
their impacts. We describe the existing technology challenges and our experiences while working
on designing problem root cause analysis mechanisms which are automatic, application agnostic,
and, at the same time, interpretable for human operators to gain their trust. The paper focuses on
diagnosis of cloud ecosystems through their Key Performance Indicators (KPI). Those indicators
are utilized to build automatically labeled data sets and train explainable Al models for identifying
conditions and processes “responsible” for misbehaviors. Our experiments on a large time series
data set from a cloud application demonstrate that those approaches are effective in obtaining
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models that explain unacceptable KPI behaviors and localize sources of issues.
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1 Intelligent Diagnosis of Cloud Environments

1.1 Explaining Factors of Misbehaviors

The general approach currently used by companies when it comes to RCA of performance
issues in the customer ecosystems and own products is to rely on expertise of on-site
users or support engineers. Expert efforts and knowledge are not anymore adequate
for reliable management and quick remediation of misbehaving components of modern
cloud environments tending to build self-driving capabilities (such as an application
KPI optimization, the vision behind project Magna, https://blogs.vmware.com/virtu-
alblocks/2019/08/26/vsan-project-magna/). Backtracking and finding root causes of
failures in those distributed environments with high degree of sophisticated interrelations
between data center objects is an unrealistic manual task for human operators.

Machine learning helps to automate the management of such complex systems [Josef-
sson 2017], [Sole et al 2017] that contain thousands of objects like VMs, Hosts, datastores,
via monitoring millions of time series metrics, terabytes of logs, and application traces,
to capture a high-resolution “image” of the entire stack. However, self-diagnostics of
issues with those intelligent monitoring and analytics solutions (cloud vendors’ products)
is another fundamental problem at the customer environments requiring time-intensive
analysis of support experts and substantial long-term investments. VMware Skyline
[VMware Skyline 2022] summarizes common patterns (with the field experts involved)
of product problems into remediation “rules” for more proactive support at the customer
site later. A closed-loop global rule learning from products usage and performance data
to maintain product KPIs healthy would be the advanced path several other companies
currently follow (see HPE InfoSight [HPE 2022]).

Although data center management market progresses towards Al Ops solutions, like
VMware Area (former vRelaize Operations Manager) [VMware Aria 2022], it still is
providing only semi-automated root cause detection capabilities for customer applications
under supervision, as well as for self-diagnosis, although enriched with various intelligent
troubleshooting toolsets. In particular, they make finding evidence of potential causes of
an alert or data center situation easier with discovery of “interesting” changes occurring
in system events space, configuration properties, and data center flows for further user
validation and decision making. Such a troubleshooting analytics [Harutyunyan et al
2020(1)] may apply statistical change point detection methods and entropic measures to
derive the ranked lists of relevant patterns according to their importance. This kind of
unsupervised approaches mitigate RCA problem but also produce false positive noise and
redundancy. Full automation of RCA of an issue or its prediction remains unresolved. Our
prior works ([Harutyunyan et al 2020(1)], [Poghosyan et al 2020(1)], [Harutyunyan et al
2020(2)], [Bunarjyan et al 2020], [Poghosyan et al 2020(2)], [Harutyunyan et al 2022],
[Poghosyan et al 2022], [Baghdasaryan et al 2022]) reported in CODASSCA 2020 and
2022 workshops, extended papers ([Poghosyan et al 2021(1)], [Harutyunyan et al 2019],
[Poghosyan et al 2021(2)]) in J.UCS and Sensors special issues on those workshops,
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earlier research ([Harutyunyan et al 2018], [Harutyunyan et al 2014]) on intelligent
log analytics, represent various sorts of attempts at enabling and facilitating incident
discovery and prediction, as well as RCA capabilities of cloud management solutions
from different perspectives. In particular, the current paper builds on [Harutyunyan et al
2022].

Automated RCA with machine intelligence is a core problem in the self-driving
data centers context [SDDC 2017]. However, for gaining user trust in ML solutions it is
also essential and preferable to build such technologies on top of interpretable models
[Barredo Arrieta et al 2020], [Fiirnkranz et al 2012]. Core problems in reliable and
intelligent cloud operations (including KPI diagnosis) are addressed in recent works
([Chen et al 2020], [Lyu et al 2021], [Lyu and Su 2023], [Wang et al 2023]) by various
research groups.

There are multiple factors that hinder designing effective RCA solutions with ML
for cloud computing infrastructures and applications, the main ones are

— lack or absence of labeled data;

— operator or expert verified/annotated/labeled data sets are hard to obtain in this
domain and ungeneralizable from one environment to another because of ecosystem
specifics.

Another aspect which is core to take into consideration is the explainability of
an automated RCA. Industry is increasingly extending its frontiers with ML and Al,
while facing the problem of explainability [Barredo Arrieta et al 2020] of sophisticated
deep learning models and their outcomes. Although accurate ML models are valuable
for automated RCA, their explainability is a desired feature to justify the reasons of
failures and conditions that lead to such degradations. In addition to indicating actionable
recommendations, those conditions are uncovering knowledge that can be leveraged in
further optimization of the application. So, building trust between the user and Al should
be an important requirement in designing data center diagnostics of the future. Therefore,
our goal should be developing effective RCA methods which enable also explainable Al
for products developed to manage cloud environments. That implies identifying ways
to design intelligent systems that run on models with optimal trade-offs between their
predictive power and explainability).

In that context, we outline ideas and a prototype solution for an automated RCA in
terms of diagnosing KPI degradations that target troubleshooting customer data centers
and/or cloud management products residing in their environments (thus enabling a
proactive support while collecting high-frequency telemetry data from the products).

This paper presents some techniques and ML models that predict the potential causes
of system’s failures subject to its KPI, an underlying goal in the project Magna-Diagnosis
mentioned above. Several regression and classification models were trained and analyzed
using concepts of variable importance, decision trees and rule learners, as well as neural
networks to identify and explain KPI degradations for a vRealize Operations deployment.
These findings derived from high-accuracy ML models, which lack in human ground
truth, were evaluated by the application developers to estimate their utility in practice
and overall compliance with their expertise in long-term troubleshooting of the product
issues.

Rule induction is always preferable if the interpretability of the models and patterns
are required compared to their predictive power [Clark and Boswell 1998]. There are
various rule induction algorithms [Fiirnkranz et al 2012]. In this work we experimented
with CN2 (see its implementation in the visual programming tool Orange [Orange 2023]).
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In view of the above-mentioned challenges, our experience with designing relevant
diagnostics pipeline proposal relies on the following building blocks:

1. Leveraging KPI metric as a source for generating labels for the entire data set of the
application, while quantizing it into two or more class IDs;

2. Training regression and classification models to employ those in predicting KPI
failures, while also evaluating relative variable/feature importance scores of those
models to be utilized for explainability purposes;

3. Applying decision trees and rule induction (a form of explainable Al) algorithms
to derive consistent conditions of KPI failures for a full KPI diagnosis and inter-
pretability.

Methods are generic in nature and can be applied to different use cases, including
proactive/predictive customer support for deployed cloud management instances or
SaaS-based delivery of those services.

For an exemplary distributed application and its selected KPIs such as a latency metric,
interpretable models are trained, validated against expertise of application developers,
and used for producing run-time root cause recommendations on KPI abnormalities.

Overall, the objective of such a study is to identify important features and conditions of
cloud applications subject to impact on KPIs. Based on this, intelligent cloud management
solutions can provide recommender systems for optimizing applications performance
(while indicating those important variables to be tuned) and predicting patterns causing
unacceptable performance states (hence, accelerate the system recovery). This work
focuses on experimental evaluation of the self-diagnostic use case of the technology
leading cloud management solution VMware Aria Operations [VMware Aria 2022].

Figure 1 depicts this product application in its functions to monitor and guard multi-
cloud infrastructures. The diagram reflects three cloud environments built on

1. VMware compute/storage/network virtualization solutions vSphere, vSAN, and NSX
[VMware Prods 2023],

2. such an infrastructure hosted in Microsoft Azure, and
3. native Azure service, respectively.

While this distributed application is intelligently managing various cloud environ-
ments, the product itself might greatly benefit from self-healing capabilities or automated
recommendations for performance improvements and recovery from misbehaviors. Ar-
chitectural specifics and variety of workload patterns at different types of clouds may
affect/stress vRealize Operations performance differently. Therefore, for self-diagnostics
purposes, special models need to be trained for each case with specific requirements on
KPIs behavior set by users.

Various ML algorithms are employed for comparative analysis including neural
networks. Expert validation of discovered patterns promises wider adoptability of the
approaches in real world scenarios with limited or unavailable annotated data sets.

1.2 Methodology Frameworks and Paper Sttructure

In our study we apply both regression and classification methods, including rule induction
algorithms, as well as information-theoretic feature ranking techniques. In one scenario,
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Figure 1: vRealize Operations in multi-cloud management.

we are interested in identifying potential factors explaining the KPI behavior, in another
one, the problem is to predict KPI abnormality and deduce “rules” leading to such
situations.

Further research needs to address the problem of efficient management of multiple
trade offing KPIs for an application.

The paper is organized as follows. Section 2 specifies use cases of application
diagnostics from KPI perspectives and a sampled data set representing the performance
monitoring of that application consisting of thousands of features. Section 3 focuses on
experimental aspects of our investigations, while Section 4 expands on analysis of patterns.
Section 5 shares validation results and challenges. Section 6 contains forward looking
perspectives on this research and its productization with internal reviewer feedback on
technology value.

2 Use Case of a Product KPI Diagnosis

We explain our methods on a data set measured by vRealize Operations (a multi-node
distributed application consisting of several VMs) regarding its performance in terms
of its self-monitoring metrics within a real deployment in one of our data centers. The
product collects a large amount of such time series metrics that keep track of its own
performance. They give a thorough picture of application’s state. The dataset we analyzed
represents a collection of the application’s self-monitoring metrics for a node from a
6-node product deployment.

2.1 Dataset

The raw dataset was processed against gaps and normalized for further analysis. A
node-specific data frame consisting of 3000 time series features (subject to 5 min regular
monitoring interval) was considered, both numeric and categorical with 5100 instances
each for a period of 18 days.
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2.2 Key Performance Indicators

Different target variables (KPIs, see the relevant list [Self-Monitoring 2022] for vRealize
Operations) in the dataset were used to generate labels for the rest of the data frame
applying high quantile values of the metric. For training classification models, binary
labels (normal vs abnormal state of the KPI) were generated using such an artificial and
self-labeling technique. This way the dataset could be fed into classification algorithms
for automated RCA to predict the positive/degraded class. The meaning behind this is to
have ready ML models that could derive conditions/rules that interpret the degradation of
KPI (positive class) or indicate the most influential dimensions/features for a long-term
explainability of those degradations. To get better understanding of this approach, we
have discretized the target variable to be 0 or 1 based on the 97, 95, 93, 90-quantiles of
the KPI and picked up the quantile which resulted in the best performance.

New global KPIs have also been constructed since there are cases when a particular
KPI cannot describe the required performance aspect accurately when taken separately.
As node’s behavior must be evaluated relative to the remaining nodes, taking a single KPI
that reflects the relationship between only one to another node would not be descriptive.
For each node from the 6-node product deployment, there are 5 self-monitoring metrics
for each remaining node, which show the maximum/average response latency from the
current node to others.

The super-metrics

Node|PingLatency|Max of Max
and
Node|PingLatency|Avg of Avg (Figure 2)

used for RCA are constructed by taking the maximum/average value among all 5 metrics’
observations at a given point in time.

* WMWWMMW

Observations

Figure 2: Plot for Node|PingLatency|Avg of Avg.
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3 Experiments and Discussions

As mentioned above, we are interested in explaining a specific KPI degradation instance
with classification and rule induction approaches, as well as in identifying flows highly
influential on the KPI from historic perspectives (which implies employing regression
settings). Both are important tasks. The first one explains an application situation, the
second one derives factors that can be taken into account for application optimization
planning. Moreover, highly important features and potential anomalies/outliers on them
in a specific situation can also indicate reasons for a KPI failure.
In the regression analysis, a target variable (KPI) was chosen to be

Node|PingLatency|Max of Max.

k Nearest Neighbor (kNN) regression (to model expected non-linearity in the dataset)
with parameter equal to 115 with cross-validation from the range k& = [5; 123] has yielded
Root Mean Square Error (RMSE) equal to 0.119.

Another KPI was the constructed general KPI

Node|Ping Latency|Avg of Avg

shown in Figure 2. The kNN parameter was 15 with cross-validation from the range
k = [5;123] and the algorithm has output RMSE equal to 0.062.
The third chosen KPI was

OverallThresholdChecking|MaxDuration,

which records the maximum duration for actions of those items that are used to process
incoming observation data (against baseline thresholds for time series metrics set by the
user or learned statistically). Here the number of neighbors was chosen to be 63 with
cross-validation from the range k = [5; 123] with RMSE equal to 0.027.

Table 1 summarizes top features subject to their relative importance values (“Coef”
columns in the table) obtained for the KNN method and the corresponding KPIs (with short
descriptors of those metrics as Max of Max, Avg of Avg, and MaxDuration, respectively).
In terms of RMSE, the models performed well.

To benefit from supervised learning methods, we self-labeled the data frame with
outlying behaviors of the KPI as positive class, using for that 97, 95, 93, 90—quantiles of
the metric in distinct experimental scenarios.

All above mentioned KPIs were considered to train different models (with several tra-
ditional classification algorithms) and compare their accuracies. However, the evaluation
results for all those KPIs and ML algorithms were not satisfactory. The models did not
have enough discrimination capacity to distinguish between positive and negative classes.
This was a consequence of noisy dataset and class imbalance for the target variable.
90-quantile cut-off produced better results, so we considered this quantile for further
improvement of the models.

We present a possible resolution to the problem of noise in the dataset below and the
results obtained after improvements.

3.1 Neural Networks

Compared to traditional classification algorithms, Multi-Layer Perceptron (MLP) demon-
strates a completely different predictive power on our data set. In particular, with 97-
quantile cut-off for Node|PingLatency|Avg of Avg, MLP produces 96%-accuracy with
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Precision=95% and Recall=0.96% in the binary classification between normal and abnor-
mal states of the KPI. However, because of the interpretability issue of neural networks,
we have to proceed with finding ways to improve our initial results on explainable models
compromising the predictive power.

Max of Max Avg of Avg MaxDuration
Feature Coef |Feature Coef |Feature Coef
OverallThreshold OverallThreshold
Node|CPUUsage| 100 Check|AvgDuration 100 Check|AvgDuration 100
CassandraDB| Task|GetCommands
Node|CPU!|User |97.53 LocalReadCount 99.02 \ElapsedTimeSum 99.06
Disk DAO|GetResource
CPU|Usage 97.46| . . 98.88 | Metadatal 98
FileSystem|writes .
AvgDuration
Network| Transmit OverallThreshold
Node|CPU2|User |97.28 Butes 98.34 | Checking|Check 96
4 Health|AvgDuration
CPUI7\User  |95.81| Mem|ActualFree  |98.30| Fe0treRequest] —1gc 1)
MaxDuration
Node|CPUI | Node|Memory| Task|GetCommands
Combined 95.28 ActualUsed 98.30 |MaxElapsedTime 93.58
Call|Update
Node|CPU2|Idle |95.26 |Node|Disk|DBReads |97.97| ResourceRegion| 82.21
AvgDuration

Table 1: Important Variables for KPIs: Node|PingLatency|Max of Max,
Node|PingLatency|Avg of Avg, and OverallThresholdChecking|MaxDuration.

3.2 Reduction of Noise

Class imbalance was a serious problem in the dataset. The considered target KPIs had
only 510 positively labeled observations out of 5100 total number of observations. In
attempts to achieve better performance, we experimented with several techniques such
as undersampling the negative class by different ratios and performing feature selection
by various approaches.

Undersampling techniques (removing of the instances in the majority class) has been
applied by experimenting with two cases: 50%-positive-vs-50%-negative labels and
35%-positive-vs-65%-negative labels. AUC, Precision and Recall are improving in both
cases for all KPIs and algorithms.

Although the results got better from undersampling, they still did not meet our
expectations for reasonable analysis using classification models. To improve the results,
we have applied several feature ranking/selection methods such as

— Gini Index (it quantifies how often a randomly chosen feature would be incorrectly
classified if it were randomly assigned to a data point based on the distribution of
the target variable);
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— Information Gain (an entropy-based measure evaluating the ability of a feature to
discriminate between different classes);

— ReliefF [Konotenko 1994] (it assesses the importance of features based on their

ability to distinguish between neighboring instances with the same or different class
labels);

— FCBF (Fast Correlation-based Filter) [Yu and Liu 2003]. This technique applies the
idea of “predominant correlation”. It gives a classifier-independent feature scoring
mechanism by selecting features with high correlation with the target variable,
but low correlation with other variables. For the correlation, it uses “symmetrical
uncertainty” based on information theory and the concepts of entropy and information
gain.

After numerous experiments, the results on FCBF ranked dataset outperformed the
other models. FCBF ranking was applied after undersampling the negative class in the
preceding experiments. When regression task is applied on the datasets with only FCBF
non-zero best ranked features, RMSE metric does not substantially decrease, which
indicates that both models have high accuracy.

3.3 Results with Undersampling and Feature Ranking

Several classification algorithms such as Decision Tree, CN2 rule induction, Logistic
regression, and Naive Bayes were applied to our data set. Previous experiments showed
that applying only one method of noise reduction is not enough on this dataset. Thereupon,
both undersampling and FCBF ranking (which results in only from 24 to 30 features with
non-zero score) were employed to get more predictive models with accurate findings. The
dataset with 35% and 65% split (see Table 2 and 3 for two KPIs) performed substantially
better, than 50%-vs-50% in terms of evaluation metrics for OverallThresholdCheck-
ing|MaxDuration, so this dataset will be used for further analysis.

Model AUC | Precision | Recall
Tree 0.808 | 0.808 0.806
Naive Bayes 0.838 | 0.801 0.885
Logistic Regression | 0.880 | 0.806 0.869
CN2 rule inducer 0.826 | 0.783 0.622

Table 2: Results for 90-quantile positive labeling for
OverallThresholdChecking|MaxDuration. Undersampled 35%-vs-65%, FCBF ranked.

However, for Node|PingLatency|Avg of Avg there was no noticeable difference
between the evaluation metrics for the two datasets, therefore the 35%-vs-65% ratio
dataset was used for the experiment (Table 3). As we notice, 35%-vs-65% ratio for
positive and negative class labels, respectively, renders the best results. So, further
expansion of the positive class does not result in better performance of the models.
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Model AUC | Precision | Recall
Tree 0.684 | 0.667 0.635
Naive Bayes 0.834 | 0.765 0.767
Logistic Regression | 0.696 | 0.602 0.759
CN2 rule inducer 0.769 | 0.728 0.652

Table 3: Results for 90-quantile positive labeling for node|PingLatency|Avg of Avg.
Undersampled 35%-vs-65%, FCBF ranked.

3.4 Principal Component Analysis

Large datasets are often difficult to interpret. Principal component analysis (PCA) is a
technique for reducing the dimensionality of these datasets, increasing interpretability,
and simultaneously minimizing information loss [Jolliffe and Cadima 2016]. We have
taken the KPI OverallThresholdChecking|MaxDuration with 90-quantile, ran PCA with
number of components equal to 380 and got 95% explained variance. So, with only 380
features we can effectively find an optimal representation of the initial data set consisting
of 3000 metrics. When comparing results on raw dataset with that of post-PCA, there are
noticeable improvements observed. Undersampling the dataset obtained after applying
PCA with 35% and 65% ratio and comparing results with the original dataset presented
in Table 3, we observed that even the orthogonal components do not appropriately handle
the noise. Therefore, there was no need to continue investigations with PCA on the initial
data set.

4 Evaluation of Trained Models

To rigorously investigate the issues at KPIs
OverallThresholdChecking|MaxDuration
and
Node|PingLatency|Avg of Avg,

the concepts of variable importance, decision trees, and rule induction are applied. The
derived candidate root cause features are compared among the models, intersections are
observed, and a list of possible root cause metrics are presented for each KPI. In case
of rule induction, when the conditions of the rule are met, i.e., when the features are
constrained by the given values, the KPI degrades. So, for a KPI failure instance, the
implementation needs to check which of rules are currently satisfied to recommend those
for taking actions on.

4.1 Explaining Threshold Checking Duration

The rules corresponding to the positive class with highest Laplace quality obtained by
CN2 rule induction are listed in Table 4.

Some rules have common features emphasizing the importance of the variable and
its impact on the KPI. The distribution shows the number of observations that comply
with the rules with target value equal to 1.
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Rule Quality | Distr
IF ResourceSymptomRegionUpdate|AvgDuration > 3.234 ms
AND SystemAttributes|Health > 91% 0.938 |14

THEN OverallThresholdChecking| MaxDuration = 1

IF GetUpshards|\MaxDuration > 27 ms

AND ResourceSymptomRegionUpdate|AvgDuration > 1.4 ms
AND SystemAttributes|Health < 78%

AND CassandraDB|UsedLiveDiskspace < 892119 bytes
AND SystemAttributes|Health > 69%

THEN OverallThresholdChecking|MaxDuration = 1

IF DAO|GetResourceMetadata|AvgDuration > 1 ms

AND GetUpshards|MaxDuration > 15 ms 0.933 |13
THEN OverallThresholdChecking|MaxDuration = 1

IF ResourceSymptomRegionUpdate|AvgDuration > 1.7 ms
AND CapacityReclamationSettings|MaxDuration < 9 ms
AND CapacityReclamationSettings|MaxDuration < 16 ms 0.929 |12
AND ControllerDB|CPUSystem > 0.884 KB

THEN OverallThresholdChecking| MaxDuration = 1

IF CassandraDB|UsedLiveDiskspace > 984121 bytes

AND ResourceSymptomRegionUpdate|AvgDuration < 0.776 ms
AND SystemAttributes|Health > 75% 0917 |10
AND ResourceSymptomRegionUpdate|AvgDuration > 0.721 ms
THEN OverallThresholdChecking| MaxDuration = 1

IF CassandraDB|UsedLiveDiskspace > 984121 bytes

AND CapacityReclamationSettings|MaxDuration > 23 ms 0.875 |6
THEN OverallThresholdChecking|MaxDuration = 1

0.933 |13

Table 4: Results for OverallThresholdChecking|MaxDuration.

Overall, the obtained rules and the metrics participating have logical interpretation.
The observations show that even in case when the system is healthy, but the average
duration of resource symptom region update (a product-specific flow related to evaluating
symptoms or unhealthy microstates/fragments at objects under monitoring) has high rate,
the abnormality is inevitable. Another interesting rule stresses the importance of the

CassandraDB|UsedLiveDiskspace

threshold even when the duration is tolerable.
The decision tree for this KPI is presented in Figure 3.
If the metric

GetUpshards|MaxDuration

is greater than 14ms, then 135 out of 168 positively labeled KPI observations can be
identified. The features that show duration are also beneficial for root cause analysis, as
they reference exactly where the noticeable amount of time was wasted which resulted
in the degradation of the KPI.

Another pattern, the metric
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ResourceSymptomRegionUpdate| AvgDuraton

found on a branch of the decision tree may indicate that considerable amount of time was
wasted on resource’s symptom update, which may indicate that the number of symptoms
is higher than usual.

The important variables found by Logistic regression and Naive Bayes for this KPI
are presented in Table 5.

Besides last two features, the rest were present both in decision tree and CN2 rules,
which implies that all four models have outputted the same important variables.

As of kNN regression, the list of important variables obtained from running the
model on the raw data has only two matching metrics with this list. When running kNN
regression algorithm on the dataset consisting of best ranked features, the number of
matching metrics with high coefficients increases.

35.0%, 511/1458

Ul | System Attributes | Health

14.7%, 138/939

NodelSystem AttributesIHealth

< 84% T > 84%

32.5% 89/274 7.4%, 48/665

< > 14 ms

CassandraDBIUsed Live Diskspace! Resource Symtpom Region
Update | AvgDuration
[

Figure 3: Decision Tree for OverallThresholdChecking|MaxDuration.

CassandraDB|LiveDiskSpaceUsed
Get Upshards|MaxDuration
ResourceSymptomRegionUpdate|AvgDuration
ControllerSQL | CPUSystem
CapacityReclamationSettings | MaxDuration
GemfireClientCalls|LicensingService | ResponsesCount
ReclaimableVmslInfo|Count

Table 5: Important Variable for OverallThresholdChecking|MaxDuration by Logistic
regression and Naive Bayes.
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4.2 Explaining Node Latency

The rules corresponding to the positive class with highest Laplace quality obtained by
CN2 rule induction are listed in Table 6.

It is interesting to notice that the first two rules have more than 30 examples supporting
them. Besides high Laplace quality, this is a good measure to validate the accuracy of
the results.

From the table it is clear that besides the features showing duration and elapsed time,
other system metrics also have their effect on the KPI’s behavior.

Metrics such as

Network|TransmitBytes
and
APIService|CurrentHeapSize

influence the KPI, as the former is the number of transmit bytes over the network, which
naturally affects the latency between the nodes and the latter is the current heap size for
API calls. This, interestingly enough, can impact on the latency between the nodes.

Rule Quality|Distr
IF Task|GetTokens|MinimumElapsedTime > 5 ms

AND Call|GetSetting|AvgDuration > 3.2 ms

AND Service|Total number of open file descriptors > 463

AND Network|TransmitBytes > 61043428

AND API|CurrentHeapSize > 201MB

THEN Node|PingLatency|Avg of Avg = 1

IF API|CurrentHeapSize > 409MB

AND OverallThresholdChecking| MaxDuration > 855 ms

AND Network| TransmitBytes < 115890416

AND NewResourcesCount > 31

AND Network|TransmitBytes > 71863520

THEN Node|PingLatency|Avg of Avg = 1

IF CassandraDB|LocalReadCountDelta > 1803

THEN Node|PingLatency|Avg of Avg = 1

IF APICall|GetResourceRelationship|MinResponseTime > 73 ms
AND APICall|GetResourceRelationship|MinResponseTime < 84 ms
AND API|CurrentHeapSize > 378MB

THEN Node|PingLatency|Avg of Avg = 1

IF OverallThresholdChecking|MaxDuration > 763 ms

AND Call|GetSetting|AvgDuration > 13.8 ms 0.929 |12
THEN Node|PingLatency|Avg of Avg = 1

0971 |32

0.947 |35

0917 |10

0.938 |14

Table 6: Rules for Node|pingLatency|Avg of Avg.

The decision tree for this KPI is presented in Figure 4.
The previous KPI
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OverallThresholdChecking|MaxDuration

has a significant effect on the current KPI. If the max duration is greater than 755
milliseconds, with 75.4% probability the KPI is anomalous. Moreover, if the count
of new resources (objects in the infrastructure) is higher than the number indicated in
the tree, 393 out of 503 observations of KPI with positive label are identified. In the
case, when the previous KPI is less than or equal to 755 milliseconds, the probability of
abnormal behavior of this KPI is relatively small. Metrics like

CassandraDB|LocalReadCountDelta,
Network| TransmitBytes

have logical impact on the KPI whose abnormal behavior is directly affected by them. If
the read count is large enough and the transmitted bytes between network exceed the
threshold then our KPI has surely abnormal rate.

50.0%, 510/1020

OverallThresholdChecking |
| MaxDuration

<755 ms _/ \ >755 ms

22.8%, 112/492

NewResourcesCount

T > 198 <60122308

60122308

27.3%, 112/411 0.0%, 0/81 O 20.0%, 5/25
CassandraDB | ServicelTotal Number of
LocalReadCountDelta open file descriptors

[ ] [ ]

Figure 4: Decision Tree for Node|PingLatency|Avg of Avg.

The important variables found by the Logistic regression and Naive Bayes models
for
Node|PingLatency|Avg of Avg

are presented in Table 7.

5 Initial Validation of Results

We have approached the problem of RCA from two perspectives. First, by using regres-
sion models we have analyzed the data to get long-term/history-based possible root cause
metrics. The space is being narrowed down to some important variables, which impact
the KPI’s abnormal behavior the most. The kNN regression model applied both on raw
and ranked data show that these metrics affect the

OverallThresholdChecking|MaxDuration
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degradation the most:

ResourceSymptomRegionupdate|AvgDuration,
CassandraDB|UsedLiveDiskspace,
ControllerDB|CPUsystem,
GemfireClientCalls|LicensingService| RequestsCount.

When applying classification models such as rule induction and decision tree algo-
rithms, incident-based approach is considered. The rules which violation causes KPI
degradation are being discovered. So, in case of KPI misbehavior, the implementation
can analyze the extracted rules and the metrics that compose those conditions, recognize
if the conditions are met and localize the causes with regards to few metrics. The list
of potential sources obtained by applying classification models are presented in Table
8. Getting metrics indicating durations of specific actions may seem straightforward,
however, this shows exactly what actions consumed most of the time. In addition, getting
specific bounds on these metrics show the thresholds which when violated will cause
KPI misbehavior. Moreover, it turns out that the proportion of database’s used disk space
and CPU can negatively affect the amount of time consumed by the system to analyze
new observations. All the results are logical and relevant, which are good measures for
evaluating root causes.

CassandraDB | LocalReadCountDelta
OverallThresholdChecking | MaxDuration
Network | TransmitBytes
NewResourcesCount
API Service | CurrentHeapSize
Task | GetTaskStatuses | ResponsesRecieved
Task | GetTokens | MinimumElapsedTime
Task | ResourceRegistration | MaxElapsedTime
Call | GetSetting | AvgDuration
Service | Total number of open file descriptors

Table 7: Important Variables for Node|pingLatency|Avg of Avg by Logistic regression
and Naive Bayes.

The kNN regression model applied both on raw and ranked data output the following
list of important variables affecting the
Node|PingLatency|Avg of Avg
the most:

OverallThresholdChecking|AvgDuration,
Network| TransmitBytes,
FeatureRequest|MaxDuration,
API|CurrentHeapSize.

The list of potential root cause metrics for this KPI obtained from classification
models are shown in Table 8.
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For this KPI as well, the specific duration metrics are beneficial for troubleshooting
the misbehavior of the KPI. An interesting result is the metric

NewResourcesCount

which shows that the count of new resources discovered by the application causes latency
increase among the nodes. When particular thresholds for

APIService|CurrentHeapSize
and
CassandraDB|LocalReadCountDelta

are exceeded the misbehavior of the KPI is unavoidable.
The lists mentioned above are the potential sources for the KPIs degradation need to
be checked first when that event occurs.

OverallThresholdChecking| Node|PingLatency|Avg of Avg

MaxDuration
Cap acztyR?clamatlonSettlngs| CassandraDB|LocalReadCountDelta
MaxDuration
CassandraDB|LiveDiskSpaceUsed OverallTh}jesholdCheckmg|
MaxDuration
Get Upshards|MaxDuration Network|TransmitBytes
ResourceSymptomRegzon Update| NewResourcesCount
AvgDuration
Task|GetTokens|Minimum
ControllerDB|CPUSystem ElapsedTime

Call|GetSetting|AvgDuration
Service|Total number of open
file descriptors

Table 8: Metric summary for two KPlIs (classification scenario).

5.1 Insights Learned

Based on thorough analysis of experimental observations, we get initial insights on the
utility of the proposed approach:

— The techniques described in this paper can be used for finding root causes of any
KPI degradation if the labeling of data is available or performed in a self-supervised
way appropriately.

— The findings discussed above demonstrate that with a relevant dataset of self-metrics
from the product deployments at customers, enough powerful models can be trained
to predict and explain application/product misbehaviors.
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— Tracking the complex conditions constituting the rules we can proactively measure
the risk of application failures at the customer’s side or in a SaaS delivery of those
services. It means that the risk score of the KPI deterioration will increase along
with the occurrence of conditions in the rules.

— The methods while productized into cloud management solutions (including their self-
healing intelligence engines) can enhance application-aware depth and autonomous
capabilities of those data-agnostic services with interpretable recommendations for
human administrators.

5.2 Feedback from Product Experts

For rigorous validation of obtained models and rules, as well as importance features,
extended studies/surveys on performance troubleshooting of the considered application
for a long-term period are required. Such a study should rely on multiple models trained
for specific KPI at various environments and quantifying relevant quality measures
of recommendations, such as indicative relevance of rules, real importance of derived
features in problem resolution, in general, a mean-time-to-repair rate (MTTR). However,
setting up this test bed with its comprehensive evaluation over time remains another
challenge which might be overcome with a pilot productization of the methods for a set
of customers.

In our initial validation of the methodology, we adopted a different approach. The
current findings were presented to a small group of experts experienced in troubleshooting
this cloud application. The feedback was positive as most of the metrics found were
also observed by experts as potential root causes of the given KPI’s degradation in
customer environments. Some of the metrics found by our analysis were not considered
as root causes of the given KPI’s anomalous behavior before, however, according to
experts there is a logical connection between them, and those metrics should be further
evaluated in multiple environments. The extracted rules were of interest to product
experts, as they interpreted some of them and confirmed the correctness. Then the goal
was to get from the evaluators an overall usefulness rate of discovered patterns. Such a
score might attribute a high confidence to our analysis, as the jury consisted of the most
experienced product developers and support engineers. This survey demonstrated an
approximately 90% utility degree of recommendations presented to them (we need to
take into account also that the approximation of real performance issues with generating
labels from outlying KPI behaviors might be only close representation of those problems
(ground truth)), while 10% remaining patterns were noted with marks on “uncertainty”
or “lack of specific knowledge” to be able to verify those recommendations. However,
that fraction of patterns was accepted with “surprisingly interesting” mark for further
attention in their daily troubleshooting workarounds.

6 Conclusion and Future Work

We demonstrated ways to generate labeled data sets for training interpretable ML models
that reveal rules and factors leading to unwanted states of KPIs of cloud applications.
The goal of our project is to conduct RCA of KPI degradations with pretrained models
while continuously updating it in a separate pipeline. Based on those models we can
build troubleshooting and proactive support features (actionable recommender systems)
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that automatically alert on potential conditions/rules occurring in the application as an
explanation of the KPI misbehavior.

In the modeled use case of application self-diagnostics, those conditions learned from
the product usage and self-performance data can be shipped as Al-visible and customer-
specific “rules” extracted based on granular time series data. Importance scoring of
features is an alternative way to explain long-term behavior of the application and use it
for performance optimization as well as situation-based troubleshooting purposes. We
also discussed challenges with data labeling using a KPI as a source and techniques to
overcome potential noise for training enough accurate ML models. Those models and
research results were validated with product experts.

It is worth noting that in our current study we did not focus on the identification of the
best/performant classification algorithm or model selection criteria as a primary objective,
because of lack of human verified data sets and labeled data on KPI deviations, and, hence,
unavailability of benchmarking opportunity. Instead, we discussed the KPI-diagnosis
problem from different angles. On the other side, from productization/implementation
perspectives, it is more viable and effective that the automated RCA recommender acts
on high quality rules obtained using efficient induction algorithms handling noise, such as
RIPPER [Cohen 1995]. This is a specific task in our future work plan. In terms of building
more reliable RCA recommender systems, such an agenda includes working with other
advanced algorithms (XGBoost [Chen and Guestrin 2016]) as well for higher accuracy
tree boosting and domain-agnostic explainability frameworks (such as LIME [Ribeira et
al 2016]) for local explainability upon availability of human inputs on incident instances
on KPIs. Data imbalance might remain an issue in many application scenarios, therefore,
alternative ways to overcome this problem need to be considered, e.g. oversampling
framework SMOTE [Chawla et al 2011].

We also plan to validate our results further in multiple environments. In addition, it
would be interesting to tackle the case when several KPIs need to be explained in various
combinations in their behavior. Therefore, multi-labeling and relevant methods/algo-
rithms might be appropriate to research on.

At this stage of our research, highly positive corporate reviews of our approaches
(subject to a patented analytics) and models pave the path to productizations in VMware
observability platforms ([VMware Aria 2022], [VMware Aria Logs 2023], [VMware
Aria Nets 2023], [VMware Tanzu 2022].

Explainable Al is the next phase for many technologies to modernize their solutions
for tomorrow’s market requirements. We discussed such a challenge in realizing an
effective management of large-scale cloud infrastructures and applications in terms
of performance diagnosis. Automated RCA is a highly demanded solution in various
closely related domains, such as cellular networks [Mdini 2019] and cloud databases
[Ma et al 2020] where special and domain-specific modeling are adopted, which are not
easily achievable in case of cloud infrastructures, thus leading the research towards more
generic and self-supervised approaches.
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