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Abstract: Protozoan parasites cause a wide range of devastating diseases in various kinds of 
organisms, including humans. It may be lethal if untreated promptly. To detect specific disease-
causing parasites, a wide range of immunological and molecular technologies are now widely 
available. However, all of this depends on the worker's expertise and are time-consuming, error-
prone, and expensive. With the development of technology, compared to traditional biological 
techniques, convolutional neural networks have reached excellent achievements in image 
classification, cutting costs while attaining an overall higher accuracy and eliminating human 
error. Many models include numerous convolutional layers and offer an accuracy between 90 
and 95 percent. In this study, 4740 microscopic images of protozoan parasites from six classes 
with a balanced dataset and an 80–20% split were classified using three convolutional layers with 
stochastic gradient descent as an optimizer. A 5-fold cross-validation approach is used to evaluate 
the proposed method. We also examine and evaluate with deep learning models namely VGG16, 
ResNet50, and InceptionV3. The performance evaluation of the proposed model shows an 
accuracy of 94% with a precision range (of 0.83-0.99) and a recall range (of 0.76-1.00), 
respectively. The retrained model was able to recognize and classify all 6 different parasites. 
Except for class Leishmania, where 24% of images are incorrectly classified as Plasmodium and 
Trichomonas, the model demonstrates that most cases are correctly identified.  
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1 Introduction  
Microorganisms are omnipresent in the environment, and they play a pivotal role in 
various natural processes while also causing several infectious diseases in all living 
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things worldwide. Certain protozoan parasites severely infect humans, aquatic animals, 
as well as wild and domestic animals, and generate broad clinical manifestations. 
Moreover, they can be found in almost every possible habitat. Incredibly, according to 
earlier reports, Malaria is caused by Plasmodium, similarly, Babesiosis (Babesia), 
sleeping sickness (Trypanosoma), Leishmaniasis (Leishmania), Toxoplasmosis 
(Toxoplasma) and Trichomoniasis (Trichomonas) causes severe infection in all living 
organisms [Akoolo et al., 2022]. According to the World Health Organization (WHO), 
the disease brought on by these parasites results in more than 20,000 deaths annually 
[Andrews et al., 2014, World Malaria Report 2019, Zhang et al., 2022]. Protozoan 
parasite identification requires various techniques because of the variations and 
uncertainties in the shape, density, and staining color of the parasites, the pathogenicity 
of particular species, and regional ranges. Therefore, a lack of precise identifications 
has restricted the knowledge of host-parasite specificity and susceptibility. The 
traditional methods of classifying and identifying microorganisms often rely on various 
laboratory techniques, including microscopic examination of blood or tissue samples, 
biochemical techniques like serological testing, and molecular techniques like 
polymerase chain reaction [Walochnik and Aspock 2012, Ajay et al., 2018]. 
Microorganism identification is a helpful diagnostic procedure for infected patients and 
animals. However, these traditional procedures are time-consuming, laborious, and 
error-prone and require a call for laboratory personnel's expertise and working 
experience. Therefore, an autonomous approach to parasite recognition is necessary to 
shorten the analysis process and improve diagnostic procedure accuracy. Image 
processing of largely ignored parasites including Plasmodium, Babesia, Trypanosoma, 
and Leishmania derived from samples has recently gained increasing interest with the 
application of deep learning techniques. In all cases, deep learning shows better 
accuracy and is substantially better than alternative strategies that are based on 
conventional medical imaging procedures [Hu et al., 2022, Jameela et al., 2022]. 
Among these, convolutional neural networks (CNN) and their variants have lately 
emerged as one of the most effective methodologies of choice for biomedical image 
analysis, and have already achieved remarkable results in the classification of 
microscopic images [Zhang et al., 2022], and medical image analysis [Hang et al., 
2021], and other areas. 

2 Literature Review   
Previously published studies computerized the different image classifications. For 
example, LeNet CNN architecture was used to compare the quality of cell image data 
between a standard-resolution dataset and a high-resolution dataset using the 
microscopic image of three genera of bacteria and one yeast, achieving an accuracy of 
80% [Treebupachatsakul and Poomrittigul, 2020]. In a similar study, a deep CNN was 
used on microscopic images of 5 different bacteria species, and the accuracy was 95% 
[Wahid et al., 2018]. Another study used blood smear malaria test data to examine the 
computational and predictive performance of four candidate deep-learning models that 
can be used for quick malaria case identification. It is discovered that basic 
convolutional neural network (B-CNN) and MobileNetV2 outperform VGG-19 fine-
tuned and quantized models in terms of malaria detection performance, memory use, 
and inference time [Eze et al., 2021]. In another study, a fully connected CNN (U-Net) 
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was used to segment and classify different leishmania parasites, such as promastigotes, 
amastigotes, and adhered parasites [Górriz et al. 2018]. The Resnet18 model was 
trained using the pre-processed dataset, which mostly involved image cropping and the 
application of a thresholding method derived from microscope video of unstained thick 
blood smears from a mouse infected with Trypanosoma brucei [Jung et al., 2021]. In a 
different study, the cycle generative adversarial network (Cycle GAN) was used with 
the fuzzy C-means cluster algorithm to detect connections between microscopic and 
macroscopic related images of Toxoplasma gondii, and the accuracy for 400x and 
1000x was 93.1% and 94%. respectively [Li et al., 2020]. TVNet, was used to 
automatically segment  3,158 microscopic images of Trichomonas with various 
appearances in diverse backgrounds. Extensive experiments demonstrate that TVNet 
model achieves superior segmentation performance and outperforms various cutting-
edge object detection models both quantitatively and qualitatively [Li et al., 2022]. 

To the best of our knowledge, no studies have previously used deep learning to 
classify microscopic images of multi-class protozoan parasites. Using CNN with three 
convolutional layers, this study categorized 4740 microscopic images of six different 
protozoan parasites. The results demonstrate that the model can successfully identify 
multi-class protozoan parasites with an accuracy of 94%, and the results are consistent 
with earlier studies. 

3 Material and Methods  
3.1  Data Source  
 
The microscopic images of various protozoan parasites (Figure 1)  that are available 
at https://data.mendeley.com/datasets/38jtn4nzs6/3 have been retrieved via the 
publicly accessible Mendeley data repository [Li and Zhang, 2020]. The collection 
comprises 34,298 microscopic images of six groups of parasites and host cells, the 
count of microscopic images of the six types of parasites, and the number of images 
that were used in this study are shown in Table 1.  
 
 

 
 

Figure 1: Microscopic images of various protozoan parasites Babesia, Leishmania, 
Plasmodium, Toxoplasma, Trichomonas, and Trypanosoma 

 
 
 
 
 

https://data.mendeley.com/datasets/38jtn4nzs6/3
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Multiple parasites (6 classes) Number of images Number of images 

used in this study  
Plasmodium_843 843 790 
Babesia _1173 1173 790 
Trypanosoma _2385 2385 790 
Leishmania_2701 2701 790 
Toxoplasma (1000x) _2933 2933 790 
Trichomonas (1000x) _10134 10134 790 

 
Table 1: The characteristics of the dataset used in this study 

 
3.2  Train and Test Datasets  
 
Table 1 (the class imbalance dataset) displays the unequal distribution of the number of 
microscopic images of various parasites across the six classes (number of images). Due 
to class imbalance, the conventional classifier favors the majority class or the class with 
the most instances. Thus a datasets with class imbalance need special attention [Sun et 
al., 2009]. The performance of the classifier can be improved by an ensemble of 
classifiers. However, ensembles are static and cannot be applied to imbalanced datasets 
[Cruz et al., 2018]. Additionally, based on experimental findings, it is known that the 
balanced dataset performs better than the imbalanced dataset [Potharajua et al., 2018]. 
Given the aforementioned words, the balanced multi-class classification dataset (790 
images per class, Table 1) has been manually chosen and no data pre-processing applied 
to the images. As a result, out of 4740 microscopic images of various parasites from six 
classes used in this study, 3792 images were used as the training dataset (632 images 
for each class), and 948 images were used as the test dataset (158 images for each class), 
making up the split of 80–20% multi-class dataset (Figure 2). 
 

 
 

Figure 2: Dataset percentage split of 80–20%. 4740 microscopic images of multiple 
parasites belonging to six classes were split into 3792 images (train dataset) and 948 

images (test dataset) 
 

3.3  Proposed Convolutional Neural Network (CNN) Architecture  
   
In this study, a Keras API (version 2.12.0), built on top of the TensorFlow platform 
(version 2.12.0) and uses Python programming, is employed as an analytical tool for 
multi-class protozoan parasites classification. The simplified CNN used in this study 
has three convolutional layers, the first convolutional layer uses 32 filters, the second 
convolutional layer uses 64 filters, and the third convolutional layer uses 128 filters. 
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Additional parameters include the 3×3 kernel size, one-pixel stride, HeUniform kernel 
initializer, the same padding, and the  Rectified Linear Unit (ReLU) activation function. 
Following convolutional layers, there is a default max-pooling layer (i.e., 2x2 pool 
size), a flattened layer, a fully connected dense layer (128 units, ReLU), and an output 
layer (6 units, softmax activation). The simplified CNN model is shown in Figure 3. 
The model is compiled with stochastic gradient descent optimization (SGD, learning 
rate=0.001, momentum=0.9), categorical cross entropy as loss function, categorical 
accuracy as metrics, 64 batch size, and 20 epochs. A total of 4740 images are used as 
input for CNN, which requires enormous processing power to analyze images. So, to 
train our model quickly and effectively in the cloud, we use the Google Colab with 
NVIDIA Tesla T4 with 12GB of GPU memory and 78GB of disk space. This platform 
provides us with a high-end CPU and GPU built with all the necessary packages for the 
training process [Bisong, 2019].  The comparison of the proposed model has been 
performed with the pre-trained models which include VGG16, ResNet50, and 
InceptionV3 (include_top =False, weights= imagenet). All of the models were trained 
and tested on the same dataset with an 80-20% split. A standard evaluation method, 5-
fold cross-validation approach is used to assess the robustness of our proposed model.   
 
 

 
 

Figure 3: The proposed three convolutional layers of the CNN model 
 
3.4  Experimental Setup 

 
Our model is evaluated using a train and test methodology. The previously mentioned 
4740 microscopic images were divided into two subsets, with 80% (3792 images) used 
to train the classification network and 20% (948 images) used to test the model's overall 
performance. The performance of test data for the proposed model is assessed using the 
following metrics: accuracy, loss, confusion matrix, and classification report (precision, 
recall, F1 score), and accuracy and classification report are used for pre-trained models. 
  
Accuracy: It is defined as the ratio of the sum of true positive (TP) and true negative 
(TP) values to the sum of TP, TN, FP, and FN values. The mathematical expression for 
accuracy is shown in equation (1) 
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Categorical cross-entropy loss: It measures the difference between the predicted 
probability distribution and the actual probability distribution. The mathematical 
expression for the cross-entropy loss function is shown in equation (2) [Yathish, 2022]. 

    (2) 
 

Precision: It can be also called positive predictive value. It is defined as the ratio of the 
correctly predicted positive observations (TP)  of the total predicted positive 
observations (TP, FP). The mathematical expression for precision is shown in equation 
(3) 
 

 
 

Recall: It can be also called sensitivity or true positive rate (TPR). It is the ratio of 
correctly predicted positive observations to all observations in an actual class. The 
mathematical expression for the recall is shown in equation (4) 
 

 
F1 score: It is the weighted average of precision and recall. Thus it takes both false 
positives and false negatives into account. The mathematical expression for F1score is 
shown in equation (5) 
 

 

4 Results 
4.1  Evaluation of the Model Performance 
 
We plotted the loss and accuracy curve of the train and test datasets after 20 epochs to 
determine the performance of the CNN model, and the testing accuracy is 94.20%. The 
loss and accuracy curves for the train and test datasets are both relatively smooth, with 
just minor variations. Furthermore, the train and test loss is continuously decreasing to 
a value close to 0.25, indicating that the model fits the problem well (Figure 4). The 
performance evaluation in all five folds shows a range of accuracy (95.60%-97.59%), 
precision range (of 0.91-1), recall range (of 0.89-1), and F1-score range (of 0.92-1) 
respectively (Table 2). 
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 Number of folds 
 1 2 3 4 5 
Accuracy (%) 97.59 95.88 95.60 97.16 97.16 
Precision  0.93-1 0.93-98 0.91-0.99 0.92-1 0.94-1 
Recall 0.94-1 0.89-99 0.91-1 0.95-1 0.96-0.98 
F1-score 0.95-1 0.92-99 0.94-1 0.95-1 0.95-0.99 

 
Table 2: Detail analysis of five-fold cross-validation   

 
 

 
 

Figure 4: Train loss and accuracy versus test loss and accuracy 
 

4.2 Performance Evaluation using Test Data 
 
Out of 948 test data results, 893 images, or more than 120 images for each class (Figure 
5A), were accurately predicted across all six classes, with an accuracy rate of more than 
94% (Figure 5B) except for class Leishmania (76%). Leishmania had the highest 
misclassification rate of all the six classes, with 38 images (out of 158 images, 24%) 
mistakenly identified as Plasmodium and Trichomonas (Figure 5A) with an accuracy 
of 16% and 7.6% respectively (Figure 5B).  
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Figure 5: The confusion matrix on the multi-class test data displays the number and 
proportion of correctly and incorrectly predicted values. A) confusion matrix without 

normalization, B) confusion matrix with normalization 
 

Figure 6A shows the correct identification of all classes with an accuracy of above 95%, 
whereas Figure 6B shows the incorrect identification of five classes. The sample image 
of Babesia is displayed as Toxoplasma, with an accuracy possibility of 84.98%. The 
sample images of Leishmania are displayed as Plasmodium (90%) and Trichomonas 
(72%), respectively. The sample image of Toxoplasma is displayed as Babesia (92%), 
Leishmania (53%), and Trypanosoma (97%), respectively. The sample image of 
Trichomonas is displayed as Leishmania (51%) and Plasmodium (91%) respectively 
and finally, the sample image of Trypanosoma is displayed as Leishmania with an 
accuracy possibility of 69%. The proposed model classification report for each class in 
the test dataset is provided in Table 3, and the comparison to pre-trained models is 
shown in Table 4. Additionally, despite the high accuracy of two models, ResNet50 
(97.26%) and InceptionV3 (99.05%), it is observed that the train and test loss (results 
not provided) do not consistently decrease as shown in Figure 4. This suggests that the 
models (ResNet50, InceptionV3) did not adequately fit the data. 
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Figure 6: Some outcomes of correctly and incorrectly identified test data images from 
six classes. A) correctly identified test data images, B) incorrectly identified test data 

images 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Precision, recall, and F1 score values for six classes 
 
 

Model  Accuracy (%) Precision  Recall 
 

F1-score 
 

Proposed CNN 94 0.83-0.99 0.76-1 0.85-0.99 
VGG16  92.51 0.83-0.98 0.66-1 0.78-0.98 
ResNet50  97.26 0.91-1 0.91-1 0.95-0.98 
InceptionV3 99.05 0.98-1 0.98-1 0.98-1 

 
Table 4: Results obtained for all models  

 

 Precision Recall F1-score Support 
Babesia 0.99 0.99 0.99 158 
Leishmania 0.95 0.76 0.85 158 
Plasmodium 0.83 1 0.91 158 
Toxoplasma 0.99 0.97 0.98 158 
Trichomonas 0.93 0.94 0.93 158 
Trypanosoma 0.99 0.98 0.98 158 
Accuracy - - 0.94 948 
Macro avg 0.95 0.94 0.94 948 
Weighted avg 0.95 0.94 0.94 948 
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5 Discussion  
This study used three convolutional layers of a CNN with SGD optimizer to achieve 
the multi-class classification of six protozoan parasites. The model's performance 
evaluation reveals good accuracy and no overfitting behavior in the plot (Figure 4), 
showing that the model was effectively trained concerning both datasets. This model 
enables the accurate identification of most cases with an accuracy of 94% for 20 epochs, 
a precision range of 0.83-0.99, and a recall range of 0.76-1.00. The robustness of the 
proposed model showed an accuracy range of 95.60%-97.59%, a precision range of 
0.93-1.00, and a recall range of 0.89-1.00 for all five folds. The model's performance 
evaluation with three layers of CNN used in this study can be comparable to earlier 
studies. The comparable study with a similar dataset (i.e., protozoan parasites) has been 
performed with Xception architecture using different optimizers, the results are as 
follows Adam optimizer (accuracy: 97%, precision range 0.93-1, recall range 0.92-
0.99) and SGD optimizer (accuracy: 89%, precision range 0.87-0.93, recall range 0.72-
0.98) respectively [Al Maki et al., 2023]. The detection of Plasmodium parasites with 
three convolutional layers using preprocessing steps such as sheer range, zoom range, 
and horizontal flip with 8000 train images and 2000 test images achieved an accuracy 
of 95% [Shah et al., 2020]. In contrast to the other studies (Table 6) that used 
DenseNet121 to study Babesia-Infected erythrocytes shows a precision and recall of 
0.92 and 1.00 with an accuracy of 99% [Durant et al., 2022], our study revealed a 
precision and recall of 0.99 and 0.99.  

In an experimental murine model, a U-Net CNN architecture was implemented and 
trained on T.cruzi amastigotes on histopathological images obtained from an 
endomyocardial biopsy showed an accuracy of 99.19% [Sanchez-Patio et al., 2021]. 
Similarly, in another study, MobileNet V2 convolutional layers were used to detect T. 
cruzi from acute-phase peripheral blood samples with image tiles. On a balanced 
validation subset, the image tiles from a 12-slide dataset displayed an accuracy of 
96.4%. The test accuracy was found to be 72% from 13 blood smear slides, the test 
accuracy increased to 95.4% when the dataset was expanded [Pereira et al., 2022]. In a 
different study, on a dataset of 160 eye fundus images, three deep-learning models with 
data augmentation by random flips and crops were applied. The following DL model’s 
accuracy is as follows VGG16 (96.8%), Resnet18 (93.75%), and Vanilla CNN (75%)  
[Parra et al., 2021]. Trichomonas vaginalis was identified using two CNN with 
encoder-decoder architecture, and the accuracy was 72.09% [Wang et al., 2021]. In this 
study, despite having an overall accuracy of 94% compared to other classes, 
Leishmania has the highest percentage of incorrectly identified classes (Plasmodium 
and Trichomonas), indicating that the features of this particular sample have not been 
well learned by the model and may be referred to as adversarial or conjecture examples. 
This dataset might benefit from adding more convolutional layers or data augmentation 
parameters.  
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Datasets Accuracy 
(%) 

Model References 

Plasmodium 95 CNN  Shah et al., 2020 
Babesia-Infected 
erythrocytes 

99 DenseNet121 Durant et al., 2022 

T.cruzi amastigotes 
T.cruzi from blood 
smears 

99.19 
95.4 

U-Net CNN 
MobileNet 
V2 

Sanchez-Patio et al., 
2021 
Pereira et al., 2022 

Toxoplasma gondii 96.8 VGG16 Parra et al., 2021 
Trichomonas vaginalis 72.09 CNN Wang et al., 2021 
Human Protozoan 
Parasites 

97 Xception 
architecture 

Al Maki et al., 2023 

Six classes of 
protozoan parasites 

94 CNN  Proposed model 

 
Table 6: Performance comparison between deep learning models on protozoan 

parasites dataset in literature 

6 Conclusion  
Our work, presented in this study, demonstrates how effectively the CNN with three 
convolutional layers can be utilized to detect multi-class classification of the protozoan 
parasites. However, more work needs to be done to reduce the misclassification of the 
class Leishmania and to build a better deep learning model like a human expert would. 
In the future, the model will be improved, and it will be combined with a smartphone 
app to help with real-time parasite identification and categorization. 
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