

Hybrid Stochastic GA-Bayesian Search for Deep

Convolutional Neural Network Model Selection

Waseem Rawat

(Department of Electrical and Mining Engineering, University of South Africa

Florida 1709, South Africa

wrawat10@gmail.com)

Zenghui Wang

(Department of Electrical and Mining Engineering, University of South Africa

Florida 1709, South Africa

wangzengh@gmail.com)

Abstract: In recent years, deep convolutional neural networks (DCNNs) have delivered

notable successes in visual tasks, and in particular, image classification related applications.

However, they are sensitive to the selection of their architectural and learning hyperparameters,

which impose an exponentially large search space on modern DCNN models. Traditional

hyperparameter selection methods include manual model tuning, grid, or random search but

these require expert domain knowledge or are computationally burdensome. On the other hand,

Bayesian optimization and evolutionary inspired techniques have surfaced as viable alternatives

to the hyperparameter problem. In this work, an alternative automated system that combines the

advantages of evolutionary processes and state-of-the-art Bayesian optimization is proposed.

Specifically, the search space is first partitioned into separate discrete-architectural, and

continuous and categorical learning parameter subspaces, which are then efficiently traversed

by a stochastic genetic search applied to the former, combined with a genetic-Bayesian search

of the latter. Several sequential experiments on prominent image classification tasks reveal that

the proposed method results in overall classification accuracy improvements over several well-

established techniques, and significant computational costs reductions compared to brute force

computation.

Keywords: Convolutional neural networks, Genetic algorithms, Bayesian optimization, Hybrid

systems, image classification, model selection

Categories: 1.2.0, I.2.8, I.2.10, I.4.0

1 Introduction

Recent years have seen the rapid advancement of convolutional neural networks

(CNNs), fuelled by the application of GPUs for neural network computation, the

availability of large labelled datasets, and several algorithmic enhancements. This has

resulted in their application to various traditional and diverse computer vision tasks,

with ground-breaking success [Suong & Jangwoo 2018]. These accomplishments

have led researchers to progress several DCNN components, resulting in a plethora of

improvements to their architecture, pooling layers, activation functions, loss

functions, regularization techniques, optimization procedures, and computational

characteristics [Rawat & Wang 2017]. On the other hand, DCNN successes have

prompted others to scrutinize their internal mechanisms and gain a better

Journal of Universal Computer Science, vol. 25, no. 6 (2019), 647-666
submitted: 7/1/19, accepted: 20/5/19, appeared: 28/6/19  J.UCS

understanding of their operation and expressive ability, resulting in research into

several open issues. For example DCNNs are not invariant to large scale geometric

deformations [Gong et al. 2014], current models impose considerable storage and

memory constraints averting mobile deployment [Iandola et al. 2016], and describing

the semantic content of images is still a big challenge [Vinyals et al. 2015].

Furthermore, despite some progress [Mallat 2012], [Wiatowski & Bolcskei 2015],

[Bengio et al. 2017] theoretical motivations of why DCNNs are successful are largely

devoid.

Moreover, deep learning models require numerous architectural and

hyperparameter choices, such as the number and size of the convolutional and pooling

filters, the need to use or negate regularization techniques such as Dropout [Hinton et

al. 2012], and the important choice of which activation function to use. The learning

methods such as the optimization technique, and its associated learning rate, the

number of epochs and the size of each batch presented to the network, and the weight

initialization method to adopt, also need to be selected. When the learning method

choices are combined with the architectural choices, the number of possible models

grows exponentially with each additional parameter, making DCNNs computationally

expensive to use. The problem is exacerbated when the structure of the model is

considered (network depth, type of layers etc). The traditional methods for model

selection include the grid
1
 [Pedregosa et al. 2011] and random [Bergstra & Bengio

2012] search techniques, and manual tuning; however, all of these have their own

challenges. The manual model selection approach requires expert domain knowledge

or unsystematic rules of thumb [Dernoncourt & Lee 2016], the grid search technique

is computationally burdensome [Snoek et al. 2012], and whilst the random search

approach relaxes some of the computational load imposed by grid search, it is not

directed towards promoting high performing models.

On the other hand Bayesian optimization has emerged as an influential solution

for the automated selection of DNN models [Snoek et al. 2012], [Swersky et al.

2013], [Shahriari et al. 2016], and in particular, Bayesian optimization based on

Gaussian processes [Rasmussen & Williams 2006] is known to work well for

continuous variables [Loshchilov & Hutter 2016]. However, the search spaces, which

contain continuous variables, are naturally more complex, and have a higher

dimensionality in contrast to discrete spaces, thus making Bayesian optimization well

suited to traverse them. Despite this, Bayesian algorithms impose a significant

administrative overhead and require expert knowledge in order to obtain sensible

results [Dewancker et al. n.d], and furthermore, is inherently sequential in nature, thus

preventing superlative parallelization [Loshchilov & Hutter 2016]. Divergently,

Genetic Algorithms (GAs) can be parallelized if required, and have been shown to

perform better than grid search techniques for support vector machines [Martino et al.

2011], and neural networks [Ding et al. 2013], [Tao et al. 2007]. One of the main

advantages of using the GA is its generality, in other words it can be used for a

diverse range of applications due to its simplicity, and independence of the underlying

problem. More specifically, the GA operators are mostly independent of a given

problem, and thus only the codification of the population and fitness function for the

problem are required to use the technique [Orive et al. 2014].

1
 Grid search is sometimes referred to as brute-force computation

648 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

Thus, in this paper, we propose a hybrid method, which combines the generality

of GAs and the scalability of Bayesian optimization, and use the combined technique

to search for the optimal hyperparameters of DCNN’s, with the intention of

eliminating the need for a computationally costly grid search or the requirement for

domain specific expert model selection. The contributions of this paper are the

following:

• We separate the large search space of modern DCNNs into discrete

architectural, and categorical and continuous learning subspaces, with the

intention of applying different optimization techniques to search for their

optimal parameters.

• We present a biologically inspired stochastic genetic algorithm (GA) for the

model selection problem, and use it to efficiently search the architectural

space of DCNNs.

• We combine the architectural search with a state-of-the-art Bayesian

approach on top of the stochastic GA, and use the hybrid approach to

efficiently traverse the learning subspace.

The results demonstrate the computational superiority of the proposed method

over the grid search technique, and whilst it demonstrates characteristics of a random

search (Bergstra & Bengio, 2012), it has an additional advantage of using previous

fitness evaluations and exploration / exploitation trade-offs to direct it, resulting in

improvements in overall classification accuracies when it is compared to other

methods. The remainder of the paper is arranged as follows. Section 2 gives a

literature review of GAs and Bayesian optimization for DCNN's, and the motivations

of the proposed methods, whilst Section 3 provides a brief overview of GA and

Bayesian optimization. Thereafter, a methodology of applying the GA-Bayesian

approach to the problem of DCNN model selection is formalized in Section 4.

Experiments and comparisons to other techniques when using the proposed hybrid

stochastic GA-Bayesian technique are given in Sections 5-6, before the paper is

closed out with the limitations of the presented method and insights into future work.

2 Existing GA and Bayesian Approaches

2.1 GA Optimization of DCNNs

Neuroevolution, which entails applying evolutionary processes to evolve the structure

and architecture of neural networks, has seen several applications [Ding et al. 2013].

Although neuroevolutional-based techniques have been successful, their adaptation to

DCNNs has not been studied extensively in the past, probably because of the

complicated structure, large model size, and significant computational burden

imposed by modern DCNNs [Desell 2017].

Recent studies have begun focusing on the optimization of supervised DNNs. For

example, [Loshchilov & Hutter 2016] optimized the hyperparameters of existing

DCNNs, in a large-scale parallel setting, whilst [Desell 2017] proposed using a

distributed network of over 5000 computers, and over two months of computation, to

evolve the architectural and learning parameters of DCNNs. However, given the

computational requirements of these methods, their large-scale adaptation is not

649Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

practical. Moreover, recent works have shown that using evolution to automatically

learn the structure and hyperparameters of CNNs, is at the forefront of the current

DCNN advances. For instance, [Xie et al. 2017] freshly proposed encoding CNNs as

binary strings so that they can be subject to a standard GA, whilst [Miikkulainen et al.

2017] newly proposed using evolution to learn the topology and hyperparameters of

deep models. However, these methods are complex, yield compound and unprincipled

structures, and keep several key building blocks of DCNN's such as the number and

sizes of the convolutional filters and Dropout rates fixed. Nevertheless, these are

essential for optimal classification performance.

In general, traversing the parameter search space to select the optimal model

parameters (hereafter referred to as model selection) for modern DCNNs using GAs

or other evolutionary strategies requires excessive computation, since each member of

the population represents an individual DCNN that needs to be trained and scored.

Furthermore, if the architectural (number of filters, filter sizes, activation functions,

the use of Dropout and Dropout rate) and learning parameters (optimizer, learning

rate, batch size and weight initialization) both form part of the search space, the

number of possible models grow exponentially with each additional parameter, thus

making a GA based search intractable.

Considering these challenges, a traditional, yet highly stochastic GA, is presented

to find the near optimal architectural parameters of a DCNN with a fixed structure.

Unlike the complicated approaches of others [Loshchilov & Hutter 2016];

[Miikkulainen et al. 2017], the presented method shows that such sophistication is

unnecessary and that standard, yet highly stochastic, evolutionary processes can be

used for model selection. Furthermore, previous work relied on elaborate computing

power [Loshchilov & Hutter 2016], [Desell 2017] or at least the use of GPU's [Xie et

al. 2017], [Miikkulainen et al. 2017] to merge GAs with DCNNs, however, here it is

shown that a stochastically orientated GA guided search, can lead to classification

improvements over baseline models, even with computation constrained to CPU

alone. Moreover, to prevent using large GA populations and running the GA for

numerous iterations, both of which will add to computation, the model selection

search space is efficiently partitioned into the architectural and learning subspaces.

Specifically, the stochastically inclined GA is used to optimize the architectural space.

2.2 Bayesian Optimization of DCNNs

Whilst the stochastic GA alleviates some of the challenges associated with the grid

and random [Bergstra & Bengio 2012] search techniques, such as their computational

load and the lack of direction towards high performing models, as the model selection

search space increases, to search for near optimal solutions requires several runs of

evolution with extremely large population sizes. Naturally, this significantly hinders

computation [Elbeltagi et al. 2005]. Furthermore, although GAs are well suited to

search discrete or categorical parameters, such as the options of the architectural

search space, traditional GAs, are not suitable for continuous parameters, since a

genetic search will be intractable. Thus, as the dimensionality and complexity of the

search space increase, it can be computationally beneficial to use other methods that

efficiently seek for the best model parameters.

Recently, Bayesian optimization [Mockus et al. 1978] has emerged as a

sophisticated, yet effective and powerful, solution to the model selection problem

650 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

[Snoek et al. 2012]. Bayesian optimization can efficiently find near optimal

parameters for a diverse range of models including statistical methods such as

Markov chain Monte Carlo models [Hamze et al. 2013], deep belief networks

[Bergstra et al. 2011], and most significantly DCNNs [Snoek et al. 2012], [Swersky et

al. 2013]. Whilst the optimization of the architectural parameters are conducted

through a stochastic GA, the learning parameters, some of which are of the

continuous type thereby making them intractable for a genetic search, are optimized

through the better suited Bayesian optimization approach. Bayesian optimization has

been applied to the model selection problem for DCNNs previously [Snoek et al.

2012], [Swersky et al. 2013], however, the approach presented here aims at

combining it with GAs, which has not been studied in prior work. Furthermore,

different from other complex Bayesian algorithms or other intricate GAs, the

presented hybrid method is simple to implement, and can be parallelized if required.

3 Background

3.1 Genetic Algorithms

GAs, a subclass of Evolutionary Algorithms (EA’s), maintain a population of

solutions that traverse a solution space and they use evolutionary processes to obtain

near optimal solutions. Each solution is evaluated and based on the score or fitness of

the individual solutions, the population is evolved. During the evolutionary process,

the genetic operations of selection, mutation and crossover are used to produce

offspring chromosomes (or children) and this simulates the natural process of survival

of the fittest. These genetic operations evolve the population by improving its overall

fitness and thus generate feasible solutions to the optimization problem. While other

parameters are required, the performance of a GA is principally governed by the

population size, number of generations, crossover rate and mutation rate. As the

population size and number of generations increase, the probability of finding an

optimal solution is also increased, however this comes with an increase in

computational costs [Elbeltagi et al. 2005].

3.2 Bayesian Optimization

Bayesian optimization, explores the search space of a given domain, through

deliberating exploring new areas and exploiting areas where good performance has

been perceived, by using previous observations of an objective function to define the

next point of observation. Similar to the GA optimization approach discussed in the

previous section, and other typical types of optimization, in the framework of

Bayesian optimization, we are interested in searching for the global maximum (or

minimum) of an unspecified objective function. Formerly, for the maximum case, we

have:

x∗ = argmax
�	∈	�

�(x)

where � is the objective function and � is a bounded set or the search space of

interest, which can be conceived as a subset of ℝ�. For a general optimization

651Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

problem, � is more often than not a compact subset of	ℝ�, however in the Bayesian

case, it can be generalized to more uncommon spaces that consider conditional or

categorical inputs, or several of these inputs in the case of combinatorial search

spaces. Bayesian optimization has two fundamental components. Firstly, it constructs

a surrogate regression model, which is inherently probabilistic and consists of a prior

distribution, to capture the confidence regarding the behavior of the black-box

objective function, and secondly, an observational model defines the mechanism that

generates the data [Shahriari et al. 2016].

4 Method

4.1 Stochastic GA for architectural search

4.1.1 Methodology

The architectural parameters are optimized using the GA, whilst the learning

parameters are held fixed and separately optimized using Bayesian optimization. For

the proposed GA, each member of the population is subjected to the evolutionary

operators, and constitutes a set of topological choices, and thus an individual CNN

model, denoted by Ι�,�. An example of these choices is illustrated in Table 1.

4.1.2 Evolutionary process

4.1.2.1 Initialization, Selection and Retention

The details of the genetic process is summarized by Algorithm 1. Formerly, a set of

randomized individual CNN models {Ι�,�}���
� are used to initialize the population of

CNNs. Each network is then trained on a subset (training set Ɗ��) of an image

classification dataset	Ɗ, before being evaluated on its test set Ɗ��. Since the fitness

function of the GA channels the evolutionary process, and is dependent on the

optimization task, it is imperative to use an appropriate fitness function [Lessmann et

al. 2005]. Given that the task is image classification, classification accuracy is

selected. Here the classification accuracy takes the notation	�� �,�, as the evaluation

of the n-th individual CNN !� �,� takes place before the crossover operation of the t-th

generation. The training and evaluation process is computationally expensive, as each

model is trained and evaluated from scratch, and thus, this step is the bottleneck of the

evolutionary process. The networks are then categorized according to their

classification accuracy, and only the top performing individual CNNs	{Ι�,�}���
�"

, where

#$ represents the predetermined percentage of models to be retained, are selected to

evolve the population via reproduction and become part of the next

generation	{Ι�,�
ˊ }���

� . To prevent getting trapped in local extremes, a subset of the poor

performing CNNs, are also retained, with a random probability	%�.

652 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

4.1.2.2 Crossover

Initialization, selection and retention, is followed by random crossover &�, in which

children CNNs are breed from randomly selected pairs of parent

members	Ι�,'� �,	Ι�,'� of the retained population (top performing CNN’s and the

retained poor performers). The number of children that are breed is dependent on the

number of individuals N in the initial population	{Ι�,�}���
� , and the number of retained

models. For example if (= 16, in the initial population, and 25% of the top

performers were retained, plus another two of the weaker CNNs, ten children will

need to be breed in order to maintain the original population size for the next

generation {Ι�,�
ˊ }���

� . With this scheme, there is a possibility of an individual CNN

appearing in different generations, since N remains unchanged from the initialized

population	{Ι�,�}���
� . During crossover, randomly selected topological choices from

parent CNNs are crossed over to children CNNs, as illustrated by Table 1, where the

selected parameters are represented by the shaded blocks.

4.1.2.3 Mutation

Crossover is followed by mutation of the children, where the rate of mutation is

controlled by	%+. The lack of mutation can cause a population to lack diversity and

devolve, and thus mutation is imperative to promote diversity, augment the capability

of the population and facilitate propagation [Floreano & Mattiussi 2008]. To

implement mutation, a child CNN is selected with probability 	%+ and a randomly

selected topographical feature of it is replaced with another arbitrarily selected

feature, resulting in a mutated population {Ι�,�
⸗ }���

� . The effect of mutation on CNN

architecture is illustrated in Table 1, where the shaded blocks represent the mutated

topographical parameters. Mutation in this fashion facilitates the retention of the

majority of the strong topographical characteristics of the selected CNN, whilst also

providing a chance of evaluating new CNN architectures. The entire evolutionary

process is repeated for a predetermined number of generations	,.

4.2 GA-Bayesian optimization of the learning parameter subspace

4.2.1 Methodology

The learning parameter optimization procedure for the given image classification task

can be formalized by Algorithm 2, which applies Bayesian optimization to the

learning parameter search. Here the unknown blackbox function denoted by	�,

represents the GA inspired DCNN model, with selectable learning parameters x, and

stochastic and independently computed accuracy - = �(x). In this context, the

Bayesian algorithm is used to query �, for a designated set of learning parameters,

denoted by the point 	x./� and the results are observed at a tentative observation point

	y./�,	which represents the accuracy on the validation set, computed after training the

model on the training set. The sequential queries of the Bayesian optimized learning

subspace continue for a predetermined number of maximum iterations		!, which is set

by a specified computational budget. When ! is reached, a final set of learning

parameters, denoted by 	x1 2 is proposed by the Bayesian algorithm, and this represents

the last GA derived architectural, and Bayesian optimized learning parameter

653Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

recommendation. The best recommendation of the search is denoted by		x3, since it is

possible that		x1 2 ≠ 	x3. The learning parameters are optimized using Bayesian

optimization, whilst the GA inspired architectural parameters are held constant. For

the proposed GA-Bayesian model selection procedure, the top performing GA derived

model, is subject to a Bayesian search, where each iteration 5 of the Bayesian loop

represents a set of learning parameters, and thus an individual CNN model. The

overall hybrid optimization procedure is shown in Figure 1.

Conv. 1 Conv. 2 Fully conn. 1 Fully conn. 2 Act.

Filt.

no.

Filt.

 size

Filt.

no.

Filt.

size

Filt.

no.

Drop.

use?

Drop.

rate

Filt.

no.

Drop.

use?

Drop.

rate

Funt. to

use?

Parent CNN_A

64 3*3 32 5*5 16 No 0.25 256 No N/A ELU

Parent CNN_B

32 5*5 16 4*4 128 Yes 0.5 512 Yes 0.75 ReLu

Child CNN_C

32 3*3 16 5*5 128 Yes 0.5 256 No N/A ReLu

Child CNN_M – Before mutation
32 3*3 16 5*5 128 Yes 0.5 256 No N/A ReLu

Child CNN_M´ – After mutation
32 3*3 16 5*5 128 Yes 0.5 256 No N/A ELU

Table 1: Illustration of crossover between parent CNN_A and CNN_B resulting in a

child CNN_C and mutation in the offspring after crossover has taken place, resulting

in a mutated CNN_ M´

Figure 1: The proposed hybrid GA-Bayesian approach

Create a random

population of CNNs

Apply GA to evaluated models and search

space to determine new population

sdfdfpop.population

Evaluate the initial population of CNN models

Evaluate the GA selected population of CNN

models

Select the top performing GA model and

evaluate on initial Bayesian rec.

Apply Bayesian optimization to search space,

and evaluate resultant Bayesian rec.

Iterations <

max

Stop: return the best

optimized CNN

No

Yes

Yes

Generation <

max

No

654 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

Algorithm 1: DCNN model selection flow, using genetic processes of selection,

crossover, and mutation

Algorithm 1: CNN model selection using the GA

Data: Reference classification training set Ɗ67 and test set Ɗ68

Genetic process inputs: The number of CNNs in the initial and subsequent

generations N, the maximum number of generation T, the percentage of top

performing networks in each generation 	79 and the probability	97 of random poor

performers being retained, random crossover :7, and the rate of mutation 	9;.

1: GA initialization: Generate a random initial population of CNNs {<=,>}>�?
@

2: Train and evaluate the initial population: Train each individual A6 ?,> on

Ɗ67 and evaluate its accuracy B6 ?,> on Ɗ67

for each generation, t = 1; 2; 3; 4; :: ; T, repeat the following genetic operations:

 3: Selection: Select a percentage	79 of the top performing CNNs 	{<6,>}>�?
79

 to

retain for the next generation, plus add random poor performing models with

probability	97, to form the next generation {<6,>
ˊ }>�?

@
.

4: Crossover: Perform random crossover :7, for each CNN pair <6,D> ?,	<6,D> to

maintain the population at N

5: Mutation: Select children randomly with probability 	9;, and mutate a

randomly selected topographical choice.

6: Evaluation: Repeat step 2 for each generation

until the predetermined number of generations T is complete

Result: The final generation {<E,>}>�?
@

 of CNNs with their classification

accuracies.

Algorithm 2: GA-DCNN model learning parameter selection through Bayesian

optimization

Algorithm 2: GA-DCNN learning parameter selection using Bayesian

optimization

Data: Reference classification training set Ɗ67 and test set Ɗ68

Bayesian optimization inputs: The iteration number 5 for each sequential

Bayesian search, the learning parameters 	x� for the initial Bayesian search, and

subsequent parameters	x./�, the observed classification accuracy - = �(x)

observed at an initial point 	y�, and the succeeding points of observation, denoted

by 	y./�.

1: Bayesian loop initialization: Get an initial learning parameter suggestion x�

from the Bayesian loop

2: Train the initial DCNN: Train the top performing GA derived model on the

training set Ɗ�� , with the learning parameters x�, suggested by the Bayesian loop

3: Observe the results: Validate the model on the test set	Ɗ��, at 	y� by observing

the classification accuracy	- = �(x).

655Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

for each iteration, i = 1; 2; 3; 4; :: ; I, repeat the following steps:

4: Subject the results to a Bayesian search: Pass the observed accuracy - =

�(x), from step 3 to the Bayesian optimization loop, and obtain the next set of

learning parameters

5: Model parameter fitment and training reiteration: Fit the GA selected

DCNN from step 2, with the new Bayesian suggested learning parameters 	x./�,

and retrain the model on Ɗ��

6: Evaluation: Repeat step 3, and observe the results on 	Ɗ�� for each iteration 5 ,

at 	y./�

until the predetermined number of iterations I is complete

Result: The final Bayesian recommend learning parameter		x1 2, and the best found

Bayesian selection	x3, for the GA optimized architecture, and their associated

classification accuracies	-F and -G .

5 Experiments

5.1 Development Environment

All simulations were conducted on an 8-core Intel i7-6700k CPU, clocked at 4.0 GHz

(4.2 GHz maximum frequency), with an 8 MB cache, and 16GB DDR4 random

access memory (RAM). The software experiments were implemented in Python using

the Keras [Chollet et al. 2015] application program interface (API) whilst TensorFlow

[Abadi et al. 2015] was used as the backend. Other necessary Python libraries and

dependencies are used, such as numPy and sciPy.

5.2 Data

Experimentation was conducted on the MNIST [LeCun 1998] and CIFAR-10

[Krizhevsky 2009] datasets. For the former, the traditional train-test split of 60000-

10000, was maintained for all simulations, whilst for the latter the standard 50000-

10000 train-test split was utilized. Except for normalization and data shuffling, no

further preprocessing or data augmentation was considered.

5.3 Experimentation on MNIST

5.3.1 Base model and GA architectural choices

The selected base model for the GA search was derived from the LeNet-5 model

[LeCun 1998]; however, selected modern architectural changes such as maximum

pooling [Ranzato et al. 2007] and Dropout [Hinton et al. 2012] were included to

improve performance. Compared to MNIST, CIFAR-10 is more complex and

generally requires deeper models, however, this comes with high computational costs

(Rawat & Wang, 2017). Given the limited computational resources, only one

additional set of convolutional and pooling layers were added to the model used for

the MNIST simulations. Whilst the classification performance is not state-of-the art,

the parameters inherent to the model depth provides greater opportunities for

hyperparameter optimization compared to the MNIST model and thus it was used to

test the proposed GA-Bayesian search technique on a more complex benchmark than

656 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

MNIST. The softmax loss function was used as the objective function and it was

minimized using the traditional and widely accepted Stochastic Gradient Decent

[SDG - Bottou 1998] algorithm, whilst the batch size was set to 64. The convolutional

and fully connected filters were initialized using the scheme presented in [Glorot &

Bengio 2010]. The architecture variants subjected to optimization, can be seen in

Table 3.

5.3.2 Brute-force / random search model selection

To validate the GA algorithm (CNN_GA_1.X), the technique was tested against the

grid search approach (CNN_BF_1.X), whilst for the remaining runs CNN_GA_2.X,

CNN_GA_3.X; it was compared against the random search technique, due to the

intractability of searching a large space using brute force computation. On MNIST,

the models were trained for twenty epochs, whilst ten was used for CIFAR-10. For

random search, the number of models searched was equivalent to the number of

models of the GA search.

5.3.3 GA based model selection

Algorithm 1 was applied to the same search space as the grid and random searches.

The GA parameters for the different runs are shown in Table 2. For the first run, a

small population size and number of generations were used to save on computation

and facilitate comparison to grid search; however, these were increased for the

subsequent runs of the algorithm. Moreover, high mutation rates were set to promote

diversity within the population, and prevent the GA from getting stuck in a local

maxima. Other options of these GA specific hyperparameters were also tried but these

led to suboptimal results. Although other combinations may produce better results, no

hyperparameter tuning was done, since this would require the training and evaluation

of a complete population of CNNs for several generations, which will be a

computationally exorbitant procedure.

GA Hyperparameter CNN_GA_1.X CNN_GA_2.X CNN_GA_3.X

Population (= 12 (= 	40 (= 20

No. of generations ,	 = 	10 ,	 = 	20 ,	 = 	10

Percentage of models to retain 		#$ = 50% 		#$ = 25% 		#$ = 25%

Probability of retention 	%� = 10% 	%� = 10% 	%� = 10%

Probability of mutation %+ = 0.3 %+ = 0.3 %+ = 0.3

Total no. of models evaluated 61 483 121

Total no. of possible models 108 11664 34992

Table 2: GA parameters for the different GA runs

657Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

Layer Hyper -parameter

CNN_GA_1.X /

CNN_BF_1.X /

CNN_RA_1.X

CNN_GA_2.X /

CNN_RA_1.X

CNN_GA_3.X /

CNN_RA_3.X

Convolutional

layer 1

Number of filters {8, 16, 32, 64} {16, 32, 64} {16, 32, 64}

Kernel size 5*5 {3*3;4*4;5*5} {3*3; 4*4; 5*5}

Max pooling

layer 1
Filter size 2*2 2*2 2*2

Convolutional

layer 2

Number of filters {16, 32, 64} {16, 32, 64} {16, 32, 64}

Kernel size 5*5 {3*3; 4*4; 5*5} {3*3; 4*4; 5*5}

Max pooling

layer 2
Filter size 2*2 2*2 2*2

Convolutional

layer 3

Number of filters {16, 32, 64}

Kernel size {3*3; 4*4; 5*5}

Max pooling

layer 2
Filter size 2*2

Fully connected

layer 1

Number of filters {64, 128, 256} {64, 128, 256} {64, 128, 256}

Dropout rate /

Alpha Dropout rate

0.5

{0, 0.25, 0.5, 0.75}

/

 {0, 0.025, 0.05,

0.1}

{0, 0.25, 0.5, 0.75}

Fully connected

layer 2

Number of filters {64, 128, 256}
Same as Fully

connected layer 1
{64, 128, 256}

Dropout rate /

Alpha Dropout rate
0.5

{0, 0.25, 0.5, 0.75}

/ {0, 0.025, 0.05,

0.1}

{0, 0.25, 0.5, 0.75}

Global

parameters

Activation

Function - All

layers except

softmax layer

ReLu / Softmax
 {ReLu; ELU;

SeLu} / Softmax

{ReLu; ELU;

tanh} / Softmax

Optimization
SGD – Lr. Rate:

0.01

SGD – Lr. Rate:

0.01

SGD – Lr. Rate:

0.01

Table 3: Search space for the different approaches of the architectural search

658 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

5.3.4 Experimental results and analysis

The mean accuracies of the top performing models (top-10, and final GA generations

vs. their grid counterparts), the entire computational runs, and the top performing

models for each run, are shown in Tables 4-5. Notable redundancies in parameter

choices are observed for all techniques. Notwithstanding these redundancies and the

stochastic nature of the computation, when compared to grid search (Table 4), the GA

search obtained very similar results, for a drastic reduction in computation (40%
2
),

which illustrates its ability to find the top performing models, whilst against random

search
3
 the GA technique achieved superior mean and top performing accuracies, as

illustrated by Table 5.

Evaluation criteria

Brute-force

search

CNN_BF_1.X

GA search

GA_CNN_1.X

Mean accuracy of top 12

models (brute / GA)
98.94 98.95

Mean accuracy of top 61

models searched / all GA

models

98.81 98.86

Top performing model 98.98 99.02

Table 4: Limited GA model selection and comparison to grid search

Evaluation

criteria

MNIST CIFAR-10

Random

search

CNN_RA_2.X

GA search

CNN_GA_2.X

Random

search

CNN_RA_3.X

GA search

CNN_GA_3.X

Mean accuracy -

top 10 models

99.05

99.12

61.16

64.33

Mean accuracy of

the top models /

last generation of

the GA

98.98

99.01

60.15

62.34

Mean accuracy of

complete search

98.68

98.96

52.18

60.08

Top model 99.06 99.17 63.93 65.51

Table 5: Extended GA model selection and comparison to other techniques on MNIST

and CIFAR-10

2
 Grid force – 1044 minutes; GA – 620 minutes

3
 Computation times were similar as a result of experimental design

659Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

5.4 Bayesian optimization implementation

Bayesian optimization was carried out using the SigOpt API
4
 (see Dewancker et al.

2016a, 2016b, 2016c for recent work), which utilizes an ensemble of state-of-the art

Bayesian optimization techniques to find the optimal parameters for a wide variety of

tasks, such as the DCNN's studied here. More specifically, it aims to maximize a

blackbox objective function 	� [Dewancker et al. 2016b], by utilizing Gaussian

processes to model it [Dewancker et al. 2016c] and the expected improvement

acquisition function to trade-off exploration and exploitation of the search space.

5.4.1 Brute-force / random search, and Bayesian model selection

For the first Bayesian exploration, CNN_BA_1.X (70 Bayesian observations), the

technique was tested against the brute force and random search approaches, whilst for

the remaining runs CNN_BA_2.X (120 Bayesian observations), CNN_BA_3.X (70

Bayesian observations), it was compared against random search, due to the

intractability of searching a large space using brute force computation. On MNIST,

the models were trained for twenty epochs, whilst ten was used for CIFAR-10. For

the random search, the number of models searched was equivalent to the number of

models of the GA search. The search spaces are shown in Table 6.

Global

parameter

CNN_RA4_1.X /

CNN_BA_1.X

CNN_RA_5/6.X /

CNN_BA_2/3.X

Initialization

method

Random_normal;

Lecun_normal; He_normal;

Glorio_normal

Random_normal;

Lecun_normal; He_normal;

Glorio_normal

Learning rate
0.001 – 0.01 (step size =

0.01)
0.001 – 0.01 (continuous)

Optimizer Adagrad; RMSprop; SGD
RMSprop; SGD; Adagrad;

Adam; Adamax; Nadam

Batch size 64 32 - 64 (with step size = 1)

Table 6: Learning parameter choices exposed to the first, second and third Bayesian

searches, and their random and grid counterparts

5.4.2 Experimental results

The mean accuracies of the top performing models (top-10), the entire computational

runs, and the top performing models for each run are shown in Tables 7 and 8. When

compared to grid search, as expected, the top performing models obtained similar

results, however, the mean accuracies of the top performing models and the entire

runs were superior for the Bayesian search, albeit for a drastic reduction in

computation (> 40%
5
). The Bayesian approach outperforms random search for all the

measures used in this section on both MNIST and CIFAR-10. Moreover, when the

complexity of the search space is increased (variables treated as continuous variables

4
 https://sigopt.com

5
 Grid force – 1580 minutes; GA-Bayesian search – 950 minutes

660 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

– see Table 6), the superiority of the Bayesian search over random search is

amplified, as illustrated by Table 8.

MNIST

Dataset

Limited grid vs. random vs.

Bayesian search

Extended random vs.

Bayesian search

Evaluation

criteria

CNN_BF

_2.X

CNN_RA

_4.X

CNN_BA

_1.X

CNN_RA

_5.X

CNN_BA

_2.X

Mean

accuracies of

top 10 models

99.20 99.13 99.32 99.37 99.44

Mean

accuracies of

the complete

search

98.79 98.31 99.11 98.71 99.32

Top performing

model
99.37 99.24 99.38 99.40 99.47

Table 7: Performance analysis between the brute-force, random and Bayesian

approaches on MNIST

Evaluation criteria

Random

search

CNN_RA_6.X

Bayesian

search

CNN_BA_3.X

Mean accuracy of top 10 models

(random / Bayesian)

69.81

70.24

Mean accuracy of all randomly

searched models / all the

Bayesian searched models

63.21

67.70

Top performing model 70.08 70.78

Table 8: Performance analysis between the random, and Bayesian approaches on

CIFAR-10

6 Comparison to other optimization techniques

The best GA-Bayesian run, which is a combination of CNN_GA_2.X and

CNN_BA_2.X on MNIST, and CNN_GA_3.X and CNN_BA_3.X on CIFAR-10

were also compared against TPE
6
, which is also a Bayesian technique, and the

Simulated Annealing (SA) optimization techniques of the state-of-the-art Hyperopt

framework [Bergstra et al. 2015]. The number of evaluations used for these

techniques were equated to the total number of combined GA-Bayesian evaluations,

whilst the epochs used per model was maintained the same as the GA-Bayesian runs.

Moreover, they were asked to traverse the combined search space traversed by the

6
 Tree-structured Parzen estimator

661Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

combined GA-Bayesian searches. As illustrated in Table 9 below, the GA-Bayesian

technique outperformed its counterparts on all the classification measures used in this

section, albeit for a slightly greater computational time on MNIST.

Evaluation

criteria

MNIST CIFAR-10

SA TPE
GA-

Bayesian
SA TPE

GA-

Bayesian

Mean acc. of

top 10

models

99.23 99.29 99.44 69.54 69.79 70.24

Mean acc. of

the complete

search

96.64 97.1 99.14 58.76 59.11 63.89

Top

performing

model

99.3 99.34 99.47 70.55 70.65 70.78

Computation

time (mins)
6226 5841 7321 2390 2395 2158

Table 9: Performance analysis between TPE, SA and the GA-Bayesian search

7 Discussion and conclusions

A grid search of the architectural search space dissects the possible topological

choices into equivalently sized (with regards to each dimension) grids, resulting in a

uniform sampling of all the possible architectures, and this entails training and

validating complete DCNN models at each intersection of the partitioned space. The

downside is that this requires searching over an exponential number of dimensions,

which is computationally exorbitant given the cost of training a single model, and this

is further compounded when the learning search space is also traversed, since this

subspace introduces variables that are continuous in nature. Whilst some of these

computational costs can be reduced if a random search is conducted, random search is

not directed towards the top performing models. On the other hand, the GA-Bayesian

approach uses several random operations (random population generation, crossover

and mutation) of a stochastic GA to promote a type of random search of the

architectural space, however, it poses an additional benefit of directing the search

towards the selection of high performing models through its selection and retention

mechanisms, the latter of which is also stochastic in nature.

Whilst the GA search is well suited to the discrete hyperparameters of the

architectural subspace, using it to traverse the complex learning parameter subspace is

not practicable. Thus, to mitigate this, the space was searched using a Bayesian search

on top of the GA derived models, and whilst the GA-Bayesian search exhibited

randomness with regards to the initial Bayesian samples, and subsequent exploration

related samples, it was focussed towards the exploitation of the top performing

662 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

DCNN models. Subsequently, the combined hybrid search approach is able to

significantly reduce the computational load, when compared to grid search [Pedregosa

et al. 2011], and improve the classification accuracy, when compared to random

search, as well as SA and TPE, as demonstrated by several simulations on the MNIST

and CIFAR-10 benchmarks.

The GA and Bayesian specific hyperparameters such as the crossover and

mutation rates and the number of Bayesian evaluations, were not optimized due to

limited computational resources, however, with a larger computational budget,

optimizing them can lead to improved overall performance and is thus left for future

work. The GA component of the search is time consuming, especially if a large

number of generations are used, which was the case with the MNIST simulations.

Whilst, this leads to improved classification performance, optimizing the algorithm to

improve the time costs is an attractive direction that still needs to be explored.

Furthermore, whilst the presented technique was used to search for the near optimal

set of hyperparameters in this work, extending it to optimize other parameters such as

the depth of the network (i.e. number of layers in a network) and using it to explore

the various building blocks of modern DCNNs to search for novel architectures, is

another interesting direction left for upcoming research. Moreover, the presented

method was commissioned on the task of image classification, which has been

dominated by DCNNs in recent years [Rawat & Wang 2017]. However, DCNNs have

also been shown to work well for object detection and segmentation tasks [Girshick et

al. 2014], [Girshick 2015]. Further to the requirement of different architectural

hyperparameters compared to image classification tasks, the techniques presented for

object detection and segmentation tasks, such Regions with CNN features (R-CNN)

[Girshick et al. 2014], have their own hyperparameters that require tuning. These

hyperparameters include region warping padding, bounding box-regression and non-

maximum suppression threshold choices. Thus, given the computational and accuracy

gains of using the proposed GA-Bayesian searching strategy, and the fact that the

method works independently of model training and validation, it is conceivable that

the presented optimization methods can be generalized to search for the

hyperparameters for object detection, segmentation and other similar computer vision

related tasks.

In closing, separating the search space imposed by DCNN models into

architectural and learning parameter subspaces, to respectively promote the

convergence of small evolutionary populations in minimal generations, and to

facilitate a Bayesian search for continuous and continuous-like learning parameters

can lead to significant overall performance improvements over well-established

techniques. The proposed technique becomes especially useful when operating on a

tight computational budget, and whilst further experimentation on natural colour

images is still required, the performance of the presented approach justifies its use as

a viable option for traversing the high dimensional and complex search space of our

current models.

Acknowledgements

This work was supported in part by the South African National Research Foundation

(Grant Nos. 112142 and 112108), South African National Research Foundation

663Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

Incentive Grant (No. 114911) and the Tertiary Education Support Programme (TESP)

of South African ESKOM

References

[Abadi et al. 2016] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,

C., & Ghemawat, S.: Tensorflow: Large-scale machine learning on heterogeneous

distributed systems. arXiv preprint arXiv:1603.04467. (2016).

[Bengio et al. 2017] Bengio, Y., Mesnard, T., Fischer, A., Zhang, S., &Wu, Y.:

STDP-compatible approximation of backpropagation in an energy-based model.

Neural Computation, 29(3), 555–577.

[Bergstra & Bengio 2012] Bergstra, J., & Bengio, Y.: Random search for hyper-

parameter optimization. Journal of Machine Learning Research, 13, (281-305).

(2012).

[Bergstra et al. 2015] Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. & Cox, D.D.,

2015. Hyperopt: A python library for model selection and hyperparameter

optimization. Computational Science & Discovery, 8(1), (1-24). (2015).

[Bottou 1998] Bottou, L.: Online learning and stochastic approximations. On-Line

Learning in Neural Networks, 17(9), (142-177). (1998).

[Chollet 2015] Chollet, F.: Keras. URL http://keras. io. (2015).

[Dernoncourt & Lee 2016] Dernoncourt, F., & Lee, J. Y.: Optimizing neural network

hyperparameters with Gaussian processes for dialog act classification. In Spoken

Language Technology Workshop (SLT), 2016 IEEE (406-413). IEEE. (2016).

[Desell 2017] Desell, T.: Large Scale Evolution of Convolutional Neural Networks

Using Volunteer Computing. arXiv preprint arXiv:1703.05422. (2017).

[Dewancker et al. 2016a] Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson,

A., & Ke, G.: A Stratified Analysis of Bayesian Optimization Methods. arXiv

preprint arXiv:1603.09441. (2016a).

[Dewancker et al. 2016b] Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson,

A., & Ke, G.: Evaluation System for a Bayesian Optimization Service. arXiv preprint

arXiv:1605.06170. (2016b)

[Dewancker et al. 2016c] Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson,

A., & Ke, G.: A Strategy for Ranking Optimization Methods using Multiple Criteria.

In ICML Workshop on Automatic Machine Learning (11-20). (2016c).

Dewancker n.d.] Dewancker, I., McCourt, M., Clark, S.: Bayesian Optimization

Primer [White paper]. Retrieved August 22, 2017, from SigOpt:

https://sigopt.com/static/pdf/SigOpt_Bayesian_Optimization_Primer.pdf. (n.d.)

Ding et al. 2013] Ding, S., Li, H., Su, C., Yu, J., & Jin, F.: Evolutionary artificial

neural networks: A review. Artificial Intelligence Review, (1-10). (2013).

[Elbeltagi et al. 2005] Elbeltagi, E., Hegazy, T., & Grierson, D.: Comparison among

five evolutionary-based optimization algorithms. Advanced engineering

informatics, 19(1), (43-53). (2005).

664 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

[Floreano & Mattiussi 2008] Floreano, D., & Mattiussi, C.: Bio-Inspired Artificial

Intelligence - Theories, Methods, and Technologies (2008).

[Girshick 2015] Girshick, R. (2015). Fast R-CNN. In 2015 IEEE International

Conference on Computer Vision (ICCV). (1440-1448). (2015).

[Girshick et al. 2014] Girshick, R., Donahue, J., Darrell, T., & Malik, J.: Rich feature

hierarchies for accurate object detection and semantic segmentation. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580–587).

(2014).

[Gong et al. 2014] Gong, Y., Wang, L., Guo, R., and Lazebnik, S.: Multi-scale

orderless pooling of deep convolutional activation features. In Proceedings of the

European Conference on Computer Vision (392–407). (2014).

[Hamze et al. 2013] Hamze, F., Wang, Z., & de Freitas, N. (2013). Self-avoiding

random dynamics on integer complex systems. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 23(1). (2013).

[Hinton et al. 2012] Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., &

Salakhutdinov, R. R.: Improving neural networks by preventing co-adaptation of

feature detectors. ArXiv Preprint arXiv:1207.0580. (2012)

[Iandola et al. 2016] Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S., Dally,

W. J., and Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer

parameters and <1MB model size. arXiv 1602.07360. (2016).

[LeCun et al. 1998] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.: Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11), (2278-

2324). (1998).

[Lessmann et al. 2005] Lessmann, S., Stahlbock, R., & Crone, S. F.: Optimizing

hyperparameters of support vector machines by genetic algorithms. In IC-AI (74-82).

(2005).

[Loshchilov & Hutter 2016] Loshchilov I., & Hutter, F.: CMA-ES for

Hyperparameter Optimization of Deep Neural Networks. arXiv preprint

arXiv:1604.07269. (2016).

[Mallat 2012] Mallat, S.: Group invariant scattering. Communications on Pure and

Applied Mathematics, 65(10). (2012).

[Martino et al. 2011] Martino, S., Ferrucci, F., Gravino, C., & Sarro, F.: A genetic

algorithm to configure support vector machines for predicting fault-prone

components. In International Conference on Product Focused Software Process

Improvement (247-261). (2011).

[Miikkulainen et al. 2017] Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,

D., Francon, O., & Hodjat, B.:. Evolving Deep Neural Networks. arXiv preprint

arXiv:1703.00548. (2017).

[Mockus et al. 1978] Mockus, J., Tiesis, V., & Zilinskas, A.: The Application of

Bayesian Methods for Seeking the Extremum. In Towards Global Optimization, vol.

2. (117-128). (1978).

[Orive et al. 2014] Orive, D., Sorrosal, G., Borges, C.E., Martín, C., & Alonso-

Vicario, A.: Evolutionary algorithms for hyperparameter tuning on neural networks

665Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

models. In Proceedings of the 26th European modelling & simulation symposium.

(402-409). (2014).

[Pedregosa et al. 2012] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., & Vanderplas, J.: Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12, (2825-2830). (2012).

[Ranzato et al. 2007] Ranzato, M. A., Huang, F. J., Boureau, Y., & LeCun, Y.:

Unsupervised learning of invariant feature hierarchies with applications to object

recognition. In Proceedings IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 1-8. (2007).

[Rasmussen & Williams 2006] Rasmussen, C. E., & Williams, C. K.: Gaussian

processes for machine learning, (vol. 1). Cambridge: MIT press. (2006).

[Rawat & Wang 2017] Rawat, W., Wang, Z.: Deep convolutional neural networks for

image classification: A comprehensive review. Neural Computation, 29(9), (2352-

2449). (2017).

[Shahriari et al. 2016] Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & de

Freitas, N.: Taking the human out of the loop: A review of Bayesian

optimization. Proceedings of the IEEE, 104(1), (148-175). (2016).

[Snoek et al. 2012] Snoek, J., Larochelle, H., & Adams, R. P.: Practical Bayesian

optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,

& K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25

(2951–2959). (2012).

[Snoek et al. 2012] Snoek, J., Larochelle, H., & Adams, R. P.: Practical Bayesian

optimization of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,

& K. Q. Weinberger (Eds.), Advances in neural information processing systems, 25

(2951–2959). (2012).

[Suong & Jangwoo 2018] Suong, L.K. & Jangwoo, K.: Detection of Potholes Using a

Deep Convolutional Neural Network. J. UCS, 24(9), (1244-1257). (2018).

[Swersky et al. 2013] Swersky, K., Snoek, J., & Adams, R. P.: Multi-task Bayesian

optimization. In Advances in neural information processing systems (2004-2012).

(2013).

[Tao et al. 2007] Tao, J., Wang, N. & Wang, X.: Genetic Algorithm Based Recurrent

Fuzzy Neural Network Modelling of Chemical Processes. J. UCS, 13(9), (1332-

1343). (2007).

[Vinyals et al. 2015] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D.: Show and tell:

A neural image caption generator. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (3156–3164). (2015).

[Wiatowski & Bolcskei 2015] Wiatowski, T., Bolcskei, H.: A mathematical theory of

deep convolutional neural networks for feature extraction. arXiv 1512.0629. (2015).

[Xie et al. 2017] Xie, L., & Yuille, A.: Genetic CNN. arXiv preprint. arXiv preprint

arXiv:1703.01513. (2017).

666 Rawat W., Wang Z.: Hybrid Stochastic GA-Bayesian Search ...

