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Abstract: In the software development field, the amount of data related to docu-
mentation and to the source code itself is huge. Relevant knowledge can be extracted
from these data, provided that the adequate tools are in place. In this context, data
mining can be seen as an important tool. This paper presents a new approach for
code completion based on sequential patterns mined from previous developed source
code. According to what is being coded, suggestions of new code sequences are made
based on the mined patterns. As a result, a plug-in for the Eclipse IDE, named Vertical
Code Completion, was developed and applied over widely known Open Source systems,
identifying that our approach could provide suggestions that would anticipate what a
developer intends to code.
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1 Introduction

One of the main concerns in the domain of Software Engineering is the improve-

ment of quality and productivity during software development [Pressman 2009].

Different techniques and tools have been developed to address this concern. Some

of them use the knowledge obtained during the development stage [Holmes and

Murphy, 2004] [Oliveira et al. 2008].

Code completion is an important tool in this context. It is available in almost

every Integrated Development Environment (IDE) [Robbes and Lanza 2008]

and consists of statically analyzing the source code and suggesting its automatic

completion. For example, when coding “System.id” in Java, the IDE would com-

plete with “System.identityhashCode()”, as the class System contains only this

method beginning with id. Besides the gain in productivity, code completion

brings another positive effect: it encourages developers to use descriptive names,

improving the quality of the source code.
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In addition to the aforementioned behavior, which is based on the completion

of classes and on the names of methods, we can also cite the mechanism of

templates, available in some IDEs. This mechanism suggests blocks of source

code that implement control structures of a programming language, such as if-

then-else, for, and while.

Nevertheless, conventional code completion tools analyze the syntactic struc-

ture of the source code and suggest the completion of an element name only when

the typed characters are a perfect match to the beginning of this name. Moreover,

the completion suggested is restricted to a single element. When developers move

to the next lines of code, they need to type the start of the line again. These lim-

itations motivated the creation of a novel code completion approach, based not

strictly on syntactic analysis, aiming at providing more sophisticated suggestions

that are strongly related to the sequence of lines of code being implemented.

This paper proposes a code completion approach that supplements the exist-

ing ones. The proposed approach takes the sequence of lines already coded into

consideration to suggest lines to be coded. We adopted data mining techniques

[Han and Kamber 2011] to obtain these suggestions. First, the entire source code

is analyzed in order to discover recurring sequential patterns, which represent

frequent coded line sequences. After that, during the coding stage, the sequence

of lines already coded is matched to the beginning of one of the previously ob-

tained patterns and the remainder of the pattern is automatically suggested. For

example, if the code begins with “BD.beginTransaction()”, the following code

pattern could match the sequence: 〈“BD.beginTransaction()”, “BD.commit()”,

“BD.closeConnection”〉, provided that this sequence has frequently occurred in

other parts of the source code. Additionally, our approach differs from related

work by being domain independent whereas it is able to provide domain-specific

suggestions. This feature is achieved thanks to our proposal of mining coding

patterns directly from the source code the developers use to work in. Thus, we

can provide suggestions that can even respect the style of a software developer

team. Furthermore, we propose a rank strategy based on pattern confidence that

allows us to provide the most interesting coding patterns first.

These suggestions can improve developer productivity as well as avoid the

rise of bugs. However, the benefits of such an approach are strongly related to

the suggestion utility. In this work, we consider a suggestion useful if it is an

anticipation of what would be coded next. So, we evaluate our approach in two

different ways: we provided suggestions for a group of developers and collected

feedback from them and analyzed different revisions of open source projects,

trying to identify if new method calls could have been foreseen.

This paper is an extended version of a paper previously published at the

Brazilian Symposium on Software Components, Architectures, and Reuse (SB-

CARS) [da Silva Jr. et al. 2012]. The conference paper is written in Brazilian
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Portuguese and presents only an initial evaluation of our approach. In this pa-

per, we added a more comprehensive and robust evaluation over widely known

Open Source systems. Moreover, we provide a deeper description and explana-

tions of the approach itself and enlist our ongoing work.

The remainder of this paper is structured as follows: Section 2 discusses re-

lated work that uses data mining in code completion. Section 3 presents some

background on data mining and overviews on our proposed approach, describing

the different stages that form the solution. Section 4 provides implementation de-

tails, describing concepts, tools, and techniques used in the proposed approach.

Section 5 presents the experimental evaluation. Finally, Section 6 concludes the

paper, discussing our contributions and pointing at future work paths.

2 Related Work

As discussed before, code completion, also known as content assist [Murphy

et al. 2006], is widely used on IDEs such as Eclipse and Netbeans. It works

suggesting the names of variables or the signatures of methods during coding.

If the developer considers one of the suggestions appropriate, it is automatically

inserted in the code. [Murphy et al. 2006] claim code completion is one of the

ten features most used by developers. Its popularity can be related to preventing

compilation problems and helping the discovery of the appropriate method call

[Bruch et al. 2009].

However, despite all code completion benefits, several works have been

produced in order to improve this technology. [Han et al. 2009] proposes a

technique intended to accelerate coding and to avoid the need of exactly

matching on code completion. This technique consists of the creation of

non-predefined method call abbreviation. For example, if a developer types

“ch.opn(n);”, “chooser.showOpenDialog(null);” would be suggested. This strat-

egy is similar to typing “sout” or “psvm” in Netbeans, which are translated into

“System.out.println()” or “public static void main(String[] args)”, respectively.

Following a similar line of [Han et al. 2009], [Omar et al. 2012] proposes an

architecture that allows library developers to introduce interactive and highly-

specialized code generation interfaces, named palettes. For instance, if a devel-

oper is going to instantiate a Java class java.awt.Color, this palette could provide

a board where the developer could click on a color and the code to instantiate a

Color class using RGB values would be automatically generated. Nevertheless,

these approaches do not intend to complete more than one method call, not

suggesting method calls that are semantic-related to the previously coded lines.

In order to reduce the effort with the search for an appropriate method call

when analyzing code completion suggestions, a work based on Recommender

Systems, named Code Recommenders [Bruch 2012], analyses API usage pat-

terns and sorts method calls suggestions according to what the programmer has
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already coded. Nonetheless, as the work mentioned before, it still focuses on the

suggestion of the current method call, not considering subsequent calls.

Going in a different direction, [Sahavechaphan and Claypoolr 2006] propose

a tool for querying frequently used source code fragments, named code snippets.

With this tool, developers can query a source code repository when they do not

know how to instantiate an object. The discovered code fragments are ranked

by frequency, length, and context, and finally presented to the developer. This

proposal does not focus on the suggestion itself, but on bringing examples that

support specific situations. This way, it can be seen as supplementary to code

completion approaches.

[Mandelin et al. 2005] and [Thummalapenta and Xie 2007] attempt to dis-

cover frequent patterns in source code through data mining, to help developers

learn how to use API classes. In these approaches, developers have the obligation

to specify what they want to code, and the approach shows how the specified

classes can be combined together. These approaches cannot support the devel-

opers in situations where they forget to specify some classes or do not even know

which classes should be used for a given context.

[Nguyen et al. 2012] proposes a graph-based, pattern-oriented,

context-sensitive code completion approach based on a database of such patterns.

Similarly to our approach, this one extracts context-sensitive features from the

code under edition to provide code completion suggestions. Nevertheless, their

proposed evaluation focuses only on usage patterns of the Java Utility Library 1,

and it is not clear if their approach could address domain-specific patterns as

ours.

[Hill and Rideout, 2004] present an automatic code completion approach

based on code clones. The authors use code clone detection tools aiming at ob-

taining methods that are used together. When a developer starts to code a clone,

these methods are suggested. The suggestion process is similar to ours, however,

we aim at detecting patterns that are not limited to code clones, provided that

our approach is able to identity, for instance, a pair of methods used together in

the same method body but separated by other method calls, control structures,

and variable declarations.

Apart from the existence of different approaches aimed at improving code

completion, as far as we are concerned, there is no work that identifies domain-

specific frequent-code sequences through sequential pattern mining and that

ranks these patterns using a confidence-based strategy. This kind of approach

would go beyond the usual strategy based on explicit method signatures or usage

examples.

1 http://www.oracle.com/technetwork/java/index.html
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3 Vertical Code Completion

In this section we present our proposed approach, named Vertical Code Comple-

tion (VCC). VCC is marked by two distinct stages: sequential pattern mining

(Section 3.1) and pattern querying (Section 3.2). In the first stage, the source

code is pre-processed and mined, resulting in a set of patterns. In the second

stage, the source code being produced by a developer is analyzed in real time in

order to detect any match with patterns obtained in the previous stage. Then,

the corresponding patterns are ranked and suggested to the developer. This

two-stage process provides a well representation of a real-usage scenario of our

approach. The first stage would be periodically executed offline, in a late-night

process, for example, while the second stage would be invoked online, on de-

mand, multiple times a day. Figure 1 shows an activity diagram that represents

the overall VCC process. In the following subsection we detail each stage.

3.1 Sequential Patterns - Mining Stage

As shown in Figure 1, our sequential pattern mining stage consists of three ac-

tivities: (1) source code preparation for data mining, (2) effective data mining

execution, and (3) sequential pattern tree generation, to be used in the pattern

querying stage. Next, we present some data mining concepts used in this stage

and then we describe each one of these activities.

3.1.1 Data Mining Concepts

Data mining processes are characterized by the discovery of new and useful

knowledge, in terms of rules and patterns, from large amounts of data. Amongst

some of the most popular data mining tasks, we can mention [Han and Kamber

2011]: classification, extraction of association rules, clustering, and extraction of

sequential patterns. The sequential pattern concept [Srikant and Agrawal 1996]

will be presented in detail, as it is the data mining task used in this work.

Different applications impose sequential order over their data. This sequential

order can be required by temporal characteristics of the data or by any other

interest criterion. Sequential patterns consist of ordered sequences of events that

appear with significant frequency in a dataset. An example of a typical sequence

of events is a sequence of movies rented by different customers at different times,

in the same order. For instance, a sequential pattern could be: Customers rent

Star Wars, then The Empire Strikes Back, and then The Return of the Jedi.

Sequences are ordered list of events. A sequence α is represented by

〈e1e2e3...en〉, where each ej , 1 ≤ j ≤ n, is an event (called also an element)

from sequence α, and e1 occurs before e2, which occurs before e3, and so on.

On the other hand, an event (or element) from a sequence is represented by
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Figure 1: VCC activity diagram

e = (i1i2i3...im), where each ik, 1 ≤ k ≤ m, is an item from the application do-

main. The sequence size is determined by the amount of items from its events.

A sequence can be part of another bigger sequence. If α = 〈a1a2...ar〉 and

β = 〈b1b2...bs〉 are two sequences, it is possible to say that α is a subsequence of

β, or that β is a super sequence of α, represented by α ⊆ β, if and only if there

are integers 1 ≤ j1 < j2 < ... < jr ≤ s, such that a1 ⊆ bj1 , a2 ⊆ bj2 , ..., ar ⊆ bjr .

For instance, suppose α = 〈(ab)(d)〉 and β = 〈(abc)(a)(de)〉 are two sequences

whose sizes are 3 and 6, respectively. α is a subsequence of β, since (ab) ⊆ (abc)
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and (d) ⊆ (de).

A concept called support is used to evaluate the relevance of a sequential

pattern. Given a dataset named S, consisting of a set of sequences, the support

of a sequence α, represented by Sup(α), is the number of sequences in S which

are super sequences of α. Additionally, a sequence is frequent, i.e., is a sequential

pattern, if its support is equal or bigger than a minimum support established

by a specialist user. Thus, support is an important metric in our approach, as

it indicates if a sequence of method calls that appears repeatedly in the source

code can be considered a pattern.

In this work we propose the use of another metric, called confidence. This

metric is originated from the association rules field and can be adapted in the

context of sequential patterns mining as follows. Considering α and β as two

sequences, where α is a subsequence of β, the confidence of β in relation with α,

Conf (α→ β), is the proportion of sequences that contain β among all sequences

that contain α: Conf (α→ β) = Sup(β)/Sup(α).

This concept can be exemplified as follows. Assuming a sequential

pattern β consisting of 〈(StarWars)(EmpireStrikesBack)(ReturnoftheJedi)〉,

whose support is 28%, and another sequential pattern α consisting of

〈(StarWars)(EmpireStrikesBack)〉, whose support is 35%, then

Conf (α→ β) = 80%. Then, we can state: With 80% of confidence, customers

that rent Star Wars and Empire Strikes Back also rent Return of the Jedi.

In the context of our work, we could state that: “Developers that invoke

methods A and B, in this order, also invoke, with 80% of confidence, methods

C and D.” Besides, we use this metric to sort patterns. When the suggestions

for method calls are provided to the developer, the confidence indicates which

suggestions should be presented first. Thus, even if a large number of patterns

is returned from a query, the developer can analyze only the returned ones that

have the largest confidence values.

3.1.2 Source Code Data Mining Preparation

In order to discover sequential patterns, the data should be organized in sequen-

tial transactions, which are the usual input for sequential mining. However, this

is not the case in our context, as source code is stored in plain text, with no

rigid structure. On the other hand, every programming language obeys a set of

rules (i.e., a grammar), necessary to allow source code compilation. Thus, al-

though it is not possible to provide source code files as data mining input, these

programming language rules can be used to extract relevant information from

source code and organize them in sequential transactions.

As shown in Section 3.1.1, the analysis of sequential transactions can detect

sequential patterns, i.e., frequent sequences of events. Nevertheless, in distinct

application domains, sequences, events, and items have different meanings. In
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public int countChars(String str, Character lookedChar){

int count = 0;

for (int i = 0; i < str.length(); i++) {

Character readChar = str.charAt(i);

if(readChar.equals(lookedChar)){

count = count + 1;

}

}

return count;

}

Figure 2: JavaMethodBody

this work, each event is a single method call and a sequence of events is the

ordered list of method calls that occur in a method body. With that in mind,

each event is atomic, as it is not possible to divide one event into different

items. Thus, in this context, sequential patterns are ordered lists of method

calls that appear repeatedly in different method bodies. For instance, given the

code fragment presented in Figure 2, which represents a method body coded in

Java, the following sequence would be extracted: 〈“java.lang.String.length()”,

“java.lang.String.charAt(I)”, “java.lang.Char.equals(java.lang.Object)”〉.

It is important to notice that our approach statically analyses method calls.

For this reason, the dynamic binding process that determines which class is

invoked at run-time is not considered during the sequential discovery of the

patterns. In the case of polymorphism, where the method actually being executed

at run-time belongs to a subclass, only the superclass method will be considered

during the data mining process.

3.1.3 Tree Generation

After the source code preparation, presented in the previous section, the prepared

data is mined using the PLWAP algorithm [Ezeife et al. 2005], as detailed in Sec-

tion 4. This data mining process returns a list of patterns (frequent sequences),

accompanied by their support. However, this representation is not appropriate

for use as a searchable structure, as only a linear search would be possible. In

this work we propose the use of a special tree, with variable depth and width.

This structure allows us to save space, provided that we can combine suggestions

with the same prefix, and also speeds up the querying response time, as we can

use a hash function for each tree level. Figure 3 gives a graphical representation

of this tree with the following five patterns stored in it: 〈(A)(B)〉, 〈(C)(D)(E)〉,

〈(C)(D)〉, 〈(C)(E)〉 e 〈(D)(E)〉.
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Figure 3: Sequential Pattern Tree with support and confidence annotation.

It is important to notice that this tree provides a querying asymptotic com-

plexity [Parberry and Gasarch 2002] O(n), where n is the size of the sequence

being queried. This is due to the presence of every tree element also on the sec-

ond level of the tree, as it can be seen in methods B, D, and E of Figure 3,

which are present on both the third and second levels of the tree.

This behaviour is expected since the well-known antimonotonicity [Han and

Kamber 2011] principle states that if a sequence is frequent (i.e., the support of

this sequence is above minimum support), all of its subsequences are also fre-

quent. We can see this in the occurrences of method B in Figure 3, for example.

Besides being stored on the third level, due to sequence 〈(A)(B)〉, this method

is also stored on the second level, representing sequential patterns whose first

event is method B.

The support and confidence are also annotated in this tree. Considering every

tree node as the end of a sequential pattern, this node contains the pattern

support. On the other hand, a pattern confidence cannot be seen as a single

value, as it depends on the subsequence being queried. Given a pattern consisting

of three methods, for example, we could suggest this pattern in two distinct

situations: where the developer may have coded only the first method or may

have already coded the first two methods of this pattern. In the former situation,

the second and third methods of this pattern would be suggested, whilst in the

latter, only the third. In these situations, what is more important is that both

have different confidence values. Therefore, the length of the sequential pattern

determines how many confidence values it should have. For instance, given a

sequence with three elements, X =〈(C)(D)(E)〉, this sequence has the following

confidences :
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– Confidence of X related to an empty query, which is equal to Sup(X);

– Confidence of X related to a query 〈(C)〉, which is

Conf (〈(C)〉 → X) = Sup(X)/Sup(〈(C)〉); and

– Confidence of X related to a query 〈(C)(D)〉, which is

Conf (〈(C)(D)〉 → X) = Sup(X)/Sup(〈(C)(D)〉);

According to this example, several suggestions may be offered to the VCC

user. Given that a method call C, whose support is s, was coded (and used as

a query) and there is a sequence 〈(C)(D)〉 stored in the sequential pattern tree,

whose support is s1, it is possible to suggest the method call D with confidence

c1, where c1 = s1/s. Besides, if a sequence 〈(C)(D)(E)〉 is also stored in the

sequential pattern tree with support s2, it is possible to suggest the sequence

〈(D)(E)〉 with confidence c2, where c2 = s2/s.

Figure 3 also shows the annotation of support and confidence in the tree. For

instance, when observing the frequent sequence 〈(C)(D)(E)〉, it is possible to see

the confidences 40% and 70% in the last node (deepest level), which represents

method E. These confidence values respectively represent:

– The sequential pattern 〈(C)(D)(E)〉 confidence related to 〈(C)〉 and

– The sequential pattern 〈(C)(D)(E)〉 confidence related to 〈(C)(D)〉.

A pseudo-code of the pattern tree generation is illustrated in Algorithm 1.

The block of instructions between lines 1 and 12 is executed for each mined

pattern. In line 2, the variable parent is initialized as the root node to start the

tree navigation. From lines 3 to 10, each method that forms a pattern is searched

in the current parent node children. If the method is not found, a new node is

created to represent it on line 7. On line 8, this node is added to the parent

children set. Finally, parent is updated on line 9 with the previously discovered

or created node.

3.2 Patterns Querying Stage

The first challenge on querying sequential patterns is defining which events

should form the query. We evaluated some strategies to select the method call

sequences that should be used as query input. The first strategy we considered

was the use of the last programmed method calls in a contiguous way. How-

ever it did not prove to be a good option, as some method calls can be noise

(not common) and do not belong to the sequential pattern tree. For example,

the query 〈(C)(Z)(D)〉 would not provide any suggestion considering the tree in

Figure 3. However, (C)(D) is a non-contiguous subsequence of 〈(C)(Z)(D)〉 and

would provide (E) as a suggestion.
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Algorithm 1 Create Tree(patterns, root)

1: for all pattern ∈ patterns do

2: parent← root

3: for all method ∈ pattern.sequence do

4: if ∃node ∈ parent.children | node.method = method then

5: parent← node

6: else

7: node← new Node(method, pattern.support)

8: parent.children← parent.children ∪ {node}

9: parent← node

10: end if

11: end for

12: end for

As a real example, a common sequential pattern that is usually not coded

contiguously is related to database access. When a connection is opened, a se-

quence of commands related to the start of a transaction, queries, updates, and

the commit or rollback of the transaction occurs before closing the connection.

These commands are mingled with domain specific code, which acts as noise in

the context of this specific pattern.

Another strategy would be the interpolation of method calls located closer to

the developer cursor at the time of code completion request, avoiding the need

for querying all the previously coded methods. This possibility could avoid the

noise problem, although the aforementioned database coding pattern and many

others could be ignored, as patterns can be distributed over the entire body of

the method.

This leads us to the need of interpolating all the already coded method

calls. We address this issue through the generation of all possible combinations

for method calls, keeping the same sequential order. For instance, the sequence

〈(C)(Z)(D)〉 could generate the following query sequences: 〈(C)〉, 〈(Z)〉, 〈(D)〉,

〈(C)(Z)〉, 〈(C)(D)〉, 〈(Z)(D)〉, and 〈(C)(Z)(D)〉. Nevertheless, the generation of

all the combinations of method calls increases query response time. We minimize

this threat by limiting the size of the combinations, allowing queries to respond

in a timely manner. This limit can be configured according to the needs of the

user.

Besides this limit of combinations size, we also developed a pruning strategy

to avoid the necessity of querying every generated combination. This strategy is

based on the antimonotonicity principle mentioned in Section 3.1.3, if a sequence

is not frequent then all of its super-sequences are equally not frequent. The prune

of sequences is executed on the fly during the querying phase. Every time a non-
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frequent sequence is queried, all of its super-sequences are discarded, preventing

them from being queried. Finally, after querying all method calls combinations,

the sequential patterns obtained are ranked according to their support and con-

fidence values and suggested to the developer. Then, the developer can receive

these suggestions and choose the most appropriate one.

We can exemplify the whole process based on the tree shown in Figure 3.

Suppose a developer codes the method calls A, D, and F , in this order. Then, the

VCC plug-in would generate the following method combinations:

〈(A)〉, 〈(D)〉, 〈(F )〉, 〈(A)(D)〉, 〈(A)(F )〉, and 〈(D)(F )〉. These combinations

would be queried in the sequential pattern tree, ordered according to their size.

First, the method call A would be queried, and method call B would be

returned with support equal to 5% and confidence equal to 62.5%. After that,

the VCC would query method call D, and method call E would be returned with

a 3% of support and 66.6% of confidence. Next, after querying method call F ,

no pattern would be found and the following combinations would be discarded:

〈(A)(F )〉 and 〈(D)(F )〉. Then, combination 〈(A)(D)〉 would be queried and again

no pattern would be returned. The combination 〈(A)(D)(F )〉 would not even be

generated because there is no pattern in the tree with more than three method

calls, and this way, the maximum combinations size is automatically set to two.

Last but not least, the identified patterns would be ranked according to their

confidence values and suggested in the following order: D → E, A→ B.

Algorithm 2 presents the search process for patterns. In line 1, all method

calls located above the cursor at the time of a vertical code completion request

are combined, limited to a maximum combinations size configuration. In line 2,

the suggestions variable starts as an empty set. From line 3 to line 9, each method

combination is analyzed. A combination is looked for in line 4. If found, every

super-sequence that starts with this method combination becomes a suggestion

with specific support and confidence. After that, the current suggestions are

added to the suggestions set. If no suggestion is found, every super-sequence of

this combination is pruned in line 7. Finally, in line 10 the suggestions are sorted

by confidence.

4 VCC Plugin

In order to implement our approach, we developed a plug-in for the Eclipse

IDE, named VCC Plugin. This plug-in was coded in Java and also uses Java as

target language. These decisions open a wide range of opportunities, as Eclipse

has an active and expressive ecosystem and Java is one of the key programming

languages nowadays. The Eclipse ecosystem provides supporting libraries for

source code processing, such as ASTParser [Holz et al. 2008], which translates

Java code into an Abstract Syntax Tree (AST). Despite the fact that the AST
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Algorithm 2 Search Patterns(root,method calls)

1: combinations← Gen Method Combinations(method calls)

2: suggestions← ∅

3: for all comb ∈ combinations do

4: combination suggestions← Find Combination In Tree(root, comb)

5: suggestions← suggestions ∪ combination suggestions

6: if combination suggestions = ∅ then

7: Prune Combinations(comb, combinations)

8: end if

9: end for

10: suggestions← Sort(suggestions)

11: return suggestions

is a strict representation of the syntax of the source code, this representation

is a viable data source for sequential patterns mining. Thus, the source code

analysis, highlighted in Subsection 3.1, could be performed on this AST.

The AST processing consists of extracting method calls from every method

body of a project. The first step to obtain the method bodies is to follow the class

hierarchy of the project. This hierarchy is aligned with the structure adopted by

the Eclipse IDE and the Java programming language, where the top level element

is a Workspace. The Workspace element contains Projects and Projects contain

Packages, which, in turn, contain Classes. VCC Plugin accesses all Packages of

a given Project in the Workspace. With the Packages at hand, each Class is pro-

cessed to obtain its Methods. Finally, the VCC Plugin obtains the Method Calls

for each Method and stores them in an event structure, forming transactions

that enable the task of mining sequential patterns. Every ASTParser access was

implemented using the Visitor design pattern [Gamma et al. 1994].

We compared two widely known sequential pattern mining algorithms avail-

able in the literature to support the implementation of the data mining activity:

GSP [Srikant and Agrawal 1996] and PLWAP [Ezeife et al. 2005]. Both present

the same behavior (produce the same output for a given input), but PLWAP, a

FP-tree [Han et al. 2004] based algorithm, was chosen due to its superior pro-

cessing performance (speed) in relation to GSP, an Apriori [Srikant and Agrawal

1994] based algorithm. However, despite the satisfactory performance of PLWAP,

it was necessary to adapt its original implementation, as its output was restricted

to merely informing which sequences were frequent, without providing the sup-

port metric. With this adaptation we could calculate the confidences of each

frequent sequential pattern, as presented in Subsection 3.1.1.

As discussed in Subsection 3.2, we opted to generate all the combinations

of method calls to guarantee that some patterns were not left out of the set of
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patterns suggested to developers. The VCC Plugin uses the cursor position as a

reference to the place where the developer wants suggestions, as in traditional

code completion. When a developer rests the cursor over some line of code and

invokes the VCC Plugin, all method calls between the beginning of the method

body and this line are combined and then queried in the pattern tree. Figure 4

shows the cursor position in a method body before requesting some method

calls suggestions from the VCC, which can be done using the “Vertical Code-

Complete” menu item, also shown in the figure.

Figure 4: Developer invoking source code suggestions.

After that, it is necessary to read all the method calls located above the

cursor position. This task is also done with the ASTParser. However, in this

case it is not necessary to iterate over all packages, classes, and methods, as

the cursor position provides the method from which method calls should be

obtained. Next, the combinations of method calls are queried and the sequential

patterns obtained are suggested to the developer.

Figure 5 shows the suggestions obtained in a Tomcat2 method, an open

source project used in our approach evaluation, detailed in Section 5. As it can be

seen, the method call “java.lang.String.toCharArray()” was already coded and

2 http://tomcat.apache.org/
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the VCC plug-in discovered that developers who invoke

“java.lang.String.toCharArray()” also invoke “java.lang.String.charAt(I)”, with

26.6% of confidence.

After receiving the suggestions, the developer can select the desired sequence

and VCC Plug-in inserts all method calls automatically, as shown in Figure 6.

The inserted method calls contain the full method signature, to avoid misunder-

standings. Despite the fact that this pattern can be seen as an obvious method

call sequence, it was selected because it illustrates the usefulness of our approach.

However, VCC can discover many other patterns, even domain-dependent ones,

as it is not based on pre-defined information. This makes VCC generic in terms

of project requirements, as it works over any java project, but specific in terms

of results, as it is able to suggest patterns particular to each project.

Figure 5: Suggestions extracted from sequential patterns.

5 Evaluation

This section presents two different evaluations of our approach. As mentioned in

Section 1, this paper is an extended version of a conference paper, and, as the

first paper was published only in Brazilian Portuguese, we also included here

an evaluation with developers, which was shown in that paper. This evaluation

consists in presenting suggestions provided by VCC to the actual development

team and collecting feedback on how useful they are. After this experiment, we

carried out a post-hoc evaluation, which is being first published in this paper,

where our goal was to verify if the suggestions obtained by VCC would be useful

in other contexts. To achieve this, we applied the VCC Plugin over four popular

open source projects, checking whether VCC suggestions would have been useful

had them been used in the development of these projects. Therefore, what we

intended to evaluate is the benefit to the developers, simulating the use of VCC
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Figure 6: Selected suggestion after being added into the code.

just before each change. In the following subsections, we detail the evaluation

method and present the obtained results for both evaluations.

5.1 Evaluation with Developers

5.1.1 Evaluation Method

The evaluation with developers consisted in running VCC over an undergraduate

course management system at Fluminense Federal University, called IdUFF. This

system was developed on Java and, at the time we conducted the experiment, it

had approximately 40,000 users. From a source code perspective, it had around

300 KLOCs distributed over 779 Java classes. We choose this project because we

had access to the developers, allowing us to show them the suggested patterns,

asking for feedback in terms of usefulness.

More specifically, we collected ten patterns from the IdUFF source code and

presented these patterns to the IdUFF developers through a questionnaire. The

developers were instructed to imagine themselves coding a specific method call

and receiving a suggestion. In the questionnaire, they could tell us whether

each suggestion was useful or not by choosing one of the following options: dont

know, totally disagree, partially disagree, partially agree, and totally agree. All

participants took the survey voluntarily and signed a consent form.

The questionnaire patterns were obtained using a minimum support of 0.3%

and the pattern selection was made through a confidence variation between 15%

and 100%. The support value was chosen after some experimental tests and the

confidence range was selected to present both strong and weak patterns. Also, we

only selected patterns with two methods, an antecedent and a consequent, aiming
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at simplifying the questionnaire answer. The selected patterns are presented in

the list below (their support and confidence are listed in Table 1).

1 coded method: org.mockito.internal.progress.NewOngoing<Integer>.thenReturn(
java.lang.Integer)

suggestion: org.mockito.Mockito.when(java.lang.Integer)

2 coded method:br.uff.iduff2.managedbeans.BaseMB.error(java.lang.String)
suggestion: java.lang.Throwable.getMessage()

3 coded method:br.uff.commons.utils.oracle.ConexaoOracle.getInstance()
suggestion: java.sql.Connection.prepareStatement(java.lang.String)

4 coded method:org.hibernate.Query.setParameter(I, java.lang.Object)
suggestion: org.hibernate.Query.list()

5 coded method:br.uff.iduff2.relatorio.RelatorioFactory.getRelatorio(I)
suggestion: br.uff.iduff2.relatorio.Relatorio.geraRelatorio(

java.util.List, java.util.Map)

6 coded method:br.uff.iduff2.modelo.academico.Turma.getDisciplina()
suggestion: br.uff.iduff2.modelo.academico.Disciplina.getCargaHorariaTeorica()

7 coded method:br.uff.publico.core.model.Identificacao.getNome()
suggestion: br.uff.publico.core.model.Identificador.getIdentificacao()

8 coded method:java.lang.String.isEmpty()
suggestion: br.uff.iduff2.managedbeans.BaseMB.info(java.lang.String)

9 coded method:java.util.logging.Logger.log(java.util.logging.Level, java.lang.String,
java.lang.Throwable)
suggestion: java.lang.Throwable.getMessage()

10 coded method:br.uff.iduff2.managedbeans.BaseMB.info(java.lang.String)
suggestion: java.lang.Throwable.getMessage()

5.1.2 Obtained Results

We collected sixty answers from the evaluation questionnaire, 6 for each ques-

tion. 43 of them positive, where 32 totally agree and 11 partially agree with

the suggestions, indicating an acceptance rate of 71.6%. Twelve answers were

negative, 6 being totally disagree and 6 partially disagree, representing a 20%

rejection. Also, 5 answers, representing 8.33%, were marked as I dont know.

Table 1 presents patterns’ support and confidence and the percentage of

answers each question received.

Analyzing the results we can observe a correlation between negative answers

and low confidence values, as in questions 6 and 8, for example, which altogether

got 8 out of 12 negative answers. Moreover, the three questions with higher

confidence (1, 3 and 5) received only positive answers. These results endorse our

choice of using confidence values as an important metric to rank the results.
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Table 1: Question answers with support and confidence values.

When analyzing the results in terms of developer experience, we could observe

that novice developers (2 years or less in the project) answered totally agree to

85% of the high confidence patterns (greater than 60%) presented to them.

The remaining 15% answers were dont know. This is a strong evidence that

high confidence patterns can be useful for novice developers. At the end of the

experiment, some participants expressed their interest in using the plugin in a

daily basis. However, as their usual IDE is Netbeans, it would demand some

additional development effort to convert VCC from Eclipse.

5.2 Evaluation over Open Source Projects

5.2.1 Evaluation Method

After applying VCC over IdUFF, we were wondering if the positive results were

obtained by chance or if other systems, developed under other conditions, would

also benefit from VCC. To answer this question, we applied the VCC Plugin over

four widely known open source projects. These projects are: Ant3, Eclipse Maven

Plug-in4, Log4j5, and Tomcat, all of them developed by The Apache Software

Foundation6. Ant is a Java library and command-line tool for automating the

Java build processes. It has been developed since 2000. Eclipse Maven Plugin

is used to configure Java projects that use Maven7, another Java building tool,

in Eclipse IDE. This plug-in has been developed since 2010. Log4j is a logging

package for printing log outputs for different destinations. The Log4j repository

3 http://ant.apache.org
4 http://maven.apache.org/plugins/maven-eclipse-plugin
5 http://logging.apache.org/log4j/1.2/
6 http://www.apache.org
7 http://maven.apache.org/
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used in our evaluation was created in 2007. Finally, Tomcat is a Web server

and servlet container that implements the Java Servlet8 and JavaServer Pages9

specifications. The repository used in our evaluation is a fork for Tomcat 7,

created in August 2011.

After selecting these projects, it was necessary to define the value of two pa-

rameters required by VCC: minimum support and maximum combinations size.

Aiming at reducing bias to our evaluation, we set the same maximum combina-

tions size for all projects. We defined this value to five, after some experimental

tests. However, we could not do the same regarding minimum support, as the

amount of method declarations is very distinct amongst the evaluated projects.

The minimum support, defined as the minimum number of method bodies where

a sequence of method calls occurs to be considered as a pattern, was set accord-

ing to the amount of method declarations (i.e., the amount of transactions that

are mined) of each analyzed project, as shown in Table 2. It is important to

notice that this is not a linear relation, and these values were also obtained

through experimental tests to conciliate a good amount of patterns with a vi-

able response time. For the record, in Ant Project, the pattern mining took 167

seconds and the pattern querying took at maximum 2 seconds, showing that

VCC is completely viable for online use. Even the offline phase, where data min-

ing is actually performed and can be executed late night, run in less than 3

minutes in this case.

Project Number of Method Declarations Support

Ant 11823 12

Eclipse Maven Plugin 743 5

Log4J 3077 8

Tomcat 18077 12

Table 2: Number of method declarations and support values used.

Our evaluation method consists of mining frequent sequences of method calls

from a training dataset and evaluating the obtained patterns over a test dataset.

For each project, both datasets are derived from the same open source project

history.

However, instead of splitting classes into two mutually exclusive sets, one for

training and the other for testing, for each project, we selected an old revision

from the projects source code repository to play the role of the training dataset,

8 http://www.oracle.com/technetwork/java/index-jsp-135475.html
9 http://www.oracle.com/technetwork/java/javaee/jsp/index.html
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and used the subsequent revisions to build the test dataset. This strategy resem-

bles better the expected usage of VCC, where data mining is run in a specific

moment in time and queries are performed after this moment. The evaluation

method is detailed in the following steps:

1. The amount of revisions of the target open source project is counted.

2. The revision that is one quarter older in relation to the whole project history

is selected to be the training dataset.

3. VCC Plug-in is applied over this revision and the obtained patterns are

stored.

4. The first ten subsequent commits that added method calls to some Java class

are separated to be the test dataset.

5. For each commit in the test dataset, every method body where a method

call was added was analyzed.

6. For each method body, we verified if VCC would be able to suggest at least

one of the method calls that were actually inserted in the code. Moreover,

we populated six dependent variables with the obtained results:

– NA: Does not apply. Number of methods where the method calls were

added at the beginning of the method bodies.

– NS: Number of methods for which no suggestion was provided by the

VCC Plugin.

– SP: Number of methods for which suggestions were provided by the VCC

Plugin.

– SA: Number of methods where a suggestion would have been accepted

by the developer.

– P: Precision, which is the fraction of suggestions accepted by the devel-

opers (SA/SP ).

– R: Recall, which is the fraction of methods that received an accepted

suggestion (SA/(NS + SP )).

With these variables in hand, we could analyze how often the VCC Plug-in

would provide useful suggestions (recall) and how correct the provided sugges-

tions are (precision). This way, recall helps in understanding if the VCC Plugin

would be just another tool that is never used or if it would frequently aid in

coding. On the other hand, precision helps understanding if the VCC Plugin

disrupts the process with wrong suggestions or if its suggestions should, indeed,

be taken into consideration.
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5.2.2 Evaluation Results

Table 3 shows the results obtained in our evaluation. For each evaluated project,

the following information is shown, from left to right: amount of revisions avail-

able in the repositories, revision used as training dataset, amount of edited

method bodies, and the dependent variables described in Section 5.2.1.

Project Total Analysed Edited NA NS SP SA P R

Revisions Revision Method Bodies

Ant 12872 9654th 13 3 1 9 4 44% 40%

Eclipse 739 555th 22 5 3 14 10 71% 59%

Maven Plugin

Log4J 287 215th 31 2 5 24 14 58% 48%

Tomcat 1738 1304th 21 3 9 9 6 66% 33%

Total - - 87 13 18 56 34 61% 46%

Table 3: Obtained results.

In the Ant project, only 13 method bodies were evaluated. In 10 (NS+SP )

of them, some suggestion could have been provided. VCC provided 9 suggestions,

4 of which would have been accepted by the developer. This leads to a precision

of 44% (4 accepted suggestions out of 9 suggestions in total) and a recall of 40%

(4 accepted suggestions out of 10 opportunities). In the Eclipse Maven Plugin

project, VCC would have 17 opportunities to provide suggestions. From these, 14

suggestions would have been provided and the developers would have accepted

10 of them, leading to a precision of 71% and a recall of 59%.

Log4J was the project with the highest amount of edited method bodies.

This would have opened 29 opportunities to apply the VCC. From these, 24

suggestions would have been provided and the developers would have accepted

14 of them, leading to a precision of 58% and a recall of 48%. Finally, the Tomcat

project offered 18 opportunities for suggestions. From these, 9 suggestions would

have been provided and the developers would have accepted 6 of them, leading

to a precision of 66% and a recall of 33%.

In the analysis of the last row of Table 3, we can see that 87 method bodies

were evaluated in total. In 74 of them, some suggestion could have been pro-

vided. VCC would have actually provided suggestions to 56 of them. Of these,

34 suggestions would have been accepted by the developer, leading to an overall

precision of 61% and a recall of 46%. These results show that the VCC would

indeed help in the coding activity, as in almost half of the methods being coded

it would provide some useful suggestion. Moreover, its suggestions would be
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taken seriously, as they are usually correct, with a peak of only 29% of mistaken

suggestions in the case of the Eclipse Maven Plugin.

In order to understand why the precision obtained in Ant project were not

as good as the obtained in other projects, we also ran the experiment in a

different moment in history. Since Ant is the oldest evaluated system, we suppose

that the project age could have influenced our results. In this new trial, we

selected a revision located in the middle of Ant history and re-executed the

same experiment that was run before. We used the same support, 12, and the

amount of method declarations that were available at that moment was 8712.

The obtained results are presented in Table 4.

Project Total Analysed Edited NA NS SP SA P R

Revisions Revision Method Bodies

Ant 12872 6436th 30 5 11 14 7 50% 28%

30 15 3 12 5 42% 33%

Table 4: 50% history Ant results with and without short methods.

Despite the recall decrease, in this new trial we observed a precision increase,

indicating that VCC was more selective when providing suggestions. We also

analyzed the cases where no suggestions could be provided. In 72% (8 of 11) of

them, the method bodies were composed by at most three method calls. Thus,

at most two method calls could be used to query the pattern tree. Eliminating

this extreme situation of small methods, we would achieve 42% of precision and

33% of recall, as presented in the last row of Table 4.

5.3 Threats to Validity

Despite the effort made to provide a consistent evaluation of our approach, we

have identified some threats to validity in the experiment.

Regarding the evaluation with developers, we can mention the limited num-

ber of participants (six) and the reduced amount of patterns (ten). These lim-

itations are due to the fact that all participants were selected voluntarily and

our evaluation could not take too much time of their workday.

Regarding the evaluation over open source projects, it was held without auto-

mated support. Besides the fact that every repetitive manual task is error-prone,

we did our best to avoid subjective interpretation. In addition, we adopted tools

to help inspecting each commit and gradually run the evaluation to avoid fatigue.

Moreover, the parameterization of the VCC Plug-in was also done by hand

and required some tuning. As the obtained results depend on the parameter
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values, we cannot guarantee that the precision and recall values attained are the

highest possible for each project. There is often an inverse relationship between

precision and recall, and different parameter values may affect this relationship,

increasing precision and decreasing recall or vice versa. Some additional evalua-

tions should focus on identifying the effects of parameter sweeping over precision

and recall.

Finally, as the evaluation process was not automated, we could not evaluate

every commit made after the mined revision, limiting the number of the sample

to the first ten commits that added method calls after the mined revision. This

way, a statistic evaluation could not be made. In fact, the results present only

initial evidence to the usefulness of our approach.

6 Conclusion

This work presented a novel code completion technique, named Vertical Code

Completion, that uses data mining to extract frequent coding sequences and sug-

gests additional method calls according to what has been already coded. Thus,

differently from traditional code completion, which provides only source code

syntactic suggestions, our approach can identify domain-specific code sequences,

leading to semantic suggestions.

We developed a plug-in that implements both the sequential pattern mining

stage and the querying stage. This plug-in provides an additional metric to the

usual support metric used in sequential pattern mining. This additional metric,

adapted from association rules mining, indicates the confidence of a sequence

assuming that another sequence already occurred.

Besides, we conducted two controlled experiments. First, we applied a ques-

tionnaire to a development team to identify if the patterns obtained by VCC

would be useful and how the confidence ranking was appropriate. We have ob-

tained promising results, with a 71.6% acceptance. After that, the VCC Plugin

was applied to four projects in a post-hoc experiment. With this experiment we

found evidences that our approach can provide useful source code pattern sug-

gestions in up to 59% of the cases where method calls were added to Java Method

Bodies. Also, in up to 71% of the situations where method calls were suggested,

at least one of the suggestions was an exact anticipation of the method calls a

developer would invoke.

We identified that when few methods are added, it is harder to predict a

method completion. This is intrinsically related to data mining, as data mining

demands some data to extract useful patterns. This way, too young projects

(few methods) and too small methods can negatively affect our approach. On

the other hand, the ideal situation for our approach is when methods are coded

from scratch over a project that is already on late development or maintenance.
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We envision future work that can improve the quality of the suggestions

made by the VCC. For example, we could take the control structures of the

programming language into consideration during source code analysis, such as

decisions, iterations, and exception handling. This way, a method with condi-

tional structures would produce more than one independent sequences, instead

of only one as it currently does. For instance, a method with an if-then-else

statement would produce two independent sequences. Furthermore, we are still

investigating an ideal approach to automatically tune the support threshold for

each target application, relieving developers from configuring such parameter.

Finally, other future work consists of the use of the sequential pattern tree, gen-

erated as an intermediate result by the VCC Plug-in, for the discovery of code

clones. This could be used as input to a refactoring procedure, decreasing source

code replication.
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