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Almost a century ago, Brouwer launched his first intuitionistic programme for
mathematics. He did so in his dissertation of 1907, where he formulated the basic
act of creation of mathematical objects, known as the ur-intuition of mathemat-
ics. Mathematics, in Brouwer’s view, was an intellectual activity of men (of the
subject), independent of language and logic. The objects of mathematics come
first in the process of human cognition, and description and systematization (in
particular logic) follow later. The formulation of the ur-intuition is somewhat
hermetic, but in view of its fundamental role, let us reproduce it here.

Ur-intuition of mathematics (and every intellectual activity) as the sub-
stratum, divested of all quality, of any perception of change, a unity of
continuity and discreteness, a possibility of thinking together several en-
tities, connected by a ‘between’ that by the interpolation of new entities
never gets exhausted.

As we see, Brouwer sees the ur-intuition as the genesis of both the discrete part
of mathematics, let us say, the natural numbers, and of the continuous part, i.e.
the continuum. Neither of these can be reduced to the other.

A more refined analysis was given in the Vienna lectures (although it is fore-
shadowed in the so-called ‘rejected parts’ of the thesis), where the notion of
the falling apart of a moment of life is introduced. In the final presentation,
Consciousness, Philosophy and Mathematics (CPM), [Brouwer 1949a], this phe-
nomenon is described as the move of time: ‘By a move of time a present sensation
gives way to another present sensation in such a way that consciousness retains
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the former one as a past sensation and moreover, through this distinction be-
tween present and past, recedes from both and from stillness and becomes mind.’
Thus the subject has created a ‘twoity’ of a past and present sensation. The pro-
cess evidently can be iterated, and complexes and strings of sensation become
the object of attention. The sensation complexes form a bewildering mixture,
in which a certain order is introduced by the causal attention. This carries out
a process of identification. One may think of the identification of ‘similar’ com-
plexes, or of abstraction.

In CPM the notion of causal sequence is further refined: ‘An iterative complex
of sensations whose elements have an invariable order of succession in time,
whilst if one of its elements occurs, all following elements are expected to occur
likewise, in the right order of succession, is called a causal sequence’. It might
be tempting to explain these, let us say ‘strongly causal sequences’, scs, by a
causality, independent of the will of the subject. This, however, is rejected by
Brouwer. On the contrary, causality is explained by the notion of strong causal
sequence. A scs can be put to use by the subject in order to realize events that
are not immediately obtainable. One only has to realize the first event of a scs, or
an intermediate one, in order to obtain the final event. The procedure of realizing
the final (and desirable) event by realizing a preceding event was called the ‘jump
from end to means’, and later the mathematical or cunning act. The jump from
end to means, is a useful and convenient tool for the subject to dominate nature
and for the protection of his personal sphere.

Assuming that in a scs a0, . . . , ak, . . . , an the realization of all stages is indeed
of a fixed determined nature, one may recognize in the jump from end to means
the germ of the constructive implication. The transition from, say, ak to an is
completely lawlike and thus the proof interpretation of A → B is foreshadowed
by the automatic and algorithmic transition from (the building for) A to (the
building for) B. Of course, the subject may and will add much more regularity
to causal sequences than the primitive spontaneous sequence of sensations offers.

By abstracting from all accidental features of twoities, the empty twoity is
obtained. In other words, by identifying all twoities one obtains the object where
only order and distinction are recognized. This empty twoity then can take the
place of the number 2. From there it is not difficult to generalize to the individual
natural numbers, and the next step — the recognition of the iteration of the ‘next
number’ step as a legitimate mental construction, together with the corollary,
the (potentially infinite) set of natural numbers — is mentioned in passing by
Brouwer . He speaks of ‘unlimited unfolding’ (CPM, p.1237).

Thus the basic material of ‘discrete mathematics’ is at the disposition of the
subject. This part of the process of creating is later called the first act of intu-
itionism. We should note that the aspect of simultaneous creation of discrete and
continuous, is played down, but as late as the Vienna lectures (1928) Brouwer

2133van Dalen D.: How the Mathematical Objects Determine the Mathematical Principles



pointed out that both acts of intuitionism are grounded in the ur-intuition. The
continuum is given in the move-of-time act as the ‘between’. In his Rome lecture
(1908) Brouwer explicitly points out that ‘the first and the second are thus kept
together, and the intuition of the continuous (continere = keeping together) con-
sists of this keeping together’. And he adds: ‘This mathematical ur-intuition is
nothing but the contentless abstraction of the sensation (experience) of time’.
Time is thus created by the subject through the ‘move of time’, together with the
continuum and the natural numbers. The second act of intuitionism is the cre-
ation of ‘more or less freely proceeding infinite sequences of mathematical entities
previously acquired’ and of ‘species’, i.e. ‘properties supposable for mathematical
entities previously acquired’.

In CPM the two acts are tacitly lumped together under the act of ‘unlimited
unfolding’. The process of creation of causal sequences and complexes does ex-
tend beyond the realm of mathematics; indeed the physical world, as well as the
social one is made up of those objects. If we look for a minute at the physical
phenomena, then we can see the role of mathematics as follows. The objects
of the physical world are obtained by abstraction from sensation complexes,
a further abstraction gets the subject to mathematical objects and structures.
And hence there is a natural connection between the physical universe and the
mathematical, something like a projection. Although this does not explain the
success of mathematics in full, it shows that the connections do not come out of
the blue.

By and large, the above sketches the genesis of Brouwer’s mathematical uni-
verse. In the dissertation Brouwer goes to great lengths to determine the possible
sets in mathematics on the basis that there are no sets but those we can cre-
ate ourselves. After the introduction of choice sequences (cf. the second act) he
revised his views. The extent of the mathematical universe is modest compared
to the traditional Cantorian universe, from a classical point of view, Brouwer’s
universe does not get beyond ω1. But what it lacks in ‘height’ is compensated
by the extra fine structure which is inherent to the intuitionistic approach (and
its logic).

The most spectacular part of the universe is the second-order part, let us
say second-order arithmetic with sequences, species, or both. Where the first-
order part yields more-or-less a subtheory of classical arithmetic, but the second-
order part has certain specific properties that are incompatible with classical
mathematics.

We will look at a few of these principles. The first and most striking principle
was introduced by Brouwer in his courses on pointset theory of 1915-1917. The
principle appeared in print in 1918, in modern formulation it reads ‘A mapping
F from choice sequences to natural numbers has the property that each F (α) is
determined by an initial segment αk(= (α0, α1, α2, . . . , α(k − 1))
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Formalized: ∀α∃x∀β(αx = βx → F (α) = F (β)

The principle finds a more general form in the Principle of weak continuity

WC ∀α∃xA(α, x) → ∀α∃x∃y∀β(αy = βy → A(β, x)

Brouwer formulated his functional version in a proof, giving no argument for
it. A first attempt at a justification could run as follows: in order to compute the
natural number F (α) a finite number of steps is required, when the computation
is finished only finitely many members of the sequence α have been generated,
and so only this initial segment enters into the computation. Hence any sequence
β with the same initial segment yields the same value under F . This argument
only works in the case that only numerical information of α is used. In general,
however, information of a different kind may be used.

Here is an example, formulated as a game (Brouwer introduced game for-
mulations in his Groningen Lectures, 1930). There are two players, I and II. I
provides successively information about α and II has an algorithm for computing
F (α). At each step II may ask for more information or show the output. In our
example II simply takes F (α) = 100

I II
0 7 ?
1 2 ?
2 301 ?
...

...
...

13 5 and α becomes stationary F (α) = 5

Note that I may (and perhaps must) give more information than just the
numerical values of α. Indeed, if one accepts the idea of mathematics as a solitary
play of the subject, then I and II are no more than puppets controlled by the
subject. Thus the availability of full information is obvious.

Now there obviously are β’s with the same initial segment β14 = α14 =
(7, 2, 301, . . . , 5) with F (β) �= 5. This failure of the simple argument is caused
by the fact that suddenly a condition of a higher order is put on α. And higher
order condition cannot be avoided, if only because one wants to allow lawlike se-
quences (think of the difference between the decimals of π and those determined
by flipping a coin). Hence a better argument is required. One was provided by
Mark van Atten in a setting which slightly, but justifiably, extended Brouwer’s
framework. Brouwer demanded that once one has introduced a condition on
future choices (of values or conditions), one sticks to it. However, it is fairly
clear that his main stipulation was that each finite sequence of choices has at
least one immediate successor. By allowing higher order conditions to be re-
pealed, the extendibility condition is observed, and the extra flexibility certainly
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does not restrict the practical aspects of choice sequences. Now the possible
ephemeral nature of higher order conditions, disqualifies them for use in the
computation of the output of F on input α, see [van Atten – van Dalen 2002].
The analysis lays down certain conditions on the class of sequences for the va-
lidity of the continuity principle. The principle is in fact justified for the holistic
universe, but we can see that there is a new problem for research: for which
universes does WC hold? A simple example of a universes that violates the
continuity principle is the one in which each sequence eventually becomes con-
stant. The function F assigns this constant value to α; F is obviously not con-
tinuous. There is a rich literature on the continuity principle, see for example
[van Dalen–Troelstra 1988a, van Dalen–Troelstra 1988b]. The continuity princi-
ple has striking consequences in everyday mathematics e.g. Brouwer’s continuity
theorem - all real functions are continuous and the indecomposability of the con-
tinuum - R cannot be split into two non-empty parts. Both results confirm the
above mentioned incompatibility, in particular the latter shows that the principle
of the excluded middle is false: ¬∀x ∈ R(x = 0 ∨ x �= 0)

Weyl, in his basic paper, On the new foundational crisis in mathematics,
[Weyl 1921], adopted Brouwer’s intuitionistic programme, adding his own inter-
pretations to it. In particular Weyl did not give the same status to choice se-
quences Brouwer did. For Weyl choice sequences did not belong to mathematics
proper; all he accepted was the real status of initial segments. As a consequence
arbitrary reals were replaced by generating intervals. Such an interval, say (a, b)
for rational a and b, represents for Weyl the open horizon of ‘the reals that are
potentially given by the interval’. Concrete real numbers are given by lawlike
sequences of intervals, and arbitrary ones by choice sequences, in the represent-
ing interpretation. Hence there is on Weyl’s approach a fundamental distinction
between existential quantification (over lawlike reals), and universal quantifica-
tion (over choice reals). Apart from everything else, this destroys the hope of
salvaging the principle of the excluded middle. Here Brouwer’s and Weyl’s roads
separated. For Weyl quantified statements were ‘judgement abstracts’, not to be
taken for real judgements, whereas Brouwer recognized quantified statements as
ordinary statements with ordinary proof conditions. Hence for Weyl the conti-
nuity of all real functions was an obvious consequence of the notion of arbitrary
real number (approximations follow from approximations), whereas for Brouwer
there was a hard theorem to be proved. For more on the Brouwer-Weyl views,
see [van Atten–van Dalen–Tieszen 2002].

A further analysis, making use of transfinite principles (the principle of Bar
Induction, established the bar theorem, the fan theorem, and the locally uniform
continuity theorems (real functions on intuitionistically compact subsets of R

are uniformly continuous). For the practical consequences of these properties of
Brouwer’s universe see [van Dalen–Troelstra 1988a, van Dalen–Troelstra 1988b].
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So far the treatment of the universe was completely uniform, but in the
twenties Brouwer started to make the distinction between the lawlike and the
full continuum. Equivalently, between the set of lawlike sequences and the set
of (all) choice sequences. Historically speaking, there was a perfect reason to
do so. When dealing with infinite processes algorithms are the first things that
come to mind, for the law is the thing that guarantees infinite continuation. The
first Brouwerian counterexamples, were, not surprisingly, based on an algorithm:
the decimal expansion of π. However, once choice sequences were recognized by
him as legitimate objects (the subject is free to make choices), it was natural to
look for a counterpart of the (lawlike) Brouwerian counter examples where one
uses a decidable property of a lawlike sequence, which has neither been proved,
nor rejected. One should fully exploit the choice-character of sequences in the
hope of exploiting the properties of the full Brouwerian universe. In 1927 there
are the first signs of the new method, which was published some twenty years
later, and which goes by the name of the ‘creating subject’. The underlying
idea is that the subject investigates some particular property, while he carries
out a convenient bookkeeping at the same time: if at moment n A has not yet
been established, put down a 0, otherwise a 1. Brouwer uses the expression ‘the
creating subject experiences the truth of A’. Here it is tacitly assumed that ‘the
creating subject experiences the truth or he does not’, the simple argument being
that ‘in doubt, one does not experience the truth’. A reasonable assumption. In
view of the fact that the ur-intuition, in its function as a time-measuring and
-introducing principle, provides the subject with a sequence of moments ordered
like the natural numbers, the time parameter n is a natural one. The effect of
the activity of the creating subject is that a choice sequence α is in the following
way associated to a proposition A:

∃α(A ↔ ∃x(αx �= 0))

This formalization of Brouwer’s argument is due to Kripke and is called
Kripke’s Schema, KS Note that KS is an extra condition on the richness of the
Brouwerian universe. It asserts the existence of particular sequences, compare
the role of the axiom of choice. Thus it is not automatically seen that the old
principles still hold. It has in fact been shown that KS is consistent with most
principles. Kreisel formulated an interesting ‘tensed modal’ extension of the ex-
isting theories which captures the properties of the creating subject, and which
is equivalent to the extension by KS [Kreisel 1967], [van Dalen 1978]).

The classically inclined logician will note that KS is a very weak comprehen-
sion principle, which is provable in the classical setting. So whatever strength
one can expect from KS, it has to come from suitable extra principles, such as
the continuity principle.
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We will now proceed to show a number of consequences of KS in practi-
cal mathematics, consequences which are not mere curiosities, but which make
manifest certain features of the universe one would expect, and some unex-
pected phenomena to boot. The proofs are carried out under the assumption of
the continuity principle and Kripke’s Schema. It turns out to be convenient to
reformulate Kripke’s Schema, such that there is at most one 1 in the sequence
α : ∀x(

∑
y≤x α(y) ≤ 1). Let us call such a sequence satisfying A ↔ ∃x(αx = 1),

a Kripke sequence for A.

(1) ¬∀xy ∈ R(x �= y → x#y)

(2) ¬∀xy ∈ R(¬¬x < y → x < y)
(2) was shown by Brouwer in [Brouwer 1949b], and (1) follows by a com-
pletely similar argument.

(3) The Principle of ∀α∃β-continuity fails, [Myhill 1966].
Proof: consider the statement r ∈ R. We apply KS to ∀x(α(x) = 0):

∃β(∀x(α(x) = 0 ↔ ∃y(β(y) = 1))

Hence ∀α∃β(. . .); by ∀α∃β-continuity there should be a continuous functional
G: NN → NN such that ∀α((∀x(α(x) = 0 ↔ ∃y(G(α)(y) = 1)). Hence we
have a continuous functional G testing if an α is the zero-sequence 0. I.e. G

is 0 on all sequences distinct from 0, and non-zero on 0. This functional is
clearly discontinuous.

Note that therefore there is a real foundational choice to be made here: adopt
KS or ∀α∃β-continuity, but not both.

(4) All negative dense subsets of R are indecomposable.

By a negative subset X we mean one for which X = Xcc (in particular the
complement of a set is negative).

Proof. This theorem follows from two lemma’s. Let X be negative and dense
in R.

(4.1) If X = A∪B, with A∩B = ∅, then converging sequences (ai) and (bi)
in respectively A and B cannot have the same limit.

Assume ∀k∃n∀m(|am+n − bm+n| < 2−k). We consider the Kripke sequences
α for r ∈ Q and β for r �∈ Q, where r is an arbitrary real number.
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We define new sequences γ and ci by{
γ(2n) = α(n)

γ(2n + 1) = β(n)
and

{
c2n = an

c2n+1 = bn

Now we introduce a new sequence (di)

dn =
{

cn if ∀k ≤ n(γ(k) = 0)
ck if k ≤ n and γ(k) = 1

Claim: d ∈ X .
If d �∈ X , then d �∈ A; hence (dn) does not become stationary in A. So
α(n) = 0 for all n. And by the definition of Kripke sequence we get r �∈ Q.
Similarly d �∈ B; hence (dn) does not become stationary in B. Therefore
β(n) = 0 for all n, and thus r ��∈ Q. Contradiction.
So ¬¬d ∈ X . But since X is negative, we find d ∈ X .

As X = A ∪ B, d ∈ A ∨ d ∈ B. If d ∈ A then (dn) does not become
stationary in B, hence ∀nβ(n) = 0. By the definition of β this implies
¬¬r ∈ Q. A similar argument shows that ¬r ∈ Q if d ∈ B. As a result
we get ¬r ∈ Q ∨ ¬¬r ∈ Q. As r was en arbitrary real, we have established
∀r ∈ R(¬r ∈ Q ∨ ¬¬r ∈ Q) , which contradicts the indecomposability of R.
Therefore lim(an) �= lim(bn).

(4.2) If the above sets A and B are inhabited (i.e. contain an element), then
there are sequences in A and B converging to the same point.
The proof is a piece of elementary analysis, see [van Dalen 1999].

Conclusion: X is indecomposable.

This theorem shows that there are lots of indecomposable subsets of the
continuum, for example the irrationals, Qc, and the not-not-rationals, Qcc.
The continuum is clearly extremely ‘connected’; even if we punch holes in
it, it still remains indecomposable. Note that classically Qc is not connected.
It is even zero-dimensional. Intuitionistically it has dimension 1. The moral
is that the intuitionistic continuum is very tight, and that its topology will
offer unknown surprises and difficulties.

(5) The powerset of N exists.
More precisely: each subset of N can be represented by a suitable 0−1 choice
sequence.

The basic idea of the proof is that, given a subset X there is for each n a
Kripke sequence αn such that n ∈ X ↔ ∃x(αn(x) = 1) All these αn’s can be
glued together to form one α that tests membership for X . For the technical
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details, see [Dalen, D. van 1977].

(6) If R is indecomposable, then there are no discontinuous functions,
([van Dalen 2001]).
The converse is obvious, and it allows one to conclude the indecomposabil-
ity on the basis of Brouwer’s negative version of the continuity theorem (cf.
[Brouwer 1927]).

Proof. Let f be discontinuous, say in 0. It is no restriction to assume f(0) = 0.
Then ∃k∀n∃x(|x| < 2−n ∧ |f(x) > 2−k)

After determining k we can find a sequence (xn) with |f(xn)| > 2−k and
|xn| < 2−n.

Let α and β again be Kripke sequences for r ∈ Q and r �∈ Q. Put{
γ(2n) = α(n)

γ(2n + 1) = β(n)
and cn =

{
xn if ∀k ≤ n(γ(k) = 0)
xk if k ≤ n and γ(k) = 1

(cn) converges, say to c. As 0 < 2−k, we get f(c) < 2−k ∨ f(c) > 0. If
f(c) < 2−k, then f(c) = 0, so ∀p(γ(p) = 0), which is impossible. So f(c) > 0,
and therefore r ∈ Q ∨ r �∈ Q. As before we see that this yields a non-trivial
decomposition of the continuum. Contradiction.

This result establishes an equivalence between a certain characteristic of a
function and the nature of its domains. Results of this kind are familiar from
recursion theory and descriptive set theory.

In our description of Brouwer’s universe we have discussed a few basic prin-
ciples which have unusual consequences in practical mathematics. One of the
challenges of constructive mathematics is to find new principles that embody
certain specific phenomena that shed new and unexpected light on the universe.
Markov’s principle is one of those principles, but unfortunately, one cannot jus-
tify it on the basis of a strong notion of ‘constructive’. Kripke’s schema is a good
candidate. What we need is more experience with its applications, furthermore
it would be desirable to find a realistic mathematical principle equivalent to KS,
in the tradition of reverse mathematics.
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