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Abstract: Data assimilation is a method of combining an imperfect simulation model
and a number of incomplete observation data. Sequential data assimilation is a data
assimilation in which simulation variables are corrected at every time step of observa-
tion. The ensemble Kalman filter is developed for a sequential data assimilation and
frequently used in geophysics. On the other hand, the particle filter developed and used
in statistics is similar in view of ensemble-based method, but it has different properties.
In this paper, these two ensemble based filters are compared and characterized through
matrix representation. An application of sequential data assimilation to tsunami simu-
lation model with a numerical experiment is also shown. The particle filter is employed
for this application. An erroneous bottom topography is corrected in the numerical
experiment, which demonstrates that the particle filter is useful tool as the sequential
data assimilation method.
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1 Introduction

The Indian Ocean tsunami has called attention to the need for further stud-
ies on tsunamis. Past studies have been based on numerical simulation models.
The simulations and their validation based on obtained data have been con-
ducted separately. In these studies, a sea bottom topography is fixed in the
simulation model. However, uncertainty in the sea bottom topography and inac-
curacies in the numerical model exist in fact. In general, a numerical simulation
model has limit in approximation of physical processes and initial and boundary
conditions, which result in unpredictability often referred to as “butterfly effect”
[Lorenz (1963)]. On the other hand, observable physical variables are incomplete
data because technical and budgetary limitations exist. A natural development

Journal of Universal Computer Science, vol. 12, no. 6 (2006), 608-626
submitted: 31/5/06, accepted: 23/6/06, appeared: 28/6/06 © J.UCS



Table 1: Difference of characteristics between DA and other fields.

DA other fields

State vector dim. 103–106 100 − 102

Observation vector dim. 10–104 100 − 102

Evolutional model physical statistical
System representation source code analytic form
Computational cost high low

to compensate for insufficient information obtained by numerical simulations or
observations alone is to combine observations with the numerical models.

Data assimilation (DA, [Wunsch (1996)]) is a concept used in geophysics
that combines observations with numerical models. It can be formulated as a
state estimation problem by a nonlinear state space model (SSM). The SSM has
given a platform in non-stationary time series ([Kitagawa and Gersch (1996)],
[Higuchi (2001)]) and control studies for three decades after [Kalman (1960)].
In this formulation, all physical variables are included in a state vector and ob-
served data are included in an observation vector in SSM. A simulation model
is embedded into SSM as evolutional model which makes up system model in
SSM. The DA problem is an inverse problem in that there is less information
about the observation data than the estimated variables. However, many differ-
ences exist and make problem hard. [Tab. 1] represents some typical differences
between the DA and other fields. Difficulties with DA are that the scale of the
system model is extremely large compared with other fields using an SSM, the
simulation model which is based on physical model is often given only by source
code and computational cost to solve the simulation model is often high.

There are two types of DA, batch-type DA (4DVAR, [Courtier et al. (1994)])
and sequential DA. We concentrate on sequential DA in this paper. Sequential
DA estimates unobserved variables at each observation time. In the context
of sequential DA, the Kalman filter (KF, [Kalman (1960)]) and the extended
Kalman filter (EKF, [Anderson and Moore (1979)]) were applied to weakly non-
linear problems until the middle of 1990s. However, there are problems in ap-
plying them to strongly nonlinear problems, because the state vector cannot be
efficiently estimated or the covariance matrices and estimated state variables
are liable to be unstable. [Evensen (1994)] proposed an assimilation method
for strongly nonlinear problems, called the ensemble Kalman filter (EnKF). It
should be noted that the EnKF is different from the EKF. In the EnKF, pre-
dictive probability density functions (PDFs) of the state vector are constructed
by Monte Carlo simulation. However, the EnKF uses only the first and second
moments to construct the filter PDFs and a nonlinear observation model cannot
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be dealt with directly.
The particle filter (PF, [Kitagawa (1996)], [Gordon et al. (1993)]) has been

developed in the field of statistics, which has the same structure in terms of
ensemble-based and sequential filtering, but it has some advantages over the
EnKF. The PF does not need any assumptions for the PDFs. In addition,
it can deal with nonlinear observation models. In spite of these advantages,
real applications of the PF to DA have been limited [Manda et al. (2003)],
[van Leeuwen (2003)]. Additionally, works to date have assumed linear obser-
vations. The motivations of this work are to develop and to apply nonlinear
filtering to DA method and to make clear the important points in formulating
sequential DA.

In Section 2 we give the framework and characteristics of the sequential DA.
Relationship between the EnKF and the PF is also given. An application of
sequential DA are presented in section 3 by dealing with a tsunami simulation
model. A numerical experiment for validating the framework is described in
section 4. Conclusions are given in section 5.

2 Sequential data assimilation

2.1 Embedding of a simulation model

In this subsection, we demonstrate the formulation of a sequential DA problem
with an SSM. Additionally, we explain the distinctions between DA and other
estimation problems.

[Fig. 1] shows the procedure of design of DA problems. Partial differential
equations (PDE) are usually employed to approximate a real physical system
in geophysics. First, the PDE are discretized spatially and temporally for calcu-
lation on computer. This discretization gives finite difference equations (FDE)
which can be represented as

xt = f̃t(xt−1), (1)

where xt denotes all the variables included in the FDE at time step t. Many
numerical simulation studies in geophysics and other areas are conducted with
solving these equations. Such sets of equations are called simulation models. In
the next step, the uncertainties of the simulation model, i.e., the boundary con-
ditions, unknown parameters and some kind of model uncertainties, are modeled
by introducing system noise vt. Finally, the simulation model and system noise
are combined into an equation,

xt = ft(xt−1, vt), (2)

which can be identified with the system model of SSM. ft is determined from the
design how to combine f̃t(xt−1) and vt. Because the system noise vt represents
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PDE to approximate real physical system 
(continuous time/space)

Discrete simulation model
(discrete time/space, FDE)

Nonlinear state space model
(discrete time/space, stochastic (SDE))

Initial/boundary conditions
Unknown parameters

Figure 1: Procedure for constructing system model.

“uncertainties”, it can be regarded as random variable whose distribution is
usually assumed to be normal:

vt ∼ N(0, Qt),

where Qt is pre-determined covariance matrix. In some problems, the initial state
x0 also has uncertainties and then can be regarded as random variable.

Compared with usual state estimation problems using SSM, there are several
points of difference in a DA problem. One of them is that the simulation model
is very large and complicated, often given only by computer source code because
we should rely on reservoirs of simulation science in geophysics. Consequently,
it is hard to change the simulation model drastically. Another point is the large
dimension of the state vector. Each grid point has associated physical variables,
which means that the dimension of the state vector is the product of the number
of grid points and the dimension of the physical variables. For example, if there
are 10 physical variables at each point of a two-dimensional 100 × 100 grid, the
dimension of xt is 105. All the differences including the other different points
omitted here make the problems hard. They can be overcome however by clever
design of the uncertainties, including system noise, and accurate calculation in
the prediction steps.

2.2 Observation model

Observations are obtained by the partial measurements of the state vector or
their (non)linear transformations with measurement errors. Therefore, observa-
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tion equation is written by

yt =ht(xt, wt) (nonlinear observation), (3)

or

yt =Htxt + wt (linear observation), (4)

where yt is composed of all the measurements, wt represents measurement error,
ht is nonlinear operator representing observation and Ht represents observation
matrix. The PDF of measurement error is usually normal distribution with av-
erage 0,

wt ∼ N(0, Rt),

where Rt is pre-determined covariance matrix of measurement errors at time t.
Equation (3) (or (4)) is called observation model of SSM. When a measurement
is made, a measurement error is included naturally. Therefore, if the transforma-
tion and measurement error statistics are known, construction of an observation
system is straightforward.

2.3 State space model

The nonlinear SSM is summarized as follows:

xt =ft(xt−1, vt),

yt =ht(xt, wt),

vt ∼N(0, Qt), wt ∼ N(0, Rt),

where Qt and Rt are pre-determined or estimated covariance matrices. In the
following, the dimension of the state vector xt is denoted by nx and the dimen-
sion of the observation (measurement) vector yt is ny. We use y1:t to represent
the set {y1, y2, · · · , yt}.

[Fig. 2] shows a schematic representation of the data assimilation concept for
the special case, i.e. linear simulation model such that

xt =Ftxt−1 + vt,

yt =xt + wt,

(nx = ny = 1).

At each time the state vector is updated according to this scheme (called the
filtering step in the Kalman filter). xt|t−1 is a state estimation at time t only via
simulations given y1:t−1. et|t−1 is a prediction error between an actual observa-
tion and predictive value of the observation based on the result of simulations.
Kt is a trade off parameter to control how the simulation model accommodates
an actual observation. Kt is called the Kalman gain. When Kt = 0, an actual
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Figure 2: Schematic Representation

observation has no effect on a simulation process. In this case we totally rely
on the simulation result. On the other hand, when Kt = 1, any discrepancy
between the predictive and real values of observations is perfectly adjusted. In
this case, it is difficult to identify a dynamics inherent to a simulation model
from an estimation of the state vector, because a state vector is highly sensitive
to the observation errors.

In general, a filtering procedure estimates xt from the observed data set
y1:t at time t. That is, the procedure estimates the most likely value of the
vector xt, or the PDF, as the time series data yt are observed. If both (2) and
(3) are linear equations, the KF is efficient and accurate. However, it is almost
impossible to estimate p(xt|y1:t) accurately if one of the equations or the noise
term is nonlinear.

3 Ensemble based filters

If the DA problem can be formulated in the context of an SSM, it becomes a
problem of state vector estimation and then the PF or the EnKF presented is
applicable. The PF can deal with nonlinear state space model (2), (3) directly.
On the other hand, though the system model in the EnKF can be nonlinear form
(2), observation system in the EnKF should be linear equation (4). It should be
remarked that nonlinear observation (3) can be dealt with through state vector
extension [Evensen (2003)].
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3.1 Ensemble approximation

In the EnKF and the PF, the estimated mean and variance which appear in
the Kalman filter are replaced by obtaining the set of realizations sampled from
PDFs. This realization set is called ensemble and each realization is called en-
semble member. Ensemble represents approximation of PDFs:

p(xt|y1:t−1) ∼= 1
N

N∑
i=1

δ(xt − x
(i)
t|t−1),

p(xt|y1:t) ∼= 1
N

N∑
i=1

δ(xt − x
(i)
t|t),

where {x(i)
t|· }N

i=1 is ensemble of x
(i)
t|· , y1:t = {y1, y2, · · · , yt} and N is the number

of realizations. p(xt|y1:t−1) is called predictive PDF, p(xt|y1:t) is called filtered
PDF and corresponding sets are called predictive and filtered ensemble respec-
tively. The filtering problem is how to estimate and update the ensemble set
at each time step t using yt. The filtering procedure consists of two step, the
prediction step and the filtering step. These two steps are calculated in turn.

3.2 Prediction and filtering steps

In the prediction step, {x(i)
t|t−1}N

i=1 is obtained from {x(i)
t−1|t−1}N

i=1 and system

model (2). It is common in the EnKF and the PF. The ensemble {x(i)
t|t−1}N

i=1 is
given by the following Monte Carlo simulation:

x
(i)
t|t−1 = ft(x

(i)
t−1|t−1, v

(i)
t ), v

(i)
t ∼ N(0, Qt).

In the DA, v
(i)
t corresponds to undetermined boundary conditions and unmod-

eled dynamics of simulation model as noted above.
In the filtering step {x(i)

t|t}N
i=1 is calculated from {x(i)

t|t−1}N
i=1 and yt. The

difference between the EnKF and the PF exists in this step. The filtering step
of the EnKF procedure is as follows. At first, sample mean x̂t|t−1 and sample
covariance matrix V̂t|t−1 are calculated:

x̂t|t−1 =
1
N

N∑
i=1

x
(i)
t|t−1,

V̂t|t−1 =
1

N − 1

N∑
i=1

(x(i)
t|t−1 − x̂t|t−1)(x

(i)
t|t−1 − x̂t|t−1)T,

614 Nakamura K., Higuchi T., Hirose N.: Sequential Data Assimilation ...



where ·T denotes transpose of matrix. Filtered ensemble {x(i)
t|t}N

i=1 is calculated
through the update equation of the Kalman filtering

Kt = V̂t|t−1H
T
n (HnV̂t|t−1H

T
n + R̂t)−1,

x
(i)
t|t = x

(i)
t|t−1 + Kt(yt + w

(i)
t − Htx

(i)
t|t−1),

where w
(i)
t denotes sample from N(0, Rt) and R̂t denotes the sample covariance

matrix of w
(i)
t . It is important to note that this procedure expects Gaussianity

of xt|t−1 and linearity in the observation model.
The filtering step of the PF is as follows. Weight q

(i)
t of each ensemble member

is calculated from the observation system and the observation yt:

q
(i)
t = p(yt|xt = x

(i)
t|t−1). (5)

If the observation system is linear form (4), calculated weight is the following
form:

q
(i)
t = |(2π)ntRt|−

1
2 exp

(
−2(yt − Hnx

(i)
t|t−1)

TR−1
t (yt − Htx

(i)
t|t−1)

)
.

After this calculation, filtered ensemble {x(i)
t|t}N

i=1 is made by sampling with

replacement from predictive ensemble {x(i)
t|t−1}N

i=1 in proportion to the weight

q
(i)
t .

3.3 Matrix representation of the filters

In the context of the EnKF, the filtering step of the EnKF is written by matrix
representation [Evensen (2003)]. All the ensemble members are included in the
matrix as column vectors. For example, the ensemble {x(i)

t|t−1}N
i=1 is written by

Xt|t−1 = [x(1)
t|t−1, x

(2)
t|t−1, · · · , x

(N)
t|t−1].

The update rule of the EnKF can be written through this representation. Evensen
showed that the update rule can be written by

Xt|t = Xt|t−1Zt|t−1,

where Zt|t−1 is calculated from {x(i)
t|t−1}N

i=1, {w(i)
t }N

i=1, Ht and yt [Evensen (2003)].
It is also shown that the sum of each column of Zt|t−1 is one. These things show
that the filtered ensemble members are weighted linear combination of the pre-
dictive ensemble members.

Once the matrix representation of the ensemble is introduced, the PF can be
written by the same way. Resample from {x(i)

t|t−1}N
i=1 is written by

Xt|t = Xt|t−1Zt|t−1,
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where each element of Zt|t−1 takes the value of one or zero. In this formulation,
each column of Zt|t−1 consists of one and N − 1 zeros. Additionally, the number
of ones which appear in the ith row of Zt|t−1 is proportional to the weight of ith
member of prediction ensemble x

(i)
t|t−1.

This representation of filters gives us the consistent view of the EnKF and
the PF. The rank of Zt|t−1 shows the non-degeneracy of the ensemble, which
means decay of variation of the ensemble members. Degeneracy may cause se-
vere estimation bias in the sequential DA because predictive ensemble members
which are generated from the same filtered ensemble member may have almost
the same value and physical characteristics. Because Zt|t−1 of the EnKF is usu-
ally full rank, degeneration of the ensemble {x(i)

t|t}N
i=1 rarely occurs. In addition,

predictive ensemble members usually span the same space as filtered ensemble
members do. This property is desirable if nonlinearity of system model (2) is
weak from the viewpoint of physical simulation model. However, the filtered en-
semble of the EnKF can assure accuracy of moment only up to second order,
nonlinearity of SSM may cause estimation errors. On the other hand, Zt|t−1 of
the PF is rarely full rank because the PF is resample based method and the
number of ensemble members are finite. This rank deficiency is cause of degen-
eration and estimation bias in the PF though the PF can assure accuracy of
higher order statistics.

As a consequence of the properties, if the Zt|t−1 is efficiently calculated with-
out loss of rank and statistical bias, estimated ensembles will be more efficient
and accurate estimation.

3.4 Fixed lag smoother

One of the important and suggestive points of the matrix representation is the
case of fixed lag smoothers. The EnKF and the PF have fixed lag smoother, the
ensemble Kalman Smoother (EnKS) [Evensen and van Leeuwen (2000)] and the
Particle Smoother (PS) [Kitagawa (1996)] respectively. Using matrix representa-
tion, we can obtain these smoothers by the same way. The fixed L-lag smoother
can be obtained only to replace Xt|t−1 in the filtering equation (3.3) with L-lag
stored matrix:

Ξt|t−1 =

⎛
⎜⎜⎜⎜⎜⎝

x
(1)
t|t−1 x

(2)
t|t−1 · · · x

(N)
t|t−1

x
(1)
t−1|t−1 x

(2)
t−1|t−1 · · · x

(N)
t−1|t−1

...
...

. . .
...

x
(1)
t−L+1|t−1 x

(2)
t−L+1|t−1 · · · x

(N)
t−L+1|t−1

⎞
⎟⎟⎟⎟⎟⎠

,

where x
(i)
t′|t∗(t

′ < t∗) denotes smoothed ensemble members at time t′ using y1:t∗ .
Then, we can obtain smoothed ensemble through the equation

Ξt|t = Ξt|t−1Zt|t−1,
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where Ξt|t denotes

Ξt|t =

⎛
⎜⎜⎜⎜⎜⎝

x
(1)
t|t x

(2)
t|t · · · x

(N)
t|t

x
(1)
t−1|t x

(2)
t−1|t · · · x

(N)
t−1|t

...
...

. . .
...

x
(1)
t−L+1|t x

(2)
t−L+1|t · · · x

(N)
t−L+1|t

⎞
⎟⎟⎟⎟⎟⎠

.

As we can see, the degeneration problem is more critical for the L-lag PS because
Z·|· is multiplied L times after the prediction step whereas the PF is multiplied
only once.

4 Data assimilation for tsunami model

Several assimilation methods [Titov et al. (2005)], [Abe (2006)] have been pro-
posed for the application of DA to the study of tsunamis. They concentrate on
tsunami source estimation or correction of tsunami height including the run-
up height near the shore and the bottom topography is fixed in these studies.
However, it is well known that the bottom topography used is erroneous, which
generates inaccurate simulation results critical in forecasting tsunami propaga-
tion. Therefore, correction of the bottom topography is needed for accurate fore-
casting. In this section, we explain the formulation scheme of DA for a tsunami
model. As described in the following, the PF is used for estimation because the
tsunami simulation model has nonlinear part,

4.1 Simulation model

The tsunami simulation model is based on the shallow-water equations model
[Choi and Hong (2001)]. This model is a standard model for tsunami simulation
studies in geophysics. For the tsunami simulation model, the continuous shallow-
water equations are discretized spatially and temporally. The leap-frog scheme
is used in the discretization step. Discretization produces a two-dimensional
lattice and each point m of the lattice has four physical scalar variables. The
variables are depth dm, sea surface height ηm, which is measured from the average
sea surface, and the two components of the two-dimensional water flow vector
(um, vm) ([see Fig. 3]). The set of all depth variables dm represents the bottom
topography. There are two types of boundary conditions in the simulation model.
Non-reflecting boundary conditions are imposed on the edge points of the lattice.
The behavior of the water around the points at the border between land and sea
are determined by another set of boundary conditions. The initial conditions are
the initial values of dm, ηm, um and vm. The initial values of ηm are determined
from information on land slip, which is estimated from observed data on an
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Figure 3: Grid of simulation model and physical variables.

earthquake. The initial values of um and vm are set to zero. The depth dm of
each grid point m is taken from the bottom topography data set; however, this
data set is known to be erroneous and is to be re-determined.

4.2 Errors in simulation model

In this paper, the system model is constructed by introducing uncertainty in
the bottom topography. There are two ways to introduce this uncertainty; one
is to introduce uncertainty into the initial water depth dm in the form of PDFs,
and the other is to add uncertainty as system noise to dm. It is also possible to
introduce both. Which method is appropriate depends on the problem. If the
initial conditions are distributed and system noise is not introduced, the fixed
parameters can be determined or the model which is suitable for observations
can be identified [Nakamura et al. (2005)]. However, applying the PF to such a
system model can give rise to degeneration, which causes estimation bias. Hence
this system model should be used with care. On the other hand, introducing
system noise can give a more robust state estimation with regard to degeneration,
though it can exhibit some inconsistency in estimations. Also, it is difficult to
justify the system noise in geophysics.

We adopt the former approach in this paper. The uncertainty in the model
and in the bottom topography is time invariant over the time scale of tsunami
propagation and hence it is more natural to introduce and fix the uncertainty
at time step 0 than to introduce the uncertainty as system noise at every time

618 Nakamura K., Higuchi T., Hirose N.: Sequential Data Assimilation ...



step. The uncertainty in the bottom topography can be regarded as the partial
uncertainty in the model and therefore the tsunami DA problem can be regarded
as the model identification problem.

Correspondence between each component of [Fig. 1] and tsunami simulation
model is as follows. PDE corresponds to shallow-water equations, FDE corre-
sponds to discrete shallow-water equations model which has four variables per
grid and initial conditions is uncertainty of bottom topography.

4.3 Data and DA procedure

The data set used is derived from tide gauge records. Each tide gauge station
records a one-dimensional time series of sea surface height (SSH) near the instal-
lation point. The observation vector yt consists of measurements at each time
step. Hence each component of yt corresponds to the tide gauge time series of
each station. Measurement errors are determined from the observed series.

[Fig. 4] illustrates the progress of the DA at each time step t. In the pre-
diction step, the tsunami propagates by the system model. The SSH is updated
and the bottom topography is not changed in this step. In the filtering step,
the bottom topography and SSH are modified by the filtering. As a result, the
bottom topography and the tsunami height are corrected at every input of the
observation.

5 Numerical experiment

5.1 Identical twin experiment

To check the correction ability of the assimilation methods, we conducted a nu-
merical experiment of identification using test data. [Fig. 5] shows the procedure
of the identical twin experiment. At first, a simulation is run and the results are
recorded. This is called the model-run stage in this paper. Next, the observa-
tion data set is constructed using the observation model and simulation results.
These simulation results are considered “true”, therefore, the observation data
obtained here are regarded as coming from the “true” model. Consequently, we
estimate the state vector and parameters from the observation data set by se-
quential DA, referred to as the assimilation stage. Finally, we check whether
these estimated results are identical with the “true” simulation results.

This experimental method for validation is known as the identical twin ex-
periment in the DA field. To use real tide gauge data, an observation matrix Ht

or nonlinear observation ht must be designed.
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Figure 4: Illustration of each assimilation step.

5.2 Identical twin experiment in tsunami simulation model

We used for the numerical experiment the Okushiri tsunami which occurred
in the Japan Sea and killed about 200 people in 1993. This area is discretized
longitudinally and latitudinally in a 192(longitude)× 240(latitude) grid. About
half of the grid points are on the sea and the number of the state of each grid point
on the sea is four; therefore, the dimension of the state vector is about 9 × 104.
The dimension of the observation vector is also four. The four observation points
are depicted in [Fig. 6]. The initial conditions of the SSH are determined from
data on the earthquake.

In the model-run stage, we fix the bottom topography using a data set and
run the Okushiri tsunami simulation. The observation data are then generated
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using the set of SSH time series at each observation point through the simulation.
This procedure specifies the observation model by the following linear model:

yt = Hxt + wt,

where H is a 4 × nx zero-one matrix and wt ≡ 0. Though this assumes an
idealized situation, it is sufficient to show the validity of this method. We discuss
the problem of real tide gauge data later in the paper.

In the framework of this study, the most important subject is the bottom
topography. Correction of the bottom topography is executed through correction
of the water depth at each grid point, which is included in the state vector. As we
noted earlier, the bottom topography is time invariant. Therefore, allowing only
distribution of the initial conditions is more natural for its parameterization.
Hence, we distribute each dm part of x0 and set vt ≡ 0 in the assimilation
stage. To check the effectiveness of the error correction, we set an initial bottom
topography estimation biased from that of the model-run. More precisely, dm is
approximated using the ensemble set {d(i)

m }N
i=1. This ensemble is generated by

d(i)
m = c(i)d̂m,
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A

B

Figure 6: Area of identical twin experiment. The installation points of the tide
gauge are shown by dots. The check point for water depth is shown by the square
marked B.

where c(i) ∼ N(1.1, 1.52) and d̂m is the “true” depth at m. This setting means
that the initial estimation depth is deeper than the “true” depth and the degree
of bias from the “true” one is uniform regardless of grid point. This is equivalent
to generating topography ensemble members whose average is biased from the
“true” values and whose distribution is modified at every filtering step. The
number of ensemble members is set to 100.

5.3 DA Result

[Fig. 7] shows the result of bottom topography correction. The left side of each
image shows the state of the tsunami and the right side shows the estimated
bottom topography at that time step. The number above each image shows the
number of six-minute intervals passed. The lines drawn in the graphs on the
right side of each image show the sea surface height, the bottom topography of
the shallowest ensemble member, the “true” bottom topography, the estimated
bottom topography and the bottom topography of the deepest ensemble member
along the white line of the left side of the image.

The results of an observed SSH at an observation point on the Russian coast
(point A in [Fig. 6]) are shown in [Fig. 8]. The estimated and true water depth
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Figure 7: Result of identical twin experiment.
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Figure 8: Time series of observed SSH at point A and estimation of water depth
at point B in [Fig. 6].
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Figure 9: Estimation of water depth at point B in [Fig. 6]. The deepest and
shallowest ensemble members of water depths are also shown.

at each time step in the middle of the Japan Sea (point B in [Fig. 6]) are also
shown. Point A is the first arrival point of the tsunami amongst the observation
points. Immediately after the arrival of the tsunami at point A, the estimated
water depth starts to converge to the true water depth.

The time evolution of the deepest and shallowest values of d
(i)
m at point B is

plotted in [Fig. 9]. The range between the largest and smallest values shrinks
and converges to true water depth, indicating that the reliability of the bottom
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topography estimation improves over time. This result demonstrates that the
bottom topography can be effectively corrected by using tide gauge data and
hence the method has potential for real data.

6 Conclusion

We have presented the sequential DA framework for a tsunami simulation model
and conducted an identical twin experiment. In this framework, the PF is used
for estimation. The following two relevant findings are obtained. First, the iden-
tical twin experiment shows the potential of the framework for real data. That
is to say, sequential DA for a tsunami simulation model and tide gauge data can
be used to correct bottom topography and estimate tsunami height. Secondly,
the state estimation works well for a small number of ensemble members, in
spite of the large dimensionality of the simulation model and the sparseness of
the observations. This is allowed by the simple parameterization of uncertain-
ties. Applying this framework for more general conditions, would require a more
flexible representation for uncertainties, that is, satisfying both the increase of
the degrees of freedom parameter and the avoidance of degeneration problem.

Assimilation experiments for real tide gauge data are currently in progress,
analyzing two tsunamis that occurred in the Japan Sea in 1983 and 1993. These
tsunamis were selected because reliable tide gauge data set is available for them.
The real tide gauge data set is not ideal because the SSH are transformed by
many factors, such as the local geography. This problem must be resolved for
real DA problems.
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