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Abstract: For any class F of total functions in the set N of the natural numbers,
we define the notion of F-computable real number. A real number α is called F-
computable if there exist one-argument functions f , g and h in F such that for any
n in N the distance between the rational number f(n) − g(n) over h(n) + 1 and the
number α is not greater than the reciprocal of n + 1. Most concrete real numbers
playing a role in analysis can be easily shown to be E3-computable (as usually, Em

denotes the m-th Grzegorczyk class). Although (as it is proved in Section 5 of this
paper) there exist E3-computable real numbers that are not E2-computable, we prove
that π, e and other remarkable real numbers are E2-computable (the number π proves
to be even L-computable, where L is the class of Skolem’s lower elementary functions).
However, only the rational numbers would turn out to be E2-computable according to
a definition of F-computability using 2n instead of n + 1.

Key Words: computable real number, Grzegorczyk classes, second Grzegorczyk class,
lower elementary functions, π, e, Liouville’s number, Euler’s constant.
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1 Introduction

Let F be a class of total functions in the set N of the natural numbers. We shall
call an F-sequence any infinite sequence r0, r1, r2, . . . of rational numbers that
has a representation in the form

rn =
f(n) − g(n)

h(n) + 1
, n = 0, 1, 2, 3, . . . ,

with one-argument functions f , g and h belonging to F , and a real number α

will be called F-computable if there exists an F -sequence r0, r1, r2, . . . such that
|rn − α| ≤ (n + 1)−1 for all n in N.1

In the case when F is the class of the recursive functions, the F -computable
real numbers are exactly the computable ones, although 2−n is usually used
instead of (n + 1)−1 in the definition of computability of a real number (cf.
1 Under some assumptions about the class F , the F-sequences were called F-

expressible in [Skordev 2002], and the E2-sequences were called E2-computable
in [Skordev 2008]. When F satisfies the assumptions made in [Skordev 2002], the
present definition of F-computability of a real number coincides with the one ac-
cepted there.
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for instance [Ko 1991, Weihrauch 2000]). Namely the definition obtained from
the present one by replacement of (n + 1)−1 with 2−n will be equivalent to
it, whenever the class F is closed under composition and contains some one-
argument function that dominates 2n − 1. That is the case not only when F
is the class of all recursive functions, but also when it is some Grzegorczyk
class Em with m ≥ 3. However, the equivalence is lost, for example, in the case
of F = E2. Indeed, as seen from the results proved in [Skordev 2002], all real
algebraic numbers are E2-computable in the sense of the present definition2,
whereas only the rational numbers would be E2-computable in the sense of the
definition with 2−n, as the third statement of the following proposition shows.

Proposition1. Let h be a one-argument function belonging to the class E2, and
let r0, r1, r2, . . . be rational numbers such that (h(n) + 1)rn is an integer for any
n ∈ N. Then:

1. There exists a polynomial p(n) such that p(n)|rn| ≥ 1 holds, whenever
rn �= 0.

2. There exists a polynomial q(n) such that q(n)|rn+1−rn| ≥ 1 holds, whenever
rn+1 �= rn.

3. If α is a real number such that |rn − α| ≤ 2−n for all n in N, then α is a
rational number.

Proof. The statement 1 follows from the fact that (h(n) + 1)|rn| ≥ 1, whenever
rn �= 0, and the function h is dominated by some polynomial. The statement 2
can be derived from the statement 1 by taking rn+1 − rn in the role of rn and
using the fact that (h(n) + 1)(h(n + 1) + 1)(rn+1 − rn) is also an integer for
any n ∈ N. To prove the statement 3, suppose α is a real number such that
|rn − α| ≤ 2−n for all n in N. Since

|rn+1 − rn| ≤ |rn+1 − α| + |rn − α| ≤ 3 · 2−n−1,

the polynomial q(n) from the statement 2 will satisfy the inequality

3q(n) ≥ 2n+1

for all n such that rn+1 �= rn, and therefore only finitely many such n can exist.

Remark. A weaker result in this direction can be obtained by using Liouville’s
approximation theorem. Its application proves the statement 3 of the above
2 Under the assumption that F contains the successor, projection and product func-

tions, as well as the function λmn.|m − n|, and F is closed under composition and
bounded μ-operation, it was proved in [Skordev 2002] that the F-computable real
numbers form a field containing the real roots of any non-constant polynomial with
coefficients from this field.
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proposition under the additional assumption that α is an algebraic number (the
possibility of such an application of Liouville’s theorem is implicitly indicated in
footnote 2 of [Peshev and Skordev 2006]).

Since, as we already mentioned, all real algebraic numbers are E2-computable,
it is natural to ask whether there exist E2-computable transcendental num-
bers.3 A positive answer to this question was given in the paper [Skordev 2008],
where, in particular, the numbers π and e were shown to be E2-computable. The
present paper is a wholly revised and extended version of the most essential parts
of [Skordev 2008]. A radical change is done in the proofs that the considered con-
crete real numbers are E2-computable. Namely some general statements about
F -computability of sums of series are proved now, and applications of these
statements are done instead of the lengthy direct proofs given in [Skordev 2008].
The number π is shown to be even L-computable, where L is the class of Skolem’s
lower elementary functions studied in [Skolem 1962].

2 F-computable real-valued functions
with natural arguments

We shall prepare now some tools for facilitating the proofs of E2-computability of
certain real numbers. Throughout this section, a class F of total functions in N

will be supposed to be given such that F contains the zero, successor, projection,
addition and Kronecker delta functions, and it is closed under composition and
bounded summation (any class Em with m ≥ 2 satisfies these assumptions, and
the class L of the lower elementary functions is the smallest class satisfying
them).

Let l be a natural number, and θ be a function from N
l into the set R of the

real numbers. The function θ will be called F-computable if there exist l + 1-
argument functions f , g and h belonging to F such that

∣∣∣∣f(i1, . . . , il, n) − g(i1, . . . , il, n)
h(i1, . . . , il, n) + 1

− θ(i1, . . . , il)
∣∣∣∣ ≤ 1

n + 1

for all i1, . . . , il, n in N.
Obviously all values of an F -computable real-valued function with natural

arguments are F -computable real numbers, and a real-valued function without
arguments is F -computable iff its value at the empty tuple is F -computable
(thus the 0-argument F -computable real-valued functions can be identified with
the F -computable real numbers). Clearly any substitution of functions from

3 It is quite easy to see that π, e and many other concrete real numbers playing a part
in analysis are E3-computable. However, there exist E3-computable real numbers
which are not E2-computable (cf. Section 5).
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the class F into an F -computable real-valued function with natural arguments
produces again an F -computable real-valued function with natural arguments.

Since every infinite sequence of real numbers is actually a function from
N into R, the above definition introduces, in particular, the notion of F -
computability for such sequences. Obviously, each F -sequence of rational num-
bers is F -computable as a sequence of real numbers. In general, however, an
infinite sequence of rational numbers can be F -computable as a sequence of
real numbers without being an F -sequence. For instance, let F be a subclass of
the class of the recursive functions. Then, by a result proved in [Skolem 1962],
there exists a two-argument lower elementary function ϕ such that the set
{n ∈ N | ∃t(ϕ(n, t) = 0)} is non-recursive. If we set rn to be (s + 1)−1 with
s = μt(ϕ(n, t) = 0) for any n in the set in question, and to be 0 for all other n in
N, then the sequence of the rational numbers r0, r1, r2, . . . will be F -computable
as a sequence of real numbers, but without being an F -sequence.

The first statement in the next proposition shows that one can take
h(i1, . . . , il, n) = n in the definition of F -computability of real-valued functions
with natural arguments.4

Proposition2. Let l be a natural number, and θ be a function from N
l into R.

Then:

1. If θ is F-computable, and c is a real number greater than 1/2, then there
exist l + 1-argument functions f and g belonging to F such that

∣∣∣∣f(i1, . . . , il, n) − g(i1, . . . , il, n)
n + 1

− θ(i1, . . . , il)
∣∣∣∣ ≤ c

n + 1
(1)

for all i1, . . . , il, n in N.

2. If for some l + 1-argument functions f and g belonging to F and some
real number c the inequality (1) holds for all i1, . . . , il, n in N, then θ is F-
computable.

Proof. For the proof of the statement 1, suppose θ is F -computable, and c is a
real number greater than 1/2. One easily shows the existence of l + 1-argument
functions f0, g0 and h0 belonging to F such that

∣∣∣∣f0(i1, . . . , il, n) − g0(i1, . . . , il, n)
h0(i1, . . . , il, n) + 1

− θ(i1, . . . , il)
∣∣∣∣ ≤ c − 1/2

n + 1

4 This holds, in particular, for 0-argument functions, thus giving a characteriza-
tion of the F-computable real numbers which is in the spirit of the definition
in [Grzegorczyk 1955] for computability of real numbers (that definition, taken lit-
erally, defines computability only of non-negative real numbers, but its extension to
arbitrary ones is easy).
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for all i1, . . . , il, n in N. There exists also a two-argument function A in F such
that ∣∣∣∣A(i, j) − i

j + 1

∣∣∣∣ ≤ 1
2

for all natural numbers i and j; for instance, we may set

A(i, j) =
[

i

j + 1
+

1
2

]
.

Now set

f(i1, . . . , il, n) = A((n + 1)(f0(i1, . . . , il, n) .− g0(i1, . . . , il, n)), h0(i1, . . . , il, n)),
g(i1, . . . , il, n) = A((n + 1)(g0(i1, . . . , il, n) .− f0(i1, . . . , il, n)), h0(i1, . . . , il, n)).

Clearly the functions f and g belong to F . It is easy to see that
∣∣∣∣f(i1, . . . , il, n) − g(i1, . . . , il, n) − (n + 1)

f0(i1, . . . , il, n) − g0(i1, . . . , il, n)
h0(i1, . . . , il, n) + 1

∣∣∣∣ ≤ 1
2

both in the case of f0(i1, . . . , il, n) ≥ g0(i1, . . . , il, n)) and in the case of
f0(i1, . . . , il, n) < g0(i1, . . . , il, n)). Therefore
∣∣∣∣f(i1, . . . , il, n) − g(i1, . . . , il, n)

n + 1
− f0(i1, . . . , il, n) − g0(i1, . . . , il, n)

h0(i1, . . . , il, n) + 1

∣∣∣∣ ≤ 1/2
n + 1

,

hence the inequality (1) holds. To prove the statement 2, suppose f, g ∈ F ,
c ∈ R, and the inequality (1) holds for all i1, . . . , il, n in N. Then, taking a
positive integer k such that k ≥ c, we shall have

∣∣∣∣f(i1, . . . , il, kn + k − 1) − g(i1, . . . , il, kn + k − 1)
(kn + k − 1) + 1

− θ(i1, . . . , il)
∣∣∣∣ ≤ 1

n + 1

for all i1, . . . , il, n in N.

Proposition3. Let k be a natural number, θ be a k + 1-argument real-valued
function with natural arguments, and θΣ be the mapping of N

k+1 into R defined
by

θΣ(i1, . . . , ik, t) =
t∑

s=0

θ(i1, . . . , ik, s).

Then θΣ is F-computable iff θ is F-computable.

Proof. Suppose θ is F -computable. By Proposition 2, there exist k+2-argument
functions f and g belonging to F such that

∣∣∣∣f(i1, . . . , ik, s, n) − g(i1, . . . , ik, s, n)
n + 1

− θ(i1, . . . , ik, s)
∣∣∣∣ ≤ 1

n + 1
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for all i1, . . . , ik, s, n in N. We consider the functions

fΣ(i1, . . . , ik, t, n) =
t∑

s=0

f(i1, . . . , ik, s, nt + n + t),

gΣ(i1, . . . , ik, t, n) =
t∑

s=0

g(i1, . . . , ik, s, nt + n + t).

They also belong to the class F , since this class is closed under bounded sum-
mation. In addition, for any i1, . . . , ik, s, n, t in N the number∣∣∣∣f(i1, . . . , ik, s, tn + t + n) − g(i1, . . . , ik, s, tn + t + n)

tn + t + n + 1
− θ(i1, . . . , ik, s)

∣∣∣∣
does not exceed the reciprocal of (t + 1)(n + 1), hence∣∣∣∣f

Σ(i1, . . . , ik, t, n) − gΣ(i1, . . . , ik, t, n)
nt + n + t + 1

− θΣ(i1, . . . , ik, t)
∣∣∣∣ ≤ 1

n + 1

for all i1, . . . , il, t, n in N. Thus the F -computability of θ implies the F -
computability of θΣ . The converse implication follows from the equality

θ(i1, . . . , ik, t) =
{

θΣ(i1, . . . , ik, t) if t = 0
θΣ(i1, . . . , ik, t) − θΣ(i1, . . . , ik, t − 1) otherwise.

Theorem. Let k be a natural number, θ be such an F-computable k+1-argument
real-valued function with natural arguments that the series

∞∑
s=0

θ(i1, . . . , ik, s)

converges for all i1, . . . , ik in N, and σ(i1, . . . , ik) be the sum of this series. Let
there exist a k + 1-argument function p belonging to F and such that∣∣∣∣∣

∞∑
s=t+1

θ(i1, . . . , ik, s)

∣∣∣∣∣ ≤
1

n + 1

for any natural numbers i1, . . . , ik, n and t = p(i1, . . . , ik, n). Then the function
σ is also F-computable.

Proof. Let θΣ be as in Proposition 3. Since θΣ is F -computable, there exist
k + 2-argument functions f1, g1 and h1 belonging to F such that∣∣∣∣f1(i1, . . . , ik, t, n) − g1(i1, . . . , ik, t, n)

h1(i1, . . . , ik, t, n) + 1
− θΣ(i1, . . . , ik, t)

∣∣∣∣ ≤ 1
n + 1

for all i1, . . . , ik, t, n in N. If we set

f(i1, . . . , ik, n) = f1(i1, . . . , ik, p(i1, . . . , ik, 2n + 1), 2n + 1),
g(i1, . . . , ik, n) = g1(i1, . . . , ik, p(i1, . . . , ik, 2n + 1), 2n + 1),
h(i1, . . . , ik, n) = h1(i1, . . . , ik, p(i1, . . . , ik, 2n + 1), 2n + 1),
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then f, g, h ∈ F and
∣∣∣∣f(i1, . . . , ik, n) − g(i1, . . . , ik, n)

h(i1, . . . , ik, n) + 1
− σ(i1, . . . , ik)

∣∣∣∣ ≤
∣∣∣∣f(i1, . . . , ik, n) − g(i1, . . . , ik, n)

h(i1, . . . , ik, n) + 1
− θΣ(i1, . . . , ik, p(i1, . . . , ik, 2n + 1))

∣∣∣∣+
∣∣∣∣ θΣ(i1, . . . , ik, p(i1, . . . , ik, 2n + 1)) − σ(i1, . . . , ik)

∣∣∣∣ ≤ 1
2n + 2

+
1

2n + 2
=

1
n + 1

for all i1, . . . , ik, n in N.

Corollary. Let θ be such an F-computable real-valued function of one natural
argument that the series

∞∑
s=0

θ(s)

converges, and α be the sum of this series. Let there exist a one-argument func-
tion p belonging to F and such that

∣∣∣∣∣
∞∑

s=t+1

θ(s)

∣∣∣∣∣ ≤
1

n + 1

for any natural number n and t = p(n). Then the number α is also F-computable.

3 E2-computability of the numbers π and e,
of Liouville’s number and of Euler’s constant

3.1 E2-computability of the number π

The terms of the series in the well-known formula

π

4
=

∞∑
s=0

(−1)s

2s + 1
(2)

form an L-sequence, since

(−1)s = (s + 1) mod 2 − s mod 2

for any s ∈ N. In addition,
∣∣∣∣∣

∞∑
s=t+1

(−1)s

2s + 1

∣∣∣∣∣ <
1

2t + 3
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for any t ∈ N. An application of the corollary from Section 2 immediately
shows that π/4 is L-computable, hence π is also L-computable (thus it is E2-
computable).

Due to the slow convergence of the series in the formula (2), this formula is
not convenient for the numerical computation of π. There are formulas that are
much more appropriate for this, e.g. Machin’s formula

π

4
= 4

∞∑
s=0

(−1)s

(2s + 1)52s+1
−

∞∑
s=0

(−1)s

(2s + 1)2392s+1
. (3)

The sums of the two series in (3) also turn out to be E2-computable. Of course
any of the two series has a modulus of convergence of the sort required by
the corollary in Section 2. Unfortunately, the sequences of their terms are not
E2-recursive, as it is seen from Proposition 1. Nevertheless, the corollary is ap-
plicable to these series, since the sequences in question are still E2-computable
(as sequences of real numbers). To prove their E2-computability, we may, for
example, consider the three-argument function f0 in N defined by

f0(i, s, t) =
[

t

(s + 1)i

]
.

This function belongs to E2, since

f0(0, s, t) = t, f0(i + 1, s, t) =
[
f0(i, s, t)

s + 1

]
, f0(i, s, t) ≤ t

for all i, s, t in N. In addition,
∣∣∣∣f0(i, s, n + 1)

n + 1
− 1

(s + 1)i

∣∣∣∣ =
1

n + 1

∣∣∣∣f0(i, s, n + 1) − n + 1
(s + 1)i

∣∣∣∣ <
1

n + 1
,

for any i, s, n in N, hence also
∣∣∣∣ (−1)if0(2i + 1, s, n + 1)

(2i + 1)(n + 1)
− (−1)i

(2i + 1)(s + 1)2i+1

∣∣∣∣ <
1

n + 1
.

Thus we may complete the proof by using the instances for values 4 and 238
of s of the above inequality and by representing (−1)if0(2i + 1, s, n + 1) as the
difference ((i + 1)mod 2)f0(2i + 1, s, n + 1) − (i mod 2)f0(2i + 1, s, n + 1).

The E2-computability of the sequences of the terms of the two series in (3)
can be proved also as follows. One considers the three-argument function g0 in
N defined by

g0(i, s, t) = min((s + 1)i, t + 1). (4)

This function belongs to E2 since

g0(0, s, t) = t + 1, g0(i + 1, s, t) = min(g0(i, s, t)(s + 1), t + 1), g0(i, s, t) ≤ t + 1
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for all i, s, t in N. On the other hand,
∣∣∣∣ 1
g0(i, s, n)

− 1
(s + 1)i

∣∣∣∣ <
1

n + 1

for any i, s, n in N, hence also
∣∣∣∣ (−1)i

(2i + 1)g0(2i + 1, s, n)
− (−1)i

(2i + 1)(s + 1)2i+1

∣∣∣∣ <
1

n + 1
.

Remark. The E2-computability of f0 can be derived also from the E2-
computability of g0, since

f0(i, s, t) =
[

t

g0(i, s, t)

]

for all i, s, t in N.

3.2 E2-computability of the number e

To prove the E2-computability of the number e, we shall use the equality

e =
∞∑

i=0

1
i!

(5)

by showing that the series in it is E2-convergent, and the sequence of its terms
is E2-computable (although, as seen from Proposition 1, this sequence is not
E2-recursive). The E2-convergence of this series follows from the fact that

∞∑
i=n+1

1
i!

<
1

n!n
≤ 1

n

for any positive integer n. To prove the E2-computability of the sequence of the
terms of the series, we shall use the following two-argument function in N:

f1(i, t) =
[

t

i!

]
.

This function belongs to E2 since

f1(0, t) = t, f1(i + 1, t) =
[
f1(i, t)
i + 1

]
, f1(i, t) ≤ t.

for all i, t in N. In addition,
∣∣∣∣f1(i, n + 1)

n + 1
− 1

i!

∣∣∣∣ =
1

n + 1

∣∣∣∣f1(i, n + 1) − n + 1
i!

∣∣∣∣ <
1

n + 1
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for any i, n in N.
The E2-computability of the sequences of the terms of the series in (5) can be

proved also as follows. One considers the two-argument function g1 in N defined
by

g1(i, t) = min(i!, t + 1). (6)

This function belongs to E2 since

g1(0, t) = t + 1, g1(i + 1, t) = min(g1(i, t)(i + 1), t + 1), g1(i, t) ≤ t + 1

for all i, t in N. On the other hand,
∣∣∣∣ 1
g1(i, n)

− 1
i!

∣∣∣∣ <
1

n + 1

for any i, n in N.

Remark. The E2-computability of f1 can be derived also from the E2-
computability of g1, since

f1(i, t) =
[

t

g1(i, t)

]

for all i, t in N.

The proof in [Skordev 2008] of the E2-computability of the number e can be
briefly described as follows. Let r0, r1, r2, r3, . . . be the sequence of the partial
sums of the series in (5), i.e.

rn =
n∑

i=0

1
i!

for any n ∈ N. Although this sequence of rational numbers is not E2-recursive,
there exists a monotonically increasing sequence k0, k1, k2, . . . of natural numbers
such that

|rkn − e| <
1

n + 1

for any n ∈ N, and the sequence rk0 , rk1 , rk3 , . . . is E2-recursive. Clearly the idea
of the present proof is rather different from the so described one.

3.3 E2-computability of Liouville’s number

As well-known, the first examples of transcendental real numbers were con-
structed by Liouville. The most famous of them is the sum of the infinite series

∞∑
i=1

1
10i!

.
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This number is called now Liouville’s number or Liouville’s constant. It is some-
times denoted by L, and we shall adopt this notation here. We shall prove that L

is E2-computable. For technical convenience, we shall actually prove the equiv-
alent statement that L + 1/10 is E2-computable. Since

L + 1/10 =
∞∑

i=0

1
10i!

, (7)

we shall proceed by proving the E2-convergence of the series in the above equal-
ity and the E2-computability of the sequence of its terms. The E2-convergence
follows from the inequalities

∞∑
i=n+1

1
10i!

<
1

10n!n
≤ 1

n + 1
.

To prove the E2-computability of the sequence of the terms, we consider the
function

g2(i, t) = min(10i!, t + 1).

It is easy to check that
g2(i, t) = g0(9, g1(i, t)),

where g0 and g1 are the functions defined by (4) and (6), respectively. Therefore
g2 ∈ E2. On the other hand,

∣∣∣∣ 1
g2(i, n)

− 1
10i!

∣∣∣∣ <
1

n + 1

for any i, n in N.
Another way to prove the E2-computability of the sequence of the terms of

the series in (7) is by considering the function

f2(i, t) =
[

t

10i!

]
.

This function also belongs to E2 since

f2(i, t) =
[

t

g2(i, t)

]

for all i, t in N, and
∣∣∣∣f2(i, n + 1)

n + 1
− 1

10i!

∣∣∣∣ =
1

n + 1

∣∣∣∣f2(i, n + 1) − n + 1
10i!

∣∣∣∣ <
1

n + 1

for any i, n in N.
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3.4 E2-computability of Euler’s constant

To prove that Euler’s constant γ is E2-computable, we shall use its representation

γ =
∞∑

i=0

(
1

i + 1
− ln

(
1 +

1
i + 1

))
, (8)

as well as the fact that for any i ∈ N we have the equality

1
i + 1

− ln
(

1 +
1

i + 1

)
=

∞∑
j=0

u(i, j), (9)

where

u(i, j) =
(−1)j

(j + 2)(i + 1)j+2
.

The series in (9) is E2-convergent thanks to the inequality
∣∣∣∣∣∣

∞∑
j=n+1

u(i, j)

∣∣∣∣∣∣ <
1

n + 3
.

The function u is E2-computable, since for all i, j, k ∈ N the inequality
∣∣∣∣ (−1)j

(j + 2)g0(j + 2, i, k)
− u(i, j)

∣∣∣∣ <
1

2(k + 1)

holds, where g0 is the function defined by (4). Therefore the sum of the series is
an E2-computable function of i. Thus the E2-computability of Euler’s constant
will be proved if we prove the E2-convergence of the series in (8). To do this, we
note that, by the equality (9), we have the inequalities

0 <
1

i + 1
− ln

(
1 +

1
i + 1

)
<

1
2(i + 1)2

for any i ∈ N, hence

0 <

∞∑
i=n+1

(
1

i + 1
− ln

(
1 +

1
i + 1

))
<

∞∑
i=n+1

1
2(i + 1)2

<
1

2(n + 1)

for all n ∈ N.

4 Some comments

Although our proofs concern only four concrete real numbers, the methods used
in the proofs or similar ones can be applied in many other cases. It seems that
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E2-computability of real numbers is present much more often than one could
expect.

One of the four considered numbers turned out to be L-computable. It seems
that the other of them are also L-computable, but the proof of this requires a
greater amount of technical work.

Several characterizations of the class E2 are known that are in the terms of
computational complexity, for instance the characterization from [Ritchie 1963]
according to which a function belongs to E2 iff it can be computed on a linear tape
bounded Turing machine in the case of binary encoding of inputs and outputs. As
the referee of the preliminary version [Skordev 2008] of the paper indicated, such
characterizations could be useful for comparison with already known results and
for further studies, and, in particular, the characterization from [Ritchie 1963]
allows relating complexity of real functions as in [Ko 1991, Weihrauch 2000] to
E2-computability.

5 Existence of E3-computable real numbers
which are not E2-computable

It is shown in [Skordev 2002] (cf. footnote 9 there) that for any integer m greater
than 2 there exist Em+1-computable real numbers which are not Em-computable.
The proof from [Skordev 2002] cannot be used in the case of m = 2. We shall
give now another proof that covers also the case of m = 2. Namely we shall make
use of the fact that for any natural number m ≥ 2 there exists a two-argument
function in Em+1 which is universal for the one-argument functions in Em, i.e.
each one-argument functions belonging to Em can be obtained from the two-
argument function in question by replacement of the first argument with some
natural number.5

Let m ∈ N, m ≥ 2, and let h be a two-argument function from Em+1 which
is universal for the one-argument functions in Em. We define a one-argument
function g in N as follows: g(0) = 0, and, for any k ∈ N,

g(k + 1) =
{

3g(k) if 6g(k) + 3 ≤ h(k, 2 · 3k+1 − 1)
3g(k) + 2 otherwise

(thus g(k + 1) − 3g(k) ∈ {0, 2} for all k ∈ N). Making use of the inequality

5 In [Grzegorczyk 1953] a proof of this is sketched for m > 2. As Lars Kristiansen
indicated, the truth of the statement for the case of m = 2 follows straightforwardly
from what is written in section 6 of [Ritchie 1963], and the statement in question can
be derived also from the equality LINSPACE = E2

∗ , the inclusion ESPACE ⊂ E3
∗

and the fact that ESPACE contains a universal function for LINSPACE.
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g(k) ≤ 3k − 1, one sees that g ∈ Em+1. Now let

α =
∞∑

k=0

g(k + 1) − 3g(k)
3k+1

.

For any natural number k, the sum of the first k terms of the above series is
equal to g(k)/3k, and, making use of this, we see that

0 ≤ α − g(k)
3k

≤ 1
3k

for all k ∈ N, hence the real number α is Em+1-computable. We shall show
that α is not Em-computable. Suppose the contrary. Then, by the case l = 0 of
Proposition 2, one-argument functions f and g belonging to Em exist such that∣∣∣∣f(n) − g(n)

n + 1
− α

∣∣∣∣ <
1

n + 1

for all n ∈ N. The function |f(n) − g(n)| also belongs to Em, and∣∣∣∣ |f(n) − g(n)|
n + 1

− α

∣∣∣∣ <
1

n + 1

also holds for all n ∈ N, since α ≥ 0. Let k be a natural number such that
|f(n) − g(n)| = h(k, n) for all n ∈ N. Then∣∣∣∣h(k, n)

n + 1
− α

∣∣∣∣ <
1

n + 1

for all n ∈ N. In particular, we shall have∣∣∣∣h(k, 2 · 3k+1 − 1)
2 · 3k+1

− α

∣∣∣∣ <
1

2 · 3k+1
.

We shall now consider separately the case, when 6g(k) + 3 ≤ h(k, 2 · 3k+1 − 1),
and the case, when 6g(k) + 3 > h(k, 2 · 3k+1 − 1). We shall get a contradiction
in both of them. In the first of these cases, we have

g(k)
3k

+
1

2 · 3k
≤ h(k, 2 · 3k+1 − 1)

2 · 3k+1
< α +

1
2 · 3k+1

≤ g(k + 1)
3k+1

+
1

3k+1
+

1
2 · 3k+1

=
g(k)
3k

+
1

2 · 3k
,

and this is impossible. In the second of the cases, we have

g(k)
3k

+
1

2 · 3k
>

h(k, 2 · 3k+1 − 1)
2 · 3k+1

> α − 1
2 · 3k+1

≥ g(k + 1)
3k+1

− 1
2 · 3k+1

=
g(k)
3k

+
1

2 · 3k
,

and this is again impossible.
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