
A Petri Nets based Approach to Specify Individual and
Collaborative Interaction in 3D Virtual Environments

Rafael Rieder
(Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil

rafael.rieder@pucrs.br)

Márcio S. Pinho
(Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil

pinho@pucrs.br)

Alberto B. Raposo
(Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil

abraposo@tecgraf.puc-rio.br)

Abstract: This work describes a methodology that supports the design and implementation of
software modules, which represent the individual and collaborative three-dimensional
interaction process phases. The presented methodology integrates three modeling approaches:
Petri Nets, a collaborative manipulation model based on the combination of single user
interaction techniques taxonomy, and object-oriented programming concepts. The combination
of these elements allows for the description of interaction tasks, the sequence of interaction
processes being controlled by Petri Nets with the codes generated automatically. By the
integration of these approaches, the present work addresses not only the entire development
cycle of both individual and collaborative three-dimensional interaction, but also the reuse of
developed interaction blocks in new virtual environment projects.

Keywords: collaborative interaction, interaction technique specification, design process.
Categories: H.5.2, I.3.6, I.3.7, I.6.5

1 Introduction

Research on collaborative manipulation of objects in immersive virtual environments
(VEs) is relevant in many areas, such as simulation and training, as well as in data
exploration [Ruddle, 02]. Collaborative manipulation, or collaborative
three-dimensional (3D) interaction, refers to the simultaneous manipulation of a
virtual object by multiple users in a VE. In simulation and training, simultaneous
manipulation of objects in VEs can be used to mimic some aspects of real-world
tasks. For example, in situations like product and equipment design, assembly tasks or
emergency training, even when the users are not co-located in space, collaborative
manipulation may provide more realistic interaction. In data exploration, collaborative
manipulation is an important tool to enhance the interaction process, by moving it
from being one-sided (“I do this, while you watch”) to being truly collaborative,
increasing insight exchange and reducing the time for task completion.

In order to better understand a virtual reality (VR) application, especially its
possible intricate interaction flow, it is very helpful to use some kind of formal

Journal of Universal Computer Science, vol. 17, no. 2 (2011), 243-260
submitted: 17/9/09, accepted: 7/12/10, appeared: 28/1/11 © J.UCS

description tool like Petri Nets (PN) that can describe the system function and
components. This allows not only a better understanding, but also a preliminary
evaluation of each phase of the system operation, which is especially useful in
collaborative 3D interaction, since the collaborative metaphor concept needs the
representation of parallel activities. Moreover, a formal description facilitates the
automatic generation of the core application code, from graphical representations.

Besides formal specification tools, some researchers have sought to develop
taxonomies able to document and specify VEs in an abstraction level closer to the
user’s conception instead of the designer’s or programmer's views of the
application [Bowman, 99] [Bowman, 04]. These approaches split the systems into
smaller parts, identifying behavior patterns and allowing to encapsulate them into
classes that are able to execute some relevant functionality. This approach allows for
the reuse of these classes in other projects and also allows for the combination of
them to build a new interaction technique, for example.

Both the use of formalisms and taxonomies aim to better define the interaction
processes, reducing the time spent during the design and implementation of VEs.
Therefore, an integration of both approaches can gather the best of them: system
specification according to the user’s level of expertise, evaluation in early stages of
the development process, and the detailing of each phase of the software development
process.

This paper describes a methodology able to model and to implement software
modules that represent the collaborative interaction process phases. Our methodology
integrates three modeling approaches: PN formalism [Murata, 89], a collaborative
manipulation model [Pinho, 08] based on the combination of Bowman’s single user
interaction techniques taxonomy [Bowman, 99], and object oriented programming
concepts. The combination of these elements allows for the description of interaction
tasks, in which the sequence of the interaction processes is controlled by PNs, and
whose codes are generated automatically. By the integration of a collaborative
interaction techniques taxonomy, the formalism of PN and automatic code generation,
the present work addresses the entire development cycle of a collaborative three
dimensional interaction.

This paper is organized as follows. Section 2 summarizes work that is related to
our approach. In Section 3 we present the proposed methodology and in Section 4 we
present a case study with a collaborative manipulation task. Section 5 concludes the
paper.

2 Background

This section presents related work in five aspects that are related to our approach:
interaction techniques specification; interaction techniques taxonomies; collaborative
design; collaborative manipulation; and frameworks and tools for code generation in
VR applications.

2.1 Interaction Technique Specification

Smith and Duke [Smith, 99] point out that the lack of formal descriptions during the
development process of VEs inhibits the identification of similarities among different

244 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

interaction techniques, leading to the “reinvention” of existing techniques. Interaction
technique specification is an important task from the perspective of both users and
designers. Users require interaction techniques that allow them to complete
interaction tasks in a particular application and designers like to build systems that
make the required interaction possible [Smith, 99].

Hynet [Wieting, 96] is a specification methodology for interaction techniques that
integrates three modeling approaches. High-level PNs represent the formal base for
the specification, defining the application semantics and allowing a graphical
representation for the application events (the discrete part of the application).
Differential Algebraic Equations handle the continuous behavior pattern of the
application, and Object Oriented Concepts allow for the enhancing of the
methodology expressiveness, generating concise and compact models.

Based upon HyNet, the Flownet methodology [Willans, 01] was developed for
describing dynamic behavior patterns in VEs and presents a different graphical
notation that allows for the specification of both the discrete and continuous behavior
patterns of the application.

The Interactive Cooperative Objects (ICO) is a formal notation devoted to the
specification of interactive systems [Palanque, 97]. It borrows concepts from the
object-oriented programming to describe the structural or static aspects of systems,
and uses high-level Petri nets to describe their dynamic aspects. According to the
authors, the specification created using ICO can be simulated, which gives the
possibility to prototype and test an application before it is fully implemented.

The above specification approach provides systematic methods for interaction
techniques design, test, and refining, facilitating the description of systems. However,
both HyNet/ Flownet and ICO are not related to any interaction technique taxonomy
and do not provide any support for the automatic generation of code, which requires a
deeper knowledge of the used formalisms, both by the designers and the developers,
especially in the implementation phase.

2.2 Interaction Technique Taxonomies

We can view the development process of VEs under the perspective of the interaction
techniques used, with the aim of classifying them in order to better understand their
components, and therefore the possibilities of software reuse in new applications.

Lindeman [Lindeman, 99], for example, demonstrates a taxonomy that divides
interaction techniques according to the type of manipulation technique (direct or
indirect), the system actions (discrete or continuous) and the degrees of freedom
controlled by the interaction technique. This approach helps to identify the parameters
involved in each interaction technique, facilitating the building of new forms of
interaction.

Bowman et al. [Bowman, 04] present a taxonomy based on task decomposition to
perform a detailed analysis of the interaction process. According to them, the
separation of tasks in simpler modules allows each of them to be analyzed and tested
in an independent way as a tool for evaluating the usability and effectiveness of an
interaction technique in a particular context or VE.

Another advantage in the use of a task decomposition taxonomy is the possibility
of reuse or combination of interaction technique components in new projects. This

245Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

characteristic allows, besides flexibility, for the conception of new techniques
adequate for specific situations, such as collaboration.

Csisinko and Kaufmann [Csisinko, 07] present an approach to standardize the
development of 3D user interaction techniques. The authors propose to implement the
techniques directly in the driver that controls the tracking device, using Python
scripts. This solution uses a variation of the Bowman’s taxonomy, introducing an
orthogonal property to describe the level of support provided by the driver: full,
partial or not implemented in the tracking middleware.

2.3 Collaborative Design

The use of collaborative methodologies during the design of the graphical user
interfaces allows the interchange of experience between different development teams,
and enables the creation of well-detailed system components.

Memmel and Reiterer [Memmel, 08] provide a model-based specification method
and an experimental tool that integrates models with different levels of fidelity of
user-interface prototyping. Users can cooperatively work on requirement models
during brainstorming sessions, interacting with project artifacts through an electronic
whiteboard or using their own workspace.

Another approach, presented by Arroyo et al [Arroyo, 08], proposes the
integration of collaborative task models into a unique design model for the
development of ambient intelligence systems. According the authors, the
implementation of these systems is based on a blackboard architecture, which
provides a well-defined high-level interface, encapsulating abstract concepts and
relationships in components that describe an expected behavior or a specific physical
device.

The work of Martinéz et al [Martínez, 08] presents a model of interaction for
collaborative VEs, which allows defining the logic of an application focusing mainly
on the communication process among the objects. The proposed model, besides being
based on properties of the real world communication, allows the integration of task
analysis to the design of the environment. For instance, user actions are mapped as
channels of communication using the Bowman’s task decomposition
taxonomy [Bowman, 04].

Although these proposals provide robust solutions for the specification of
conceptual design models, they do not support the description of specific features in
the design of 3D user interfaces, such as the representation of interaction techniques
and devices commonly used in immersive virtual environments.

2.4 Collaborative 3D Interaction

The need for cooperative manipulation arises from the fact that some object
manipulation tasks in VEs are difficult for a single user to perform with typical
3D interaction techniques. One example is when a user, using a ray-casting technique,
has to place an object far from its current position, which can be difficult if the user
does not see all the surroundings of the aimed position. Another example is the
manipulation of a large object without changing to a World-In-Miniature (WIM)
paradigm. In both cases, two users can perform the task more easily because they can

246 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

both advise each other while performing cooperative, synchronized movements they
are not able to perform alone.

In most of the known collaborative virtual environments, the simultaneous
manipulation of the same object by multiple users is avoided. True collaborative
manipulation has been the focus of a few research efforts. Most of these
efforts used force feedback devices so that each user senses the actions of the
other [Basdogan, 00] [Sallnäs, 02].

Margery et al. [Margery, 99] present an architecture to allow cooperative
manipulation without the use of force feedback devices. The system is restricted to a
non-immersive environment, and the commands that can be applied to objects are
vectors defining direction, orientation, intensity and the point of application of a force
upon the object. Thus, Margery’s work is based on the simulation of real-world
cooperative manipulation.

Earlier research by Ruddle et al. [Ruddle, 02] presented the concept of rules of
interaction to support symmetric and asymmetric manipulation. In a subsequent
work [Ruddle, 03], the same authors separated collaborative tasks into two levels of
control. The high level control activities correspond to those tasks that require
attention, planning and mental effort by the users to be executed. The low level
control activities are quasi-autonomous activities that, once learned, are quickly
executed by the users with no conscious control.

Duval et al. [Duval, 06] presented a cooperative manipulation technique based on
“crushing points”, considering the size and the geometry of the object. Two crushing
points define a “skewer” across the object. According to the authors, the users feel
like they are pulling the object by a virtual cord. The proposed technique uses only
the user's hand position to apply translations and orientation changes to the object.
The only problem reported for this technique is that rotation around the axis of the
skewer is not allowed. To do so, the users have to release the object and select new
crushing points, or new controls (like buttons or six degrees of freedom trackers) must
be added to the interaction process.

The work of Pinho et al. [Pinho, 08] presents the concept of collaborative
metaphor for simultaneous interaction in VEs. This metaphor is composed by a set of
rules that defines how to combine each step of the interaction process, allowing that
interaction techniques normally used in individual interaction be combined to
compose a collaborative technique. The steps of the interaction process used are those
steps defined by Bowman’s task decomposition taxonomy [Bowman, 04]. The
combination of the steps of interaction techniques is obtained by the distribution of
the degrees of freedom of the objects’ control among the users.

Riege et al. [Riege, 06] present a collaborative pointing technique for co-located
multi-user interaction in VEs called “The Bent Pick Ray”, based on the ray casting
metaphor. This approach allows users to select and manipulate objects,
collaboratively or not, without locking objects and preserving the visual feedback.
Multiple selections and concurrent manipulations are controlled through functions
that merge the inputs from multiple users. In collaborative tasks, the users are
continuously informed about their connection to the object through bent pick rays,
which also provides a direct feedback from the input merging process.

We use the latter two collaborative 3D interaction methodologies as case studies
for the PN-based approach proposed in this work.

247Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

2.5 Tools for Code Generation

VR Frameworks try to separate functions in modules, allowing for the abstraction of
the complexities of some system actions, and furthermore, the reuse of these software
modules, coded by design languages.

The Unit framework [Olwal, 04] inserts an abstraction layer between the
applications and its devices, and inserts application units into a data flow. Similarly,
Figueroa et al [Figueroa, 02] propose an architecture based on pipes and filters, where
information sources, such as physical devices, generate a flow of data that are
propagated through interconnected filters. However, the code generation process
offered by both frameworks results in interpreted code, which may compromise the
quality of the interaction if the hardware does not support the application demands.

Vitzhum [Vitzthum, 06] presents a visual design language that focuses on the
formal specification and supports the use of model-driven implementation. Although
this approach is task-focused domain and generates less code than the traditional
concepts, it is essential a previous experience with software engineering principles.

From a different perspective, Ying and Gračanin [Ying, 04] aim to understand the
interaction process of existing VR applications. Analyzing an existing code, the
information related to the user interaction is extracted and organized in an XML file
that serves as a base for building a PN model representing the target application. By
simulating the PN, one can “view” the interaction process through the PN behavior
pattern, while the user is interacting with the VR application. Nevertheless, this
approach is restricted to the test phase and does not contemplate previous steps of the
software development process, because reverse code engineering is used to create
description files.

3 The Proposed Methodology

From the literature review, it is possible to conclude that the approaches presented
above have specific advantages and goals. However, in general, they do not address
the entire computer application development cycle, especially concerning the final
phases of debugging and code generation. Towards this goal, we developed a
methodology for hierarchical development of a VR collaborative interaction process
using Petri Nets, beginning from the design stage, based upon Bowman’s interaction
taxonomy, up to the implementation phase, relying on the object oriented
programming paradigm.

The main goal of the proposed methodology is to model and implement modules
that represent the steps of the interaction process. The use of formalism in conjunction
with an interaction taxonomy allows for the detailed specification of the system, as
well as facilitating the structuring and implementation process, encapsulating
functionalities. These characteristics enable the generated modules to be tested in
advance and reused later, simplifying and accelerating the development of VEs.

The graphical representation adopted here is based on Colored Petri
Nets (CPNs) [Jensen, 97] because, during the modeling process, we need an easy way
to differentiate the various types of data that are manipulated in a VR application. For
simplification, this work refers to CPNs simply by the expression Petri Nets (PN).

248 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

The methodology presented in this paper aims to approximate the user’s
conception of the application from the designer and developer’s point of view,
modeling the application under the perspective of tasks which the user has or wishes
to perform inside the VE. These tasks can be decomposed in elementary tasks that can
be easily identified in most VR applications [Bowman, 99]. These elementary tasks
split the interaction process into three phases: selection, manipulation and release.
Our work adapts this taxonomy dividing the selection phase into selection and
attachment. The former represents the indication of the object which the user wishes
to manipulate, while the latter deals with the confirmation of this selection. Both
provide feedback to the user in order to confirm their execution.

The designer needs to follow three steps to apply the methodology: 1) identify the
VE tasks, according to Bowman’s taxonomy, as well as the main states reached by the
application after executing each task; 2) define a PN with the tasks and states
identified in the previous step; 3) implement the model, using a set of classes
specially developed to build the PN and to control its execution. Each of the above
phases is detailed below.

Considering PNs, our methodology assigns to each basic element used in the PNs
(places, transitions, arcs and tokens) a specific role or function during the interaction
process in a VR application. Places define the current application state, transitions are
elements that perform actions to modify the application’s behavior pattern, arcs define
the execution sequence and tokens are the resources available for executing the VE.

In order to illustrate the use of our methodology in the specification process of a
VE, we built a virtual rotary engine application (Figure 1) in which the user’s primary
goal is to assembly the engine, connecting its parts. In this section we present a single
user interaction, and in the following section we extend it to collaborative interaction.

3.1 Identifying Interaction and Building the PN Model

The first phase of our methodology identifies the application phases based on
Bowman’s taxonomy. The application starts in the Selection State (Figure 2, on the
left) in which the user can move the pointer, looking for an object to select. From this
point the Selection Task tests whether there is a virtual object indicated by pointer.
If so, the Selection Task transition is fired, and the Attachment State is established.

At this point if the user presses and holds the selection button, the Attachment
Task is fired attaching the selected object to the pointer and establishing the
Manipulation State. Once this state is established the PN fires the Manipulation Task
which allows the user to relocate the object using the pointer. If the user releases the
selection button, the Release State place enables the firing of Release Task, separating
the pointer from the previous selected object.

After identifying the application tasks in a high abstraction level, it is necessary to
perform a task subdivision process, splitting them into smaller parts (see Table 1),
based upon the operations each of them has to execute.

249Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Figure 1: The virtual rotary engine application.

Figure 2: A high-level PN for the application.

High-Level Tasks Basic Operations

Selection Indication Subtask
Indication Feedback Subtask

Attachment Confirmation Subtask
Confirmation Feedback Subtask

Manipulation Positioning Subtask
Repositioning Subtask

Release Detachment Subtask
Detachment Feedback Subtask

Table 1: Detailing the high-level tasks.

250 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Following the methodology, the identification of the necessary resources (data)
for each interaction phase should be initiated, which is represented as tokens in the
PN. For this, PN arcs should be labeled with the token types, graphically represented
by icons.

The places Selection State, Attachment State, Manipulation State, and Release
State need to be constantly updated with information about the devices and control
variables from the application. Therefore, tokens with these data must be inserted into
them, as can be seen in Figure 3 that presents the complete PN model for the
application.

Utilizing formalism, interaction devices and the application can be represented as
source transitions in the PN model, as they don’t have input places, being always
enabled to fire and to produce tokens to the net (in this case, information about the
user physical interaction and the VE state). In Figure 3 the devices are represented by
triangles, while the application is represented by hexagons. These shapes are merely
illustrative and serve only to help understanding the network.

Figure 3: PN model and data resources for the modeled interaction process.

251Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

The pace of the PN simulation is controlled by the application, which tests each
transition every time the user’s view needs to be modified, guiding the execution of
actions. In this step, the simulator fires the transitions that have their pre-conditions
fulfilled. A transition’s firing generates a call to a function previously assigned to the
task. In other words, all the transitions are checked on every rendering cycle and fired
or not, depending on the existence of the pre conditions (the necessary tokens).
Therefore, it is possible to analyze the process logic together with the system and
devices behavior patterns.

A complete PN cycle, presented at Figure 3 and representing the virtual rotary
engine application, can be interpreted as follows: tokens are sent to the Selection,
Attachment, Manipulation and Release states. When the Indication Subtask transition
receives all the necessary tokens, a function is fired, unpacking its data and testing
whether some engine part is being pointed by the user. In positive case, the transition
creates a new token to represent this situation and passes it to the Indication state.
After this, the Indication Feedback Subtask transition is fired, calling a function that
highlights the pointed engine part.

Immediately, the Attachment state accepts a token that represents the selected
object, and waits for the token that indicates a button being pressed by the user. When
this happens, the Confirmation Subtask transition is fired, calling a function that
attaches the engine part to the user’s pointer. Confirmation state receives this
information, which allows the firing of Confirmation Feedback Subtask transition,
responsible for communicating the success of the attachment process using an alert
sound.

A token encapsulating the attached object is sent to the Manipulation state, which
defines the start of the manipulation process. Positioning Subtask transition is fired,
requesting a function to update the object’s position, according to the tracker data.
This transition generates a new token, and sends it to the Release state as well as back
to the Manipulation state, through the Repositioning Subtask transition. While the
selection button remains pressed, the Positioning Subtask transition is repeatedly
fired, allowing the user to freely move the engine part around the VE.

If the button is released, the Manipulation state will no longer fire Positioning
Subtask transition. Concurrently, the Release state receives tokens informing the
user’s action and the manipulated engine part. Detachment Subtask transition is fired,
releasing the object in its new VE position. Immediately, the Detachment state
receives a token that fires the Detachment Feedback Subtask transition, which
communicates the success of the detachment process. A token is then sent to the
Selection state, allowing for a new engine part selection to be initiated.

3.2 Implementation Phase

In order to derive the implementation, we start with the graphical description of the
PN, created in Dia editor [Dia, 10]. From this diagram, an XML specification is
obtained which, in turn, originates a C++ code.

Using Dia, it is possible to add support for new types of diagrams by writing
simple XML files, thereby creating specific libraries with elementary objects called
“shapes”. This feature also allows diagrams to be stored in XML files, facilitating the
conversion of models to other codification forms, such as Java and C++
languages, or other markup languages, such as PNML (Petri Net Markup

252 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Language) [Billington, 03]. The flexibility of the conversions allows for designers the
reuse of models in new projects or different development platforms, and the use of
other tools able to validate the syntactical structure of PNs, since Dia has no native
support to formal validation.

In order to support the PN modeling, new shapes have been created to represent
the PN elements place, transition, arc and token, organized in a library called Petri
Net Interaction Process Diagram. This library, besides facilitating diagram drawing,
also enables the generation of C++ code from a PN model. Figure 4 presents this
library incorporated in the Dia environment.

Dia uses an XSLT (eXtensible Stylesheet Language Transformation) file format
that allows conversion of XML tags to construction of a programming language, such
as C++. We created two XSLT files that facilitate this conversion. The first file
defines rules to generate an XML file from the graphical diagram, whereas the second
contains rules to convert from the PN elements to C++ classes. These classes run the
modeled PN and may be connected to a VE, coordinating its interaction.

Figure 4: PN Interaction Process Diagram Sheet loaded inside the Dia environment.

4 Collaborative Manipulation Case Studies

We adapted the model of the virtual rotary engine application in order to support
collaborative manipulation tasks. Figure 5 presents the new model, including two new
tokens responsible for the objects’ translation and rotation tasks. This way, for
instance, during the manipulation step an user may control the positioning of an
object in the X-Y plane, while another user may control its orientation in the Y axis.
This first case study is based on the Pinho’s methodology [Pinho, 08].

Each user interacting in the application has his own tokens, since the PN
represents the behavior of the system as a whole. In Figure 6, for example, tokens
representing each user have a specific border color (thick blue and thin red), while the
shared token, representing the object has a different border style (dotted magenta). In
this example, the thick blue user is responsible for the object’s translation in the 3D
space, while the thin red user is responsible for the rotation of the same object. For
this example, we considered the arcs label definition presented in Figure 5.

253Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

In this case study, the Manipulation state receives the shared object, the tasks that
each user may execute, and continuous information about the devices and the
application. The existence of the tokens enables the PN execution in parallel,
determining which task the user may perform (positioning or orienting the engine
parts).

Figure 5: PN with parallel activities. “Rotation active” and “Translation active”
tokens define the task to be executed.

Figure 6: PN state during the cooperative manipulation.

254 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Figure 6 still illustrates, in places Position State and Orientation State, the
distribution of these activities between the users. Note that the tokens responsible for
the user’s decision to continue or not with the object manipulation (pressed button)
are forwarded directly to places Translate State and Rotate State, as a means to wait
for the conclusion of the translation and rotation tasks. When both users complete the
concurrent activities, the interaction process is enabling to continue as before.

It is possible to show that the net also provides support for the representation of
individual interaction. Figure 7 presents interactions of two users with different
objects, in distinct steps of the interaction process (selection and attachment).

Figure 7: PN state representing the interaction with two distinct objects,
in different tasks.

In order to validate our methodology with tasks and techniques applied in realistic
settings, we present a second case study that illustrates our approach. In doing so, we
model a bent pick ray [Riege, 06], a collaborative pointing technique discussed in
Section 2.4. Part of the specification could be seen in Figure 8, which highlights the
functioning of the technique during manipulation tasks.

According to the description of technique, the object could be moved
simultaneously by two or more users. Techniques for merging the users’ input are
used, which weight the influence of interaction according to the amount of hand
movement a user does. Figure 8 also shows these features, encapsulated in the
transitions Offsets Subtask, Weights Subtask and Merging Subtask, which represent
the required functions to combine the users’ movement, determining a new position
for the object.

This way, a user may perform the translation of an shared object in the X-Y
plane, while another user perform the translation in the X-Z plane, at the same time.
The merging process is started after this. Figure 9 shows this situation, considering
the arcs label definition presented in Figure 8.

Rotation tasks also may occur in parallel with the translation activities, as well as
specific technique steps. Figure 10 complements the previous situation, showing that
orientation actions could be performed at the same time that the visual feedback of the
technique, when the bending of the pick rays is defined.

255Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Figure 8: PN model representing the Bent Pick Ray interaction technique during
the manipulation task.

Figure 9: PN state during the simultaneous manipulation.

256 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Figure 10: Parallel activities, such as interaction tasks and technique steps, could be
represented using our methodology.

4.1 Discussion

With regard to the case studies, compared with the standard approach to deal with
collaborative 3D manipulation, our methodology approximates the application
modeling to the user’s conception, allowing effective communication between
designers, developers and end-users during the entire development cycle. The PN
interaction process representation also facilitates the identification of the parts of the
system that could be parallel or support similar situations, such as individual and
collaborative interaction. This can result, for example, in simplification of the system
and reduction of the design-time and development-time, since our methodology is
based on the top-down development approach, which allows breaking down a system
to gain insight into compositional sub-systems. So, it is possible to create interaction
technique components from generic parts, and reuse them in future projects.

For this reason, our methodology also supports the interaction technique
representation at different levels of abstraction, in design time, allowing basic
elements to be used in new projects. The PN decomposition technique, combined with
the code generation process, allows for the interaction technique features to be
elucidated to the developers, who can dedicate their time and attention to improve
them and optimize their codes. Moreover, the use of levels of abstraction in projects
can also hide technical features from end-users, facilitating the understanding of the
interaction technique during their interaction in VEs.

On the other hand, our methodology requires designers to know the basic PN
concepts and rules in order to draw and revise their models, since Dia has no native
support to PN projects. Depending on the system's complexity, or the development
team's knowledge level, a training step may be required to prepare the professionals to
design and review the PN model.

5 Conclusions

This work has presented a methodology to specify interaction tasks for VR
applications using the Petri Net formalism as a base for the software design. Our

257Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

methodology aims to facilitate the application development from the conception and
design phases to the implementation, test and documentation processes. The option of
code generation from the graphical model helps the communication between
designers and developers, avoiding the breaking of paradigms, and speeding up the
development process. Moreover, an application built with our methodology can offer
optimized functions, allowing users to complete their interaction tasks in an intuitive
way.

Even though we have adopted the C++ language for the code generation process
as described in Section 3.2 (Implementation phase), there is no restriction on the use
of another programming language as default for this process. Our approach has
adopted the C++ language because the majority of VR applications is developed in
this language or uses resources from graphics/scene libraries written in it. However, if
the designer needs to export PN models (stored in XML files) to another language,
such as Java, he must create an XSLT file containing rules to convert the PN elements
into Java classes.

Since the control of the PN simulation stages is autonomous, it would be
interesting to show the application running process in a graphical animation
superimposed over the PN graph itself, parallel with the application usage. Currently
we only generate a textual output during the application's execution. Our intention is
to use the XML specification file as input to a PN simulator, parsing the PNML
language. By doing this, we intend to present another method to analyze and visualize
the behavior pattern of each stage of the interaction process, mainly to solve problems
in complex VEs. However, this graphical animation is only possible if there is a
mechanism able to verify the correctness of the PN model. The use of this resource
would allow performing PN validation before the automatic code generation and the
PNML specification, providing consistency and completeness to the created model.

We are analyzing ways to verify the correctness during the model export process,
since Dia is a general graphical editor and does not let the structural analysis take
place in design time. This approach could allow for error detection within the editor,
avoiding redraws and recoding during run-time and simulation-time stages. As a
result, an accurate model could be generated, allowing the specific tools to verify the
PN properties, through formal techniques to certify the absence of undesired system
behaviors, such as deadlocks. Next, it would be necessary an evaluation session to
validate these models, using one of the PN tools to analyze formally the system.

Another interesting idea would be to incorporate our methodology to a VR
framework, presenting a complete development platform. Resources for analysis,
project, development and evaluation of VE prototypes could be integrated in a single
tool, allowing for the detection of faults in project time. With this in mind,
frameworks such as VR Juggler [Vrjuggler, 10], MORGAN [Morgan, 10], and
DIVERSE [Diverse, 10] are being analyzed, as they already use an extensive set of
software modules that abstract devices, avatars and VEs. Our methodology could be
adapted to function as one interaction framework integrated to existing resources,
becoming an important feature of these tools.

Acknowledgements

This work was partially funded by Tecgraf, Computer Graphics Technology Group, at
PUC-Rio. We are also grateful for the fellowships granted by Dell/PUCRS

258 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

Agreement and CAPES - the Brazilian Ministry of Education Agency. Alberto B.
Raposo thanks FAPERJ for the individual support granted (#E-26/102.273/2009).

References

[Arroyo, 08] Arroyo, R. F., Gea, M., Garrido, J. L., Haya, P. A.: “Development of Ambient
Intelligence Systems Based on Collaborative Task Models”; Journal of Universal Computer
Science, 14, 9 (2008), 1545-1559.

[Basdogan, 00] Basdogan, C., Ho, C. H., Srinivasan, M. A., Slater, M.: “An Experimental
Study on the Role of Touch in Shared Virtual Environments”; ACM Transactions on
Computer-Human Interaction, 7, 4 (2000), 443-60.

[Billington, 03] Billington, J., Christensen, S., Van Hee, K., Kindler, E., Kummer, O., Petrucci,
L., Post, R., Stehno, C., Weber, M.: “The Petri Net Markup Language: concepts, technology,
and tools”; In Proc. ICATPN’03, Lect. Notes in Comp. Sci. 2679, Berlin (2003), 483-506.

[Bowman, 99] Bowman, D. A., Hodges, L. F.: “Formalizing the Design, Evaluation, and
Application of Interaction Techniques for Immersive Virtual Environments”; Journal of Visual
Languages and Computing, 10, 1 (1999), 37-53.

[Bowman, 04] Bowman, D. A., Kruijff, E., LaViola, J. J., Poupyrev, I.: “3D User Interfaces:
theory and practice”; Addison-Wesley, Redwood City (2004).

[Csisinko, 07] Csisinko, M., Kaufmann, H.: “Towards a Universal Implementation of 3D User
Interaction Techniques”; In Proc. MRUI’07, Charlotte (2007), 17-24.

[Dia, 10] Dia: a drawing program, 2010, http://live.gnome.org/Dia.

[Diverse, 10] DIVERSE: Device Independent Virtual Environment – Reconfigurable, Scalable
and Extensible: an open source virtual reality toolkit, 2010,
http://diverse.sourceforge.net/diverse.

[Duval, 06] Duval, T., Lecuyer, A., Thomas, S.: “SkeweR: a 3D Interaction Technique for
2-User Collaborative Manipulation of Objects in Virtual Environments”; In Proc. 3DUI’06,
Washington (2006), 69-72.

[Figueroa, 02] Figueroa, P., Green, M., Hoover, H. J.: “InTML: a Description Language for VR
Applications”; In Proc. Web3D’02, Tempe (2002), 53-58.

[Jensen, 97] Jensen, K.: “Coloured Petri Nets: basic concepts, analysis methods and practical
use”; Springer-Verlag, Berlin (1997).

[Lindeman, 99] Lindeman, R. W.: “Bimanual Interaction, Passive-Haptic Feedback, 3D Widget
Representation, and Simulated Surface Constraints for Interaction in Immersive Virtual
Environments”; School of Engineering and Applied Science, George Washington University,
PhD. Thesis (1999).

[Margery, 99] Margery, D., Arnaldi, B., Plouzeau, N.: “A General Framework for Cooperative
Manipulation in Virtual Enviroments”; In Proc. of the IEEE Virtual Environments, Los
Alamitos (1999), 169-178.

[Martínez, 08] Martínez, D., García, A. S., Martínez, J., Molina, J. P., Gonzalez, P.: “A Model
of Interaction for CVEs Based on the Model of Human Communication”; Journal of Universal
Computer Science, 14, 19 (2008), 3071-3084.

259Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

[Memmel, 08] Memmel T., Reiterer, H.: “Model-Based and Prototyping-Driven User Interface
Specification to Support Collaboration and Creativity”; Journal of Universal Computer Science,
14, 19 (2008), 3217-3235.

[Morgan, 10] MORGAN: a distributed multi-user framework for VR/AR applications,
Fraunhofer FIT, 2010, http://www.fit.fraunhofer.de/MORGAN.

[Murata, 89] Murata, T.: “Petri Nets: properties, analysis and applications”; Proceedings of the
IEEE, 77, 4 (1989), 541-580.

[Olwal, 04] Olwal A., Feiner, S.: “Unit: modular development of distributed interaction
techniques for highly interactive user interfaces”; In Proc. GRAPHITE’04, Singapore (2004),
131-138.

[Palanque, 97] Palanque, P. A., Bastide, R.: “Synergistic Modeling of Tasks, Users and
Systems Using Formal Specification Techniques”; Interacting with Computers, 9, 2
(1997), 129-153.

[Pinho, 08] Pinho, M. S., Freitas, C. M. S., Bowman, D. A.: “Cooperative Object Manipulation
in Collaborative Virtual Environments”; Journal of the Brazilian Computer Society, 14,
2 (2008), 53-67.

[Riege, 06] Riege, K., Holtkamper, T., Wesche, G., Frohlich, B.: “The Bent Pick Ray: an
extended pointing technique for multi-user interaction”; In Proc. 3DUI’06, Washington (2006),
62-65.

[Ruddle, 03] Ruddle, R. A., Savage, J. C., Jones, D. M.: “Levels of Control During a
Collaborative Carrying Task”; Presence: Teleoperators and Virtual Environments, 12, 2 (2003),
140-155.

[Ruddle, 02] Ruddle, R. A., Savage, J. C., Jones, D. M.: “Symmetric and Asymmetric Action
Integration During Cooperative Object Manipulation in Virtual Environments”; ACM
Transactions on Computer-Human Interaction, 9, 4 (2002), 285-308.

[Sallnäs, 02] Sallnäs, E. L.: “Collaboration in Multimodal Virtual Worlds: Comparing Touch,
Text, Voice and Video”; In The social life of avatars, Springer-Verlag New York (2002),
172-187.

[Smith, 99] Smith S., Duke, D.: “Using CSP to Specify Interaction in Virtual Environments”,
University of York, York, Technical Report YCS 321 (1999).

[Smith, 99] Smith S., Duke, D.: “Virtual Environments as Hybrid Systems”; In Proc.
Eurographics UK 1999, Abington (1999), 113-128.

[Vitzthum, 06] Vitzthum, A.: “SSIML/Components: a Visual Language for the Abstract
Specification of 3D Components”; In Proc. Web3D’06, Columbia (2006), 143-151.

[Vrjuggler, 10] The VR Juggler Suite, 2010, http://www.vrjuggler.org.

[Wieting, 96] Wieting, R.: “Hybrid High-Level Nets”; In Proc. WSC 1996, Coronado (1996),
848-855.

[Willans, 01] Willans, S., Harrison, M. D.: “Prototyping Pre-Implementation Designs of Virtual
Environment Behaviour”; In Proc. EHCI’01, Lect. Notes in Comp. Sci. 2254, Berlin (2001),
91-108.

[Ying, 04] Ying, J., Gračanin, D.: “Petri Net Model for Subjective Views in Collaborative
Virtual Environments”; In Proc. SG’2004, Lect. Notes in Comp. Sci. 3031, Berlin (2004),
128-134.

260 Rieder R., Pinho M.S., Raposo A.B.: A Petri Nets based Approach ...

