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1 Introduction

Our ideas about numbers and arithmetical practices arise from our desire and need for
measurement. The development of current notations and rules for calculation is the work
of centuries. By the 16th Century, arithmetic was recognisable with its operations of

+, −, ·, ÷

and calculations with expressions containing variables and the equality sign =.1 So it
remains, as can be seen in school textbooks and in the buttons of pocket calculators (in
hardware and software).

It took further centuries to develop our current theories of arithmetic as mathematics
itself changed in matters of rigour and foundations. Foremost are the theories of rings
and fields, with their axioms, structures, morphisms, and polynomials etc. Although
beautiful and deep, the algebra and logic of rings and fields are incomplete as theories of
arithmetic because they rather neglect division÷. This neglect leads to division problems
in fields that can be seen in calculating with rational numbers – the primary number
system of measurement and practical arithmetic – in the misunderstanding of fractions
in school arithmetic and the need to avoid partial operators in computer arithmetic.

In field theory, division is not understood as a primitive operation, so it is not on a
par with the addition, subtraction and multiplication. The working of the operations of

1 See, for example, the English vernacular works of Robert Recorde, where = first appears in
1557; actually, for division, Recorde uses fractions with numerators and divisors, which were
well established [Williams 2014]. The notation ÷ becomes a sign for division later – after some
years serving as one of several signs for subtraction.

https://orcid.org/0000-0003-2492-506X
https://orcid.org/0000-0003-2492-506X
https://orcid.org/0000-0003-4689-8760
https://orcid.org/0000-0003-4689-8760


962 Bergstra J., Tucker J.V.: Naive Fracterm Calculus

+, −, · are specified axiomatically, and, in particular, there is a plurality of options for
axioms that are equations. In the practical arithmetic of the schools, equations rule and
division is omnipresent! Surprisingly, however, writing axioms for division – unlike for
addition, multiplication, and subtraction – has hardly any tradition in arithmetic.

In any case, fields with an explicit multiplicative division, or inverse, cannot be
axiomatised by equations.2 The stumbling block is division by zero, namely x

0 . Fields
are axiomatised by avoiding division by zero

∀x∃y [x 6= 0 → x · y = 1]

or, on adding a partial inverse operation x−1, by

∀x [x 6= 0 → x · x−1 = 1].

The axioms involve negation 6=. Starting in [Bergstra and Tucker 2007], we have studied
several ways of enriching fields with division to form algebras we call meadows and
ways to axiomatise reasoning about meadows using equations, e.g., [Bergstra et al.
2009, Bethke and Rodenburg 2010, Bergstra and Ponse 2021, Bergstra and Tucker
2021, Bergstra and Tucker 2022].

The purpose of this paper is to propose and develop ideas of informal calculi for
division that are close to practical arithmetic as taught in schools, and to contrast these
informal calculi with a plurality of formal calculi, close to theories of arithmetic of
interest to mathematicians and computer scientists.

1.1 On formal versus informal calculi

Practical arithmetic, even at the elementary levels of the schools, is not easy to discuss
in an explicit and systematic way – as an extensive literature on teaching arithmetic
largely confirms. Certainly, an account that would qualify as an ‘informal calculus’
seems remote. The term ‘practical’ refers to practices by people, which are inherently
diverse and can be incomparable. By ‘calculus’ we have in mind operations, expressions,
equations, and methods for their application as found in school textbooks; note that a
calculus is not necessarily a formal object.3 Thus, our task is anthropomorphic as well as
mathematical.

At the outset, we conceive of the task in four stages which we name and sketch as
follows:

1. Raw Arithmetic. Examine arithmetical practices ‘in the wild’.

2. Naive Arithmetic. Formulate a description of what seems to be a consensus on
what ideas and conventions are agreed, disputed or remain ambiguous in peoples’
practices.

3. Synthetic Arithmetic. Tighten and refine the informal description that is Naive Arith-
metic to resolve ambiguities and arbitrate some disputed ideas and conventions and
make it fit for systematic logical reasoning.

2 Stuctures axiomatised by equations are closed under products, but products of fields have zero
divisors.

3 In mathematical logic and computing, calculi are formal systems with carefully defined notations,
rules and meanings capable of metamathematical investigation and machine implementations.
It’s nice to remember the etymology of ‘calculus’ in Roman literature: pebble or stone used in
arithmetic reckoning on counting boards.
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4. Formal Calculi. Propose formal calculi for elementary arithmetic based on the
informal analysis of the Naive and Synthetic.

In this paper, we focus on building a calculus that captures Naive Arithmetic and con-
trast it with the various designs for formal calculi. Now, explorations of Raw Arithmetic
have been undertaken already, e.g., [Bergstra 2020]; indeed these partially motivate the
current problem of describing a consensus. Our technical development of several formal
calculi, motivated by computer arithmetic, we have mentioned earlier and will return to
later. The creation of an intermediate Synthetic Arithmetic is for another paper.

The technical needs of division require special attention to fractions. The explorations
of Raw Arithmetic reveal considerable conceptual difficulties with this term that we
have decided to highlight in Naive Arithmetic by coining and using the word ‘fracterm’
(see section 3.1 below). Thus, our naive fracterm calculus of the title is an attempt at
an informal requirements analysis of peoples’ practices when actually doing arithmetic,
especially divisions.

1.2 On fracterm calculi

The axioms of our formal calculi for arithmetic are based on equations and the calculations
on term rewriting. The central concepts are division and the fracterm, which is any
arithmetical expression with division as its leading function symbol [Bergstra 2020].
Usually, we will use the horizontal bar notation for denoting the division function. Since
division is the least familiar operation, certainly from a logical perspective, following
[Bergstra and Tucker 2022], a calculus with these primitives is referred to as a fracterm
calculus. Thus, a formal fracterm calculus is a calculus with syntax generated by the
operations for a meadow (a field together with division). Assertions of a formal fracterm
calculus first of all take the form of equations t = r where t and r are terms that may
contain variables; more involved assertions require logical connectives and quantifiers.

This paper is focussed on designing an informal fracterm calculus that we call a
naive fracterm calculus in order to contrast with the formal fracterm calculi. A word
about ‘naive’. Although focussed on the most elementary part of mathematics, we are
influenced by one of the most logically subtle parts, set theory. Mathematical practitioners
need a reliable set theory that can be used without technical knowledge of its logical
foundations [Halmos 1960]. Just as naive set theory acquires its name on the basis of the
existence of formal axiomatic set theories (e.g., ZF,ZFC,NF, ...), to which it stands
in contrast, so naive fracterm calculus acquires its name in contrast with formal fracterm
calculi. The parallels are closer than simply naming, as we will see from time to time.

1.3 Methodology

Guiding our design of fracterm calculi are ideas about abstract data types for arithmetic.
Clearly, the theory of equational specification and reasoning with abstract data types is
ideally suited to developing formal axiomatic calculi for arithmetic, as we will demon-
strate later. Interestingly, arithmetical data types also provide intuitions and means to
explore what elementary school arithmetic is about, what is essential in its use, and how
it can be organised.

The theory of abstract data types offers an approach to the formalisation of arithmeti-
cal data types with equations centre stage. Formalising arithmetic for rational numbers
leads directly to a plurality of fracterm calculi. Each formal fracterm calculus comes with
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a commitment to the principles of data types, abstract data types, and formal reasoning
as well as a contrast between syntax and semantics. (We provide a limited survey of
formal fracterm calculi later.)

The idea of an arithmetical data type also provides some guidance on how elementary
arithmetic can be further developed in less conventional directions. The informal calculus
we propose here is intended to lie in a spectrum: it improves on arithmetic as expressed
in natural language, but remains informal. It is intended as one source and reference for
the formal calculi.

Our methodology makes explicit the process of designing the informal calculus by
making explicit our objectives, claims about potential users, our design options and our
design decisions. What drives the development are arguments and perceptions about
meaningfulness, the plausibility of decisions, and their relevance to users. We use the
intuitions of abstract data type theory to source and choose technical options to adopt,
reject, or leave open. For this, we have a terminology: the options that make up NFTC
are committed, adversely committed, or uncommitted, respectively.

An arithmetical data type provides syntax by means of a signature that lists names
of kinds of numbers, constants and functions; and it provides meaning in terms of
idealised entities which serve as abstractions. Intuitions emerge for distinctions between
expressions and entities, such as the expression (2 + (3 · 7))− 1 which denotes 22. Of
course, more subtle points about numbers surface related to significs and semiotics. One
may imagine that a class of numbers constitutes a collection of mental, ideal, entities.
Decimal notations such as 22 are names which refer to these underlying entities. The
actual occurrence of the name 22 on a backboard is itself a sign. The same number may
come under various names and the same name may be represented by a plurality of signs
at any moment of time. The number denoted by 22 is then understood as an abstraction
of its name.

1.4 Contributions and structure of the paper

Remarkably, in spite of the ancient and familiar collection of operations, fracterm calculi
have not widely been studied before our research programme on meadows.

The contributions of this paper are:
1. To design rigorously an informal calculus NFTC for arithmetic focussed on

division.
2. To make explicit our methods in developing the calculus – design objectives,

options and decisions for and against technical features for the calculus.
3. To introduce and compare some formal calculi FTC for arithmetic and contrast

them with NFTC.
Our paper aims to offer new ideas to those interested in: teaching elementary arith-

metic; mathematical pedagogy; semantics of computer arithmetics; and the nature and
design of formalisations.

In Section 2, we clarify why we wish to pursue arithmetic at this elementary and fun-
damental level. In Section 3 we introduce the basics of fracterms and our naive fracterm
calculus NFTC. In Section 4 we develop a more comprehensive list of commitments and
non-commitments for NFTC. In Section 5 we look at rewriting expressions in NFTC.
Then we turn our attention to the formal calculi. In Section 6 we look at formal calculi for
partial meadows; in Section 7 we look at formal calculi for common meadows in which
division is made total by an ‘error’ flag 0−1 = ⊥; and in Section 8 we look at formal
calculi based on algebras in which division is made total in other ways. We conclude
with some reflections.
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2 Why naive fracterm calculi?

Most arithmetical practitioners will be unaware of any of fracterm calculus. Upon being
made aware of a particular FTC (such as those introduced later) they may well be
unconvinced of the advantages of adopting such an FTC as a point of departure for
elementary arithmetic. Fundamentally, a fairly clear pattern of aversion to, and dismissal
of, formalisation seems to exist with regard to elementary arithmetical practice.

Shortly, we will collect such viewpoints and attitudes in a list of claims concerning
elementary arithmetic that we suppose those with a negative attitude to formalising
arithmetic would share. Our hypothesis is that these attitudes can be taken together and
used as a package of attitudes and views with which to guide the design of a naive
fracterm calculus NFTC. NFTC is a perspective on arithmetic which comes about from
this package.

Design Objective 2.1. Adopting NFTC implicitly – i.e., adopting its tenets – constitutes
a majority position among persons interested in elementary mathematics, including the
majority of school teachers.

Although intuitions about abstract data types are in our mind as we analyse elementary
arithmetic, let us confirm it that our focus is elementary arithmetic as it is practiced:

Claim 2.1. Once aware of the notion of a data type most practitioners of elementary
arithmetic prefer not to understand the classic portfolio of arithmetics (of the naturals,
integers, rationals, etc.) as a portfolio of data types. In particular, having to think
syntactically, in terms of signatures, will create resistance.

Claim 2.2. If a formal basis for arithmetic is to be adopted, then a person who is initially
disinclined to adopt any formalisation of elementary arithmetic is likely to prefer an
FTC presenting division as a partial function over any of the plurality of FTC’s that
incorporate division as a total function.

Logics of partial functions abound, but are non-trivial, e.g., [Robinson 1989, Jones
and Middelburg 1994]. NFTC as outlined below may be considered naive or even
inadequate from the perspective of logic. However, adopting NFTC may come with
endorsing the following working hypothesis:

Claim 2.3. Arithmetic is based in natural language, taking the form of an extension of
core natural language with certain notations and conventions.

Arithmetic is conceptually prior to logic and, therefore, there is no need to look for a
logical basis of arithmetic. Any proposal for a logical basis for arithmetic will turn out
to be both defective and artificial.

For the acquisition of basic competence in a natural language, awareness of its
grammar is not essential. This idea may be extended to a claim about arithmetic as
follows:

Claim 2.4. Arithmetic is conceptually prior to syntax, and therefore there is no need to
look for a syntactic basis of arithmetic. Any proposal for a syntactic basis for arithmetic
will turn out to be both defective and artificial.

The situation in elementary arithmetic is comparable to the situation with the classical
paradoxes. The famous liar paradox is intriguing while it constitutes no impediment to
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the practical use of natural language. Knowledge of the liar paradox is useful because it
indicates which kind of sentences may be hard to understand and are better avoided in
practice. To some extent the liar paradox is merely a side-effect of a particular approach
towards the formalisation of natural language, however, implicit. Similar observations
may apply to arithmetic:

Claim 2.5. Logical complications do not stand in the way of a proper understanding of
arithmetic, even if some logical complications may prove rather hard to settle.

Claim 2.6. Elementary arithmetic is not protected against inconsistency and error on
the basis of a package of assumptions and reasoning patterns that have been deliberately
designed to avoid inconsistency and error as much as possible, while still covering
sufficient ground (such as ZF set theory does).

On the contrary, elementary arithmetic acquires its stability and reliability from the
daily practice of a community of users who will eventually correct one another if needed.

3 Fracterms and a naive fracterm calculus

NFTC is to be understood as naive from the perspective of more formal characterisations.
Yet NFTC is supposed to be a stand alone description of elementary arithmetic which is
not in need of any foundations provided by formalisation.

3.1 Fracterms

As argued in [Bergstra 2020], ‘fraction’ is an ambiguous notion for which there is no
concensus. The meaning of fraction ranges from an expression, where different interpre-
tations of fraction consider different classes of expressions, to a value and to a rational
or related form of number. Remarkably, there is no obvious majority position in this
spectrum of explanations of fraction. Thus, the purpose of the word fracterm is to restrict
the ambiguity of fraction by always opting to mean an expression in circumstances where
a distinction between expression and value is made. Complementary to fracterm, quo-
tient also restricts the ambiguity of fraction by opting for a value whenever a distinction
between value and expression is made.

Fracterm and quotient are notions which are both meaningful in various formal
settings and for which a corresponding interpretation can be used in NFTC. Where
fracterm has (or may have in the perception of some) a syntactic bias, quotient has a
complementary semantic bias.

Definition 3.1. A fracterm is a structured entity involving a numerator, a denominator
and a leading function symbol for division.

A fracterm comprises the inputs of a division, irrespective of whether or not the
operation can actually be performed. A quotient, on the other hand, specifies the output
of a division; a quotient implies that division must have been enabled. In a context where
expressions and values are distinguished, a fracterm is an expression and is not a value.
In a context where some expressions also serve as values, the rule may occasionally be
compromised.

Definition 3.2. A quotient is the result of performing division on a pair of arguments.
The respective arguments of a quotient are sometimes called dividend and divisor.
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Definition 3.3. A sum is the result of performing addition on two (or more) arguments.
The respective arguments of a sum are called summands.

Definition 3.4. A sumterm of length n, with natural n ≥ 2, is an expression of the form
t1 + . . .+ tn. Here ti is called the i-th summand. A sumterm is by default a sumterm of
length 2.

Definition 3.5. A product is the result of performing multiplication on two (or more)
arguments. The respective arguments of a product are called factors.

Definition 3.6. A producterm of length n, with natural n ≥ 2, is an expression of the
form t1 · . . . · tn. Here ti is the i-th factor of the producterm.

Design Choice 3.1. In the context of NFTC, quotient and fracterm are not distinguished.

Design Choice 3.2. In the context of NFTC, sum and sumterm are not distinguished, and
product and producterm are not distinguished. However, both ‘sumterm’and ‘producterm’
are not used in NFTC.

The reason to treat division differently from addition and multiplication lies in the
observation that fracterms as fractions play a special role in elementary arithmetic:

(i) There is a significant nomenclature for the classification of fracterms: simple
fracterms, proper fracterms, unit fracterms, flat fracterms, simplified fracterms, etc. A
survey of terminology on fracterms is given in [Bergstra 2020].

(ii) Calculating with fracterms is a technical theme of its own.
(iii) Simplification of fracterms is a key transformation in calculation.
(iv) Unlike with sumterms and producterms, speaking of evaluating fracterms is less

common, as evaluation is often understood as being merely the final stage of simplifica-
tion.

There can be a plurality of different approaches to the formalisation of calculation
with fracterms, whereas there seems to be a rather uniform informal or ‘no-nonsense’
approach to the subject which underlies much of today’s practice regarding elementary
arithmetic, including educational practice. Nowwe will describe a naive (i.e., non-formal)
approach to calculation with fracterms.

3.2 Naive Fracterm Calculus (NFTC)

NFTC comes about from the following combination of design objectives, design choices,
and underlying general definitions.

Design Objective 3.1. Many judgements of elementary arithmetic are uncontroversial.
These judgements together constitute what may be called naive fracterm calculus (NFTC).

NFTC focuses on the large body of uncontroversial assertions in and about elementary
arithmetic.

Design Objective 3.2. NFTC is ‘by design’ intended to be immune from being split into
a plurality of views on details.

In naive set theory, the equation {x|x 6∈ x} = {x|x 6∈ x} is seemingly obvious as
it equates two identical entities. But asserting this equality is problematic because at
closer inspection both sides of the equation contain an expression that does not denote
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anything (cf. Russell’s Paradox). Similarly, in naive fracterm calculus, the equation
1
0 = 1

0 features complications: although the idea that
1
0 is non-denoting is not coming

about from an important paradox or a contradiction, in both cases, the subtle question
arises to what extent one is committed to a two-valued classical logic.

Design Choice 3.3. NFTC is committed to accepting 1
0 as a fracterm, but it is a ‘bad’

fracterm, and bad fracterms must not be used in written or spoken language about
elementary arithmetic.

The description ‘let g(x) = 1
x with x > 0’ is acceptable, although reading from left

to right the fragment 1
x is at risk of being non-denoting when first read. The occurrence

of 1
x is potentially bad but not necessarily bad, and in an adequate context (such as the

context just mentioned where x > 0) it is accpetable.

Design Choice 3.4. NFTC is uncommitted to a judgement of the validity of 1
0 = 1

0 .
Furthermore, NFTC is not committed to reflecting on the validity of the ‘badly’formulated
statement 1

0 = 1
0 .

Design Choice 3.5. NFTC is uncommitted to two-valued classical logic.

Design Choice 3.6. NFTC makes use of the word ‘fracterm’where readers might expect
‘fraction’.

The idea is that fracterm is used in NFTC in such a way that it acquires the same
meaning as fraction in school arithmetic, where the presence of ambiguities and of
various biases are accommodated.

Definition 3.7. In the context of NFTC, a fraction is a fracterm.

Thus, in view of Definition 3.7, in NFTC fracterm and fraction are the same notion.
However, we prefer not to constrain this work by any claim about the ontology of fractions
– that being a difficult subject – and will use fracterm within NFTC. Definition 3.7 states
our own preference for defining a fraction. The constraint ‘in the context of NFTC’ is
critical for Definition 3.7. Without that constraint, i.e., by simply defining a fraction as a
fracterm, an overly syntactical bias concerning fractions will result. A strong syntactic
bias in the conception of the notion of fraction is undesirable and imposing such a bias is
avoided by introducing the constraint.

Design Objective 3.3. NFTC is uncommitted to the belief that 1
2 and 2

4 are different
fracterms, while acknowledging that both denote the same quotients; at the same time
NFTC is committed to the belief that 1

2 is a simplification of 2
4 .

Design Objective 3.4. NTFC is committed to the validity of

φ(x) ≡ (x 6= 0 → x

x
= 1).

This assertion is true with the ‘short-circuit reading’ of implication: if the condition fails
(i.e., if x = 0) then φ(x) is considered valid and no attention is paid to the conclusion at
all.

The short circuit semantics of logical connectives plays a role in our development and
we adopt a notation to to make it explicit when needed. In the following claim we use the
notation →b for short-circuit implication; similar notations exist for all the connectives,
e.g., ∧b , ∨b ,∧b,∨b and so on [Bergstra et al. 1995].
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Design Choice 3.7. NTFC acknowledges that short-circuit implication plays a central
role so that it may warrant its own notation (for which, currently, no generally agreed
candidate is available) and then positively affirms that:

x 6= 0 →b x

x
= 1.

NFTC acknowledges (or at least does not reject) differences in plausibility between
various assertions, each of which is neither clearly true nor clearly false – compare
Design Choice 3.5.

Design Choice 3.8. NFTC is uncommitted to three valued logic while being compatible
with three valued logic. NFTC is compatible with perceiving subtle distinctions of validity
which are not rigorously used or explained.

For instance, NTFC accommodates a view where one assigns 1
0 = 1 a lower plausi-

bility than 1
0 = 1

0 , which in turn is considered to be less plausible than true ∨ ( 10 = 1
0 )

which then in turn is less plausible than true ∨
b
( 10 = 1

0 ), the latter being still problematic

because the fracterm 1
0 should preferably not be used in writing. At the same time, NFTC

accommodates a view where each of these assertions has a single third truth value.
Now 1

0 is a fracterm, but NFTC rejects the sentence ‘ 10 is a fracterm’, not because it

is supposed to be wrong or invalid but because 1
0 is bad and considered meaningless to

such an extent that there is insufficient justification for its use within NFTC. Existence
in NFTC is understood as meaningful existence. What can be said and written in NFTC
instead is that ‘dividing 1 by 0 is not possible because it cannot deliver an adequate
result’.

Design Choice 3.9. NFTC is committed to the existence of various kinds of numbers:
natural, integer, rational, real and complex.

However:

Design Choice 3.10. NFTC is adversely committed to attempts to define the various
numbers in detail, with the idea that these are self-supporting intuitions that come about
from natural language as much as from any ideology on how to design mathematical
theory and the corresponding notational conventions and patterns of reasoning.

Questions like ‘is division a function name’ are outside the scope of interest of NFTC,
more generally:

Design Choice 3.11. NFTC is adversely committed to the idea that naturals, integers,
and rationals are domains of data types that in turn serve as plausible representatives of
corresponding abstract data types. In particular, the notion of a signature is foreign to
NFTC.

(Recall the claims of Section 2.)

4 More commitments and non-commitments of NFTC

The design objectives and choices above may be understood as ‘meta-axioms’ for NFTC,
asserting that NFTC should satisfy certain properties. We think of NFTC as a package
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of opinions that are shared by many people. Consistency of the package of opinions
is not our major concern, rather the stability and the practicality of the package is. A
rationale for the package of views is that it allows to minimize the time and energy spent
on matters deemed to be of little importance. Stability and practicality take their meaning
from experience.

Someone who adopts NFTC will have opinions about many more issues that will
need to be established. Opinions about technical options will need to be accepted, rejected
or left open. We will progress the design of NFTC with a list of options that we are not
committed to and then with a list of options we are committed to; these listings are not
meant to be complete in any rigorous sense.

4.1 Non-commitments of NFTC

Issues to do with syntax and semantics

1. For numerals, NFTC is uncommitted to the distinction between a value and an
expression. For instance, 251 is an expression as well as a value. In essence, 251
is itself as a number and whether or not it is an expression as well is deemed an
irrelevant question.

2. More generally, NFTC is uncommitted to making a distinction between syntax
and semantics. However, if for some concept, say fraction, a distinction between
syntax and semantics is put forward then the concept will become ambiguous and,
thereupon, the same concept will refer to both syntactic forms and semantic entities.
Resolution of such ambiguities is considered a matter of natural language processing
which is not to be considered a mathematical subject, and which for that reason
merits little or no attention.

For instance, in NFTC 4
2 and 2 are the same number, yet

4
2 has a nominator and 2

has no nominator. The underlying logic of which properties are shared by the same
entities is not made explicit. When reasoning about properties of numbers care must
be taken to avoid wrong conclusions about equality and difference of numbers. For
instance, it is not the case that if a and b are the same number and if a and b both
have a numerator, say an and bn respectively, that an = bn must hold.

3. The distinction between fracterm and fraction is considered immaterial (and by
consequence the phrase fracterm calculus is endorsed with some hesitation). In
NFTC, fracterm is not considered a mathematical notion (following [Fandino Pinilla
2007]); it is a word in English intended to resolve the ambiguities of the term fraction.

4. NFTC adopts no commitment to any systematic notion of legality for expressions as
the class of expressions is not a relevant notion, nor is any property of expressions.
(Belowwewill discuss legality in the context of the formal FTC for partial meadows.)

5. For identities (or formulas) with free variables (e.g., x+ 5·y
3 = y + x+ 2·y

3 ), the
scope of the variables depends on the context, which is cast in terms of natural
language.
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Issues to do with logical formulae

6. No distinction is made between, say

∀x ∈ V (x 6= a→ φ(x))

and the possibly infinitary conjunction∧
x∈V−{a}

φ(x)

where a ∈ V .

For a formal FTC, the rationale of making a distinction between both statements
follows from this observation: in case of universal quantification, it is expected or
required that φ(a) is well-formed or well-defined, whereas for the conjunction that
requirement need not be imposed.

Another way of stating the lack of distinction is to claim that NFTC adopts the
convention that ∀x ∈ V (x 6= a→ φ(x)) is understood as ∀x ∈ V (x 6= a →b φ(x)).

7. NFTC acknowledges no commitment to any of the following distinctions:

(i) the distinction between total and partial functions as being of relevance for
reasoning;

(ii) the distinction between a formal proof and an informal proof;

(iii) the distinction between naive set theory and any of the formalised set theories
that provide protection against various paradoxes;

(iv) the distinction between constructive and non-constructive reasoning.

8. For NFTC no knowledge of classical logic, be it propositional logic or first order
logic, is presupposed. Logics of any relevance for mathematics are considered to
constitute a separate subject, which one may or may not have any desire to study in
more detail. Knowledge of various logics is considered immaterial for the acquisition
of a proper understanding of arithmetic which originated several millennia ago unlike
mathematic logic, which is a creation of the nineteenth century.

9. In NFTC no commitment is made to any technical explanation about what it means
that all natural numbers are integers, and that all integers are rationals. In particular,
no set-theoretic explanation of these inclusions based on definitions of the various
number classes is contemplated. These inclusions are intentional rather than empir-
ical and can be used in a context where strictly speaking the various set-theoretic
definitions of these number classes do not comply with the intended inclusions.

4.2 Commitments of NFTC

The following list of commitments adds further details to the view of arithmetic that
NFTC is supposed to comprise.
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Issues to do with algebra and calculation

1. Fracterm is considered a mathematically relevant notion, which, however, need not
be rigorously defined as if it were a mathematical concept proper; fracterm is like
proof, definition, theorem, which are notions belonging to mathematical practice
rather than to mathematical substance and which, at least working at the informal
level of NFTC, can be left without proper mathematical definitions.

2. NFTC is committed to the existence of a bundle of widely agreed upon closed
identities of the form t = r, as well as to a bundle of universally agreed upon
inequations of the form t 6= r. Examples are:

1 + 2 = 3,
1

2
6= 4

3
,
1

2
+

4

3
=

11

6
, and

x

2
+
y

3
=

3 · x+ 2 · y
6

.

An informal theory is supposedly available – in the form of a plurality of rules and
algorithms – concerning how to distinguish between t = r and t 6= r for closed
expressions t and r.

3. NFTC adopts a fairly systematic interpretation of variables. Variables in an equation
may be implicitly universally quantified in which case one may speak of a law
regarding such variables. Alternatively, a variable xmay be supposed to have a fixed
but arbitrary value in some domain. The latter form of quantification is often used in
formulating and proving results.

However, in an equation (e.g., a · x2 + b · x + c = 0), one assumes that at some
level a, b, c are universally quantified while x denotes one or more specific values
depending on a, b, c. In the latter case no universal quantification over x is implied,
rather x plays the role of an additional constant which is further specified by the
mentioned equation.

The natural language in which formulas are embedded determines the use of a
variable.

Issues to do with arithmetic and calculation

4. Arithmetic is primarily embedded in natural language for which 100% precision is
unachievable as well as unnecessary. There is in practice no disagreement about
the status of facts in the language of fracterm calculus, not even between between
persons or groups who have adopted significantly different positions regarding the
possible commitments and non-commitments we are listing.

5. A commitment to calculation is understood as a mechanical procedure. Calculation
is not understood as an instance of mathematical or logical reasoning but as an
independent competence.

6. NFTC maintains a commitment to calculation with decimal naturals and decimal
integers.

7. NFTC is based on intuitions of raw arithmetic, unmediated by logic, set theory, or
computability theory. Such themes are considered to be of secondary importance
in comparison to arithmetic which constitutes the starting point of mathematical
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thinking. Indeed, NFTC stands on its own feet without a need, or even a use, for any
preparatory mathematical, logical, or philosophical preliminaries.

Defining expressions (even for a finite semantic world like the Boolean data
type) requires an inductive definition and comes with the ability to count sizes of
an expression. It is therefore implausible to consider the notion of an expression to
be prior to the notion and practice of counting. So it was historically for millennia
before the emergence of formulae with variables.

An attempt to define the class of expressions for an FTC will be confronted
with marginal cases which may uncover a certain lack of precision of the definition.
For instance: which of the following “expressions” are valid (legal):

(), (0), ((0)), ((0), (−(0)), 0 · (1+−3),−− 7, [1+3 · (7+7)] · 8, 007+1, 000+1

Issues to do with relevance

8. For each equation, condition, or more involved formula of fracterm calculus broadly
conceived, the first question to ask is about its relevance and not about its meaning.
When confronted with a fragment of text the primary focus it merits is about: why
has it been produced and what is its origin, what do we want to know about it, and
why does that matter?

9. NFTC suggests rating relevance over truth and consistency in the following sense:
only once potential relevance has been established do questions about truth matter.

10. There is no proof system for relevance, there are no axioms for it, though there are
some rules of thumb: for instance, if a panel of teachers agrees that a certain formula
makes good sense as part of an exercise then that formula is relevant for that reason;
and if an expression occurs in an application, that fact having been confirmed by
various readers, then that expression is relevant, etc.

Given the minimal commitments of NFTC, it is hard to imagine that it would be
possible to claim any inconsistency in its approach.

5 Calculation as rewriting in NFTC

We suppose that understanding and knowledge regarding NFTC comes about directly
from experience – inductively rather than deductively. For example, once someone has
become convinced that, say

5 · 2
7 · 2

=
5

7
,
8 · 3
13 · 3

=
8

13
,
1 · 5
15 · 5

=
1

15
,

it becomes plausible to guess that for all x, y and positive natural n,

x · n
y · n

may be replaced by
x

y
.

Such observations suggest a particular form of rewriting of expressions that underlies
much of the calculating practices of elementary arithmetic. In general:
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Definition 5.1. Given a collection of rewrite rules R, t ⇒?
R s asserts that with 0 or

more steps allowed by the rules in R, t can be rewritten to s. In particular, if t has been
obtained using the rules in R then also r can be obtained and t = r holds.

Thus, the command ‘simplify the expression’, common in student exercises, means
try to apply rules to rewrite the expression to make an equivalent expression that is
simpler or special in some way.

5.1 Rewriting by example

Substitutions into equations and rewriting are not quite the same. For instance,

x · 7
y · 7

⇒ x

y

is a valid rewrite rule for NFTC while the corresponding equation

x · 7
y · 7

=
x

y

fails because y = 0 has not been excluded! Why exactly?
Now, applying the rule x·7

y·7 ⇒ x
y is only enabled if for some r, s, a fracterm r·7

s·7 has

been obtained previously, from which it follows that s 6= 0. Thus, it follows that as a
rewrite rule x·7

y·7 ⇒ x
y is correct without any need to require that y 6= 0.

Many more rules can be proposed. For instance:

x · y
u · v

⇒ x

u
· y
v
and its converse

x

u
· y
v
⇒ x · y

u · v
.

In NFTC, it is considered unproblematic to write t = r if t ⇒ r is actually meant.
However, the cost of this convention is significant as rewriting collides with symmetry
of the equality relation =. Indeed, while x·z

y·z ⇒ x
y is valid, x

y ⇒ x·z
y·z fails for z = 0 so

that dropping the orientation of arrows is unwarranted in this case.
Division by 1 takes the form of the rule x

1 ⇒ x. For numerator 0 one finds the rule
0
x ⇒ 0. Now, taking 0 for x will be outside NFTC as it involves contemplating a term
0
0 . Remarkably, there is no logical problem with the rule 0

x ⇒ 0 in case x is 0 because

it will not be the case that 0
0 is obtained earlier. Thus, by material implication from the

hypothesis that 0
0 has been obtained, none whatever conclusion may be drawn, including

the that (i) 0
0 rewrites to 0 and (ii)

0
0 = 0.

Nevertheless, this application of material implication lies outside the scope of NFTC.
Seen from outside NFTC, say from a viewpoint where use of the fracterm 0

0 is not

rejected, the rule 0
x ⇒ 0 becomes a valid counterfactual about NFTC.

5.2 Fracfree and flat terms

Definition 5.2. A term or expression is fracfree if it has no fracterm as a subterm. A flat
fracterm is a fracterm of the form p

q with p and q both fracfree.
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It is immediate that fracfree terms are closed under addition, subtraction and multi-
plication.

Now, the familiar rule
x

y
+
u

v
⇒ x · v + u · y

y · v
allows the following conclusion: a sum of flat fracterms can be replaced by a single flat
fracterm (with the same value).

Using rewriting from ‘given’ terms and by phrasing results as being about fracfree
entities (perhaps referred to as fracfree numbers, which would be acceptable in NFTC)
lots of patterns of calculation that are encountered in teaching elementary arithmetic can
be correctly paraphrased without becoming trivial and in such a manner as to avoid the
explicit use of conditional logic.

Avoiding triviality does require some care: for instance, asserting that a sum of
fracterms can be rewritten into a single fracterm is trivial because of the validity of the

rewrite rule x+ y ⇒ x+y
1 .

Closed fracfree terms can be rewritten to numerals (n or −m with n,m decimal
naturals andm > 0), but doing so requires a sufficiently large collection of rules R. At
this point, the rewrite rules needed may start looking more imposing and less convincing.
For addition, the relevant rule reads: “if decimal number a results from addition of
decimal numbers b and c then b + c ⇒ a”. Alternatively, one may consider the rule
“if binary number a results from addition of binary numbers b and c then b + c ⇒ a”.
Mixing such rules is not a good idea, however, and when collecting rewrite rules for
calculation a choice between decimal and binary notation must be made beforehand.

6 Formal fracterm calculi I: FTC for partial meadows

In summary, NFTC intends to capture an explicit picture of a most conventional and
unpretentious understanding of elementary arithmetic. In spite of the disrespect within
NFTC for formalisation, thanks to a background of logic or computing, we may make
formalisations FTCs that try to meet the requirements of NFTC. When formalising
fracterm calculi for meadows, a plurality of informal and formal options soon appear, each
of which has different and incompatible merits. Indeed, there are quite some refinements
to NFTC that can constitute an informal calculus in the gap between NFTC and FTCs
(recall Synthetic Arithmetic in 1.1).

A meadow is a field with division and a partial meadow is a meadow in which
division is a partial operation. First, we will discuss the FTC for partial meadows, which
is relatively close to conventional practice in arithmetic and, for that reason, is close to
meeting NFTC.

If someone paints their house, the house is still the same house thereafter in spite
of having been marginally changed. For a change to change an identity it must be a
significant change, and it must be a destructive change to some extent. For mathematics
destructive change is not a common intuition. If a proof is hard to read it can be gradually
improved, with each step keeping the proof the same in essence but improved qua
presentation. However, upon a serious error being found, the proof may be changed
to a proof of the negated assertion. Now the proof has been destructively changed.
Nevertheless, the idea that a mathematical proof is a potential candidate for destructive
change into a proof of the negated result is unfamiliar. Instead one assumes that at closer
inspection a proof may be considered somehow unconvincing or manifestly defective.
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Now, a fundamental transformation in elementary arithmetic is so-called simplifi-
cation, e.g., 2

4 can be simplified to
1
2 . Is this simplification a significant change which

changes the identity of the entity at hand? Yes and no: we will say that 2
4 and 1

2 are
different fracterms, and that simplification significantly changes a fracterm. Unlike frac-
tion, fracterm does not have the flexibility to be understood as ‘the number denoted by a
fracterm’, which remains unchanged with simplification.

FTC for partial meadows adopts 1
0 as a fracterm, in spite of it having no value;

however, it is not case that 1
0 = 1

0 , neither is it the case that
1
0 6= 1

0 . These observations
motivate a discussion of the ‘legality’ of expressions and assertions. This serves as an
example of an issue which is left implicit in NFTC and which can be made explicit in a
formal FTC for partial meadows.

6.1 Partial meadows

The signature Σm of meadows is obtained by extending the signature of unital rings
with a two place division, denoted or x/y or x

y or, when the operator is needed without

arguments, ÷. The sort name of numbers involved is named Number.

Definition 6.1. A partial meadow is a structure with signature Σm that is obtained by
expanding a field F with a partial division operator (with the usual definition), thereby
obtaining F (÷).

One may provide a traditional Tarski semantics adapted to a three valued logic for
assertions with semantics {true, false,m}; here are the details.

Let σ range over valuations of variables that assign to each variable an element
of F (÷). We will use =pm for equality in partial meadows. The idea is that for every
valuation σ, and for each term t over Σm, either the evaluation (F (÷), σ |= t) has a
value or it has no value. But, for equality between terms t and r there are three cases:

(i) F (÷), σ |= t =pm r
(ii) F (÷), σ |= t 6=pm r
(iii) F (÷), σ 6|= t =pm r and F (÷), σ 6|= t 6=pm r

so that in case (iii) both equality and inequality of t and r have truth value m. Case (iii)
applies precisely if at least one of t, r has no value under valuation σ.

Partial meadow equality =pm may be explored informally by means of examples:

1. 1
0 is undefined, i.e., it has no value; more generally,

2. x
y is undefined if, and only, if y =pm 0;

3. 1+1
1−1 =pm 1 has no truth value because it involves a term (on the LHS of the equation)

with an undefined value;

4. 1
0 =pm

1
0 has no truth value for the same reason; nevertheless,

5. for all x, x =pm x is true, because a valuation must assign a value to each variable
including x (in other words, x ranges over existing entities only);

6. it follows that substituting a closed term for a variable in a valid identity may result
in an identity without a truth value (as a consequence when formalising reasoning
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(x+ y) + z =pm x+ (y + z) (1)

x+ y =pm y + x (2)

x+ 0 =pm x (3)

x+ (−x) =pm 0 (4)

x · (y · z) =pm (x · y) · z (5)

x · y =pm y · x (6)

1 · x =pm x (7)

x · (y + z) =pm (x · y) + (x · z) (8)

Table 1: CRpm: axioms for commutative rings with equality renamed to =pm

import CRpm (9)

0 6=pm 1 (10)

¬x =pm 0 →b x · y
x
=pm y (11)

Table 2: FCTpm: axioms of the fracterm calculus of partial meadows

about partial meadows, either some logic of partial functions is needed, or some
translation to a data type with only total functions is required, so that first order logic
for the latter can be applied);

7. x 6= 0 →b x
x = 1 is true in all partial meadows; for nonzero x that is immediate,

while upon substituting 0 for x one finds 0 6= 0 →b 0
0 = 1 which is equivalent to

false →b 0
0 = 1, which thanks to the short circuit logic, is just true.

Given a partial meadow F (÷), a satisfaction relation F (÷), σ |= φ can be inductively
defined in the usual manner.

The implication φ → ψ is more restrictive than φ →b ψ because in case of ¬φ it
is now required that either ψ of ¬ψ holds for φ →b ψ to be true (otherwise φ →b ψ is
considered neither true nor false).

6.2 FTC for partial meadows

Definition 6.2. The theory of assertions of FTC for partial meadows consists of the
collection of universally quantified propositions

ψ ≡ ∀x1 . . . ∀xkφ

where
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x

1
=pm x (12)

¬ y =pm 0 →b −x
y
=pm

−x
y

(13)

(¬ y =pm 0 ∧b ¬ v =pm 0) →b x

y
· u
v
=pm

x · u
y · v

(14)

(¬ y =pm 0 ∧b ¬ v =pm 0) →b x

y
+
u

v
=pm

(x · v) + (y · u)
y · v

(15)

(¬u =pm 0 ∧b ¬ v =pm 0 ∧b ¬ y =pm 0) →b (xy )

(uv )
=pm

x · v
y · u

(16)

¬x =pm 0 →b x

x
=pm 1 (17)

Table 3: Valid assertions of the fracterm calculus of partial meadows

(i) φ is quantifier free, and is made from equations t =pm r and inequations t 6=pm r,
and

(ii) ψ is valid in all partial meadows, i.e., for each partial meadow F (÷) and for all
valuations σ, F (÷), σ |= φ.

As is usual for equational axioms, universal quantification is often left implicit so
that quantifiers can be omitted.

Table 1 lists axioms for commutative unital rings, though with equality renamed to
=pm. Table 2 provides axioms for FTC for partial meadows. These identities seem to be
undisputed from the perspective of NFTC.

Assuming one wishes to formalise NFTC, then this FTC for partial meadows may
be considered a core for NFTC. The semantics of this notation is clear, but providing a
proof system is complex matter that will not be discussed in this paper.

Soundness of the collection of assertions in Table 2 is unproblematic, as one may
adopt Suppes-Ono FTC (with division made total by adopting x/0 = 0) as the defining
equation for the conditional operator, in which case all assertions of Table 4 are satisfied.

As far as completeness is concerned, we find:

Proposition 6.1. The class of models of the axiom system FCTpm (i.e., of the assertions
collected in Table 2) is precisely the class of partial meadows.

Proof. Soundness is unproblematic, a matter of checking each assertion in a field F (÷).
Next, let R be any structure satisfying the assertions of Table 2. First, one notices that
+, ·, and − are total functions. In the case of addition, x+ y =pm y + x implies that for
given a, b ∈ R, a+ b =pm b+ a which can only be the case if a+ b has a value. The
operations follow similarly. It now follows that R is a unital ring. Next, one notices that

for a, b ∈ R, a 6= 0, a · b
a =pm b, and so by taking b = 1 that 1

a is an inverse of a; hence
R is a field. It then follows that λx.y.xy is division in R.

Table 3 displays some consequences of the axioms for the FTC for partial meadows.
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6.3 Formalising nonsense

FTC for partial meadows is complete in the following sense:

Claim 6.1. The formulas in the notation of FTC for partial meadows, which are valid in
all partial meadows in the usual manner, constitute a fracterm calculus which contains all
assertions within the framework of its logic that are considered valid from the perspective
of NFTC, where NFTC’s logical conjunctives are understood as the corresponding left
to right sequential conjunctives.

However, FTC for partial meadows is too liberal, i.e., it is more liberal than NFTC.
We hold that the conditional equation

0 6= 0 → 0

0
=

1

0

would not be endorsed within NFTC. From the perspective of NFTC, that conditional
equation is not a legal expression because it contains a fragment – namely, 0

0 =pm
1
0 –

which is not part of any meaningful assertion, because no valuation is either true or false.
No-nonsense arithmetical assertions must not contain meaningless fragments.

Definition 6.3. (Meaningless formula.) An assertion φ over Σm is meaningless if for no
field F and for no valuation σ of variables into F it is the case that either F (÷), σ |= φ
or F (÷), σ |= ¬φ.

6.4 Legality in FTC for partial meadows

With the word ‘legal’ we refer to the notion of a text being considered correctly or
adequately composed as a text. Now, understanding the logical connectives as sequential
connectives fails to provide a satisfactory explanation of legality from the NFTC per-
spective. For instance, one may consider x 6= 0 → x

x = 1 a legal text by reading it as

x 6= 0 →b x
x = 1 and at the same time be hesitant about confirming the legality of the

particular substitution instance 0 6= 0 → 0
0 = 1 on the grounds that in no conceivable

context the subformula 0
0 = 1 is to be considered meaningful. Reading 0 6= 0 → 0

0 = 1

as 0 6= 0 →b 0
0 = 1 makes no difference.

We assume that NFTC can be formalised by means of FTC for partial meadows
coupled with an account of legality which is then used to dismiss certain assertions of
FTC for partial meadows which are considered non-legal.

Definition 6.4. An equation may be considered non-legal if for no valuation it is assigned
a proper truth value (i.e., a truth value that differs from m).

For instance, 1
0 =pm 1 is non-legal. The requirement that a legal assertion may not

have non-legal subassertions allows to infer that 0 6= 0 →b 0
0 = 1 is not legal. More

generally:

Definition 6.5. An assertion in FTC for partial meadows is legal if it has no meaningless
subassertions.

The given definition of legality is far from definitive and it may be challenged as
follows: Consider

φ(x) ≡ x2 =pm 4 →b (0 =pm 0 ∨
b
(
x+ (−2)

x+ (−2)
=pm 1).
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Now notice that under the condition that x2 =pm 4 it is possible for x+(−2)
x+(−2) =pm 1 to

have a proper truth value, in particular, by valuating x at −2. It follows that φ(x) as a
sentence involving implicit universal quantification of x is legal. In contrast,

φ′(x) ≡ x =pm 2 →b (0 =pm 0 ∨
b
(
x+ (−2)

x+ (−2)
=pm 1)

is non-legal because, under the constraint x =pm 2, the subformula x+(−2)
x+(−2) =pm 1 (must)

fail to evaluate to a proper truth value (i.e., true or false).
Apparently, a notion legal′ can be imagined which takes into account the constraints

on variables that are accumulated along a path in an assertion leading to a certain
subassertion. Then φ′(x) is legal′, but not legal. We will not pursue this matter further,
the conclusion being that legality matters in principle while demarcation of legality is
non-obvious and Definition 6.5 is quite liberal, and may be in need of further refinement.

6.5 Associativity of sequential conjunction and legality are incompatible

Let the Dirac-like impulse function f(−) be given by the two axioms:

f(0) =pm 1 and x 6=pm 0 →b f(x) =pm 0

and consider φ1 and φ2 as follows:

φ1 ≡ 0 =pm 1 ∧b (
x

x
=pm 1 ∧b f(x)

f(x)
=pm 1)

φ2 ≡ (0 =pm 1 ∧b x

x
=pm 1) ∧b f(x)

f(x)
=pm 1).

These are formulae over the extended signature Σm ∪ {f}. Now notice that φ1 has a
subformula which is meaningless, while none of the subformulas of φ2 are meaningless.
It follows that φ1 is not legal while φ2 is legal. Apparently, legality does not respect
the associativity of sequential conjunction. We do not know if a similar example exists
without extending the signature Σm.

6.6 FTC for partial meadows of rationals

Meadows in which F is a prime field of characteristic 0 stand out as having special
relevance because school arithmetic is done in such structures F (÷). As an additional
assertion one may use:

ψL ≡ x21 + x22 + x23 + x24 + 1

x21 + x22 + x23 + x24 + 1
=pm 1.

This ψL (L for Lagrange) makes use of Lagrange’s observation that each natural number
is the sum of four squares.

We choose Q as a fixed but arbitrary prime field of characteristic 0, then Q(÷) |=
ψL, while ψL is not satisfied in any partial meadow with characteristic p > 0. Let
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P (x1, . . . , xn) be a multivariate polynomial. Then

Q(÷) |= P (x1, . . . , xn)

P (x1, . . . , xn)
=pm 1

if, and only if, the equation P (x1, . . . , xn) = 0 has a solution in Qn, a question for
which decidability is a long standing open issue. A typical difference between FTC for
partial meadows and FTC for partial meadows of rationals is that the latter satisfy:

Q(÷) |= x2 + (−2)

x2 + (−2)
=pm 1.

7 Formal fracterm calculi II: FTC for common meadows

Fracterm calculus for common meadows comes about upon introducing a ‘peripheral’
number or flag⊥ that is absorptive, i.e., if⊥ is an argument to an operator then it returns
⊥ as its value; and then by adopting x

0 = ⊥ for all x.

Definition 7.1. A common meadow is an enlargement F⊥ of a field F , which results
by first extending the domain with an absorbtive element ⊥ and then expanding the
structure thus obtained with a constant ⊥ and a division function which is made total by
adopting

x

0
=
x

⊥
=

⊥
x

= ⊥.

By introducing an error element, a common meadow provides arguably the most
straightforward way to turn division into a total operator.

7.1 Equations for FTC for common meadows

The fracterm calculus of common meadows (as first discussed in [Bergstra and Ponse
2021] and in [Bergstra and Ponse 2016]) has many different axiomatisations. Table 4 lists
equations for FTC following the presentation of [Bergstra and Tucker 2022], though with
some minor modifications. We notice that these equations are not logically independent.

The axioms of common meadows allow fracterm flattening: each expression can
be proven equal to a flat fracterm, where a fracterm is flat if it contains precisely one
occurrence (i.e., the top level occurrence) of the division operator. Recall Definition 5.2.

8 Formal fracterm calculi III: other FTC’s with total division

In this section we will briefly discuss other FTCs with totalised division: FTC for
involutive meadows, FTC for transrationals, and FTC for wheels.

8.1 FTC for involutive meadows

The best known totalisation of the division function is that of involutive meadows, which
adopts

x/0 = 0
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(x+ y) + z =cm x+ (y + z)

x+ y =cm y + x

x+ 0 =cm x

x+ (−x) =cm 0 · x
x · (y · z) =cm (x · y) · z

x · y =cm y · x
1 · x =cm x

x · (y + z) =cm (x · y) + (x · z)
−(−x) =cm x

0 · (x+ y) =cm 0 · (x · y)
x+⊥ =cm ⊥

x

1
=cm x

−x
y
=cm

−x
y

x

y
· u
v
=cm

x · u
y · v

x

y
+
u

v
=cm

(x · v) + (y · u)
y · v

x

y + 0 · z
=cm

x+ 0 · z
y

⊥ =cm
1

0

Table 4: FTCcm: Equations for common meadows

and takes all consequences of that identity on board. We will also refer to this choice as
an FTC for involutive meadows and as a Suppes-Ono FTC.

The phrase Suppes-Ono fracterm calculus is motivated by [Anderson and Bergstra
2020], on Suppes’ discussion of division by zero in [Suppes1957], and by the observation
that [Ono1983] gave a first significant analysis of the logical consequences of adopting
1/0 = 0. Models of Suppes-Ono FTC are called involutive meadows because inverse
is an involution (see [Bergstra et al. 2009] and [Bergstra and Middelburg 2011]. The
meadows of rational numbers are an early and primary example that motivated theories
of meadows – see [Bergstra and Tucker 2007].

In Suppes-Ono FTC, fracterm flattening fails, as was shown in [Bergstra and Middel-
burg 2016]. In Suppes-Ono FTC, however, according to [Bergstra et al. 2013], fracterms
can be rewritten to sums of flat fracterms. Theoretical work on Suppes-Ono FTC can
be found in [Bethke and Rodenburg 2010, Bethke et al. 2015]. Suppes-Ono fracterm
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(x+ y) + z =im x+ (y + z) (18)

x+ y =im y + x (19)

x+ 0 =im x (20)

x+ (−x) =im 0 (21)

x · (y · z) =im (x · y) · z (22)

x · y =im y · x (23)

1 · x =im x (24)

x · (y + z) =im (x · y) + (x · z) (25)

1

( 1x )
=im x (26)

x · x
x

=im x (27)

x

y
=im x · 1

y
(28)

Table 5: Equations for the fracterm calculus of involutive meadows

calculus is called Division by Zero Calculus in [Michikawi et al. 2016, Okumura 2018].
Equations of FTC for involutive meadows are listed in Table 5.

8.2 FTC for transrationals and for wheels

The FTC for transrationals adopts

1

0
= +∞,

1

+∞
=

1

−∞
= 0.

Here+∞ and−∞ are peripherals representing signed infinities. FTC for transrationals is
inspired by floating point arithmetic (in particular, when following the IEEE 754 standard).
FTC for transrationals enjoys no known form of simplification of fracterms. Transrational
FTC concerns the rational number substructure of the transreals of [Anderson et al.
2007], adopts 0

0 = Φ with Φ (nullity) serving the same role as ⊥ for common fracterm
calculus. See also [Bergstra and Tucker 2020]. For some technical information on FTC
for transrationals we mention [Bergstra 2020].

A fracterm calculus can be specific for wheels ([Setzer 1997, Carlström 2004, Bergstra
and Tucker 2021], which have a single, unsigned infinity and adopts

1

0
= ∞,

1

∞
= 0.

For more information on these matters we refer to the survey [Bergstra 2019].
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A fracterm calculus can alternatively be based on Kleene equality (see e.g., [Andreka
et al. 1988, Robinson 1989]).

Some classic literature on arithmetic education comes close to the ideas of fracterm
calculus, e.g., [van Engen 1960].

9 Concluding remarks

We have tried to express as clearly as possible, perhaps sometimes with a little exag-
geration, the tenets of what we call a naive view on elementary arithmetic involving
addition, multiplication, subtraction, and division. Naive fracterm calculus captures a
(self-proclaimed) “no-nonsense view” of elementary arithmetic. These views, though
more often than not left implicit, permeate educational texts on teaching arithmetic,
e.g., [Kieren 1976].

Unavoidably, the very objective of formalisation as an analytical tool leads to a
ramification of options, and to a plurality of formalisation, here referred to as our formal
fracterm calculi. In contrast with the quest for a naive concensus of views on elementary
arithmetic, formalisation seeks and finds many differing views.

9.1 Fracterm versus fraction

For someone who adopts NFTC there is no incentive to prefer the use of fracterm
over fraction. Undeniably, NFTC inherits from the various pre-existing formal FTC’s a
terminology which lacks a strong rationale when considered exclusively from the first
principles of NFTC.

Thus, NFTC depicts a conventional “no-nonsense” view of elementary arithmetic
seen from the perspective of formal FTCs. By working in this manner the following is
achieved:

(1) No claim is made that any formal FTC by itself can, or will, provide a workable
basis for the practice of elementary arithmetic. If it is possible to ‘do arithmetic’ on the
basis of one of the formal FTC’s then that state of affairs has yet to be demonstrated.
What may be claimed, however, is that the different formal FTC’s, starting with FTCpm,
provide a perspective on elementary arithmetic which is compatible with the concepts of
data type and abstract data type that are so fundmental to modern computation.

(2) No claim is made about any use of the word ‘fraction’. For an extensive discussion
of the ambiguity of ‘fraction’ which motivates the use of ‘fracterm’ see [Bergstra 2020].

(3) The above text can be read by any mathematician and will not contain or promote
any unfamiliar claims about elementary arithmetic. In particular, a reader may disagree
with the claim that fracterm in NFTC adequately mimics their understanding of fraction.
Reading or adopting NFTC allows a reader to maintain their preferred views on fractions
for the simple reason that whatever is written or said about fracterms has no compelling
implications for fractions.

9.2 Potential applications and options for further work

Computer programs. The plurality of formal FTC’s plays a role in analysing various
conventions, reasoning patterns, and logics in relation to abstract descriptions of com-
puter arithmetics. Regarding computer programs, an NFTC perspective matters in view
of the importance of informal communication and understanding by users, whereas
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formalised perspectives matter whenever precise definitions are required by designers.
The significance of informal considerations in computer programming is visible in the
literatures on requirements analysis and on program testing, where most explanations are
quite informal. Bridging the gap between informal considerations and formal modelling
is not easy and this paper may be read as a case study about that matter.

Logical reasoning. We consider short-circuit logic to be essential for FTC for partial
meadows. Short-circuit logic is a relatively new theme in logic. We adopt the notation
of [Bergstra et al. 1995] for various sequential connectives. A meticulous investigation
of short-circuit logic can be found in [Rodenburg 2001, Bergstra and Ponse 2011] and
several subsequent papers on so-called Proposition Algebra (e.g., [Bergstra and van de
Pol 2011, Ponse and Staudt 2018]). Regarding FTCpm and FTCcm many questions are
still open, in particular, if one focusses on equational proof systems compatible with the
given Tarski semantics for three-valued logic.

Synthetic calculi.A necessary challenge is to develop a convincing non-naive, though
still informal, detailed perspective on elementary arithmetic – something in the gap
between NFTC and useful FTCs, notably FTCpm. As described in Section 1.1, we
call such a new informal calculus a Synthetic Fracterm Calculus. It could be designed
as a basic tool to study specific educational methods and practices about elementary
arithmetic. An advantage is that it could exploit the stronger presence of syntactic ideas
(as promoted by a use of FTCpm) in comparison with the implicit or often absent role of
syntactic considerations in traditional approaches preserved in NFTC. Further, it could
prepare semantically for pukka logical reasoning about arithmetic, and settle some other
unresolved issues in NFCT. That there are many intriguing concepts under the surface
of elementary arithmetic is becoming increasingly clear [Bergstra 2022].

References

[Anderson and Bergstra 2020] Anderson, J. A., Bergstra, J. A.: “Review of Suppes 1957 proposals
for division by zero”; Transmathematica. ISSN 2632-9212 (published 06-08-2021), https://doi.
org/10.36285/tm.53, (2021).

[Anderson et al. 2007] Anderson, J.A., Völker, N., Adams, A. A.: “Perspecx Machine VIII, ax-
ioms of transreal arithmetic”; Vision Geometry XV, eds. J. Latecki, D. M. Mount and A. Y. Wu,
649902, (2007).

[Andreka et al. 1988] Andreka, H., Craig, W., Nemeti, I.: “A system of logic for partial functions
under existence-dependent Kleene equality”; Journal of Symbolic Logic, 53 (3), (1988), 834–839.

[Bergstra 2019] Bergstra, J.A.: “Division by zero, a survey of options”; Transmathematica, ISSN
2632-9212, (published 2019-06-25), https://doi.org/10.36285/tm.v0i0.17, (2019).

[Bergstra 2020] Bergstra, J.A.: “Arithmetical datatypes, fracterms, and the fraction definition
problem”; Transmathematica, ISSN 2632-9212, (published 2020-04-30), https://doi.org/10.36285/
tm.33, (2020).

[Bergstra 2022] Bergstra, J. A.: “Prospective, retrospective, and formal division: A contribution
to philosophical arithmetic”; Transmathematica. (published 2022-10-17), https://doi.org/10.36285/
tm.71, (2022).

[Bergstra et al. 2013] Bergstra, J.A.,Bethke, I., Ponse, A.: “Cancellation meadows: a generic basis
theorem and some applications”; The Computer Journal, 56 (1), (2013), 3–14. https://doi.org/10.
1093/comjnl/bxs028.

https://doi.org/10.36285/tm.53
https://doi.org/10.36285/tm.53
https://doi.org/10.36285/tm.v0i0.17
 https://doi.org/10.36285/tm.33
 https://doi.org/10.36285/tm.33
https://doi.org/10.36285/tm.71
https://doi.org/10.36285/tm.71
https://doi.org/10.1093/comjnl/bxs028
https://doi.org/10.1093/comjnl/bxs028


986 Bergstra J., Tucker J.V.: Naive Fracterm Calculus

[Bergstra et al. 1995] Bergstra, J.A., Bethke, I., Rodenburg, P.H.: “A propositional logic with 4
values: true, false, divergent and meaningless”; Journal of Applied Non-Classical Logics, 5 (2),
(1995), 199–217.

[Bergstra and van de Pol 2011] Bergstra, J.A., van de Pol, J.: “A calculus for four-valued sequen-
tial logic”; Theoretical Computer Science, 412 (28), (2011), 3122–3128.

[Bergstra et al. 2009] Bergstra, J.A., Hirshfeld, Y., Tucker, J.V.: “Meadows and the equational
specification of division”; Theoretical Computer Science, 410 (12), (2009), 1261–1271.

[Bergstra and Middelburg 2011] Bergstra, J.A., Middelburg, C.A.: “Inversive meadows and divi-
sive meadows”; Journal of Applied Logic, 9, (2011), 203–220. https://doi.org/10.1016/j.jal.2011.
03.001

[Bergstra and Middelburg 2016] Bergstra, J.A., Middelburg, C.A.: “Transformation of fractions
into simple fractions in divisive meadows”; Journal of Applied Logic, 16, (2015), 92–110.
https://doi.org/10.1016/j.jal.2016.03.001

[Bergstra and Ponse 2011] Bergstra, J.A., Ponse, A.: “Proposition Algebra”; ACM Transactions
on Computational Logic, 12 (3), (2011), 1–36. https://doi.org/10.1145/1929954.1929958.

[Bergstra and Ponse 2021] Bergstra, J.A., Ponse, A.: “Division by zero in common meadows”;
In R. de Nicola and R. Hennicker (editors), Software, Services, and Systems (Wirsing Festschrift),
Lecture Notes in Computer Science 8950, Springer, (2015), 46–61. Also available in improved
form (2021) at: arXiv:1406.6878v4 [math.RA](2021).

[Bergstra and Ponse 2016] Bergstra, J.A., Ponse, A.: “Fracpairs and fractions over a reduced
commutative ring”; Indigationes Mathematicae, 27, (2016), 727–748. http://dx.doi.org/10.1016/j.
indag.2016.01.007.

[Bergstra and Tucker 2007] Bergstra, J.A., Tucker, J.V.: “The rational numbers as an abstract
data type”; Journal of the ACM, 54 (2), Article 7, (2007).

[Bergstra and Tucker 2020] Bergstra, J.A., Tucker, J.V.: “The transrational numbers as an abstract
data type”; Transmathematica, ISSN 2632-9212, (published 2020-12-16), https://doi.org/10.36285/
tm.47, (2020).

[Bergstra and Tucker 2021] Bergstra, J.A., Tucker, J.V.: “The wheel of rational numbers as
an abstract data type”. In M. Roggenbach (editor), Recent Trends in Algebraic Development
Techniques. WADT 2020, Lecture Notes in Computer Science, 12669, Springer, 2021, 13–30.
https://doi.org/10.1007/978-3-030-73785-6_2

[Bergstra and Tucker 2022] Bergstra, J.A., Tucker, J.V.: “On the axioms of common mead-
ows: Fracterm calculus, flattening and incompleteness”; The Computer Journal, 66 (7), 2023,
1565Ð1572. https://doi.org/10.1093/comjnl/bxac026.

[Bethke and Rodenburg 2010] I. Bethke and P.H. Rodenburg. “The initial meadows”; Journal of
Symbolic Logic, 75 (3), (2010), 888–895.

[Bethke et al. 2015] Bethke, I., Rodenburg, P.H., Sevenster, A.: “The structure of finitemeadows”;
Journal of Logical and Algebraic Methods in Programming, 84 (2), (2015), 276–282.

[Carlström 2004] Carlström, J.: “Wheels – On division by zero”; Mathematical Structures in
Computer Science, 14 (1), (2004), 143–184.

[Fandino Pinilla 2007] Fandino Pinilla, M.I.F.: “Fractions: conceptual and didactic aspects”; Acta
Didactica Universitatis Comenianae, 7, (2007), 82–115.

[Halmos 1960] Halmos, P.: Naive Set Theory. D. Van Nostrand Company, 1960.

[Jones and Middelburg 1994] Jones, C.B., Middelburg, C.A.: “A typed logic of partial functions,
reconstructed classically”; Acta Informatica, 31, (1994), 399–430.

https://doi.org/10.1016/j.jal.2011.03.001
https://doi.org/10.1016/j.jal.2011.03.001
https://doi.org/10.1016/j.jal.2016.03.001
https://doi.org/10.1145/1929954.1929958
http://dx.doi.org/10.1016/j.indag.2016.01.007
http://dx.doi.org/10.1016/j.indag.2016.01.007
https://doi.org/10.36285/tm.47
https://doi.org/10.36285/tm.47
https://doi.org/10.1007/978-3-030-73785-6_2
https://doi.org/10.1093/comjnl/bxac026


Bergstra J., Tucker J.V.: Naive Fracterm Calculus 987

[Kieren 1976] Kieren, T.E.: “On the mathematical, cognitive, and instructional foundations of
rational numbers”; In R.A. Lesh and D.A. Bradbart (editors), Number and Measurement. Papers
from a Research Workshop. ERIC, Columbus Ohio, (1976), 101–144, (available at http://files.eric.
ed.gov/fulltext/ED120027.pdf#page=108, accessed 1 September, 2023).

[Michikawi et al. 2016] Michiwaki, H., Saitoh, S., Yamada, N.: “Reality of the division
by zero z/0 = 0”; International Journal of Applied Physics and Mathematics, doi:
10.17706/ijapm.2016.6.1.1–8 (2016).

[Ono1983] Ono, H.: “Equational theories and universal theories of fields”; Journal of the Mathe-
matical Society of Japan, 35 (2), (1983), 289-306.

[Okumura 2018] Okumura H.: “Is it really impossible to divide by zero?”; Biostatistics and
Biometrics Open Access Journal. 7 (1), 555703. doi: 10.19080/BBOJ.2018.07.555703, (2018)

[Ponse and Staudt 2018] Ponse, A., Staudt, D.J.C.: “An independent axiomatisation for free short-
circuit logic”; Journal of Applied Non-Classical Logics. 28 (1), (2018), 35–71.

[Robinson 1989] Robinson, A.: “Equational logic of partial functions under Kleene equality: a
complete and an incomplete set of rules”; Journal of Symbolic Logic, 54 (2), (1989), 354–362.

[Rodenburg 2001] Rodenburg, P.H: “A complete system of four-valued logic”; Journal of Applied
Non-classical Logics, 11 (3/4), (2001), 367–389.

[Setzer 1997] Setzer, A.: “Wheels (draft)”; http://www.cs.swan.ac.uk/csetzer/articles/wheel.pdf,
(1997).

[Suppes1957] Suppes, P.: “Introduction to Logic”, Van Nostrand Reinhold, 1957.

[van Engen 1960] van Engen, H.: “Rate pairs, fractions, and rational numbers”; The Arithmetic
Teacher, 7 (8) (1960), 389–399.

[Williams 2014] Williams, J.: “Robert Recorde. Tudor Polymath, Expositor and Practitioner of
Computation”, History of Computing Series, Springer, 2014.

http://files.eric.ed.gov/fulltext/ED120027.pdf#page=108
http://files.eric.ed.gov/fulltext/ED120027.pdf#page=108
http://www.cs.swan.ac.uk/csetzer/articles/wheel.pdf

	Introduction
	On formal versus informal calculi
	On fracterm calculi
	Methodology
	Contributions and structure of the paper

	Why naive fracterm calculi?
	Fracterms and a naive fracterm calculus
	Fracterms
	Naive Fracterm Calculus (NFTC)

	More commitments and non-commitments of NFTC
	Non-commitments of NFTC
	Commitments of NFTC

	Calculation as rewriting in NFTC
	Rewriting by example
	Fracfree and flat terms

	Formal fracterm calculi I: FTC for partial meadows
	Partial meadows
	FTC for partial meadows
	Formalising nonsense
	Legality in FTC for partial meadows
	Associativity of sequential conjunction and legality are incompatible
	FTC for partial meadows of rationals

	Formal fracterm calculi II: FTC for common meadows
	Equations for FTC for common meadows

	Formal fracterm calculi III: other FTC's with total division
	FTC for involutive meadows
	FTC for transrationals and for wheels

	Concluding remarks
	Fracterm versus fraction
	Potential applications and options for further work


