Journal of Universal Computer Science, vol. 29, no. 7 (2023), 691-717
submitted: 3/11/2022, accepted: 13/3/2023, appeared: 28/7/2023 CC BY-ND 4.0

Evaluation of a Legally Binding Smart-Contract Language
for Blockchain Applications

Vimal Dwivedi
(Queen’s University Belfast, Northern Ireland, UK
https://orcid.org/0000-0001-9177-8341, v.dwivedi@qub.ac.uk)

Mubashar Iqbal
(University of Tartu, Tartu, Estonia
https://orcid.org/0000-0003-0543-613X, mubashar.igbal@ut.ee)

Alex Norta
(Tallinn University, Tallinn, Estonia
https://orcid.org/0000-0003-0593-8244, alex.norta.phd@ieee.org)

Raimundas Matulevicius
(University of Tartu, Tartu, Estonia
https://orcid.org/0000-0002-1829-4794, rma@ut.ce)

Abstract: Blockchain governs inter-organizational business processes and enables decentralized
autonomous organizations (DAQO) with governance capabilities via smart contracts (SC). Due to
the programmer’s lack of prior knowledge of the contract domain, SCs are ambiguous and error-
prone. Several works, i.e., SPESC, Symboleo, and SmaCoNat, exist to support the legally-binding
SCs. The aforementioned SCLs present intriguing approaches to building legally-binding SCs
but either lack domain completeness, or are intended for non-collaborative business processes. In
our previous work, we address the above-mentioned shortcomings of the XML-based smart-legal-
contract markup language (SLCML), in which blockchain developers focus on the contractual
workflow rather than the syntax specifics. However, SLCML, as a blockchain-independent formal
specification language, is not evaluated to determine its applicability, usefulness, and usability
for establishing legally-binding SCs for workflow enactment services (WES) to automate and
streamline the business processes within connected organizations. In accordance with this, we
formally implement the SLCML and propose evaluation approaches, such as running case and
lab experiments, to demonstrate the SLCML’s generality and applicability for developing legally-
binding SCs. Overall, the results of this work ascertain the applicability, usefulness, and usability
of the proposed SLCML for establishing legally-binding SCs for WES.

Keywords: Blockchain, Legally-binding smart contract, Decentralized autonomous organization,
Smart contract language.
Categories: C.2.0,C.2.4,D.1.3,D.3.2

DOI: 10.3897/jucs.97112

1 Introduction

Many businesses use workflow enactment services (WES) to automate and stream-
line their business processes to enhance efficiency, reduce cost, and increase prof-
its [Pourmirza et al., 2019]. Although each organization is unique, many work processes
are common across all organizations within a specific industry. As a result, the WESs
are designed in such a way that they can be configured to meet the needs of a particular

https://orcid.org/0000-0001-9177-8341
https://orcid.org/0000-0001-9177-8341
https://orcid.org/0000-0003-0543-613X
https://orcid.org/0000-0003-0543-613X
https://orcid.org/0000-0003-0593-8244
https://orcid.org/0000-0003-0593-8244
https://orcid.org/0000-0002-1829-4794
https://orcid.org/0000-0002-1829-4794

692 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

organization. In this way, the WESs are equipped to handle common business processes
in many different types of organizations and across industries [Yussupov et al., 2022].
When deciding on WES, most organizations search for a competent workflow vendor
who can satisfy their requirements. Collaboration between individuals and organizations
requires communication and cooperation (e.g., collaboration involves multiple business
processes). Each organization has its procedures and workflows, and effective collabo-
ration requires that the WES of each collaborating organization can communicate and
cooperate. Information technology (IT) professionals have long struggled to preserve
consistency and mutual trust in inter-organizational business processes [Abodei et al.,
2019a], [Kormiltsyn et al., 2019]. Information on business operations can be shared and
validated within an organization’s centralized business processes where participants trust
one another. When control over a process is delegated outside of an organization, as in
an inter-organizational collaboration (IOC) process, either organization cannot validate
data accuracy, enforce contractual obligations, or ensure that specific conditions are met.
Consequently, transferring control between fragile business processes across organiza-
tions can lead to inconsistency and a lack of trust in process management [Matulevicius
et al., 2017].

Blockchain has the potential to execute, monitor, and improve business processes
within an organization [Mendling et al., 2018]. Blockchain is a distributed ledger tech-
nology based on a timestamped list of transactions that cannot be tampered [Igbal and
Matulevicius, 2021]. Blockchain provides the execution of business processes in a decen-
tralized environment, aided by the peer-to-peer (P2P) network, consensus, cryptography,
and immutable ledger. The secure nature of blockchain plays an important role in the de-
velopment and implementation of smart contracts (SC) that are self-executing computer
programs designed to automate business operations [Lin et al., 2018]. Established SC
languages (SCL), such as Solidity or Vyper, are high-level programming languages for
writing SCs. Unfortunately, due to their technical and specialized nature, the SCs devel-
oped using these languages are not understood by non-IT practitioners [Dwivedi et al.,
2021b]. Even for IT specialists, assessing the legal requirements of SCs is challenging
and time-consuming due to their lack of legal knowledge [He et al., 2018].

To address the aforementioned gaps, our previous work [Dwivedi et al., 2021a]
proposes a blockchain-independent formal specification language, i.e., SLCML, that
allows blockchain developers to focus on the contractual workflow rather than the
blockchain-specific programming code. However, such a blockchain-independent formal
specification language is not evaluated to determine its applicability, usefulness, and
usability for establishing legally-binding SCs for WES to automate and streamline the
business processes within connected organizations. Thus, the main goal of this study is
to implement the legally-binding SCL described in [Dwivedi et al., 2021a], then perform
the developed SCL evaluation. The syntax of the proposed language has previously been
evaluated for correctness and consistency in [Dwivedi et al., 2021a]. In contrast, we aim
to determine the applicability, usefulness, and usability of the proposed SCL in describing
legally binding SCs in this work, which is based on my doctoral thesis [Dwivedi, 2022].
Following this, we propose the main research question how fo evaluate legally-binding
SCs language? To establish a separation of concerns, we deduce the following sub-
questions: What is the machine-readable language conversion for legally-binding SCs?
What is the structure of the proposed language instantiation? What is the usefulness of
the proposed language in drafting legally-binding SCs? The main contributions of this
paper are as follows.

1. We formally implement the legally-binding SCL using the blockchain-independent

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 693

formal specification language discussed in [Dwivedi et al., 2021a].

2. We propose novel evaluation approaches to evaluate the legally-binding SCL for
blockchain-based applications.

3. We perceive the usefulness and usability of the proposed SCL in describing the
legally-binding SCs.

The aforementioned contributions deliver a theoretical contribution. Similarly, the
practical contribution is essential for scientific understanding of a given topic of interest
and states phenomena as they are [Zhou et al., 2017]. The practical contribution relates
to how the suggested evaluation approaches are used and put into practice. We provide a
use case as an illustration to explain the acceptance and actual use of legally-binding SCs.
The thorough analysis offered by the SLCML instantiation, semantic, pragmatic, and
usability assessments bring another practical contribution to this study. This practical
contribution, for instance, seeks to comprehend, based on theoretical presumptions, how
the proposed SCL may be institutionalized and how it helps create legally-binding SCs
based on blockchain-independent formal specification language.

The development of artifacts in this paper adheres to the design-science research
(DSR). The DSR provides a rigorous framework for the creation and evaluation of the
designed artifacts and to solve practical problems [Von Alan et al., 2004]. We follow the
six steps of the DSR, including: (i) identifying a problem (e.g., evaluation of the legal and
conceptual business problem in SCLs), (ii) defining requirements (e.g., identifying the
most appropriate evaluation approaches), (iii) developing artifacts (e.g., development of
robust and ease of use smart-contract language for blockchain community), (iv) evaluation
of artifacts (e.g., identifying and conducting experiments in a real-time environment
to evaluate SCL), (v) improving artifacts (e.g., conducting webinar and workshop to
improve developed SCL), (vi) results communication (e.g., providing SCL to the scientific
community to develop SCs for blockchain-based applications).

The remainder of the paper is structured as follows: Section 2 discusses the back-
ground and related work. Section 3 presents the smart legal contract markup language
(SLCML) for drafting legally-binding SCs. Section 4 discusses examples of SC code
using the SLCML schema, evaluation approaches, and evaluation results. Section 5
presents the discussion and future work. Section 6 concludes the paper.

2 Background and Related Work

This section introduces the fundamental concepts of blockchain before demonstrating
the legal implications of blockchain SCs. Section 2.1 provides a technical overview of
SCLs, after which the legal implications of SCs are explained in more detail. Section 2.2
discusses the state of the art of smart contract development. Section 2.3 compares the
related work and expresses the motivation for this paper.

2.1 Blockchain and Smart Contracts

The emergence of blockchain technology can be traced back to the inception of the
Bitcoin cryptocurrency [Nakamoto, 2008]. In this first use case, a blockchain’s decentral-
ized nature enables the transfer of cryptocurrency without the involvement of a central
banking or financial authority and thereby eliminates the cost of bank fees, taxes, and

694 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

other intermediary expenses during transactions. A blockchain is an immutable dis-
tributed ledger to store data in a variety of domains such as business, healthcare, passport
verification, and so on [Abodei et al., 2019b]. Note that blockchains are not intended
for mass-data storage. Bitcoin uses SHA-256 hashing cryptography algorithms for the
security of storing cryptocurrency transaction logs. Blockchain has significant potential
in internet-of-things (IoT) applications because it strengthens device security and data
obscurity, while also improving maintainability. The main technologies that support
blockchains include decentralized consensus and storage, public-key cryptography and
asymmetric encryption, SCs, and smart contracting languages.

Decentralized consensus: The process of updating records in a blockchain network
to ensure that new information is accurate and consistent is known as blockchain consen-
sus [Swan, 2015]. A blockchain consensus ensures that only correct data, validated by
collaborating parties, is added to the network for an IOC in a decentralized environment.
As a result of blockchain consensus, transparency in IOC processes is improved. Proof-
of-work (PoW) is the primary consensus mechanism used by Bitcoin and Ethereum
cryptocurrencies. Bitcoin is the fastest-growing blockchain network, and Ethereum is
the largest blockchain network for executing SCs [Bartoletti and Pompianu, 2017]. In
the PoW consensus mechanism, a complex mathematical puzzle is presented, and the
network’s first member to solve it is chosen to add the next record to a blockchain
ledger. Because of the scalability and resource consumption issues with PoW, Jain et al.
investigated a proof-of-stake (PoS) consensus method as a better solution. Participants
in a PoS network are selected to add the next record to the ledger based on the amount
of stake they have deposited [Jain et al., 2018].

Public-key cryptography (PKC): The PKC is a system that uses a public-and-private
key pair to identify participants in a decentralized network uniquely. The public key
is used to identify IOC participants, while the private key is used to sign transactions.
As a result, PKC provides a tamper-proof source verification system for any activity
in an IOC. The asymmetric encryption provided by the PKC can be used to implement
access control on IOC processes, thus ensuring that specific IOC functions can only
be performed by certain network parties. As a result, PKC significantly addresses the
security issues currently encountered in traditional blockchain systems for executing
SCs within IOCs that use decentralized collaboration.

Decentralized storage: A blockchain network’s records are replicated in all partici-
pating nodes [Pilkington, 2016]. Decentralized databases can be used to extend existing
blockchain storage by providing additional repositories for blockchain systems [Croman
et al., 2016], thus preserving digital assets exchanged in IOC-executed blockchain net-
works. As a result, for an IOC that employs decentralized collaboration concepts, de-
centralized storage ensures that data resulting from the execution of IOC functions are
accessible in real-time to all participants. As a result, interoperability issues in current
IOC systems are eliminated by real-time data access.

Smart contracts: Smart contracts are blockchain-based applications that allow busi-
nesses to be more efficient by automating business processes [Lopez-Pintado et al.,
2019]. A smart contract is a computerized transaction that enforces agreement rules au-
tomatically without the use of intermediaries [Szabo, 1997]. Organization collaboration
processes can be reconstructed into SC workflows and executed on blockchain networks.
Smart contracts are programmable with business logic and rules, ensuring that IOCs’
SCs are executed securely without requiring centralized authority. Blockchain-enabled
smart contracts do not interact with external data; they rely solely on data provided by
the blockchain system to carry out business logic. Decentralized oracles are external
data-gathering components in a blockchain that allow SCs to receive real-world data

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 695

inputs without relying on centralized parties [George and Lesaege, 2020]. This ensures
that SCs use trusted data inputs when executing business logic in IOCs.

Smart contract language: Smart contracts are written in a programming language,
such as Solidity, with intermediate languages, e.g., Simplicity [Valliappan et al., 2018]
and Scilla [Sergey et al., 2019] for program analysis and verification. The latter provides
significant assurances by relying on type-soundness. These languages allow SC code
to run on low-level virtual machines (VM) (Ethereum VM, for example). Rootstock !,
Telegram Open Network (TON) 2, and Bitcoin [Khalil et al., 2017] are just a few of
the blockchains that, just as Ethereum, have designed and implemented, their virtual
machines. Rootstock, for example, comprises the Rootstock Virtual Machine (RVM)
to Bitcoin [Khalil et al., 2017], whereas TON introduced the TON VM, or TVM, for
developing, maintaining, and configuring SCs[Durov, 2019].

Legal implications of smart contracts: For contracts to be legally-binding, the parties
to the contract must reach an agreement. According to Governatori et al., [Governatori
et al., 2018], the conceptual links between legal, commercial contracts, and smart con-
tracts are that SCs must meet specific requirements in order to be legal contracts. These
requirements include offer and acceptance, consideration, competence, capacity to con-
tract, and so on. According to Savelyev [Savelyev, 2017], SCs are in accordance with
Roman contract law he explains this by comparing smart contracts to the mechanism of
a vending machine [Dwivedi and Norta, 2021]. When using a vending machine, an indi-
vidual places a coin in the slot that leads to a secure lockbox. The individual then selects
a specific product from a predefined list, and if the money deposited in the machine is of
the same value as the product selected, the vending machine automatically dispenses the
product.

Savelyev also proposes blockchain decentralization as a solution for aligning with
government power. The proposed solutions are based on granting state authorities the
ability to modify blockchain databases as superusers while emphasizing traditional reme-
dies and enforcement practices. Furthermore, Goldenfein et al., [Goldenfein and Leiter,
2018] argue that the legal status of SCs is dependent on incorporating computational
transactions into natural contracts because “natural contracts do not construct an agree-
ment on their own”. De Filippi et al., [Filippi and Hassan, 2016] define a smart contract as
“law is code” and propose abandoning the concept of “code is the law.” It is worth noting
that when contract law is translated into SC code [Farrell et al., 2017], the semantics of
contract law are lost, thereby leaving the legal status of SCs in doubt.

2.2 State of the Art of Smart Contract Development

SCs using distributed ledger technology is the latest research and little research has been
conducted on SCLs supporting the development of legally-binding SCs based on the
requirements and properties of actual business processes. To support these contractual
properties, attempts have been made to raise the level of abstraction from code-centric to
model-centric SC development. This section describes four of these attempts in detail: the
agent-based approach, the business process-based approach, the state machine approach,
and the UML approach. These model-driven approaches have used one or more modeling
languages to support the concerns and viewpoints associated with SCs.

Agent-based approach: Frantz et al., [Frantz and Nowostawski, 2016] developed
a modeling approach that used a domain-specific language (DSL) to help transform

! Rootstock (RSK) | Home Page https://www.rsk.co/
2 TON | GitHub Page https:/github.com/ton-blockchain/ton

https://www.rsk.co/
https://github.com/ton-blockchain/ton

696 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

institutional concepts into machine-readable contractual rules. This approach was based
on the concepts discussed in [Crawford and Ostrom, 1995]. Crawford & Ostrom proposed
a ‘grammar of institutions’ syntax that can be used to identify essential components
of any institution and group them into three types of institutional statements: rules,
norms, and shared strategies. These institutional statements are useful in agent-based
modeling because they serve to guide the actions of agents within organizations [Smajgl
et al., 2010]. Agent-based models (ABMs) are computational models for simulating
the actions and interactions of individual agents, or groups of agents, within a system,
for understanding agent behavior and the system’s behavior as a whole. This includes
the interactions of the system’s entities as well as specific representations of those
entities [Shekhar and Xiong, 2008]. The syntax of the grammar of institutions contains
five components represented by the acronym ADICO, which stands for: Attributes,
Deontic, alm, Conditions, and Or Else. Frantz et al., [Frantz and Nowostawski, 2016]
developed a DSL in Scala to convert the ADICO statements into Solidity code. In this
way, a business contract written in ADICO syntax could easily be converted into a SC
using Solidity. Thus, the generated SCs would be understood by both IT, and business
professionals. Still, the code generated through this process is merely a skeleton and
requires enhancement by a developer before running in Solidity. Furthermore, no mention
is made in this paper to create complex collaborative business contracts.

Business process-based approach: This approach focuses on organizational business
processes, and there have been several initiatives based on this approach published in the
literature. To address the lack of trust in collaborative process execution in the blockchain,
Weber et al., [Weber et al., 2016] proposed an automated way to generate smart contracts
using a translator. This is achieved by generating SCs from process specifications using
Business Process Model and Notation (BPMN). Because the translator is called at design
time and the roles of the participants are unknown, the output of this process results in what
is known as a factory, or generic, contract. As a result of the transformation’s adherence
to workflow patterns, not all BPMN elements are capable of translation. Taking a similar
approach, Tran et al., created Lorikeet; a model-driven engineering tool that generates
SCs from BPMN specifications [Tran et al., 2018]. The modeler user interface is linked
to three back-end components: a BPMN translator, a registry generator, and a blockchain
trigger. A business process model is fed into the BPMN translator, which generates a
smart contract written in Solidity code. The trigger communicates with an Ethereum
blockchain node to compile, deploy, and interact with SCs. Unfortunately, Lorikeet does
not support all BPMN notations for translation, similar to the translator proposed in a
previous study [Weber et al., 2016]. Caterpillar [Orlenyslp, 2019] is a tool available in
the market that is an alternative to Lorikeet. It is a free, open-source tool that supports
advanced BPMN control flow elements such as sub-processes, multiple instances, and
event handling. Still, Caterpillar does not support the modeling of business-process views,
which is essential for any collaborative business contracts.

State machine approach: Several studies have used the state machine approach to
extend model-driven engineering concepts to smart contract development [Dixit et al.,
2022]. This researcher considers SCs to be state machines; the contract has an initial
state, which changes as transactions are completed. This method is a common pattern in
Solidity documentation [Dannen, 2017]. Mavridou et al., [Mavridou and Laszka, 2017]
presented a formal model for modeling SCs and created the FSolidM tool, a code generator
for creating Ethereum smart contracts, thus enabling smart-contract development with
minimal manual coding. In addition, Mavridou et al., demonstrated the FSolidM tool
in [Mavridou and Laszka, 2018]. Although the transformation from finite state machine
(FSM) to Solidity is semi-automated to ensure good code quality, several other properties

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 697

cannot be modeled without using additional plugins. Mavridou et al., [Mavridou and
Laszka, 2018] did not go into detail about FSM; they expanded on previous work by
developing the ‘VeriSolid’ framework, which focused on the security aspect of smart
contract design [Mavridou et al., 2019]. The VeriSolid framework enabled developers
to perform high-level verification of smart contracts, thus allowing for correct-by-design
contract development. The tool “Yakindu Statechart Tool’ is designed to generate SC
code from a finite state model. The tool allows for graphical editing of state charts and
code generation in blockchain languages, including Solidity, Vyper, and Yul [Miilder,
2019]. This tool is still in its initial development phases, and no details on how it can be
implemented are available.

UML approach: Syahputra et al. [Syahputra and Weigand, 2019] generate SCs for
two different blockchains using UML and OCL. The smart-contract code stems from
an existing code generator called ‘Acceleo’ (Model to Text) [Home, 2005]. Kruijff et
al., [de Kruijff and Weigand, 2017] employ the commitment-based ontology perspective
that segregated the ontology into three levels: essential, infological, and data logical.
Still, this study [de Kruijff and Weigand, 2017] lacks detail by only demonstrating the
models without discussing platform-specific models or generated code. It is also unclear
whether the author’s framework integrates the two tools into a single system or whether
developers require other tools to achieve their goal.

2.3 Related Work

In this section, we discuss the existing research on evaluating modeling languages,
frameworks, and support tools for model implementation. Their benefits and drawbacks
are identified and weighed to determine the suitable method for evaluating the SLCML.
For example, Table 1 lists various research approaches for assessing modeling languages
and support tools. The Study column shows the article being reviewed, and the Domain
column shows the domain to which the modeling concept is applied. The elements used
to implement the modeling language are described in the Notation column. Finally, the
Evaluation column tracks the assessed modeling-language aspects.

The first article [Brandtner and Helfert, 2018] describes a systematic technique for
evaluating a modeling language’s syntax, semantics, and usefulness. The developed
evaluation technique is applied to assess the qualitative aspects of a modeling language
in organizational innovation management. The second article [Mahunnah et al., 2018]
presents a quantitative method for evaluating a support tool for an agent-modeling
language used in software engineering. The third article[Halvorsrud et al., 2016] develops
a modeling language for customer-journey mappings to evaluate the support tool by
measuring the correctness and utility of the models generated. The fourth article [Jaccheri
and Stilhane, 2001] compares the results obtained using the support tool to the results
obtained using the standard tool to evaluate a new modeling technique for software
engineering. The fifth article [Morandini et al., 2011] evaluates the significance of the
methods proposed by assessing the semantic characteristics of a modeling language
that extended typical agent-oriented software-engineering methodologies. The sixth
article [Opdahl and Henderson-Sellers, 2002] provides a systematic method for analyzing
UML semantic features. Finally, the study [Dranidis, 2007] develops a UML support
tool and evaluates the consistency of models created with it, as well as the tool’s utility
compared to traditional modeling techniques.

The key finding (Table 1) shows that most studies compare the utility of a modeling
language’s support tool to that of a traditional modeling language. Only one study
[Brandtner and Helfert, 2018], provides a comprehensive explanation of the evaluations,

698 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

such as syntactic and semantic correctness and modeling language’s general applicability
to the domain. Although the objective of the usability evaluation of the artifacts conducted
in study [Mahunnah et al., 2018] is similar to that of other studies, Mahunnah et al.,’s
study is more relevant because the notations evaluated are similar to this paper. The
SLCML is a modeling language used to create SCs for deployment on a blockchain, and
as a result, both studies, [Brandtner and Helfert, 2018] and [Mahunnah et al., 2018], are
preferred as this paper’s evaluation method. These two approaches were selected for
evaluating the proposed SLCML because they evaluate the semantic, pragmatic, and
usability aspects of the modeling language, which is an objective of this study.

Study Title Notation Evaluation

Prag- Seman-Usabil-
matic tic ity

Multi-media and web-based Evalu-BPMN ++ ++ ++
[Brandtner ation of Design artefacts-Syntactic,
and Helfert, Semantic and Pragmatic Quality of
2018] Process Models

[Mahunnah An empirical evaluation of the AOM + - +
et al.,, 2018] requirements engineering tool for
socio-technical systems

[Halvorsrud Evaluation of modeling language for CIML + - +
et al., 2016] customer journeys
[Jaccheri Evaluation of the E3 Process Model-E3 Process - - +
and Stalhane, ing Language Tool for the Purpose
2001] of Model creation
[Morandini ~ Empirical Evaluation of Tropos4AS Tropos- - + -
et al., 2011]

Modeling
[Opdahl and Ontological evaluation of the UML UML - ++ -
Henderson- using the Bunge-Wand-Weber
Sellers, 2002] model
[Dranidis, Evaluation of StudentUML: an Edu- UML + - +
2007] cational Tool for Consistent Model-

ing with UML

Table 1: Evaluation methods for modeling languages and support tools assessment

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

699

3 Formal Specification Language

In this section, we describe the elements of the SLCML that are developed based on the
legally-smart contract ontology 2.0 discussed in [Dwivedi et al., 2021a]. The extended
proposed SCL ontology (legally-smart contract ontology 2.0) shown in figure 1 incorpo-
rates the legal concepts and properties for contractual collaboration in business DAOs.
Since the ontology is beyond the scope of this paper, we refer the reader to [Dwivedi
et al., 2021a] for an ontology description. The ontology is translated into a machine-
readable language in this paper as SLCML. For the SC to be legally-binding, it must be
created using a programming language that contains necessary legal elements. To address
this issue, we collaborated with a lawyer to improve the existing eSourcing ontology by
adding legally-relevant concepts to eSourcing ontology 1.0 [Norta, 2015].

Contract Consideration
contractingParty 1..* | + ID.int 0..x + description.varchar
0.+ + contractType.string = + value.varchar
b 1.* mustHave + unitint
Actor +certifiedCode.int
1..* +considerationType.strin
+ identification.int 0% P 9
- capacity.varchar v mustSpecify
- authentication.string has
0..* 0..*
+ update(ID): Role TermsandCondition 0..* ' Prohibitions
- delete(ID) =
- insert(ID) - acceptedActivity.string 0. defines
- authority.string
0.* Right
hasRole 08 @ 0.* 0..* defines 0.+ *Rightholder.string
5 5% +Benificiary.string
- b (TS validity +RightType.varchar
counterRole
OccurOutside
0..* @ 0* 0.*
Obligation TimeFrame NonPerformance

+ validFrom.Date

+ validTime.Date
+NoticePeriod.Date
+Performanceperiod.Date.

+PerformanceEventType.string
+PerformanceState.string
+Acceptedeventfailure.string

+ObligationState.varchar
+FullfilledState.string
+Owner.string

+Obligor.string
RemedialRightinvoked()

Figure 1: Upper-level smart-contract ontology, adapted from [Dwivedi et al., 2021a]

Legal-smart-contract ontology 2.0 we develop by mapping a legally relevant ontology
against the eSourcing ontology 1.0 [Norta, 2015] that is the foundation for eSML 1.0,
an eSouring Markup Language designed to provide answers to three critical contractual
questions: Who? Where? and What? The “Who-concept” describes the parties engaged
in the contracting process. The “Where-concepts” distinguish the fundamental aspects
of the context of an electronic-contract, and “What-concepts” define the exchanged
values and their associated conditions. The primary goal of eSML 1.0 was to enable
SC collaboration within the eSourcing domain. We use Liquid Studio® to translate the
concepts and properties of the SCL ontology into the eSML language, which is an XML
schema editor for creating XML documents. This translation resulted in the creation
of eSML 2.0. The SLCML is an expanded version of eSML 2.0. As this study is only

3 Liquid Studio | Home https://www liquid-technologies.com/xml-studio

https://www.liquid-technologies.com/xml-studio

700 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

concerned with the expanded version of SLCML, a link is provided to the complete
SLCML schema 4. The SLCML schema of the upper-level SC is presented in Section 3,
and Section 3 the schema for defining domain-specific contractual properties.

Upper-level SC: The legal elements described in the upper layer of legally relevant
SC DAOs are defined in the code extract (Listing 1). Line 5 of Listing 1 defines the
contractual considerations and variable types. The value of minOccurs and maxOccurs
in Line 5, represents the amount of consideration required for a legally-binding smart
contract. Line 6 defines the terms_ and_ conditions element that specifies the smart
contract’s terms and conditions. The contracting party’s description is defined in Line 7
of Listing 1, followed by the custom type company__info that includes the contracting
party’s name, type of legal organization, and company contact information.

| <xs:element name="contract”>
<xs:complexType>

3 <xs:sequence>

4 <xs:element name="role” type="
variables _def section” minOccurs="0” maxOccurs="unbounded
”/>

<xs:element name="consideration” type="

variables def section” minOccurs="1” maxOccurs="unbounded
’7/>

6 <xs:element name="terms and conditions” type="
terms_and condition definition” minOccurs="0"” maxOccurs=’
unbounded”/>

<xs:element name="party” type="company info”

maxOccurs="unbounded” />

8 <xs:element name="mediator” type="company info”
minOccurs="0" maxOccurs="unbounded” />

9 </xs:sequence>

10 <xs:attribute name="contract id” type="xs:ID” />

1 <xs:attribute name="global language” type="xs:
string” />

12 <xs:attribute name="web_ service uri” type="xs:
string” />

13 </xs:complexType>

4 </xs:element>

s

Listing 1: Upper layer of smart contract schema

Listing 2 displays the rights, prohibitions, obligations, and time-frames defined by
the custom-variable: terms_and conditions_definition_type. The code extract in Listing 2
is part of the terms and conditions that define the rules and regulations governing the
parties’ performance, as discussed in[Dwivedi et al., 2021a]. Line 3 defines the rights
of the elements, as well as the custom type, (the right__type), which allows the parties
to customize the type of rights. minOccurs and maxOccurs indicate that parties must
choose at least one right. Prohibitions and definitions of the prohibitions that may apply
to the terms and conditions are described in Line 4. Line 5 of Listing 2 specifies the
obligations as well as the obligation_ category that allows the parties to configure
multiple obligations. Finally, the time_ frame is defined in Line 6, which indicates
when the terms and conditions expire.

1 <xs:complexType name="terms and conditions definition”>
2 <xs:sequence>

4 shorturl.at/uBHR6

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 701

<xs:element name="right” type="right type” minOccurs=
”1” maxOccurs="unbounded” />
4 <xs:element name="prohibitions” type="xs:string”
minOccurs="0" />
<xs:element name=”obligation” type="
obligation category” minOccurs="1" maxOccurs="unbounded”
/>
6 <xs:element name="time frame” type="
variables def section” minOccurs="0" />
</xs:sequence>
s </xs:complexType>

Listing 2: Schema definition of terms and conditions

The variables_def section, is a common variable attribute defined in Listing 3
that contains properties for all SLCML variables, both simple and complex. The string
data items necessitate the definition of the string type. The role of the contracting
party, for example, could be specified as a string_ type. The boolean data type is
required to define boolean contract data items. For example, the boolean data type
determines whether or not the contract is legally-binding. The integer data type is used
to store contract-id and consideration values. Special data types, such as money__type
and event__type, define specific contractual activities. For example, the money_ type
specifies the amount of money in a specific currency, whereas the event__type specifies
the type of event that may occur during the contract.

1 <xs:complexType name="variables def section”>
2 <xs:sequence maxOccurs="unbounded”>
<xs:choice>
4 <xs:element name="string var” type="string type”
/>
5 <xs:element name="real var” type="real type” />
6 <xs:element name="integer var” type="integer type’
/>

s

I}

<xs:element name="boolean var” type="boolean type’
/>
8 <xs:element name="date var” type="date type” />
9 <xs:element name="time var” type="time type” />
10 <xs:element name="e¢vent var” type="event type” />
1 <xs:element name="money var” type="money type” />
12 <xs:element name="external resource reference var’
type="external resource reference type” />
13 <xs:element name="1list of events var” type="
list of events type” />

Ty

14 <xs:element name="1ist of strings var” type="
list of strings type” />
15 <xs:any namespace="targetNamespace” />

16 </xs:sequence>
7 </xs:complexType>

Listing 3: Common variable attributes

Obligation-type: The obligation__category consists of the obligation_ type, obli-
gation__state, performance and non-performance specified in Listing 4. The element
obligation_ type, along with custom variable obligation_ type_ definition, is speci-
fied in Line 3; by which several obligations are configured. The obligation__ state is
defined in Line 4 to monitor the contract fulfillment through which an obligation can pass.

702 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

In Listing 4, the definition of obligation__type_ def-inition is omitted. The obligation
state depends on the performance and non-performance conditions defined in Line 5.

1 <xs:complexType name="obligation category”>
<xs:sequence>
<xs:element name="obligation type” type="
obligation type definition” minOccurs="1"/>
4 <xs:element name="obligation state” type="
obligation state definition” minOccurs="1"/>
<xs:element name="performance” type="
variables def section” minOccurs="1" maxOccurs="unbounded
/s
6 <xs:element name="non—performance” type="
variables_def section” minOccurs="0" maxOccurs="unbounded
7’/>
</xs:sequence>
s </xs:complexType>

Listing 4: Schema of obligations category

Listing 5 is an example of an obligation type from which the parties can create at
least one, and possibly more, obligations. The legal obligation is defined on Line 3, along
with the string variable type. Business obligations have both monetary and non-monetary
implications for which monetary and non-monetary elements are defined in Lines 4
and 5. Line 6, on the other hand, specifies both the string type and the moral obligation.
The remaining obligations are defined similarly, as shown in Listing 5.

1 <xs:complexType name="obligation type definition”>

<xs:sequence>

<xs:element name="legal” type="xs:string” minOccurs="0"
/>

4 <xs:element name="monetary” type="xs:string” minOccurs="0
» s
<xs:element name="non—monetary” type="xs:string”
minOccurs="0" />

6 <xs:element name="moral” type="xs:string” minOccurs="0"

/>
<xs:element name="Primary” type="xs:string” minOccurs="0"
/>

8 <xs:element name="Secondary” type="xs:string” minOccurs="
0” />

9 <xs:element name="Conditional” type="xs:string” minOccurs
=70 />

10 <xs:element name="reciprocal” type="xs:string” minOccurs=
70" />

1 <xs:element name="reconciliatory” type="
business event types” minOccurs="0" />

2 </xs:sequence>

1 </xs:complexType>

Listing 5: Schema of the type of obligation

4 Evaluation of SLCML

We provide a systematic evaluation of proposed SLCML to demonstrate their applicabil-
ity in developing legally-binding SCs. The generality and applicability of the proposed

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 703

language are tested in subsection 4.2 by drafting the dairy supply chain contract (ex-
plained in Section 4.1) using the proposed SLCML language.

We held a webinar event with blockchain experts to review the concepts and show-
case the SLCML schema. The experts work in the supply chain, healthcare, finance,
education, and research industries. A total of 20 people registered for the webinar. Fig-
ure 2 provides detailed information on the background of domain experts that evaluated
the SLCML. The figure shows the industry background, job positions, domain field, and
experience level of the participants. About 37% of the participants are from research
and education backgrounds, 25% are from supply chain and fintech, and 13% are from
healthcare. Most of the participants are highly experienced, as 80% have an experience
level of 2 years and above. Regarding the field domain, 60% of the participants are
from academics, while 40% are from the industry. All of the important SLCML schema
concepts, such as business and legal aspects and relationships, were discussed during
the workshop. In addition, the attendees were introduced to the concept of decentralized
inter-organizational business collaboration, the main theme of this paper. The participants
were introduced to the dairy supply chain use case and asked to write the XML code
using the proposed SLCML language. Thereafter, the participants were asked to provide
feedback on the SLCML schema’s semantic, pragmatic, and usability features at the end
of the webinar.

Background Experience level

25%' 47%

= Industry = Research and education
Fintech = Supply chain
= Healthcare =1Year =2Years =3 Yearsandmore
Job position Field

=B

‘%

= Data analyst = Software developer
Quality assurance = |T researcher

= Academics = Industry

Figure 2: Demographics of domain experts

4.1 Use Case

This section discusses the ongoing case study from the dairy food supply chain for the
SLCML evaluation. In lab experiments, participants write SLCML code corresponding

704 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

to the case study. The case elaborated in [Behnke and Janssen, 2020] and published
in [Dwivedi and Norta, 2022], describes numerous problems that can arise when a ser-
vice provider hides process details from the service consumer in the dairy supply chain.
Blockchain may benefit the food supply chain, such as the fish supply chain [Howson,
2020], and the dairy supply chain. The tracking and monitoring of product safety and
regulatory compliance throughout the food supply chain is a significant use case for
blockchain [Caro et al., 2018]. Many stakeholders, including farmers, bulk milk distrib-
utors, manufacturers, wholesalers, and retailers, as shown in Figure 3, are responsible
for managing the supply chain operation from the start, when a cow on a farm produces
raw milk to the finished product when a consumer buys baby-milk powder.

Internal traceability refers to the traceability of one of the actors’ internal processes,
whereas chain traceability refers to the traceability of the entire supply chain [Moe, 1998].
To retrieve and provide information to the Food Safety Information System, actors in the
dairy supply chain can employ IoT devices and location-based food safety information
systems (FSIS) technology. The latter contains a wide range of data that food supply chain
actors require to achieve transparency and quality assurance. According to [Aung and
Chang, 2014], FSIS is run by unspecified centralized or decentralized information. Each
actor is expected to be responsible for food safety in their operations. The Food Safety
and Quality Assurance System (FSQAS) establishes the quality and safety standards to
which all stakeholders in the supply chain must adhere. The FSIS monitors traceability
data to ensure that rules are followed.

This paper focuses on cross-organizational collaboration within the dairy supply
chain. Farmers keep detailed records of their farm’s location, breed of cow, vaccinations,
treatments, and any special regimens that might be required. RFID devices and other
sensor networks incorporate blockchain to monitor the health and movement of animals.
The health and movement data of animals stored on a blockchain. The bulk milk distri-
bution company is informed through a blockchain-based system when the milk is ready
for collection. Temperature control during transit is critical for preventing milk spoilage,
and sensors are used to achieve this. GPS technology is often used to monitor vehicles
in real-time. When the milk is dispatched to the factory, key information is updated on
the blockchain network. This data includes information such as the unit’s location (e.g.,
milk), the number of deliveries at a specific lot, and so forth. The factory processes the
milk and manufactures baby milk powder. In addition, consumers are provided with
factual data about food items, such as nutritional information, ingredients, expiry date,
instructions for use, and other helpful or legally-mandated information.

According to [Casino et al., 2019], SCs are required for food supply-chain operations
to improve DAO governance. The supply-chain operation procedures in the food safety
and quality assurance system are designed to trigger important events. If, for example,
the bulk milk distributor fails to deliver milk to the factory within a specified time or at a
specified quality, they may pay the penalty. If this scenario is considered to be important
it should be coded into DAO governance. In a traditional supply chain, the parties who
work collaboratively often have little control over any organization, which could cause a
bottleneck in the system. Still, in a SC-driven blockchain, each business could monitor
and track the status of products and transactions with oracles of diverse types, thus
providing critical oversight of the whole process. Any bottleneck is immediately visible
this way, and the erring party is identified.

Despite these advantages, there are significant business- and legal concerns relating
to the fact that blockchain technology is still in the early stages of development, as SCLs
are not mature enough to deal with practical realities. Assume, for example, a farmer is
managing a workflow process on behalf of the milk processing factory. Even though the

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 705

Food Safety Information System

Internet & Web A Wireless Identification A Location-based A Information &
Technology i & Sensor Technology : Technology
; A4

Communications
Technology

Distributor Factory Retailer Consumer

STORE

A

Internal

Traceability
1

1 Internal
: Traceabilit

Internal
Traceability

Internal
Traceability

Internal
Traceability

External
Traceability
External
Traceability
External
Traceability
External
Traceability

Good Practices (GMP, GHP....) HACCP ISO Standards

Food Safety & Quality Assurance System

Figure 3: Use case of the dairy food supply chain, adopted from [Dwivedi and Norta,
2022])

farmer is supplying bulk milk to the factory under a supply contract, he may not wish to
reveal the details of all the workflow processes he employs on his farm because they are
no concern to the factory. On the one hand, the factory may believe that because they
are the farmer’s customers, they have a right to have insight into what happens on the
farm. The farmer only discloses those aspects of the process he is willing to make public
that is of interest to potential customer organizations. On the other hand, most customer
organizations aim to incorporate outsourced processes into their processes to provide
them with more information about the structure and progress of the process that another
company is carrying out.

Still, in reality, the customer organization does not need to know the specifics of the
upstream workflow process and only requires a broad understanding. To accommodate
such issues, SCs must include clauses that clearly define the rules for when confidential
workflow information should be withheld or disclosed to third parties.

4.2 SLCML Instantiation

This section discusses SLCML instantiation corresponding to the running case written
by participants. The configuration of rights and obligations for the dairy supply chain
running case using the SLCML schema from the previous section. Listing 6 defines the

706 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

fundamental contractual elements required for any legally-binding business-oriented
smart contract. To resolve any conflict, the producer (factory) and distributor create a
smart contract with a unique ID that cannot be changed during contract enforcement.
Lines 2 and 6 contain the public keys for the producer and the milk distributor, respec-
tively. The parties’ names to the contract are specified on Lines 3 and 7. Lines 4 and
8 define the contracting parties’ roles, namely: producer as a service consumer and
distributor as a milk supplier. On line 10, the contract consideration (milk) for which
the parties have agreed to a contractual relationship is listed. The terms and conditions
include the obligations and rights outlined in Listing 7 and Listing 8.

| <contract contract id="1d1">

<party address="03 mo6’>
) <name> Producer </name>
w <role> Service consumer </role>
5 </party >
6 <party address="31 x77>

<name> Distributor </name>

8 <role> Milk supplier </role>
9 </party >
10 <consideration> Milk </consideration >
1 <terms_and_conditions/>
2 <obligation/>
13 <right/>
14 <prohibitions/>
15 <terms_and_conditions >
v </contract>

Listing 6: Contract instantiation for the dairy supply chain

Listing 7 depicts a producer’s commitment to compensate a distributor for milk. The
obligation has a name and a unique ID that is used to track performance and is classified
as a monetary obligation because of pertaining to economic or financial consequences.
Line 3 begins the obligation state, indicating that the producer collects milk in accordance
with the orders and is required to pay the distributor money. The producer is the obligor
and responsible for carrying out the obligation stated in Line 6. Line 5’s obligations
benefit the distributor, and we assumed no intermediaries or arbitrators are involved, as
indicated by Line 7. The producer is expected to act by paying money, and the to-do
obligation (Line 10) has legal consequences. Line 12 implies the obligations for which
the producer and distributor sign contracts (Act 1); the producer receives milk from the
distributor. The performance type (Line 13) refers to the amount of money that must be
transferred from the producer’s wallet address to the distributor’s wallet address.

In addition, the performance object (Line 14) is defined as a qualified purchase for
which a specific amount is compensated within a specific time frame. Line 15 specifies
the purchase-payment plan, while the rule conditions specify the payment time limit.
Finally, the obligation is amended to include a mention of the existence of a late payment
remedy (Line 17). If the producer fails to pay the money within the specified time frame,
the producer must transfer interest for the late payment to the distributor.

| <obligation rule tag name ="paying invoices” rule id =70001"
> changeable ="false” monetary ="true”>
; <state> enabled </state>
. <parties >
<beneficiary > Distributor (31 x7) </beneficiary>
6 <obligor> Producer (03 mé6) </obligor>
<third party > nil </third party>

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 707

s </parties >

o <obligation type>

10 <legal obligation> to—do </legal obligation >

1 </obligation_ type >

» <precondition> actl (signed)& Milk (transferred) </
precondition >

5 <performance type>

14 payment (03 m6,31 x7, buy)

s </performance type>

v <performance object> invoice (buy, amount)<
performance object>

7 <rule conditions >

I8 date (before delivery of milk)

v </rule_conditions >

2w <remedy>late payment_interest (amount,03 mé6 ,31 x7) </remedy>

2 </obligation_rule >

Listing 7: Paying milk obligation illustration

The obligation intersects with provisions in the Listing 8 code extract. Because the
parties’ rights and obligations are intertwined, the other must comply if one party asserts
its rights. The rights have a beneficiary who can benefit from them and an obligor who
can enable them, as in Listing 7. If the producer receives poor-quality milk, they have
the right to replacement. As a result, the distributor will have to replace the milk.

<right rule tag name ="milk replacement” rule id =70002"

> changeable ="true” monetary ="false”>

s <state> enabled </state>

s+ <parties >

5 <beneficiary > Producer (03 m6) </beneficiary >

6 <obligor> Distributor (31 x7) </obligor>

7 <third_party > nil </third party>

s </parties >

o <right type>

10 <conditional right> claim </conditional right>

- </right type>

» <precondition> actl (signed)& Milk (transferred) </
precondition >

» <performance type>

14 replace (poor—quality milk)

s </performance type>

v <action_object>

17 milk (cans of milk, type, and batch unit)

s </action_object >

v <rule conditions > deadline (date) </rule conditions >

w <remedy> late replacement interest (amount, 31 x7) </remedy>

o </right_rule >

Listing 8: Replacing low-quality milk with this example

It is assumed the rights defined in Line 1 have a name and an ID. Because the
distributor has the right to revoke the right, he or she can persuade the producer that the
quality of the milk was ruined during logistics due to a faulty sensor machine that was
not his fault. If the distributor agrees to replace the milk, the contract’s rights can be
changed while it is being carried out, and the compensation can be set to false. The parties
are similarly stated to be in Listing 7, and the right state is ready to be implemented

708 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

immediately. Because the producer demands that the milk be replaced, the right type is
assigned conditional-right. Before the right can be exercised, the contract must be signed
and the milk delivered to the producer. The performance type has been changed to cans
of milk, type, and batch unit to replace the milk mentioned in the performance object. The
corresponding obligation of the distributor must be met within the ‘timeframe’ specified
after this right is activated; otherwise, the producer is entitled to monetary compensation.

4.3 Semantic and Pragmatic Evaluation

Brandtner et al. describe a method for evaluating the syntactic, semantic, and prag-
matic aspects of a business-modeling framework for implementing business innova-
tions [Brandtner and Helfert, 2018]. The method is modified and applied to blockchains
and for creating SCs domains. We utilize the evaluation approach from Brandtner et al.
that provides the evaluation criteria for accessing the semantic and pragmatic usefulness
of SLCML. For example, the first column of Table 2 and 3 shows the assessment criteria.
The second column shows the question posed to experts for a rating of each assessment
criterion. The last column shows the adaptation of the question by introducing the con-
cepts of SLCML into the question. The adapted question in the last column is then posed
to the workshop participants and thereby provides the basis for assessing the semantics
and pragmatic properties of the SLCML.

The syntactic parts of the SLCML schema have already been specified and evaluated
in the previous section 4.2. This section considers semantic and pragmatic aspects, with
semantic quality determining how well the new SLCML schema captures contractual
business features that domain experts believe are important in describing the domain.
Table 2 shows the properties for measuring the semantic aspects of a new modeling
language and their application to this paper. Among these properties are the modeling
language’s validity, relevance to the problem domain, completeness in describing the do-
main, and language authenticity. The pragmatic aspect evaluates the modeling language’s
perceived utility in assisting with the design, and implementation, of blockchain-enabled
SCs for inter-organizational collaborations. Table 3 shows the properties for measur-
ing the pragmatic aspects of a new modeling language and its adaptation to this paper.
These characteristics are the subjective norm, image, job relevance, output quality, result
demonstrability, performance, productivity, and perceived usefulness. Experts in the
field of blockchain-system design have taken part in evaluating both the semantic and
pragmatic aspects of the new modeling language.

We investigate the semantic and pragmatic properties of the SLCML using the
modeling language evaluation approach described in Tables 2 and 3, in Section 4.3. The
results of the SLCML evaluation are presented in Figure 4. The semantic characteristics
are shown on the left side of the figure, and the pragmatic characteristics are depicted as
a perceived utility on the right side.

On a scale of 1 to 5, blockchain domain experts agreed that the SLCML schema
depicted the design process of legally-binding SCs for semantic quality evaluation ap-
propriately and realistically. They also agree that the SLCML schema accurately and
comprehensively represents all of the elements required to create legally enforceable
SCs. The average scores for the properties are 4.3 for realisticness, 4.3 for complete-
ness, 4.1 for relevance, and 4.5 for accuracy. The usefulness of the SLCML schema in
blockchain-related jobs, the creation of legally-binding SCs output, and improved per-
formance in SCs implementation are all rated highly (above 4.3). The SLCML schema’s
increased productivity and communication, both with scores of 4.1, are two more prag-
matic aspects of the SLCML schema that received high marks. The subjective norm

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 709

Title Description Adaptation

Correctness All statements in the representa- SLCML correctly represents the pro-
tion cess and elements of creating legally-
binding SCs.
Relevance All statements in the representa- SLCML elements are relevant for
tion are relevant to the problem creating legally-binding SCs.
Completeness The representation contains all SLCML represents the elements
statements about the domain that and processes involved in creating

are correct and relevant legally-binding SCs.
Authenticity The representation gives a true SLCML represents the elements for
account of the domain creating legally-binding SCs.

Table 2: Assessing SLCML using semantic qualities

property, which measures how important, people in the blockchain community regard
the SLCML, is also given a high score of 4.0. According to this assessment, it can be
concluded blockchain domain experts agree the SLCML schema is semantically valid
and pragmatically beneficial in the construction and development of legally-binding SCs.

Similar scores are recorded by academic and industry professionals in providing
details on the semantic quality of SLCML. Academic and industry experts rate the
semantic quality of the SLCML at 4.28 and 4.27, respectively. Furthermore, for SLCML
pragmatic aspects, domain specialists give similar ratings. The average pragmatic quality
of the SLCML is rated 4.06 by academic experts and 4.07 by industry professionals.
These results show that academics and industry professionals have similar perceptions
of the semantic and pragmatic features of SLCML.

Title Explanation

Subjective Norm People who are important will support using SLCML in creating
legally-binding SCs.

Image People in my organization who use SLCML to instantiate SCs
would have a high profile.

Job relevance SLCML usage or application will be relevant in my job.

Output quality The quality of output I get from SLCML will be high.

Demonstrability I believe I could explain the benefits of using SLCML to others.

Performance My job’s performance will improve if I use SLCML.

Productivity I will be more productive if I use the SLCML in my job.

Usefulness I find the creation of SCs through SLCML is useful in my job.

Table 3: Assessing SLCML using Pragmatic qualities

710 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

Semantic Score

Realisticity NN
Completeness NN
Relevance NN
Correctness I
1 2 3 4 5

Figure 4: SLCML semantic evaluation result

Pragmatic Score
Useful in job N
Increase productivity [NNNININININITGTNNGNGNGEGNN
Improve performance |GGG
Communication of SLCML [N,

schema

DAOs quality produced [N
People in organisation [N
Important people in blockchain [

domain

Figure 5: SLCML pragmatic evaluation result

4.4 Usability Evaluation

The paper [Mahunnah et al., 2018], investigates the usability of a support tool for an
agent-oriented modeling language. The evaluation method compares the results obtained
while using the assistance language tool support with a free-hand sketch. The goal was
to assess the validity of the models developed, as well as the time spent developing the
models, to determine the benefits of the support tool.

The properties for analyzing the usability of modeling SLCML SCs are shown in
Table 4 as an adaptation from [Mahunnah et al., 2018] for this paper. The items assessed
the difficulties, time spent, and effort expended in generating SLCML contracts. Other
aspects examined include a grasp of the case modeled, comprehension of the SLCML
notions, and the application of SLCML in practice. The participants involved in this
evaluation are newcomers to the blockchain.

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 711

To evaluate the usability of the SLCML, we conduct a workshop with seven par-
ticipants who are not blockchain experts but can grasp the concepts of SCs design.
The participants are master’s degree students currently working on topics related to
blockchain. During the workshop, the participants receive instruction on the fundamental
concepts of the SLCML. The participants are then divided into two groups to model a set
of legally-binding SCs using the SLCML. They are tasked with creating an example of
an SC for a specific use case in the automobile supply chain. The first group, comprising
four students, works with the proposed SLCML, while the second group of three students
works with an existing smart-contract modeling language (DAML). A feedback form is
used to record the accuracy of the models produced, the amount of time spent, and the
ease with which the assignment is completed. The participants are asked to evaluate the
SLCML on a scale of 1 to 5.

The usability of developing legally-binding SCs using the SLCML is investigated
using the modeling-language support-tool evaluation approach (Table 4). Usability is
determined by comparing feedback data from students who develop SCs using SLCML
to students who develop SCs using the existing SC modeling language (DAML). Figure 6
depicts the results, where the red bars show the average scores of students who use the
existing modeling language, while the blue bars show the average scores of students who
use the SLCML schema.

Description

P1 The description of the case study was clear to me.

P2 Difficulties in modeling the legal and business requirements in SLCML.

P3 Difficulties in choosing the business processes in SLCML.

P4 Difficulties in modeling the use case instantiation of SLCML.

P5 Short time is required for accomplishing the modeling SCs.

P6 SLCML schema was very useful in modeling legally-binding SCs.

P7 The concepts of the SLCML schema were detailed enough to instantiate the
requirements of a blockchain system.

P8 The effort of modeling SCs seems too high for the efficient use of the methodol-
ogy in practice.

Table 4: Properties for assessing usability of SLCML [Mahunnah et al., 2018]

The results (Fig. 6) show that the students who attend the workshop develop a similar
understanding of SLCML concepts and the running scenario. Still, the amount of work
required to recreate the modeling SCs and the ease with which the SLCML can be used
varies from student to student. Compared to students who use an existing SC modeling
language that requires a significant amount of effort to complete the task, students who
use the SLCML believe the effort required to create the legally-binding SCs is quite low.
Students who use the SLCML enjoy creating legally-binding SCs, while students who use
the existing language find it difficult to model legally-binding SCs. The findings show
that the proposed SLCML can be used to easily design and develop legally enforceable
documents.

712 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

Usability Score

Case study understanding |

Ease of modeling SCs I

Goal decomposition

usefulness |
Understanding of SLCML
concepts |

Modelling effort | —

0 1 2 3 4 5
SLCML mAveraged existing modeling Language

Figure 6: SLCML usability evaluation result

5 Discussion and Future Work

The evaluations conducted to assess the main artifacts produced in this paper are detailed
in Section 4. The SLCML schema is evaluated for its suitability for generating legally-
binding SCs. The SLCML schema is evaluated to determine its practicality and usefulness
using the method described in [Brandtner and Helfert, 2018]. The SLCML’s effectiveness
is determined by its usability and ease of generating error-free SCs. This is accomplished
by employing the method outlined in [Mahunnah et al., 2018].

According to the evaluation results, the modeling language is highly realistic for
describing the legal and business elements necessary for creating legally-binding SCs.
According to the practical usefulness results, the SLCML schema is suitable for producing
high-quality legally-binding SCs. Thus, significantly improving the performance and
productivity of analysts and developers in building SCs. Furthermore, the SLCML
demonstrates applicability and utility in tasks involving the design and development of
blockchain-based SCs. Some similarities and differences emerge when these findings
are compared to those of a similar study [He et al., 2018], which demonstrates a process-
based approach for modeling innovations in organizations. The results of [He et al.,
2018] show that the modeling approach is relevant for innovation management tasks and
has high practical usefulness. Still, compared to the other results, the average semantic
qualities score is low, falling just above the second quartile (above 50%).

In comparison, the average score for the modeling approach’s semantic and practical
usefulness for the proposed SLCML schema is in the third quartile (above 75%). This
demonstrates that the SLCML is not only useful for creating blockchain-based SCs, but
it also accurately represents legal- and business-related elements and processes in the
blockchain domain. In addition, the results of the SLCML usability evaluation show
that the SLCML is highly practical and usable in producing correct SLCML contracts
compared to a freehand smart-contract modeling language. The results show that the
modeling effort required to create SCs with SLCML is relatively low, whereas the effort
required to create SCs with the existing modeling language is exceptionally high. The
SLCML is simple to model and ranks in the third quartile (above 50%), while the existing

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 713

modeling language (SPESC) ranks in the second quartile (below 50%). This is similar
to the results of this work, demonstrating that SLCML is more user-friendly than an
existing modeling language.

This paper has several limitations, which we discuss here. For example, the re-
searcher’s subjectivity in analyzing and interpreting data and the risk of generalization.
Subjectivity related to the researcher’s values and viewpoints can impact the interpre-
tation of results when analyzing the strengths and weaknesses of current approaches
for building the SCL. Subjectivity may also impact how the SLCML evaluation results
are interpreted. Nonetheless, blockchain technology is in its infancy, and the number
of experts with the necessary knowledge was limited to participate in the webinar and
workshop held as part of this research. As a result, assembling many experts to participate
in several of the paper’s evaluations is a significant constraint. We performed the evalua-
tion in a controlled environment, which does not adequately reflect the conditions under
which the proposed evaluation approaches will be applied in the real world. As previously
stated, we organized a one-time webinar event and workshop, and it was difficult to
follow up with participants to collect additional data for further analysis. Addressing
the limitations discussed above can lead to a more comprehensive understanding of the
results of this work.

6 Conclusion

The primary artifacts created during the research study are evaluated in this paper. One
of the artifacts is the SLCML schema, which contains legal and business semantics for
designing and developing legally-binding SCs. To this end, we examine the literature
for suitable methods to evaluate the SLCML. The evaluation methods are compared to
see their syntactic accuracy, semantic correctness, and utility of a modeling language.
Based on the analysis results, appropriate SLCML evaluation techniques tailored to the
current paper are chosen. The SLCML evaluation seeks to determine the semantic quality
and practical utility of the SLCML in creating legally-binding SCs. The evaluation also
determines the SLCML’s effectiveness in producing SCs. The semantic and pragmatic
evaluation results, as well as the usability evaluation results, are presented separately.

The main artifacts produced in this paper are 1) The proposed SLCML; an XML-based
language, 2) the demonstration of smart contract development based on the proposed
SLCML language, 3) the evaluation of the SLCML schema’s utility in the creation of
legally-binding SCs.

The lack of domain completeness is the main limitation of this research. The SLCML’s
development assistance in generating legally-binding SCs is limited to business-to-
business (B2B) contracts. Other study limitations include the researcher’s subjectivity
in analyzing and interpreting data and the risk of generalization. Subjectivity related to
the researcher’s values and viewpoints could impact the interpretation of results when
analyzing the strengths and weaknesses of current approaches for building the SCL.
Subjectivity may also have an impact on how the SLCML evaluation results are inter-
preted. The results of this paper may be generalizable due to the large number of experts
interviewed in this study.

Acknowledgements

This project is partially funded by the Estonian personal research funding "Team grant
(PRG) project PRG1641”.

7 1 4 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

References

[Abodei et al., 2019a] Abodei, E., Norta, A., Azogu, 1., Udokwu, C., and Draheim, D. (2019a).
Blockchain technology for enabling transparent and traceable government collaboration in public
project processes of developing economies. In Lecture Notes in Computer Science, pages 464—475.
Springer International Publishing.

[Abodei et al., 2019b] Abodei, E., Norta, A., Azogu, 1., Udokwu, C., and Draheim, D. (2019b).
Blockchain technology for enabling transparent and traceable government collaboration in public
project processes of developing economies. In Lecture Notes in Computer Science, pages 464—475.
Springer International Publishing.

[Aung and Chang, 2014] Aung, M. M. and Chang, Y. S. (2014). Traceability in a food supply
chain: Safety and quality perspectives. Food Control, 39:172—184.

[Bartoletti and Pompianu, 2017] Bartoletti, M. and Pompianu, L. (2017). An empirical analysis
of smart contracts: platforms, applications, and design patterns. In International conference on
financial cryptography and data security, pages 494-509. Springer.

[Behnke and Janssen, 2020] Behnke, K. and Janssen, M. (2020). Boundary conditions for trace-

ability in food suppl%l chains using blockchain technology. International Journal of Information
Management, 52:101969.

[Brandtner and Helfert, 2018] Brandtner, P. and Helfert, M. (2018). Multi-media and web-based
evaluation of design artifacts-syntactic, semantic and pragmatic quality of process models. Systems,
Signs and Actions: An International Journal on Information Technology, Action, Communication
and Workpractices, 11(1):54-78.

[Caro et al., 2018] Caro, M. P., Ali, M. S., Vecchio, M., and Giaffreda, R. (2018). Blockchain-
based traceability in agri-food supply chain management: A practical implementation. In 2018
[oT Vertical and Topical Summit on Agriculture - Tuscany (IOT Tuscany), pages 1-4.

[Casino et al., 2019] Casino, F., Kanakaris, V., Dasaklis, T. K., Moschuris, S., and Rachani-
otis, N. P. (2019). Modeling food supply chain traceability based on blockchain technology.
IFAC-PapersOnlLine, 52(13):2728-2733. 9th IFAC Conference on Manufacturing Modelling,
Management and Control MIM 2019.

[Crawford and Ostrom, 1995] Crawford, S. E. S. and Ostrom, E. (1995). A grammar of institu-
tions. American Political Science Review, 89(3):582—600.

[Croman et al., 2016] Croman, K., Decker, C., Eyal, 1., Gencer, A. E., Juels, A., Kosba, A.,
Miller, A., Saxena, P., Shi, E., Giin Sirer, E., Song, D., and Wattenhofer, R. (2016). On scaling
decentralized blockchains. In Clark, J., Meiklejohn, S., Ryan, P. Y., Wallach, D., Brenner, M.,
and Rohloff, K., editors, Financial Cryptography and Data Security, pages 106—125, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Dannen, 2017] Dannen, C. (2017). Introducing Ethereum and solidity, volume 318. Springer.

[de Kruijff and Weigand, 2017] de Kruijff, J. and Weigand, H. (2017). Ontologies for
commitment-based smart contracts. In Panetto, H., Debruyne, C., Gaaloul, W., Papazoglou,
M., Paschke, A., Ardagna, C. A., and Meersman, R., editors, On the Move to Meaningful Internet
Systems. OTM 2017 Conferences, pages 383-398, Cham. Springer International Publishing.

[Dixit et al., 2022] Dixit, A., Deval, V., Dwivedi, V., Norta, A., and Draheim, D. (2022). Towards
user-centered and legally relevant smart-contract development: A systematic literature review.
Journal of Industrial Information Integration, 26:100314.

[Dranidis, 2007] Dranidis, D. (2007). Evaluation of studentuml: an educational tool for consistent
modelling with uml. In Proceedings of the Informatics Education Europe Il Conference.

[Durov, 2019] Durov, N. (2019). Fift : A brief introduction. Technical report.

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 715

[Dwivedi and Norta, 2021] Dwivedi, V. and Norta, A. (2021). A legal-relationship establishment
in smart contracts: Ontological semantics for programming-language development. In Singh,
M., Tyagi, V., Gupta, P. K., Flusser, JI., Oren, T., and Sonawane, V. R., editors, Advances in
Computing and Data Sciences, pages 660—-676, Cham. Springer International Publishing.

[Dwivedi and Norta, 2022] Dwivedi, V. and Norta, A. (2022). Auto-generation of smart contracts
from a domain-specific xml-based language. In Satapathy, S. C., Peer, P., Tang, J., Bhateja, V.,
and Ghosh, A., editors, Intelligent Data Engineering and Analytics, pages 549564, Singapore.
Springer Singapore.

[Dwivedi et al., 2021a] Dwivedi, V., Norta, A., Wulf, A., Leiding, B., Saxena, S., and Udokwu,
C. (2021a). A formal specification smart-contract language for legally binding decentralized
autonomous organizations. /EEE Access, 9:76069-76082.

[Dwivedi et al., 2021b] Dwivedi, V., Pattanaik, V., Deval, V., Dixit, A., Norta, A., and Draheim,
D. (2021b). Legally enforceable smart-contract languages: A systematic literature review. ACM
Comput. Surv., 54(5).

[Dwivedi, 2022] Dwivedi, V. K. (2022). 4 Legally Relevant Socio-Technical Language Develop-
ment for Smart Contracts. PhD thesis.

[Farrell et al., 2017] Farrell, S., Machin, H., and Hinchliffe, R. (2017). Lost and found in smart
contract translation—considerations in transitioning to automation in legal architecture. In UNCI-
TRAL, Modernizing international trade law to support innovation and sustainable development.

Proceedings of the congress of the United Nations commission on international trade law, vol-
ume 4, pages 95-104.

[Filippi and Hassan, 2016] Filippi, P. D. and Hassan, S. (2016). Blockchain technology as a
regulatory technology: From code is law to law is code. First Monday.

[Frantz and Nowostawski, 2016] Frantz, C. K. and Nowostawski, M. (2016). From institutions to
code: Towards automated generation of smart contracts. In 2016 IEEFE 1st International Workshops
on Foundations and Applications of Self* Systems (FAS*W), pages 210-215.

[George and Lesaege, 2020] George, W. and Lesaege, C. (2020). A Smart Contract Oracle for
Approximating Real-World, Real Number Values. In Danos, V., Herlihy, M., Potop-Butucaru, M.,
Prat, J., and Tucci-Piergiovanni, S., editors, International Conference on Blockchain Economics,
Security and Protocols (Tokenomics 2019), volume 71 of OpenAccess Series in Informatics
(OASlcs), pages 6:1-6:15, Dagstuhl, Germany. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[Goldenfein and Leiter, 2018] Goldenfein, J. and Leiter, A. (2018). Legal engineering on the
blockchain: ‘smart contracts’ as legal conduct. Law and Critique, 29(2):141-149.

[Governatori et al., 2018] Governatori, G., Idelberger, F., Milosevic, Z., Riveret, R., Sartor, G.,
and Xu, X. (2018). On legal contracts, imperative and declarative smart contracts, and blockchain
systems. Artificial Intelligence and Law, 26(4):377-409.

[Halvorsrud et al., 2016] Halvorsrud, R., Haugstveit, I. M., and Pultier, A. (2016). Evaluation of
a modelling language for customer journeys. In 2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 40—48. IEEE.

[He et al., 2018] He, X., Qin, B., Zhu, Y., Chen, X., and Liu, Y. (2018). Spesc: A specification
language for smart contracts. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), volume 01, pages 132—137.

[He et al., 2018] He, X., Qin, B., Zhu, Y., Chen, X., and Liu, Y. (2018). Spesc: A specification
language for smart contracts. In 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), volume 01, pages 132—137.

[Home, 2005] Home, A. (2005). Generate anything from any emf model.

[Howson, 2020] Howson, P. (2020). Building trust and equity in marine conservation and fisheries
supply chain management with blockchain. Marine Policy, 115:103873.

716 Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ...

[Igbal and Matulevicius, 2021] Igbal, M. and Matulevicius, R. (2021). Exploring sybil and
double-spending risks in blockchain systems. /EEE Access, 9:76153-76177.

[Jaccheri and Stalhane, 2001] Jaccheri, M. L. and Stalhane, T. (2001). Evaluation of the e3
process modelling language and tool for the purpose of model creation. In International Conference
on Product Focused Software Process Improvement, pages 271-281. Springer.

[Jain et al., 2018] Jain, A., Arora, S., Shukla, Y., Patil, T., and Sawant-Patil, S. (2018). Proof of
stake with casper the friendly finality gadget protocol for fair validation consensus in ethereum.
International Journal of Scientific Research in Computer Science, Engineering and Information
Technology, 3(3):291-298.

[Khalil et al., 2017] Khalil, F. A., Butler, T., O’Brien, L., and Ceci, M. (2017). Trust in smart
contracts is a process, as well. In Financial Cryptography and Data Security, pages 510-519.
Springer International Publishing.

[Kormiltsyn et al., 2019] Kormiltsyn, A., Udokwu, C., Karu, K., Thangalimodzi, K., and Norta, A.
(2019). Improving healthcare processes with smart contracts. In Abramowicz, W. and Corchuelo,
R., editors, Business Information Systems, pages 500-513, Cham. Springer International Publishing.

[Lin et al., 2018] Lin, J., Shen, Z., Zhang, A., and Chai, Y. (2018). Blockchain and iot based
food traceability for smart agriculture. In Proceedings of the 3rd International Conference on
Crowd Science and Engineering, ICCSE’18, New York, NY, USA. Association for Computing
Machinery.

[Lépez-Pintado et al., 2019] Lopez-Pintado, O., Garcia-Bafiuelos, L., Dumas, M., Weber, 1.,
and Ponomarev, A. (2019). Caterpillar: A business process execution engine on the ethereum
blockchain. Software: Practice and Experience, 49(7):1162—-1193.

[Mahunnah et al., 2018] Mahunnah, M., Taveter, K., and Matulevic¢ius, R. (2018). An empirical
evaluation of the requirements engineering tool for socio-technical systems. In 2018 IEEE 7th
International Workshop on Empirical Requirements Engineering (EmpiRE), pages 8—15. IEEE.

[Matulevicius et al., 2017] Matulevicius, R., Norta, A., Udokwu, C., and Noukas, R. (2017).
Assessment of aviation security risk management for airline turnaround processes. In Hameurlain,
A., Kiing, J., Wagner, R., Dang, T. K., and Thoai, N., editors, Transactions on Large-Scale Data-
and Knowledge-Centered Systems XXXVI: Special Issue on Data and Security Engineering, pages
109-141, Berlin, Heidelberg. Springer Berlin Heidelberg.

[Mavridou and Laszka, 2017] Mavridou, A. and Laszka, A. (2017). Designing secure ethereum
smart contracts: A finite state machine based approach.

[Mavridou and Laszka, 2018] Mavridou, A. and Laszka, A. (2018). Tool demonstration: Fsolidm
for designing secure ethereum smart contracts. In Bauer, L. and Kiisters, R., editors, Principles of
Security and Trust, pages 270-277, Cham. Springer International Publishing.

[Mavridou et al., 2019] Mavridou, A., Laszka, A., Stachtiari, E., and Dubey, A. (2019). Verisolid:
Correct-by-design smart contracts for ethereum.

[Mendling et al., 2018] Mendling, J., Weber, 1., Aalst, W. V. D., Brocke, J. V., Cabanillas, C.,
Daniel, F., Debois, S., Ciccio, C. D., Dumas, M., Dustdar, S., Gal, A., Garcia-Banuelos, L.,
Governatori, G., Hull, R., Rosa, M. L., Leopold, H., Leymann, F., Recker, J., Reichert, M., Reijers,
H. A., Rinderle-Ma, S., Solti, A., Rosemann, M., Schulte, S., Singh, M. P., Slaats, T., Staples,
M., Weber, B., Weidlich, M., Weske, M., Xu, X., and Zhu, L. (2018). Blockchains for business
process management - challenges and opportunities. ACM Trans. Manage. Inf. Syst., 9(1).

[Moe, 1998] Moe, T. (1998). Perspectives on traceability in food manufacture. Trends in Food
Science & Technology, 9(5):211-214.

[Morandini et al., 2011] Morandini, M., Perini, A., and Marchetto, A. (2011). Empirical evalua-
tion of tropos4as modelling. iStar, 766:14—19.

[Miilder, 2019] Miilder, A. (2019). Model-driven smart contract development for everyone.

Dwivedi V., Igbal M., Norta A., Matulevicius R.: Evaluation of ... 717

[Nakamoto, 2008] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Techni-
cal report.

[Norta, 2015] Norta, A. (2015). Creation of smart-contracting collaborations for decentralized
autonomous organizations. In Matulevi€ius, R. and Dumas, M., editors, Perspectives in Business
Informatics Research, pages 3—17, Cham. Springer International Publishing.

[Opdahl and Henderson-Sellers, 2002] Opdahl, A. L. and Henderson-Sellers, B. (2002). Onto-
logical evaluation of the uml using the bunge—wand—weber model. Software and systems modeling,
1(1):43-67.

[Orlenyslp, 2019] Orlenyslp (2019). orlenyslp/caterpillar.
[Pilkington, 2016] Pilkington, M. (2016). Blockchain technology: principles and applications.

[Pourmirza et al., 2019] Pourmirza, S., Peters, S., Dijkman, R., and Grefen, P. (2019). Bpms-ra:
A novel reference architecture for business process management systems. ACM Trans. Internet
Technol., 19(1).

[Savelyev, 2017] Savelyev, A. (2017). Contract law 2.0: ‘smart’ contracts as the beginning of
the end of classic contract law. Information & Communications Technology Law, 26(2):116-134.

[Sergey et al., 2019] Sergey, 1., Nagaraj, V., Johannsen, J., Kumar, A., Trunov, A., and Hao,
K. C. G. (2019). Safer smart contract programming with scilla. Proc. ACM Program. Lang.,
3(OOPSLA).

[Shekhar and Xiong, 2008] Shekhar, S. and Xiong, H. (2008). Agent-based models. In Encyclo-
pedia of GIS, pages 11-11. Springer US.

[Smajgl et al., 2010] Smajgl, A., Izquierdo, L. R., and Huigen, M. (2010). Rules, knowledge and
complexity: How agents shape their institutional environment. Journal of Modelling & Simulation
of Systems, 1(2).

%Swan, 2015] Swan, M. (2015). Blockchain: Blueprint for a new economy. ” O’Reilly Media,
nc.”.

[Syahputra and Weigand, 2019] Syahputra, H. and Weigand, H. (2019). The development of
smart contracts for heterogeneous blockchains. In Popplewell, K., Thoben, K.-D., Knothe, T., and
Poler, R., editors, Enterprise Interoperability VIII, pages 229-238, Cham. Springer International
Publishing.

[Szabo, 1997] Szabo, N. (1997). Formalizing and securing relationships on public networks.
First Monday, 2(9).

[Tran et al., 2018] Tran, A. B., Lu, Q., and Weber, 1. (2018). Lorikeet: A model-driven engineer-
ing tool for blockchain-based business process execution and asset management. In BPM.

[Valliappan et al., 2018] Valliappan, N., Mirliaz, S., Vesga, E. L., and Russo, A. (2018). Towards
adding variety to simplicity. In Lecture Notes in Computer Science, pages 414—431. Springer
International Publishing.

[Von Alan et al., 2004] Von Alan, R. H., March, S. T., Park, J., and Ram, S. (2004). Design
science in information systems research. MIS quarterly, 28(1):75-105.

[Weber et al., 2016] Weber, ., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., and Mendling,
J. (2016). Untrusted business process monitoring and execution using blockchain. In Lecture
Notes in Computer Science, pages 329-347. Springer International Publishing.

[Yussupov et al., 2022] Yussupov, V., Soldani, J., Breitenbiicher, U., and Leymann, F. (2022).
Standards-based modeling and deployment of serverless function orchestrations using bpmn and
tosca. Software: Practice and Experience.

[Zhou et al., 2017] Zhou, J., Shafique, M. N., Adeel, A., Nawaz, S., and Kumar, P. (2017). What
is Theoretical Contribution? A Narrative Review. Sarhad Journal of Management Sciences,
3(2):261-271.

	Introduction
	Background and Related Work
	Blockchain and Smart Contracts
	State of the Art of Smart Contract Development
	Related Work

	Formal Specification Language
	Evaluation of SLCML
	Use Case
	SLCML Instantiation
	Semantic and Pragmatic Evaluation
	Usability Evaluation

	Discussion and Future Work
	Conclusion

