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Abstract: Previously, in [Bergstra and Tucker 2023], we provided a systematic description of

elementary arithmetic concerning addition, multiplication, subtraction and division as it is prac-

ticed. Called the naive fracterm calculus, it captured a consensus on what ideas and options were

widely accepted, rejected or varied according to taste. We contrasted this state of the practical art

with a plurality of its formal algebraic and logical axiomatisations, some of which were motivated

by computer arithmetic. We identified a significant gap between the wide embrace of the naive

fracterm calculus and the narrow precisely defined formalisations. In this paper, we introduce

a new intermediate and informal axiomatisation of elementary arithmetic to bridge that gap; it

is called the synthetic fracterm calculus. Compared with naive fracterm calculus, the synthetic

fracterm calculus is more systematic, resolves several ambiguities and prepares for reasoning

underpinned by logic; indeed, it admits direct formalisations, which the naive fracterm calculus

does not. The methods of these papers may have wider application, wherever formalisations are

needed to analyse and standardise practices.
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1 Introduction

Elementary arithmetic is commonly thought of as themathematics of addition, subtraction,
multiplication and division as it has been – and continues to be – taught in schools and
practiced in everyday life for centuries. A remarkable textbook tradition has recorded
its development and, through exercises based on practical problems, has witnessed
and recorded historical change [Morgan 2023]. Of course, the mathematics itself has
been largely settled since the 16th Century with ‘modern’ symbols, formulae, equations
and rules. However, like most things in human life, teaching and even understanding
elementary arithmetic is not entirely professionally agreed and stable, let alone uniform
in individual national traditions: one need only think of fractions and division by zero.

In [Bergstra and Tucker 2023], motivated by problems of division by zero in com-
puting and fractions in mathematics education, we constructed a systematic informal
description of a consensus on thinking about elementary arithmetic. We made explicit
what ideas and options were widely accepted, rejected or simply varied according to
particular perspectives or personal taste. We called this description the naive fracterm
calculus (NFTC). In [Bergstra and Tucker 2023], we also contrasted this ‘state of the
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practical art’ with a plurality of formal algebraic and logical axiomatic counterparts, most
of which were motivated by the semantics of computer arithmetic. Our naive fracterm
calculus included so much flexibility that it could generate a range of informal require-
ments analysis on behalf of arithmetical practitioners. Thus, we identified a significant
gap between the wide embrace of the naive fracterm calculus and the tight grip of a
precisely defined formal calculi.

In this paper, we introduce a new informal axiomatisation of elementary arithmetic
to bridge that gap; it is called the synthetic fracterm calculus (SFTC). Compared with
naive fracterm calculus, the synthetic fracterm calculus is more systematic, resolves
ambiguities allowed in the naive calculus, and prepares for reasoning underpinned by
logic. Indeed, it is more like a requirements analysis, in that it invites direct formalisations,
which naive fracterm calculus does not, because of its many acceptable options. The
end users of the synthetic fracterm calculus that we have in mind include teachers of
elementary arithmetic.

Since the synthetic fracterm calculus will reference the naive fracterm calculus, to
read this paper, knowledge of [Bergstra and Tucker 2023] is necessary, though we will
need to repeat material from that paper to show the connections. First, we will summarise
some of the special features of our methodology.

1.1 On informal and formal calculi

Practical arithmetic, even at the elementary levels of schools, is not easy to discuss in an
explicit and systematic way – as an extensive literature on teaching arithmetic largely
confirms. The term ‘practical’ refers to practices by people, which are inherently diverse
and can be incomparable.

By ‘calculus’ we have in mind operations, expressions, equations, and methods for
their application as found in school textbooks; note that a calculus is not necessarily a
formal object.1 Thus, our task in SFTC, like in NFTC, is anthropomorphic as well as
mathematical.

At the outset, in [Bergstra and Tucker 2023], we conceived of the task in these four
stages:

1. Raw Arithmetic. Examine arithmetical practices ‘in the wild’.

2. Naive Arithmetic. Formulate a description of what seems to be a consensus on
what ideas and conventions are agreed, disputed or remain ambiguous in peoples’
practices.

3. Synthetic Arithmetic. Tighten and refine the informal description that is Naive Arith-
metic to resolve ambiguities and arbitrate some disputed ideas and conventions and
make it fit for systematic logical reasoning.

4. Formal Calculi. Propose formal calculi for elementary arithmetic based on the
informal analysis of the Naive and Synthetic.

1 In mathematical logic and computing, calculi are formal systems with carefully defined notations,
rules and meanings capable of metamathematical investigation and machine implementations.
It’s nice to remember the etymology of ‘calculus’ in Roman literature: pebble or stone used in
arithmetic reckoning on counting boards.
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In this paper, we focus on building a calculus that uses Naive Arithmetic to create an
intermediate Synthetic Arithmetic, as a requirements analysis for a formalisation.

The technical needs of division require special attention to fractions. The explorations
of Raw Arithmetic reveal considerable conceptual difficulties with this term. The issue is
the range of meanings implied by the use of the word ‘fraction’. Already in formulating
the all embracing description of Naive Arithmetic, we decided to highlight the issue by
coining and using the word ‘fracterm’ instead (see section 3.1 below). Thus, our use of
the words fracterm calculus of the titles is an attempt at an informal analysis of peoples’
practices when actually doing arithmetic, especially divisions.

Fracterms and fractions can be used in Naive Arithmetic, but in the more defined
SFTC, ‘fraction’ is banished from this more precise description of Synthetic Arithmetic.

The formal calculi come from studies of computer arithmetic as abstract data types.
We have studied some 5 basic calculi, primarily distinguished by decisions about the
meaning of 1

0 . Our SFTC is a refinement of the consensus NFTC that informally captures
properties that our formalisations respect. Of these we highlight two semantic decisions:
the case when 1

0 does not exist – the expected school orthodoxy – and the case when
1
0

is an error flag – the common semantics of school calculators.

1.2 Methodology

To design the SFTC we use the same methods we employed in making the informal
NFTC. In summary, guiding our design are ideas about abstract data types for arithmetic,
which provide: intuitions and a means to explore what elementary school arithmetic is
about; what is essential in its use; and how arithmetic can be organised. The theory of
abstract data types offers an approach to the description of arithmetic with precise ideas
and tools for working with numbers, operations, expressions and equations centre stage
– just as in elementary arithmetic.

The new informal synthetic calculi we propose here improve on arithmetic as ex-
pressed in natural language, but remain informal and become a reference for the design
of formal calculi of the kind also on display in [Bergstra and Tucker 2023].

Our methodology makes explicit our objectives and claims about potential users, our
design options and our design decisions. What drives the development are arguments and
perceptions of meaningfulness or plausibility of decisions, and their relevance to users.
We use the intuitions of abstract data type theory to source and choose technical options
to adopt, reject, or leave open. For this, we have a terminology: options are committed,
adversely committed, or uncommitted, respectively.

1.3 Structure and contributions of the paper

The contributions of this paper are:
1. To design a new informal calculus, named synthetic fracterm calculus (SFTC)

for arithmetic focussed on division. SFTC expresses a philosophy of formality while
leaving aside actual formalisations with their many details. Thus, SFTC aims at greater
conceptual clarity and ease of practical use than any of its formalisations could offer.

2. To make explicit our methods in developing the calculus – levels of description in
the process of making formalisations of established practices, and objectives, options
and decisions for and against technical features.

3. To discuss and compare some formal calculi for arithmetic with division.
In Section 2, we clarify why we wish to pursue arithmetic at this elementary and

fundamental level. In Section 3, we introduce the basics of fracterms and our synthetic
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fracterm calculi SFTC. In Section 4, we develop a more comprehensive list of commit-
ments and non-commitments for NFTC. In Section 5, we look at rewriting expressions in
NFTC. Then we turn our attention to the formal calculi. In Section 6, we look at formal
calculi for meadows, including common meadows in which division is made total by
an ‘error’ flag 0−1 = ⊥ and involutive meadows in which 0−1 = 0. In Section 7, we
conclude with some reflections, including on the scope of the four-stage methodology.

To understand this paper fully, the reader will need to refer to our [Bergstra and
Tucker 2023] in several places.

2 Why synthetic fracterm calculi?

As we discussed in [Bergstra and Tucker 2023], an aversion to, and dismissal of, formal-
isation seems to be part of the consensus on elementary arithmetical practice. Further, a
calculus, whether formal or informal, is unlikely to be an attractive point of departure
for teaching, as arithmetic is so rooted in everyday affairs. However, we believe that
the value of a calculus to a teacher is that it can bring to the surface insights hidden in
practice and so can contribute to his or her mastery of the subject matter.

In [Bergstra and Tucker 2023], a list of claims were made about elementary arithmetic
that taken together was used as a package of attitudes and views with which to design a
naive fracterm calculus. Let us begin with recalling some of these claims before turning
to the claims for a synthetic fracterm calculus.

2.1 Abstract data types: formal versus informal

The demands of computer applications have required a deep investigation of the nature
of data and what makes abstract models of data useful for programming. The theory of
abstract data types provides a comprehensive algebraic and logical understanding of data
whose central concepts and methods can be easily formalised and expressed in software.
These concepts are the basis of our approach to elementary arithmetic. However, in
[Bergstra and Tucker 2023], we began our preparations for the naive fracterm calculus
with this caution:

Claim 2.1. Once aware of the notion of a data type, most practitioners of elementary
arithmetic prefer not to understand the well-known portfolio of arithmetics (naturals,
integers, rationals, etc) as a portfolio of data types. In particular, having to think in terms
of signatures and syntax will create resistance.

With naive fracterm calculus we used the intuitions of arithmetical data types to
detect, analyse and highlight practices. With synthetic fracterm calculus (SFTC) we
intend to preserve many more of the intuitions of arithmetical data types, while being
unconstrained – and, in fact, not bothered – by the details of formalization. Thus, SFTC
replaces a simplistic and thereby somewhat overly optimistic picture of arithmetic with a
simplified, yet instantly recognisable, sharper picture. For instance, in SFTCwe will work
as if it were obvious that numbers and expressions are different entities even if we know
that in some cases telling both categories of entities apart is far from straightforward.
In other words, in principle, SFTC adopts an implicit distinction between syntax and
semantics, which NFTC does not.

In [Bergstra and Tucker 2023] we have formulated the following aim for NFTC.
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Design Objective 2.1. Adopting the tenets of NFTC constitutes a majority position
among persons interested in elementary mathematics, including the majority of school
teachers.

For SFTC we expect a longer distance from the attitudes of professionals in arith-
metical practice.

2.2 Basic Claims of NFTC and SFTC

Recall from [Bergstra and Tucker 2023], in adopting NFTC, one endorses these claims:

Claim 2.2. Arithmetic is based in natural language, taking the form of an extension of
core natural language with certain notations and conventions. Arithmetic is therefore
conceptually prior to logic, and therefore there is no need to look for a logical basis
of arithmetic. Any proposal for a logical basis for arithmetic will turn out to be both
defective and artificial.

For the acquisition of basic competence in a natural language awareness of grammar
is not essential. This idea may be extended to a claim about arithmetic as follows:

Claim 2.3. Arithmetic is conceptually prior to syntax, and therefore there is no need to
look for a syntactic basis of arithmetic. Any proposal for a syntactic basis for arithmetic
will turn out to be both defective and artificial.

Claim 2.4. Logical complications do not stand in the way of a proper understanding of
arithmetic, even if some logical complications may prove rather hard to settle.

Claim 2.5. Elementary arithmetic is not protected against inconsistency and error on the
basis of a package of assumptions and reasoning patterns which has been deliberately
designed to stay away from inconsistency and error as much as possible while still
covering sufficient ground. On the contrary, elementary arithmetic acquires its stability
and reliability from the daily practice of a community of users who will eventually correct
one another if needed.

The following aim, and corresponding claim, point to the advantages that might
result from adopting SFTC as a refinement of NFTC.

Design Objective 2.2. Our SFTC approach to arithmetic is designed to enable the
basics of arithmetic become subject to logical reasoning at least as a matter of prinicple.
Thus, we suppose that to an adopter of SFTC the priority and overarching significance
of logical reasoning is acknowledged and familiar.

Claim 2.6. Because the SFTC approach to arithmetic subjects the basics of arithmetic
to logical reasoning – unlike NFTC – adopting SFTC turns arithmetic into a world where
logical reasoning can be amply applied and can be systematically exercised.

3 Fracterms and synthetic fracterm calculi

Both NFTC and SFTC are supposed to be informal stand-alone perspectives on el-
ementary arithmetic that are not in need of any foundations provided by additional
formalisation.
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3.1 Fracterms

As argued in [Bergstra 2020], ‘fraction’ is an ambiguous notion. The meaning of fraction
ranges across various forms of expressions, values and rational numbers. Remarkably,
there is no obvious majority position in this spectrum of interpretations of fraction. In
NFTC, introducing the word ‘fracterm’ was an early intervention to limit the ambiguity of
fraction by always opting to mean an expression when a distinction between expression
and value is needed. Complementary to fracterm, ‘quotient’ restricts the ambiguity of
fraction by opting for a value when a distinction between value and expression is needed.
Where fracterm has a syntactic bias, quotient has a complementary semantic bias. Both
fracterm and quotient are words inherited from NTFC for use in SFTC.

Definition 3.1. A fracterm is a structured entity involving a numerator, a denominator
and a leading function symbol for division.

Definition 3.2. A quotient is the result of performing division on a pair of arguments.
The respective arguments of a quotient are sometimes called dividend and divisor.

A fracterm comprises the inputs of a division, irrespective of whether or not the
operation can actually be performed. A quotient, on the other hand, specifies the output
of a division; a quotient implies that division must have been enabled. However:

Design Choice 3.1. Unlike in NFTC, quotient and fracterm are distinguished in SFTC.

In NFTC we also defined sums and sumterms, and products and producterms, but
made no use of them; similarly:

Design Choice 3.2. In the context of SFTC sum and sumterm are not distinguished, and
product and producterm, are not distinguished. Both ‘sumterm’and ‘producterm’are not
used in SFTC.

As in NFTC, the reason to treat division differently from addition and multiplication
is that fracterms play a special role in elementary arithmetic.

3.2 Synthetic Fracterm Calculus (SFTC)

SFTC comes about from the following combination of design objectives, design choices,
and underlying more general definitions.

Design Objective 3.1. Many judgements of elementary arithmetic are uncontroversial.
These judgements belong to NFTC and are inherited by SFTC; in particular, SFTC
adopts all arithmetical truths as captured by equations in NFTC.

NFTC focuses on the large body of uncontroversial assertions in and about elementary
arithmetic.

Design Objective 3.2. While NFTC is ‘by design’ immune against being split into a
plurality of views on details, SFTC incorporates philosophical positions in debates about
the logic and meaning of unusual arithmetical ideas and statements.

Consider a non-denoting expression that is not allowed in NFTC, such as 1
0 or the

equation 1
0 = 1

0 .
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Design Choice 3.3. SFTC is committed to accepting 1
0 as a fracterm, but considers it

an ‘unusual’ fracterm, and preferably unusual fracterms should not be used in written or
spoken language about elementary arithmetic.

The description ‘let g(x) = 1
x with x > 0’ is acceptable, although reading from left

to right the fragment 1
x is at risk of being non-denoting when first read. The occurrence

of 1
x is potentially unusual but not necessarily unusual, and in an adequate context (such

as the context x > 0) it is acceptable.

Design Choice 3.4. SFTC is uncommitted to a judgement of the validity of 1
0 = 1

0 . How-
ever, unlike NFTC, SFTC is committed to reflection about the validity of the ‘unusually’
formulated statement 1

0 = 1
0 , and acknowledges that different answers are possible

depending on the context at hand.

Thus, questions about such expressions are complicated and lead to questions about
logic.

Design Choice 3.5. Unlike NFTC, SFTC is committed to two-valued classical logic in
all but unusual cases.

Design Choice 3.6. Like NFTC, SFTC makes use of the word ‘fracterm’where readers
might expect ‘fraction’.

Fracterm is used in SFTC in such a way that it acquires the same meaning as “frac-
tional expression” that can be found in some school arithmetics. SFTC provides not even
a marginal role for the word ‘fraction’ and is opposed to the use of it.

Definition 3.3. In the context of SFTC, ‘fraction’ is claimed to be ambiguous in the
following manner: fracterm can both refer to a fracterm or to the value of a fracterm
(and perhaps also to notions concerning fracterms and their abstractions).

Thus, in view of Definition 3.3, while in NFTC fracterm and fraction are the same
notion, in SFTC that is not the case. As we prefer not to constrain this work by any claim
about the ontology of fractions – that being a difficult subject – we will use fracterm at
the expense of ‘fraction’.

Design Objective 3.3. Unlike NFTC, SFTC is committed to the belief that 1
2 and 2

4
are different fracterms, while acknowledging that both denote the same quotients. Like
NFTC, SFTC is committed to the belief that 1

2 is a simplification of 2
4 .

Design Objective 3.4. Like NFTC, STFC is committed to the validity of

φ(x) ≡ (x 6= 0 → x

x
= 1).

The latter assertion is true with the ‘short-circuit reading’of implication: if the condition
fails (i.e., if x = 0) then φ(x) is considered valid and no attention is paid to the conclusion
at all.

The short circuit semantics of logical connectives plays a role in our development and
we adopt a notation to make it explicit when needed. In the following claim we use the
notation →b for short-circuit implication; similar notations exist for all the connectives,
e.g., ∧b , ∨b ,∧b,∨b and so on [Bergstra et al. 1995].
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Design Choice 3.7. Like NFTC, SFTC acknowledges that short-circuit implication plays
a central role so that it may warrant its own notation (for which no generally agreed
candidate is available) and then positively affirms that:

x 6= 0 →b x

x
= 1.

SFTC acknowledges (or at least does not reject) differences in plausibility between
various assertions each of which is neither clearly true nor clearly false.

Unlike NFTC, SFTC accepts the sentence ‘ 10 is a fracterm’, while at the same time
acknowledging that the semantics of fracterm is open for debate. What can be said and
written in SFTC instead is that ‘dividing 1 by 0 is unusual because it will not deliver a
well-specified result’. An important practical working principle is this:

Existence in SFTC is understood as meaningful existence, but perhaps in some
extended framework.

Design Choice 3.8. Like NFTC, SFTC is committed to the existence of various kinds of
numbers: natural, integer, rational, real and complex.

However, with some caution as to the real and complex numbers:

Design Choice 3.9. Like NFTC, SFTC is adversely committed to attempts to define the
various numbers in more detail, with the idea that these are self-supporting intuitions
that come about from natural language as much as from any ideology on how to design
mathematical theory and the corresponding notational conventions and patterns of
reasoning.

The question ‘is division a function name just as addition’ is affirmed in SFTC:

DesignChoice 3.10. Unlike NFTC, SFTC is committed to the idea that naturals, integers,
and rationals are domains of data types that in turn serve as plausible representatives
of corresponding abstract data types. However, the notion of a signature is not made
explicit in SFTC.

4 More commitments and non-commitments of SFTC

The objectives and choices mentioned above may be understood as desiderata for SFTC,
requiring that SFTC should satisfy certain properties. Again, we think of SFTC as
a package of opinions that are shared by some people, though we need not suppose
supporters of SFTC are happy with NFTC. Unlike for NFTC, consistency of the package
of opinions is now a major concern. This is because a rationale for the package of views
that constitutes SFTC is to allow us to justify arithmetical judgements on the basis of
logic and axioms.

Someone who adopts SFTC will have opinions about many issues that will need to
be established. Opinions about technical options will need to be accepted, rejected or
left open. We will progress the design of SFTC with a list of options that we are not
committed to and then with a list of options we are committed to. These listings are not
meant to be complete in any rigorous sense. However, they follow closely a similar set
of issues and options that were accepted, rejected or open in the creation of NFTC.

The pattern of decisions for SFTC that follows is based on revisiting the decisions
for NFTC listed in Section 4 of [Bergstra and Tucker 2023]. Many of the commitments
of NFTC are inherited by SFTC.
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4.1 Non-commitments of SFTC

Issues to do with syntax and semantics

1. Unlike in NFTC, an informal distinction between syntax and semantics is present in
SFTC.

2. Like NFTC, SFTC is uncommitted to the distinction between a value and an expres-
sion for numerals, e.g., 251 can be an expression as well as a value.

3. Like NFTC, SFTC is uncommitted to any detailed ontology that might be involved
in a distinction between syntax and semantics. However, if for some concept, say
fraction, a distinction between syntax and semantics is put forward then the concept
will become ambiguous and the name of the concept will be a candidate for being
replaced by less ambiguous terminology. Resolution of ambiguities is considered
a matter of conceptual analysis of arithmetical thought and so a matter of natural
language processing, and not to be considered a mathematical subject.

4. Unlike in NFTC, in SFTC fracterm is considered a mathematical notion (follow-
ing [Fandino Pinilla 2007]).

5. Like in NFTC, for identities and formulas with free variables, the scope of the
variables depends on the context, which is defined in natural language.

Issues to do with logical formulae

For NFTC we also gave four non-commitments about formulae in [Bergstra and
Tucker 2023]. They concern the (i) meaning of quantification, (ii) absence of formal
logic theory, and (iii) absence of foundational mathematical theories (such as set theory,
constructivism). All these tenets are carried over in SFTC.

4.2 Commitments of NFTC

The following list of commitments further details the view of arithmetic that NFTC is
supposed to comprise.

Issues to do with algebra and calculation

1. In SFTC, fracterm is considered a mathematically relevant notion, which, however,
need not be rigorously defined as if it were a proper mathematical concept; fracterm
is like proof, definition, theorem, which are notions belonging to mathematical
practice rather than to mathematical substance and which, at least working at the
informal level of SFTC, can be left without proper mathematical definitions.

2. Like NFTC, SFTC is committed to the existence of a bundle of widely agreed upon
closed identities of the form t = r, as well as to a bundle of universally agreed upon
inequations of the form t 6= r.

An informal theory is supposed available (e.g., in the form of a plurality of algorithms)
concerning how to distinguish between t = r and t 6= r for closed expressions t and
r.
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3. Like in NFTC, in SFTC variables in an equation may be implicitly universally quan-
tified, in which case one may speak of a law regarding such variables. Alternatively,
a variable may be supposed to have a fixed, but arbitrary value in some domain. The
latter form of quantification is often used in formulating and proving results.

However, in an equation with parameters (e.g., a · x2 + b · x+ c = 0), one assumes
that at some level a, b, c are universally quantified, while x denotes one or more
specific values depending on a, b, c. In the latter case no universal quantification
over x is implied, rather x plays the role of an additional constant which is further
specified by the mentioned equation.

The natural language, in which formulas are embedded, determines the use of a
variable.

Issues to do with arithmetic and calculation

4. Elementary arithmetic is primarily embedded in natural language for which 100%
precision is both unachievable and unnecessary. Like NFTC, there is in practice only
marginal disagreement about the status of facts in the language of SFTC.

5. Like in NFTC, in SFTC calculation is understood as a mechanical procedure. Unike
in NFTC, calculation is also understood as an instance of mathematical or logi-
cal reasoning, though calculating efficiently is considered to be an independent
competence.

6. SFTC maintains a commitment to calculation with decimal naturals and decimal
integers.

7. Defining expressions in general requires an inductive definition and comes with the
ability to count sizes of an expression. Unlike for NFTC, for SFTC it is plausible to
consider the notion of an expression to be prior to counting.

However, admittedly any attempt to define the class of expressions with full precision
then will be confronted with marginal cases which may uncover a certain lack of
precision of the definition.

8. SFTC acknowledges the relevance of a systematic notion of legality for expressions,
though does not impose any particular outcomes on that endeavour [Bergstra and
Tucker 2023].

Issues to do with relevance

9. Unlike for NFTC, when adopting SFTC, for each expression or equation, the first
question is about its meaning and not about its relevance.

10. Unlike NFTC, SFTC rates truth and consistency over relevance in the following
sense: only once matters of meaning, truth, and consistency have been established
in a satisfactory manner, questions regarding potential relevance matter.

11. Like NFTC, SFTC does not come with axioms and a proof system for relevance,
though there are some rules of thumb.
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5 Rewriting expressions in SFTC

Like for NFTC, knowledge regarding SFTC comes about from experience – inductively
rather than deductively. Once someone has become convinced that, say,

5 · 2
7 · 2

=
5

7
,
8 · 3
13 · 3

=
8

13
,
1 · 5
15 · 5

=
1

15

it becomes plausible to guess that for all x, y and positive natural n,

x · n
y · n

may be replaced by
x

y
.

Such observations suggest underliningmuch of the calculating practices of elementary
arithmetic are particular forms of term rewriting guided by equational rules.

Definition 5.1. Given a collection of rewrite rules R, t ⇒?
R s asserts that with 0 or

more steps from R, t can be rewritten to s. In particular, if t has been obtained using the
rules in R then also s can be obtained and t = s holds.

5.1 Rewriting by example

Substitutions into equations and term rewriting are not quite the same. For instance,

x · 7
y · 7

⇒ x

y

is a valid rewrite rule for SFTC while the corresponding equation

x · 7
y · 7

=
x

y

fails because y = 0 has not been excluded!
Applying the rule x·7

y·7 ⇒ x
y however, is only enabled if for some r, s, a fracterm r·7

s·7
has been obtained from which it follows that s 6= 0. It then follows that as a rewrite rule

x · 7
y · 7

⇒ x

y

is correct without any need to require that y 6= 0.
Many more rules can be proposed. For instance:

x · y
u · v

⇒ x

u
· y
v
and its converse

x

u
· y
v
⇒ x · y

u · v
.

In SFTC it is considered unproblematic to write t = r if t ⇒ r is actually meant. The cost
of this latter convention is significant however, as rewriting collides with commutativity
of =. Indeed, while x·z

y·z ⇒ x
y is valid, x

y ⇒ x·z
y·z fails for z = 0, so that dropping the

orientation of arrows is unwarranted in this case.
Division by 1 takes the form of the rule x

1 ⇒ x. For numerator 0 one finds the rule
0
x ⇒ 0. Now, taking 0 for x will be considered an unusual case for SFTC, as it involves
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contemplating a term 0
0 . SFTC acknowledges that a spectrum of different options is

available to extend the core of SFTC with perspectives on division by zero.
Our comments about expressions in NFTC carry over; in particular, we recall:

Definition 5.2. An expression is fracfree if it has no fracterm as a subterm. A flat fracterm
is a fracterm of the form p

q with p and q both fracfree.

It is immediate that fracfree expressions are closed under addition, subtraction and
multiplication. The familiar rule

x

y
+

u

v
⇒ x · v + u · y

y · v

allows the following conclusion: a sum of flat fracterms can be replaced by a single flat
fracterm (with the same value).

6 Formalisations of SFTC

In [Bergstra and Tucker 2023], we contrasted NFTC, our description of Raw Arithmetic,
with five very different formalisations of arithmetics. These formalisations were based
on equational specifications of different computer arithmetics, viewed as abstract data
types. Their technical focus on equations and equational term rewriting for calculation
and reasoning, together with a close relationship with rational numbers via initial algebra
semantics, fit well with the formal study of Raw Arithmetic and its informal descriptions
of Naive and Synthetic Arithmetics, NFTC and SFTC, respectively.

Although this investigation belongs to computer science, we will contrast SFTC
with some formalisations that analyse semantical ideas that can be encountered in the
schoolroom.

The first two we consider are formalisations of semantic behaviours that can be found
in pocket calculators. The key point is that in calculators, and all computing systems,
arithmetic operations, including division, must return a value of some kind that the user
can interpret. Actually, there is a number of responses to typing 1

0 into calculators, which

we will not catalogue here. A simple distinction is whether 1
0

(i) stops the calculation, or
(ii) allows calculation to continue, albeit with some ‘red flag’ to say something is not

right.
Most calculators satisfy (i) through a variety of means. Today’s common semantics in

calculators takes 1
0 to be an error flag. A now less common semantics – but one that can

be still found in new calculators – takes 1
0 = 0. This convention starts early : for example,

the (1980 onwards) Japanese mass-produced Casio Electronic Calculator HL-809 gave
1
0 = 0, though with a tiny ‘E’ displayed elsewhere in its LCD.

The third formalisation is of the common orthodoxy in teaching: 1
0 does not exist.

Now, partiality is important in computing, not least because non-terminating compu-
tations are common. Certainly, division of x by y is computed by repeated subtraction
of y from x, which typically fails to terminate if y = 0 is allowed.

Although partiality has no place in implementations, especially of data types, it
plays a valuable role in specifications. For example, partiality is an important semantic
feature of the specification language CASL [Bidoit and Mosses 2004]. There are different
interpretations of partiality in addition to the orthodox ‘no element’ of the schoolroom:
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partiality stands for some element yet to be defined, possibly one that is quite arbitrary.
The Suppes-Ono semantics can be considered to be an instance where there seems to be
a natural choice of element, i.e., 0.

6.1 Equations for common meadows

The simple idea that errors propagate can be given an algebraic expression: a flag ⊥ is
added to the numbers that is absorbtive: if⊥ is an argument to an operator then the result
returned is ⊥. So, e.g.:

x+⊥ = ⊥ and x · ⊥ = ⊥.

Thus, ⊥ propagates like an error message and closes down calculation.
A common meadow is a field F whose operations x+ y,−x, x · y are expanded by

x/y, and whose constants 0, 1 are enriched by ⊥, and wherein

1

0
= ⊥.

The formal fracterm calculi of common meadows – as discussed in [Bergstra and
Ponse 2021] and in [Bergstra and Ponse 2016] – have many different axiomatisations.
Table 1 lists equations following the presentation of [Bergstra and Tucker 2023b], though
with some minor modifications.

The axioms for common meadows in Table 1 allow fracterm flattening: each fracterm
can be proven equal to a flat fracterm, where a fracterm is flat if it contains precisely one
occurrence of the division operator (i.e., the top level occurrence). (Recall Definition
5.2.)

6.2 Equations for involutive meadows

For many situations using
1

0
= 0.

is convenient and common practice, and has been chosen for a long time. It is used
widely when one wants to dodge partiality: in today’s theorem provers, such as Coq
and Lean, and in logic (such as the model theory of fields); and it is still used in some
contemporary calculators. It is certainly a workable mathematical convention that can be
used (e.g., [Bergstra 2019]).

This semantics for total division is that of involutive meadows, which we will also
refer to as Suppes-Ono meadows.

An involutive meadow is a field F whose operations x+ y,−x, x · y are expanded
by x/y which is made total by adopting 1

0 = 0. The name Suppes-Ono fracterm calculus
is motivated by [Suppes1975] and [Anderson and Bergstra 2020] and the observation
that [Ono 1983] gave the first significant analysis of the logical consequences of adopting
1/0 = 0.

Models of Suppes-Ono FTC are called involutive meadows because inverse is an
involution (x−1)−1 = x (see [Bergstra et al. 2009] and [Bergstra and Middelburg 2011].
Meadows of rational numbers are an early prime example (see [Bergstra and Tucker
2007]). Equations of a fracterm calculus for involutive meadows are listed in Table 2.

Surprisingly, in Suppes-Ono FTC, fracterm flattening fails, as shown in [Bergstra and
Middelburg 2016]. In Suppes-Ono FTC, according to [Bergstra et al. 2013], fracterms
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(x+ y) + z = x+ (y + z)

x+ y = y + x

x+ 0 = x

x+ (−x) = 0 · x
x · (y · z) = (x · y) · z

x · y = y · x
1 · x = x

x · (y + z) = (x · y) + (x · z)
−(−x) = x

0 · (x+ y) = 0 · (x · y)
x+⊥ = ⊥

x

1
= x

−x

y
=

−x

y
x

y
· u
v
=

x · u
y · v

x

y
+

u

v
=

(x · v) + (y · u)
y · v

x

y + 0 · z
=

x+ 0 · z
y

⊥ =
1

0
Table 1: Equations for a fracterm calculus for common meadows

can be rewritten to sums of flat fracterms. Theoretical work on Suppes-Ono FTC can
be found in [Bethke and Rodenburg 2010, Bethke et al. 2015]. Suppes-Ono fracterm
calculus is called Division by Zero Calculus in [Michikawi et al. 2016, Okumura 2018].

6.3 An orthodox mathematical interpretation of SFTC

Finally, we turn to the orthodoxy that 1
0 simply does not exist. Already in [Bergstra and

Tucker 2023], we made the following claim.

Claim 6.1. If a formal basis for arithmetic is to be adopted then a person who is initially
disinclined to adopt any formalisation of elementary arithmetic, is likely to prefer an
fracterm calculus presenting division as a partial function over any of the plurality of
calculi that incorporate division as a total function.
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(x+ y) + z = x+ (y + z) (1)

x+ y = y + x (2)

x+ 0 = x (3)

x+ (−x) = 0 (4)

x · (y · z) = (x · y) · z (5)

x · y = y · x (6)

1 · x = x (7)

x · (y + z) = (x · y) + (x · z) (8)

1

( 1x )
= x (9)

x · x
x

= x (10)

x

y
= x · 1

y
(11)

Table 2: Equations for a fracterm calculus of involutive meadows

Although logics of partial functions abound, they are non-trivial technically and
require a high level of experience with mathematical logic, e.g. [Robinson 1989, Jones
and Middelburg 1994].

6.4 Role and nature of the axiomatisation

One purpose of our axiomatisations is to create a formalism that removes a need for
‘type-checking’ mathematical texts against the informal principles of (say) the Synthetic
Calculus, proposed here to define arithmetic. This idea on managing ‘type-checking for
conformance’ is an aspect of our methodological approach and may be applicable more
generally (see section 7.1).

In fact, any attempt at type checking arithmetical texts, even in a narrowly designed
language fragment, proves to be very complicated – certainly theoretically undecidable
and pragmatically very challenging. We have studied this is some detail in the build-up
to the current state of our theory in [Bergstra and Tucker 2023c]. Partiality once present
is not easy to control!

The axiomatisation of common meadows given here is polished and aligns well with
the style of classical axiomatisations of rings, fields etc. Its status is confirmed by its
emerging mathematical theory, e.g., in terms of the equational specification of partiality
[Bergstra and Tucker 2022a] and the completeness theorem for equational reasoning
[Bergstra and Tucker 2022b]. However, it is worth noting that it is the result of over
15 years of technical investigations, starting with our algebraic specifications of the
rational numbers in [Bergstra and Tucker 2007], which used the alternate 0−1 = 0!
The theoretical journey through the different aspects of arithmetic – algebra, its roles in
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computing, textual analysis, its many manifestations in school teaching – has been long
and surprising.

7 Concluding remarks

Aswe have shown, SFTC begins with a broad and liberal consensus identified andmapped
by the naive fracterm calculus NFTC in [Bergstra and Tucker 2023]. The conclusions
of that paper are relevant here, e.g., about the need to analyse conventions, reasoning
patterns, and logics in relation to abstract descriptions of computer arithmetics and, more
generally, in requirements analysis and program testing.

As this work demonstrates, bridging the gap between informal descriptions and
formal modelling is not easy, even in very technical contexts like arithmetic; this paper
is a case study about that matter. In fact, we believe the four stage analysis given for
arithmetic in subsection 1.1 has wider application, indeed wherever there is a serious
need for formal systems to bear the weight of informal and variable practices.

7.1 The general methodology

This work on arithmetic exemplifies a new methodology for analysing a ‘collection of
ideas in circulation’ that could benefit from formal analysis. As pointed out in section
1.1, there are four distinct stages, which we will now describe more abstractly; these are:

1. Raw Material. Collect the ideas in circulation that are used in practice – ideas ‘in
the wild’.

2. Naive Categorisation. Formulate a description of what seems to be a consensus on
what ideas and conventions for their use are (i) agreed, (ii) disputed or (iii) remain
ambiguous in peoples’ practices.

3. Synthetic Postulation. Refine the informal description of the Naive Categorisation
to resolve ambiguities and arbitrate on some disputed ideas and conventions and
make it a collection of ideas fit for systematic logical reasoning, at least informally.

4. Formal Codification. Propose formal or semiformal systems or calculi to pin down
the ideas based on the informal analysis of Synthetic stage.

There is no shortage of professional practices where there are ‘collections of ideas
in circulation’ that could benefit, from at least the first three stages: the collection itself
constitutes the Raw Material; their discovery and cataloging constitutes their Naive
Categorisation; and their filtering, confirmation and rejection constitutes their Synthetic
Postulation. As to their Formal Codification, this may be a system of rules, conventions,
laws, assumptions that are fixed, no longer negotiated (at least for a time), and expected
to be followed. In some aspects of life this Formal Codification is a jurisdiction, in others
it is a code of best practice, in still others it is an axiomatisation.

In general, the gaps between a pair of stages can vary. The gaps between Raw versus
Naive and Synthetic versus Formal are easily understood and will be clearly distinct.

However, the gap between Naive and Synthetic can seem quite small, depending on
the nature, volume and variety of the Naive options that are possible and subsequently
become Synthetic decisions. This smaller gap is understandable, but it is not a weakness in
our theory. The synthetic stage introduces both technical objectives and a lot of technical
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decisions that we expect the formalisation to accommodate or at least address. In this
paper we are dealing with arithmetic, which is familiar and a small and well-explored
intellectual space. In every case, in writing about the synthetic stage one has to repeat
some of the naive stage for the comparison of options and explanation of decisions; this
also makes the gap seem smaller.

7.2 Connection to pedagogy and teaching

The synthetic fracterm calculus (SFTC) we offer here captures a conceptually cautious
and precise informal view of elementary arithmetic involving addition, multiplication,
subtraction, and division. Such reflections are largely absent from educational texts on
teaching arithmetic, e.g., [Kieren 1976]. In contrast with a synthetic view on elementary
arithmetic, several formalisations can be developed which may, or many not, be equiv-
alent. As an analytical tool, one objective of formalisation is to detect, make explicit
and settle technically subtle points and relations; this process leads to a ramification of
options and, so, to a plurality of formal fracterm calculi. We mentioned three formal
fracterm calculi here with semantics that are currently recognisable in the schoolroom.

In particular, our work in this paper and its predecessor has uncovered and focussed on
some obvious and subtle problems that are visible in teaching rational number arithmetic.
By drawing attention to these notions in the Naive calculus and their transition in the
Synthetic calculus we are merely preparing the way for pedagogical thinking about
practical arithmetic. We hope that SFTC can be used as a point of departure from which
to analyse old, and design new, educational material about rational arithmetic, improving
the accounts of ambiguous and difficult points, especially for the teacher.

As to the formulation of possible ‘experiments’ in the classroom stimulated by
our ideas, here we have nothing to say at this stage. We believe that the existence of
the naive, synthetic and formal axiomatisations are theoretical components that are
essential constituents of a foundation for thinking about such pedagogical investigations
of arithmetic teaching. Indeed, working on such ‘experiments’ in advance of a full
theoretical analysis is likely to be unproductive. There is even a further stage in which
philosophical aspects of this whole exercise on arithmetic are considered in the light of
the philosophy of mathematical education.

However, if it comes to teaching elementary arithmetic, we expect that material based
on a fracterm calculus for common meadows (i.e., Table 1) will prove to be the most
appropriate.
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