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Abstract: Social networks such as Twitter provide thousands of terabytes per day, which can be

exploited to find relevant information. This relevant information is used to promote marketing

strategies, analyze current political issues, and track market trends, to name a few examples. One

instance of relevant information is finding cyclic behavior patterns (i.e., patterns that frequently

repeat themselves over time) in the population. Because trending topics on Twitter change rapidly,

efficient algorithms are required, especially when considering location and time (i.e., the specific

location and time) during broadcasts. This article presents an efficient algorithm based on associa-

tion rules to find cyclical patterns on Twitter, considering the inherent spatio-temporal attributes

of data. Using a Hash Table enhances the efficiency of this algorithm, called HashCycle. Notably,

HashCycle does not use minimum support and can detect patterns in a single run over a sequence.

The processing times of HashCycle were compared to the Apriori (which is a well-known and

widely used on diverse platforms) and Projection-based Partial Periodic Patterns (PPA) algorithms

(which is one of the most efficient algorithms in terms of processing times). Empirical results from

two spatio-temporal databases (a synthetic data set and one based on Twitter) show that HashCycle

has more efficient processing times than two state-of-the-art algorithms: Apriori and PPA.
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1 Introduction

Data science is a powerful tool to discover hidden knowledge from several sources
such as mobile applications [Rejeb et al., 2022], Internet of Things (IoT) [Molinaro and
Orzes, 2022], Industry 4.0 [Bhattacharya et al., 2022], and Smart Cities [Kandt and Batty,
2021]. These applications involve sources such as Global Positioning Systems (GPS) [Li
et al., 2019] and Geographic Information Systems (GIS) [Lü et al., 2019], which are
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usually managed by Spatio-Temporal Databases (STDB). STDB stores and processes
Spatio-temporal data. These databases are well-known because they incorporate the
temporal dimension as an additional attribute, which provides an extra complexity to
be processed. Because of its nature, STDB tends to be extremely large, and simple
transactions such as insertions and updates become expensive in terms of processing
time [Gaede and Günther, 1998]. As a result, traditional Data Mining techniques must
be adapted to incorporate the temporal attribute. Existing studies have demonstrated that
the analysis of Spatio-temporal databases can yield valuable patterns such as patterns of
animal movement, disease response, weather analysis [Revesz, 2009], climate change [Li
et al., 2011], road traffic [Nakata and Takeuchi, 2004], criminal activity or terrorist
events [Bora et al., 2013], and human sociological behaviour in location-based social
networks [Song et al., 2015]

Many patterns can be extracted from STDB, particularly sequential patterns where
events or episodes occur over time in a specific sequence. Broadly speaking, there are
many types of patterns; however, among the best-known patterns, we can point out
periodic patterns. Periodic patterns correspond to those that appear with certain regularity
within a sequence. These patterns occur in specific time periods. For instance, a periodic
pattern corresponds to the schedule in which the bus “Line 1” arrives at Grand Central
Station in Manhattan. This schedule can be given each hour from 6:00 to 18:00. From
this baseline, a period can represent any unit of time, therefore a period can be an hour, a
day, a week, and so on. On the other hand, cyclical patterns are an extension of periodic
patterns, where the events that make up a pattern can be given by an interval of periods.
For example, in the peak hours between 18:00 and 20:00 (i.e., this is the interval in
which the events occur), there is most traffic on Central Park Avenue. Note that the
pattern occurs in about 24 hours. Other interesting patterns could be given in the context
of social networks. For instance, the release of tweets from some specific places in a
repetitive way at a particular moment of the week (e.g., tweets sent from a pub on Fridays
between 22:00-24:00). On the other side, one of the foremost applications is given over
the OLAP, MOLAP, and ROLAP databases since it is workable to realize an analysis of
trends over time. To illustrate this, suppose that someone wants to analyze the sales by
weeks; once done, it is necessary to analyze the sales by month. This latter is well-known
as granularity, where the analysis can be conducted using time intervals such as days,
weeks, and months, to mention a few.

As mentioned above, aiming to find the patterns, events or episodes that occur over time
outlined in a specific sequence, considering the order in which the events take place.
Later, an events’ minimum threshold is given to determine patterns along with the length
of the periods to be analyzed. Notably, in this paper, we addressed the search for cyclical
patterns.

1.1 Problem Definition

Let o(s′, t) be a spatio-temporal object determined by a spatial location s′ and a point in
time t. An event e (i.e., a change in the object’s location or shape) associated with an
object ox, considering a location s

′
m at time ti, is represented by e(ox, ti). Without loss

of generality, we assume that the space in which the objects can be located is partitioned
into a set of n× n disjoint cells of equal size. Following this logic, s′m corresponds to
one of the cells in the set. A sequence of localized events denoted as Sx (i.e., for object
ox) is the set of events that takes place over a time series τ , such as τ = {t1, . . . , tn},
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and ti < ti+1. An association rule for ox is given as X → Y , such that X,Y ⊆ Sx and
X ∩ Y 6= ∅. The support of X , denoted as sup(X), is the number of events in Sx that
contain X .

Incidentally, each ti can be seen as an hour, day, week, or any other interval of time,
and so on. Using this rationale, if ti represents a day, then seven consecutive ti depict a
week.

Definition 1: An association rule over the sequence Sx has a cycle c(l, tb, lb), if the
association rule appears every lth unit of times starting at time tb, considering an occur-
rence interval of length lb, such that l is the length of the cycle (i.e., l can be seen as the
number of periods), and whose support outperforms a threshold called supmin.

Now consider a pattern denoted as X , such as X ⊆ Sx. We say X is an p-periodic
pattern if the length of X is p; where p is called the period. A pattern occurs when a
sequence of events meets the minimum support provided by the user. It should be noted
that the user also provides the p value. For instance, Let p = 3 be over the sequence
S = {{e}{b}{c}{e}{d}{c}{e}{c}{c}}. Accordingly, there are three possible subse-
quences with three events each in which the pattern {e}{∗}{c} (i.e.,{∗} can be any
event) can appear. This means that the sup({e}{∗}{c}) is equal to 1 because {e}{∗}{c}
appears in all subsequences (e.g., if the minimum support were 1/3, the pattern should
occur at least once within the subsequences). Therefore, {e}{∗}{c} is a perfect periodic
pattern (i.e., it appears exactly every three periods), while simultaneously being a partial
pattern with period p = 3, as the second event is missing. Conversely, when a pattern is
absent in the sequence, it is imperfect. Remarkably, a full periodic pattern or a partial
pattern can be both perfect or imperfect.

Aiming to differentiate between cyclical patterns and periodic patterns, let us consider
the following sequence: {a}{b}{c}{x}{y}{d}{e}{g}{x}{d}. When we set p = 4, it
becomes infeasible to identify {x} within any pattern, taking into consideration that a
pattern must appear at least twice. However, if we establish a cycle composed of five
periods (referred to as l, denoting the cycle length) and assume an interval of two events
or periods, we can discern the subsequences {x}{y} and {x}{d}. Hence, we can des-
ignate {x}{∗} as a partial cyclical pattern that repeats every five periods (where l = 5,
lb = 2, and tb = {x}). In a broader context, it is important to note that a cyclical pattern
aligns with a periodic pattern when p = l = lb, and tb can represent any event within
the subsequence, even if the event reappears at the subsequent +p position. Noteworthy,
this latter form of cyclical pattern corresponds to a periodic cyclical pattern.

1.2 Contribution

The main contribution of this paper can be itemized as follows:

– A new algorithm called HashCycle, which is based on a hash table to detect cyclical
patterns over spatio-temporal data. Different from other algorithms grounded on
association rules HashCycle does not require minimum support.

– HashCycle’s time complexity is presented in a context where time and space are
considered on search patterns.
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– A set of experiments that involve both synthetic and real data are exposed. The
synthetic dataset is used to corroborate that the implement algorithms are sound (i.e.,
it means that they find the periodic cyclical patterns on the dataset), while the real
dataset corresponds to a subset of issued Tweets from New York. Using the Tweets
dataset was feasible to find cyclical patterns.

– Empirical results show that HashCycle is more efficient than PPA and Apriori
algorithms in terms of processing times, which are in line with their respective time
complexities.

The remainder of this paper is organized as follows. Section 2, reviews related work
for detecting sequential patterns on spatio-temporal databases. In section 3, we present
our proposed method for detecting cycle patterns. Section 5 describes empirical results.
Finally, conclusions are presented in section 6.

2 Related Work

In the literature, methods for sequential pattern mining can be categorized into three
groups: (i) methods that rely on mathematical approaches, (ii) methods that search for
significant patterns using machine learning techniques, and (iii) methods that are based
on association rules.

Group (i) encompasses algorithms that assess circular autocorrelation using Fourier trans-
form [Malode et al., 2015, Parthasarathy et al., 2006]. Khanna and Kasurkar [Saneep and
Swapnil, 2015] address three types of periodicity (symbol periodicity, segment periodic-
ity, and partial periodicity) by proposing corresponding variants of autocorrelation-based
algorithms. These methods are robust against noise and efficient in extracting partial
periodic patterns with unknown periods and no additional domain knowledge. However,
they cannot guarantee the extraction of all periodic patterns satisfying given condi-
tions (e.g., minimum support). Other algorithms in this category have been proposed
to find cycles in time series: the rainflow counting algorithm [Endo et al., 1974] and
CyDeTS [Dambrowski et al., 2012, Gupta, 2022]. These algorithms detect cycles and
provide cycle lengths that allow predicting life cycles for mechanical engineering appli-
cations and stationary electrical storages. Drawbacks include unsuitability for real-time
applications, inefficient memory use, and the exclusion of spatial information.

Group (ii) includes machine learning approaches that require an objective function
or a training dataset to define “good” sequential patterns [Jamshed et al., 2020, Bunker
et al., 2021]. A primary drawback of these machine learning methods is their impracti-
cality when users lack sufficient domain knowledge for managing training and tuning
stages. We discard studying this category as it implies training and tuning stages.

Finally, group (iii) methods involve techniques primarily based on association rule
mining algorithms. Many of these techniques derive from the ”Apriori” approach pro-
posed by Agrawal and Srikant [Agrawal and Srikant, 1994]. Apriori explores frequent
itemsets, pruning infrequent ones during the process to manage the number of item
combinations, preventing explosion. While still popular [Tirumalasetty et al., 2015],
applying Apriori to sequential pattern mining is impractical due to potentially examining
2n candidates. Possible optimizations leverage inherent properties in periodic pattern
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mining [Ozden et al., 1998]. These authors propose two algorithms: one called the se-
quential algorithm, based on Apriori, and the second one called the interleaved algorithm.
According to the authors, the improvement of the second approach with respect to the
first one is about 5%. These algorithms explore unnecessary candidates and are not
tested on real data but on randomly generated data. In this synthetic data, events are
manipulated and taken to binary space for pruning, something that does not happen in the
real world. For these reasons, these algorithms have been discarded from implementation
and comparison in this paper.

It is relevant to highlight that the most related works [Agrawal and Srikant, 1994]
and [Ozden et al., 1998] are not designed to work in a spatiotemporal context. For
spatiotemporal data mining, several approaches have been developed for essential appli-
cations like disease diffusion analysis [Gao et al., 2018], user activity analysis [Lv et al.,
2013], and local trend discovery in social media [Ishida, 2010, Cheng and Wicks, 2014].
Other approaches dealing with spatial information include encoding spatial features
as discrete symbols (assigning symbols reflecting semantic regions), treating them as
continuous variables [Pillai et al., 2012, Pillai et al., 2013], and formulating them as a
dynamic graph mining problem [Lahiri and Berger-Wolf, 2010]. Koylu [Koylu, 2019]
proposes a framework to model and visualize the semantic and spatiotemporal evolution
of topics in interpersonal communication on Twitter. This work uses term frequencies
to indicate that a topic has a strong relationship with a term. Here, a user sets the time
period for pattern analysis. The framework produces a series of word-topic matrices
that represent the prominent words and their probabilities in each topic and a series of
document-topic matrices that represent the prominence of topics and their probabilities
in each document. Then, these word-topic and document-topic matrices are used to
group similar topics, allowing the identification of topic chains that illustrate temporally
consistent topics. Finally, the topic evolution and spatiotemporal patterns are linked in
a web-based geovisual environment. Gutiérrez et al.’s approach [Gutiérrez-Soto et al.,
2022] aims to search periodic patterns, not cyclical ones. It computes the frequencies of
events in a sequence and based on this factor discards some irrelevant patterns. It does
not use any specific data structure (for example a hash table). Applying this approach to
searching cyclical patterns would require mining and pruning all possible cycle periods.
Moreover, this algorithm will not find cycles if they are not periodic.
An essential direction in this field involves optimizing approaches through improved
algorithms and data structures. Han et al. [Han et al., 1999] propose the max-subpattern
hit set algorithm, built upon a tailored data structure called max-subpattern tree, for
efficiently generating larger partial periodic patterns. Yang et al. [Yang et al., 2013]
propose a projection-based partial periodic patterns algorithm (PPA), more efficient than
the max-subpattern hit set algorithm and Apriori for discovering partial periodic patterns.

To our knowledge, few works have addressed an efficient search for cyclical patterns
over STDB and often neglect simultaneous time and space cost reduction. This paper
introduces a novel and efficient algorithm (HashCycle) for identifying cyclical patterns
over STBD. The discrete symbol encoding approach enables the exploitation of insights
gained from mining sequential periodic patterns. HashCycle, inspired by a hash table,
detects patterns through collisions. It doesn’t demand minimum support, detecting all pat-
terns appearing at least twice in a single execution. Our proposed algorithm demonstrates
efficiency and scalability using real Twitter data.
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3 Algorithms

In this section, an example has been given to clarify the steps involved in each algorithm,
considering the temporal aspect.

3.1 Apriori Algorithm

Apriori checks all subsets and returns all those who achieved the minimum support.
To achieve this goal, Apriori first acquires all frequent itemsets of size 1; after that, all
frequent itemsets of size 2, and so on. Note that Apriori was not designed to consider the
temporal aspect of events in a sequence. Therefore, considering the temporal aspect has
a relevant impact on its performance. Aiming to show this impact, an example is given.
Consequently, the example string can be perceived as a time series with period four,
such that a letter represents an event. It is essential to highlight that the events in square
brackets denote that these can occur in parallel (i.e., an event characterizes a particular
object considering the space and temporal aspect).

a {b, c, d} eda {b, c} adabcbaccdaabc
According to the periodicity previously indicated, the number of periods in this series

is four:
a {b, c, d} ed− a {b, c} ad− abcd− accd− aabc (1)

The first step finds the L1 set. L1 involves all those candidates L1 frequent that
achieve the minimum support. Hereafter, Fk will be used instead of Lk . It is relevant to
mention that Fk keeps the positions of the events in the sequence. From now, Fk will
be employed in all algorithms. In the following example, we use the notation FyCand

to denote the frequency of candidate events in forming a pattern composed of y events
Therefore, using minimum support of 3, we have:

F1Cand : {a ∗ ∗∗ : 5
5
, ∗a ∗ ∗ : 1

5
, ∗ ∗ a∗ : 1

5

∗b ∗ ∗ : 3
5
, ∗ ∗ b∗ : 1

5
, ∗ ∗ ∗b : 1

5
, ∗c ∗ ∗ : 4

5
,

∗ ∗ c∗ : 2
5
, ∗ ∗ ∗c : 1

5
, ∗d ∗ ∗ : 1

5
, ∗ ∗ ∗d : 3

5
}

F1 :

{
a ∗ ∗∗ :

5

5
, ∗b ∗ ∗ :

3

5
, ∗c ∗ ∗ :

4

5
, ∗ ∗ ∗d :

3

5

}
F2Cand : {ab ∗ ∗ : 3

5
, ac ∗ ∗ : 3

5
, a ∗ ∗d : 3

5
,

∗ {b, c} ∗ ∗ : 2
5
, ∗b ∗ d : 2

5
, ∗c ∗ d : 3

5
}

F2 :

{
ab ∗ ∗ :

3

5
, ac ∗ ∗ :

3

5
, a ∗ ∗d :

3

5
, ∗c ∗ d :

3

5

}
Following the same steps gave by Apriori, the algorithm finishes when FK : ∅

F3Cand :
{
a {b, c} ∗ ∗ : No, ab ∗ d : No, ac ∗ d : 3

5

}
F3 :

{
ac ∗ d :

3

5

}
Following this thread, the number of events in F3 does not generate a set of F4

candidates. Hence, the algorithm finishes with F3.
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3.2 PPA Algorithm

The PPA algorithm works the following: first, it runs the sequence and divides it into l
partial periods. Later, every event is codified considering its location within the partial
period. This way, codified events are represented as a matrix, which the authors name
as EPSD. In EPSD, the first row is determined by the first l codified events, such that
each column represents the event position within the partial periods. Thus, it is possible
to count the instances of each event by columns. This last step is to verify if events
accomplish the required minimum support. To exemplify this, a particular instance of
Eq(1) is employed, such as:

abed− abad− abcd− accd− aabc

EPSD =


a1 b2 e3 d4
a1 b2 a3 d4
a1 b2 c3 d4
a1 c2 c3 d4
a1 a2 b3 c4


where the element x′

j,i in EPSD corresponds to the event x in the position i in the
sequence, such that the first subsequence (j = 1) is the first row in EPSD, the second
subsequence (j = 2) corresponds to the second row, and so on.

A candidate subsequence is obtained once those events are counted by columns and
achieve the minimum support. Subsequently, events that form this sub-sequence are
sorted first, considering the partial positions and then considering each event’s lexi-
cographic nomenclature (the maximum nomenclature has size a). Note that the last
sub-sequence Sc is equivalent to having F1. According to the authors, Sc is used to
look for the other FkCand patterns. A sub-routine called Finding-FTP is used to achieve
this goal, so each event of Sc is used as a prefix to obtain the patterns that comply with
the minimum support over EPSD. Finally, all Fk that fulfil the minimum support are
obtained.

3.3 HashCycle Algorithm

The underlying motivation for employing a Hash Table is to reduce processing times
during insertion, particularly for pattern searching. Furthermore, the order in which
events take place in the sequence (i.e., the possible periods) makes them easily located
in the Hash Table slots. Once this is done (i.e., when the Hash Table contains all the
events), patterns can be easily obtained by traversing the lists belonging to the slot where
the events appear. The occurrence of these events maintains the order in the lists with a
positional difference of p. It’s important to mention that each slot can have multiple lists,
where the first element in the list determines the appearance of the subsequent elements
in that list. Indeed, the length of each list indicates whether the minimum support can be
achieved. This last aspect makes the Hash Cycle extremely efficient when it comes to
finding patterns. To achieve this goal, we utilize the modulo operator, which is widely
used in Hash Tables, particularly when the data universe (i.e., keys) is numeric. The latter
allows us to quickly locate the slot in which the event is. For example, calculating the
modulus between (4 mod 2) = 0 corresponds to the remainder of the division between
4 and 2. The previous one places us in slot 0, where the insertion or search takes place. It
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should be noted that computing the modulus operation takes O(1) (see Line 4, where h
is provided the modulus), which is very efficient. Notably, we use this operator in our
algorithm. By the way, our algorithm’s main disadvantage is the Table’s size since the
different periods imply different Tables. Nonetheless, this is not a disadvantage due to
the memory capacity of conventional computers. The following paragraphs describe how
our algorithm operates on the Hash Table.

HashCycle relies on a hash table; Table T contains m slots, which store the events;
in turn, thesem slots have other s slots (i.e., which can be at most p), each one such that
each slot stores a list with candidate patterns, considering the position in which events
appear in the sequence. In the beginning, HashCycle runs the sequence and checks if
the event is in T , so whether the event is not in the table, the event is added in T [ej ]
(i.e., 1 ≤ j ≤ m) considering at the same time the position in which the event occurs
in the sequence. This latter determines the following slot s′k, between 1 and p, storing
the event in T [ej ].s

′
k (see line 4 of the Algorithm). On the contrary, if the event is in

T , it is put in its corresponding list. Once the sequence has been run, it is workable to
determine the patterns. To achieve this goal, the period has to be previously provided.
Pattern cyclical are obtained from lists of each event; note that these are perfect cyclical
patterns. F1 is extracted by running all those lists having at least two elements. As regards
F2, this is built using the combination of F1, i.e., combining all lists with two or more
elements (many implementations can be found in several algorithms’ books). Following
this reasoning, Fk (it is achieved with Lines 2, 3, and 4 of the Algorithm) can be achieved
in the same way. It should be noted that Algorithm 1 allows achieving all patterns, as it
processes all slots of T along with their corresponding lists. Aiming to shed light suppose
the following example given the following sequence aac− aab− aa. There are two lists
in T (see Figure 1) with period three over a sequence formed by events a, b, and c, whose
length is 8. A list contains the following events (a,1), (a, 4), (a, 7), meantime another list
is composed of (a,2), (a,5), (a, 8), such that the first list can be seen as T [a].s1, and the
second one as T [a].s2. On the other hand, suppose the following lists (a,1), (a, 4), (a, 7),
and (b,2), (b,5), (b, 8), combining both is feasible to obtain the pattern (a, b,*).

Algorithm 1 HashCycle

Require: supmin ≥ 0 ∧ S 6= ∅ ∧ n ≥ 0 ∧m ≥ 0 ∧ p ≥ 0
Ensure: Patterns
1: Patterns← ∅
2: for x← 1, x ≤ m do

3: for i← 1, i ≤ n do

4: T [ei].sk′ ← h(p, ei(ox, ti))
5: if T [ei].nk′ ≥ supmin then

6: T [ei].nk′ ∈ Patterns
7: end if

8: end for

9: return Patterns
10: end for
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Figure 1: HashCycle’s Data Structure

4 Time complexities

This section gives the time complexities for the algorithms Apriori, PPA, and HashCycle.
Those time complexities are yielded in a Spatio-temporal context where the order in
which the events occur plays a crucial role.

4.1 Apriori’s time complexity

According to [Gutiérrez-Soto et al., 2022], Equation (2) represents all candidate patterns
provided by Apriori such thatm is the number of events, f indicates the size of a period,

andmf corresponds to the number of forms that can appear in the events. Cp,f represent
all ways to organize f events over a segment of size p. Owing to a pattern should appear
at least twice over the sequence, and then it only is necessary to run the middle of the
sequence; therefore, p can achieve n

2 .

mf ∗ Cp,f = mf ∗

(
p

f

)
= mf ∗ p!

(p− f)! ∗ f ! (2)

The equation represents all candidate patterns for f = 1:

n/2∑
p=2

m ∗ p (3)

Expression (3) can be implemented in any programming language using three loops.
Recall that a pattern is considered as such if it appears at least twice within the sequence.
In this manner, the outer loop runs from 1 to n

2 (i.e., p = 2 to n
2 ). This implies that half

of the sequence could potentially form a pattern. The middle loop iterates through the

sequence (i.e., it goes through n). These two loops provide n2

2 , which is equivalent to

n2. The innermost cycle runs from 1 tom (i.e., such thatm are the events). Therefore,
the time complexity of (3) is determined by:

O
(
mn2

)
(4)

Extending Equation (2), it is workable to obtain all candidate patterns (i.e., all



Gutiérrez-Soto C., Galdames P., Navea D.: Efficiently Finding Cyclical ... 1413

candidates from F2Cand to Fn
2 Cand), thus:

n/2∑
p=2

p∑
F=1

mF ∗ mF ∗ p!
(p− F )! ∗ F !

(5)

Note that the goal of Expression (5) is not to solve the expression itself (i.e., from a
mathematical point of view), but instead to analyze how it can be implemented. It should
be noted that many techniques can be used to calculate the factorial, such as dynamic
programming. Due to this, the calculation is repeated many times. Therefore, the last
one can be executed outside of both summations, making the use of each factorial a
constant-time operation. On the other hand, it is evident that in the inner summation,

mF ∗mF appears, which from a programming perspective is essentially a multiplication
by itself and operates in O(1) time. Without loss of generality, expression (5) can be

simplified as n
∑n/2

F=1 m
F , such that F takes the p value as maximum (see Expression

(5)). From this latter expression, the n, which multiplies the summation, corresponds
to a loop until n, while the summation itself is another cycle ranging from 1 to n

2 . As a

result, this last loop takes O(m
n
2 ). Therefore, the time complexity for Apriori is given

by [Gutiérrez-Soto et al., 2022]:

O
(
n
√
mn
)

(6)

4.2 PPA’s time complexity

Calculating the sub-sequence Sc is similar to computing F1; Roughly, calculating the sub-
sequence Sc is similar to computing F1, Whereby it takes O(mn2). Additionally, two
previous sorts are necessary before obtaining F1. One must be computed for the partial
position, while the second corresponds to the event’s lexicographic nomenclature. The
first sort takesO(p · log2p); meantime second impliesO(a · log2 a), where p corresponds
to the period, and a is the maximum nomenclature of an event. Both sorts can be carried
out using MergeSort when p and a are remarkable. Lastly, a subroutine builds all prefixes
in Sc (i.e., for each event) and verifies them inside EPSD. Finally, the time complexity
for PPA is given by [30] (if ((plog2p) + (alog2a)) < (mm+1n2)):

O(max((mm+1n2), (plog2p) + (alog2a))) = O(mm+1n2) (7)

4.3 HashCycle’s time complexity

Aiming to provide the time complexity for HashCycle, we introduce the following defi-
nitions:

Definition 2: Let |S(τ)| be a number of events over the sequence S.

Definition 3: Let R{e} be the indicator random variable over a sequence S, which
is associated with event e, such that:

R{e(ox, ti)} =
{
1 if e occurs at the ti moment over S.

0 if e does not occur at the ti moment over S.

Note that our sample space S is formed by probability (H), it is that e happens at the
ti moment over S, and the probability (D), where e does not happen at the ti moment
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over S; thus Pr{H} = Pr{D} = 1
2 . Therefore, the indicator random variable R{H}

for XH can be written as: XH = R{H}.

Lemma 1:
Given S and an event e(ox, ti) over S, let Xe = R{e}.
Then E[Xe] = Pr{e}.
Proof:
By the Definition 3 and the definition of expected value:

E[Xe] = E[R{e}]
= 1 · Pr{e}+ 0 · Pr{e}
= Pr{e}.

such that Pr{e} corresponds to the complement of e. �

Definition 4: Let α be the load factor for a hash table T , such that α = n
m′ corre-

sponds to the average number of elements stored in a chain in T . T has m′ slots that
stores |S(τ)| = n occurrences of events. In our particular, case m′ = mp where m
are events, and p is the period. In simple words, each event ej has s slots, which are
between 1 and p. The events are stored in T along with their position that appears in S(τ).

Definition 5: Let h the hash function over the hash table T , such that:
h(p, ej(ox, ti)) → T [ej ].sk′ , where k′ = (i mod p), and mod provides modulus or
remainder of a division. Note that i determines the position of an event inside S(τ).

Definition 5: Let nk′ the length of the list T [ej ].sk′ , so that n is

m∑
j=1

p∑
k′=1

T [ej ].nk′

Theorem 1:
In T , an unsuccessful search takes Θ(1 + α), under the assumption of simple uniform
hashing.
Proof:
An event ej that does not store yet in the table is equally likely to hash to any of them

′

slots, assuming a simple uniform hashing. The expected time for a search unsuccessfully
implies achieving the end of the list T [h(p, ej(ox, ti))].nk′ , which has expected length
E[nh(p,ej(ox,ti))] = α. Therefore, the expected number of events reviewed in an unsuc-
cessful search is α, and the total time required is Θ(1 + α).�

Theorem 2:
In T , a successful search can be solved in Θ(1 + α), under the assumption of simple
uniform hashing.
Proof:
Let ej denote the event to be searched on T . Without loss of generality, it is workable
to have the list from T [ej ].sk′ (by Definition 5). As the distribution is uniform and
the expected length of T [ej ].nk′ corresponds to E[nh(p,ej(ox,ti))] = α (by Definition



Gutiérrez-Soto C., Galdames P., Navea D.: Efficiently Finding Cyclical ... 1415

4), then the search algorithm performs no more extended than 1 + α comparisons (by
Theorem 1). As a consequence, a successful search can be solved in Θ(1 + α).�.

Consider that the time required to search an event depends on the length nk′ of the
list T [ej ].sk′ . Towards that end, the hash function h(p, ej(ox, ti)) is computed in O(1).

Incidentally, on this occasion, we have used the Θ notation since the worst-case is
given when all the events are in the same list, by which, it should take O(n). Neverthe-
less, we assume that the events follow a uniform probabilistic distribution; hence, the
lists in the table are likely to have similar lengths. In this way, the Θ notation is more
appropriate for this analysis.

5 Experiments

5.1 Experimental Environment and Empirical Results

Our experiments were carried out over two data types: synthetic and actual. Actual data
corresponds to tweets. The algorithms were implemented in Java. To obtain correct
measurements of processing times on JVM (Java Virtual Machine), JMH (Java Mi-
crobenchmark Harness) has been used. JMH is a Java framework used to build, run, and
analyze benchmarks written in Java and other JVM languages. By doing this, it is possible
to isolate the algorithms’ processing times, ignoring elements such as caching, pipelines,
and processing priority. JMH included ten training iterations and fifteen measurement
iterations in all the experiments.

All the results are shown in average times (Avg)— times are expressed in millisec-
onds in Tables I-IV — along with its standard deviation (SDev), the latter to show the
variability of the algorithms regarding the data. All experiments were executed in an
Intel Core i3-5005U 2GHz; 8GB 1600 MHz DDR3L; and Windows Operating System
10 Home 64 bits.

Experimentation over synthetic data aims to check that all algorithms are sound (i.e., all
algorithms find and return the same patterns). Two events’ sequences have been created,
such that the events occur randomly over the sequences (note that the events are known,
and the uniform distribution has been used to allow them to occur in different places
within the sequence. The first sequence does not contain patterns (see Table I). In the
second sequence, a pattern of length ten has been added (see Table II). In both sequences,
the experiments involve searching for patterns of lengths 10, 50, and 100 on sequences
of lengths 500 and 1000.

Tables I and II show the average running times over a synthetic dataset. HashCycle
presents the best performance – in terms of processing times — considering all scenarios
(i.e., lengths, patterns, and sequences). Furthermore, HashCycle’s standard deviations
are the lowest, indicating that its behaviour is scalable independent of the pattern’s
length to search and the sequence’s length. PPA achieves the second-best performance;
nonetheless, it presents a higher standard deviation than HashCycle. Finally, the worst
results are given by Apriori, where in some cases it outperforms 20000 milliseconds by
which its results are omitted (the results appear as “-’ ’ in Table II).
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Regarding real data, these involve four New York districts; Brooklyn, The Bronx, Man-
hattan, and Queens. Aiming to homogenize the number of inhabitants, we have built two
groups: The Bronx - Brooklyn (designated as the L1 sector) and Manhattan - Queens (
called the L2 sector). Incidentally, using the endpoints of a Twitter API, it is possible
to identify the tweets issued from both sectors. The schedule used in the analysis of the
tweets corresponds to prime time, which is between 21:00 and 21:30. To identify time
ranges in which tweets are emitted, three periods, T1=21:00-21:10, T2=21:10-21:20,
and T3=21:20-21:30, have been defined. Using sectors and periods, we can define a
set of events; E = {A,B,C,D,E, F}. It should be noted that the events associated
with the first period (T1) only include events A and B, while the events linked to the
second period (T2) are only composed of events C andD; the same reasoning applies to
the third period. The data collected comprised a week, starting on January 27th, 2021.
Therefore, the sequences used by the three algorithms involve all the week’s events. In
this way, there are three sequences ST1

, ST2
, and ST1

(i.e., the sequences associated with
the periods T1, T2, and T3, respectively) (see columns in Table 2). Finally, it is worth
mentioning that in these experiments, lengths between 2 and 100 have been used to
search for patterns, considering that all STi

comprise more than 1000 event occurrences
each.

Tables III and IV display the average running times with actual data extracted from
Twitter. Following the trending of Tables I and II, HashCycle presents the best processing
times in all scenarios. Once again, HashCycle’s standard deviations are the lowest. On
the other hand, the second-best performances are accomplished by PPA; similarly to
Tables I and II, PPA has higher standard deviations than HashCycle. Apriori provides
the worst results.

In summary, HashCycle presents the best performances and provides the lowest standard
deviations. It is worth stressing that running times present a significant saving regarding
its adversaries. Finally, the second-best performance is achieved by PPA, followed by
Apriori.

Synthetic Without Patterns

500 1000

Algorithm Length Avg SDev Avg SDev

Apriori 10 0,790 0,009 1,529 0,009

Apriori 50 9,154 0,099 15,231 0,139

Apriori 100 35,727 0,329 55,294 0,424

PPA 10 0,249 0,003 0,523 0,006

PPA 50 0,547 0,007 1,637 0,009

PPA 100 0,791 0,005 2,372 0,016

HashCycle 10 0,017 0,001 0,038 0,001

HasgCycle 50 0,031 0,001 0,065 0,001

HashCycle 100 0,047 0,001 0,099 0,002

Table 1: Experiments with synthetic data without patterns.
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Synthetic With Patterns

500 1000

Algorithm Length Avg SDev Avg SDev

Apriori 10 0,667 0,049 1,264 0,013

Apriori 50 1779,36 14,402 2548,39 63,68

Apriori 100 - - - -

PPA 10 0,232 0,011 0,468 0,007

PPA 50 3,520 0,051 6,894 0,131

PPA 100 3745,8 161,01 6532,43 192,94

HashCycle 10 0,019 0,001 0,044 0,001

HasgCycle 50 0,043 0,001 0,068 0,001

HashCycle 100 0,071 0,001 0,144 0,009

Table 2: Experiments with synthetic data with patterns.

ST1
ST2

Algorithm Length Avg SDev Avg SDev

Apriori 10 0,952 0,007 1,197 0,012

Apriori 50 9,822 1,500 10,888 0,332

Apriori 100 28,601 0,190 42,312 0,408

PPA 10 0,366 0,010 0,465 0,005

PPA 50 0,633 0,010 0,919 0,010

PPA 100 0,865 0,010 1,178 0,010

HashCycle 10 0,044 0,001 0,060 0,001

HasgCycle 50 0,113 0,008 0,134 0,005

HashCycle 100 0,171 0,002 0,224 0,008

Table 3: Experiments with data extracted from Twitter (ST1 and ST2 ).

6 Discussion

As mentioned earlier, a cyclical pattern is equivalent to a periodic pattern if the cyclical
pattern can be expressed as a periodic pattern (i.e., it is a periodic cyclical pattern). Based
on this foundation, it is feasible to detect periodic cyclical patterns using those algorithms
to discover periodic patterns. Achieving this goal implies checking all possible periods
to detect a cycle (i.e., this involves examining all possible periods from 1 to n

2 , such as n
is the sequence’s length).
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ST3

Algorithm Length Avg SDev

Apriori 10 1,245 0,015

Apriori 50 13,446 0,918

Apriori 100 36,346 0,327

PPA 10 0,517 0,014

PPA 50 0,930 0,010

PPA 100 1,207 0,007

HashCycle 10 0,060 0,001

HasgCycle 50 0,146 0,001

HashCycle 100 0,236 0,002

Table 4: Experiments with data extracted from Twitter (ST3
).

On the other hand, a few algorithms to look for cyclical patterns can be found in the
literature. Moreover, some of them use mathematical techniques such as autocorrelation,
which can not be used to compare with our algorithm. Instead, we have chosen the PPA
algorithm, which has an excellent performance. Although PPA has been designed to find
perfect and imperfect period patterns, it can find periodic cyclical patterns. Similarly,
we have used the Apriori algorithm to have an upper bound since its performance has
exponential behaviour. One should observe that both PPA and Apriori use minimum
support, which is working to better compare the processing times among them

As already mentioned, a cyclical pattern is equivalent to a periodic pattern; however,
the converse is not true. Furthermore, let’s consider the following sequence S =
{a}{f}{g}{x}{d}{c}{e}{c}{x}{c}{c}{e}{c}{h}{x}. If we consider l = 5, and
lb = 2, with tb = {a}, then {{x}{d}, {x}{c}, {h}{x}} are possible patterns, how-
ever, {x} is always within {+}{+} with lb = 2 (i.e., {x} can be in any of the two
positions within the lb). We denominated {+}, when an event such as {x} occurs in
any of all position with {+}. The latter provides new patterns that can occur within
an interval, but only sometimes in the same position. For example, consider a postman
who usually has to deliver parcels on an island, sometimes on Monday or Tuesday,
depending on the weather. In this way, Monday and Tuesday do not correspond to a
period from a periodic point of view; this is in contrast to a cyclical pattern, where both
days conform to a recognizable pattern. In that regard, please note that in this paper, we
are only concerned with proving the algorithms’ efficiency when the cyclical patterns
are periodic. Nonetheless, we believe that looking for cyclical patterns that there are
not periodic is a good challenge since this type of problem is not common in Data Science.

On the other side, in this paper, we did not analyze the tweets’ content but rather an-
alyzed the time and place from where those are emitted. These cyclical patterns can
indicate some interaction among users, suggesting something is happening around them.
Furthermore, we believe that finding this kind of pattern makes it possible to analyze
tweets’ content better. In this way, spatio-temporal patterns can be exceptionally useful
in social networks since these can prune tweets whose content is irrelevant. This latter
can provide more efficient processing of tweets’ content.



Gutiérrez-Soto C., Galdames P., Navea D.: Efficiently Finding Cyclical ... 1419

Regarding running times, the minimum support was instantiated in 1 in all experiments.
Roughly, the running times decrease considerably when the minimum support increases,
even for the Apriori algorithm. This latter is due to a significant pruning occurring
every time the minimum support is raised. On the other hand, a successful search takes
a maximum time Θ(1 + α) when it achieves the list’s end (according to Theorem 2).
Accordingly, further experimentations should be conducted by varying the length of the
interval (i.e. lb) in which the patterns can occur.

7 Conclusion and Future Work

This paper introduces a novel and efficient algorithm named HashCycle, designed to
identify cyclical patterns on Spatio-temporal data. HashCycle is characterized as a hash
Table, where individual slots correspond to the events within a given sequence. Each slot
contains linked lists that represent the relative positions of events, with these positions
having a maximum length equal to the cycle period. Linked lists are obtained through
collisions, ensuring that only those lists containing two or more nodes contribute to
the formation of a valid cyclical pattern. Notably, HashCycle demonstrates exceptional
space-saving capabilities by discarding lists that cannot form a complete cycle. Addi-
tionally, it is essential to highlight that HashCycle operates effectively without requiring
a minimum support threshold, enabling the detection of all cyclical patterns appearing
at least twice within a single execution. The time complexity for HashCycle implies

Θ(1 + α), while PPA takes O(mm+1n2), and Apriori achieves O
(
n
√
mn

)
. The algo-

rithms were evaluated over two Spatio-temporal datasets, one synthetic and another real,
considering in this latter the location where tweets were emitted. Empirical results show
that HashCycle is not only more efficient than Apriori and PPA but also scalable.

Ideas for future work include two threads. The first thread involves implementing algo-
rithms such as MS-Apriori, FP-Growth, and Max-Subpattern; extending the experimental
environments; increasing periods and sequence lengths; and considering different sup-
ports. The second thread involves varying the length of the interval within which the
patterns can occur. The latter should yield new patterns that are discarded when the
patterns are periodic.
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