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Abstract: We study the information-theoretic model of stegosystem with an active adversary,
where unlike a passive adversary he can not only read but also write. The legitimate sender as well
as the adversary can embed or not a message in the sending data. The receiver’s first task is to
decide whether the communication is a covertext, data with no hidden message, or a stegotext,
modified data with a hidden secret message. In case of stegotext, the receiver’s second task is to
decide whether the message was sent by a legitimate sender or from an adversary. For this purpose
an authenticated encryption from the legitimate sender is considered.

In this paper we suggest two-stage statistical hypothesis testing approach from the receivers point

of view. We propose the logarithmically asymptotically optimal testing for this model. As a result

the functional dependence of reliabilities of the first and second kind of errors in both stages is

constructed. A comparison of overall error probabilities with the situation of one stage hypotheses

testing is discussed and the behaviour of functional dependences of reliabilities are illustrated.
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1 Introduction

The aim of steganography is communicating messages by hiding them within other
data thereby creating a covert channel. By standard terminology of information hiding
[Pfitzmann 1996] the legitimate users are Alice and Bob, who wishes to communicate
over a public channel, such that the presence of hidden message must be unnoticed to an
adversary (Eve).

Various models with various tasks have been studied [Katzenbeisser et al. 2002],
[Hopper et al. 2002], [Von Ahn and Hopper 2004], [Backes and Cachin 2005], [Dedic et
al. 2009], [Liśkiewicz et al. 2011], [Augot et al. 2011]. We are interested in information-
theoretic investigations studied in many papers including [O’Sullivan et al. 1998],
[Moulin and O’Sullivan 2003], [Cachin 2004], [Mittelholzer 2000], [Wang and Moulin
2008], [Shikata and Matsumoto 2008], [Balado and Haughton 2018].

In [Cachin et al. 1998], [Cachin 2004] Cachin first proposed an information-theoretic
model of steganography with passive adversary (who has read-only access to the public
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channel) (Fig. 1). Alice can be inactive and send a covertextC without hidden information
or be active and send stegotext S. Bob has the exctracting algorithm, but Eve does not
know if Alice was active or not. Hence, Eve must solve the problem of Hypothesis
testing.

Figure 1: The model of stegosystem with passive attacks.

An extended information-theoretic model for steganography with active attacks
(where adversary can read and write a message over an insecure channel) was pro-
posed and studied in [Shikata and Matsumoto 2008]. More specifically, the authors
showed a generic construction of secure stegosystems by using almost unbiased func-
tions and secure authenticated encryption with random ciphertexts in the model with
active adversaries in unconditional setting. The problem of information-theoretically
secure authenticated encryption is addressed in [Alomair and Poovendran 2009].

In this paper we consider an information-theoretic model of a stegosystem with active
attacks (Fig. 2), we propose and study the problem of optimal hypothesis testing, which
will be described later in this section.

Figure 2: The model of stegosystem with active adversary.

Adversary has an access to a read and write public channel and is able to analyze
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and modify data. Alice as well as Eve can be either active or passive, i.e. can embed or
not a message in the sending data. Bob’s first task is to decide whether the received data
X is a covertext C, data with no hidden message, or stegotext S, modified data with a
hidden secret messageM . In case of deciding that the obtained data is stegotext, Bob has
the extraction function, and the second task for Bob is to decide whether the extracted
message was sent by Alice or Eve. For this purpose an authenticated encryption of
messageM with secret keyK is considered. Depending on applications this encryption
except authentication can include also secrecy requirements of hidden message.

Covertext is generated by a source according to a distribution PC , stegotext has a
distribution PS according to a certain embedding function. The distribution of secret key
we denote byPK . We assume that Eve knows all these distributions. For the authenticated
encryption Alice generates the encrypted message according to PMK and Eve can
generate a message with distribution PMPK .

We suggest two-stage statistical hypotheses testing approach from receivers point of
view. On the first stage Bob has to decide if the data was generated according to PC or
PS . In the case when Bob decides that stegotext is obtained, after extracting the secret
message, on the second stage Bob has to decide if the message was generated according
to PMK or PMPK . Further, we substantiate the advantages of our approach.

The paper is organized as follows. In the next section the considered problem and
the related art are presented. The main notations and definitions are given in the section
3 and the results are formulated in section 4. Some discussions on partial cases and
reccomendations are provided in section 5. In section 6 some illustrations of the functional
behaviour is presented. The conclusion remarks are in section 7. The detailed proofs of
the theorems are placed in the appendix.

2 Problem Statement

In classical statistical hypothesis testing problem a statistician makes decision on which
of the two proposed hypotheses H1 and H2 must be accepted based on data samples.
This decision is made on the certain procedure which is called test. Due to randomness of
the data the result of this decision may lead to two types of errors: the fist type is called
the error for accepting H2 when H1 is true and the second type error for accepting H1

when H2 is true. In such problems the aim is to find such a test, that reduces both types
of errors as much as possible. The complexity of the task is that the two types of errors
are interconnected, when the one is reduced the other one can get increased.

Another problem related with information theory is the case of a tests sequence,
where the error probabilities are decreasing exponentially as 2−NE , when the number of
observations N is increasing. The exponent of error probability E is called reliability.
In the case with two hypotheses both reliabilities corresponding to two possible error
probabilities could not increase simultaneously. It is an accepted way to fix the value of
one of the reliabilities and try to make the tests sequence get the greatest value of the
remaining reliability. Such a test is called logarithmically asymptotically optimal (LAO).
The publications [Hoeffding 1965], [Csiszár and Longo 1971] , [Blahut 1974], [Tusnady
1977], [Longo and Sgarro 1980], [Birgé 1981],[Haroutunian 1989], [Haroutunian 1990]
and [Haroutunian et al. 2008] are devoted to this problem, particularly, the problem of
multiple hypotheses LAO testing was investigated in [Haroutunian 1989], [Haroutunian
1990], [Haroutunian et al. 2008]. Multiple hypotheses testing was proposed in many
studies as an effective framework for analyzing problems in various domains, such as
performance evaluation of biometric systems (see [Willems et al 2003], [Harutyunyan et
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al. 2011], [Yagi and Hirasawa 2022]. This framework enables looking into the underlying
problems from the information-theoretic perspectives and optimal achievability bounds
of error probability trade-offs while treating observations data emitted from classical
models of information sources like Discrete Memoryless Source or Arbitrarily Varying
Source (AVS) [Harutyunyan and Han Vinck 2006], [Grigoryan and Harutyunyan 2015],
[Grigoryan et al. 2011].

The problem of LAO testing of statistical hypotheses for the steganography model
with a passive adversary (Fig. 1) was solved in [Haroutunian et al. 2018]. In that model
the adversary’s task was to distinguish the covertext from stegotext. The functional
dependence of the reliabilities of the first and the second kind errors was given.

In this paper we suggest two stage logarithmically asymptotically optimal testing
of the legal receiver for the steganographic model with active adversary. At the first
stage Bob decides whether a covertext or a stegotext is received. If at the first stage Bob
decides that the data is a stegotext, then he uses the extraction algorithm to get the hidden
message and using the key at the second stage he decides whether Eve or Alice was
active.

We study the functional dependence of reliabilities of the first and second kind of
errors of optimal tests in both stages. The proof of the result for first stage is similar to
the result suggested in [Haroutunian et al. 2018], where the problem of LAO testing of
statistical hypotheses for the steganography model with a passive adversary is solved
by the method of types [Csiszár 1998]. For the second stage the approach studied in
[Maurer 2000] was useful.

The results of this paper partially were reported at the CODASSCA Workshop
[Haroutunian et al. 2022]. Here we introduce the full version, i.e with added proofs, dis-
cussions on advantages of our approach and illustrations of the theoretical dependences.

3 Notations and Definitions

Here we present some necessary characteristics and results of information theory [Blahut
1987], [Cover and Thomas 2006]. We denote finite sets by script capitals. The cardinality
of a set X is denoted as |X |. We denote random variables (RV) by X , S, C, K, M .
Probability distributions (PD) are denoted by P , PC , PS , PM , PK , Q and PMK .

Let PD of RVK andM be

PK
4
= {PK(k), k ∈ K},

PM
4
= {PM (m), m ∈ M},

and the joint PD of RVsM andK be

PMK
4
= {PMK(m, k), m ∈ M, k ∈ K}.

The Shannon entropy HP (X) of RV X with PD P
4
= {P = P (x), x ∈ X} is:

HP (X)
4
= −

∑
x∈X

P (x) logP (x).
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The mutual information of RVM andK equals:

IPMK
(M ;K)

4
=

∑
m∈M, k∈K

PMK(m, k) log
PMK(m, k)

PM (m)PK(k)
.

It is important to note that

PM (m) =
∑
k∈K

PMK(m, k),

PK(k) =
∑

m∈M
PMK(m, k).

The joint entropy of RVsM andK is the following:

HPMK
(M,K)

4
= −

∑
m∈M, k∈K

PMK(m, k) logPMK(m, k).

We use the notion of divergence (Kullback-Leibler information or “distance”) defined
on two PDs, say PC and PS , on X as:

D(PC ||PS)
4
=
∑
x∈X

PC(x) log
PC(x)

PS(x)
.

The divergence of joint PDs Q
4
= {Q = Q(m, k), m ∈ M, k ∈ K} and PMK on

(M×K) is:

D(Q||PMK)
4
=

∑
m∈M,k∈K

Q(m, k) log
Q(m, k)

PMK(m, k)
.

The space of all joint PDs on finite setM×K we denote by

Q(M×K)
4
= {Q : Q = Q(m, k),m ∈ M, k ∈ K}.

When RVM andK are independent, then

D(Q||PMK) = D(Q||PMPK)

=
∑

m∈M,k∈K

Q(m, k) log
Q(m, k)

PM (m)PK(k)
.

In particular, the divergence of PDs PMK and PMPK is the mutual information:

D(PMK ||PMPK)
4
=

∑
m∈M,k∈K

PMK(m, k) log
PMK(m, k)

PM (m)PK(k)

= IPMK
(M ;K).
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For our investigations we use the method of types, [Haroutunian et al. 2008], [Csiszár
1998], [Csiszár and Körner 1981], the essence of which is to partition the set of all same
length vectors into classes according to their empirical distributions.

The type Px of a vector x = (x1, ..., xL) ∈ XL is a PD (the empirical distribution)

Px =

{
Px(x) =

N(x|x)
L

, x ∈ X
}
,

whereN(x|x) is the number of repetitions of symbol x in vector x. We denote by PL(X )
the set of all types of vectors in XL for given L and the set of vectors x of type Px is
denoted by T L

Px
(X).

The joint type of vectors m = (x1, ..., xN ) ∈ MN and k = (k1, ..., kN ) ∈ KN

Qm,k a PD (the empirical distribution)

Qm,k =

{
Qm,k =

N(m, k|m,k)

N
,m ∈ M, k ∈ K

}
,

where N(m,k|m, k) is the number of repetitions of symbols pair (m, k) in the pair of

vectors (m,k). The set of all joint types of vector pairs (m,k) in (M×K)N for given

N is denoted byQN (M×K) and the set of vector pairs (m,k) of typeQm,k is denoted

by T N
Qm,k

(M,K).

The following well known inequalities [Csiszár and Körner 1981] we use in the
proofs of our results :

| PL(X ) |≤ (L+ 1)|X |, (1)

| QN (M×K) |≤ (N + 1)|M||K|, (2)

for any type P ∈ PL(X )

(L+ 1)−|X| exp{LHP (X)} ≤| T L
P (X) |≤ exp{LHP (X)}, (3)

for any type Q ∈ QN (M×K)

(N + 1)−|M||K| exp{NHQ(M,K)} ≤| T N
Q (M,K) |≤ exp{NHQ(M,K)}. (4)

The method of types is one of the important technical tools in Information Theory.

4 Formulation of Results

First stage. At the first stage, from the received data x = (x1, ..., xL), x ∈ XL, Bob
must decide whether it is a covertext or a stegotext. Hence, Bob must accept one of the
two hypotheses

H1 : P = PS {data is a stegotext}

H2 : P = PC {data is a covertext}.

The procedure of decision making is a non-randomized test ϕL, which can be defined
by partition of the set of possible messages XL on two disjoint subsets AL

i , i = 1, 2.
The set AL

i , i = 1, 2 contains all data x for which the hypothesis Hi is adopted.
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The first kind error probability, which is the probability of the rejection of the correct
hypothesis H1 is the following:

α2|1(ϕL) = PL
S (AL

2 ).

The second kind error probability, which is the probability of the erroneous acceptance
of hypothesis H1 is defined as follows:

α1|2(ϕL) = PL
C (AL

1 ).

The error probability exponents, called “reliabilities” of the infinite sequence of tests
ϕ, are defined respectively as follows:

EI
2|1(ϕ)

4
= lim

L→∞
− 1

L
logα2|1(ϕL),

EI
1|2(ϕ)

4
= lim

L→∞
− 1

L
logα1|2(ϕL).

As defined in [Birgé 1981] the sequence of tests ϕ∗ is called logarithmically asymp-
totically optimal (LAO) if for given positive value of EI

2|1 the maximum possible value

is provided for EI
1|2.

The procedure for creating an optimal decision rule is similar to [Haroutunian et al.
2018]. Our first result, that is the functional dependence of the reliabilities of the first
and second kind of errors is given by the following theorem.

Theorem1. For given

0 < EI
2|1 < D(PC ||PS) (5)

there exists a LAO sequence of tests, the reliability E∗,I
1|2 of which is defined as follows:

E∗,I
1|2 = E∗,I

1|2 (E
I
2|1) = inf

P : D(P ||PS)≤EI
2|1

D(P ||PC). (6)

When EI
2|1 ≥ D(PC ||PS), then E

∗,I
1|2 is equal to 0 .

Thus, for a given reliability of incorrectly rejecting the stegotext, we get the maximal
reliability of wrongly accepting the stegotext.

Comment 1: Unlike model considered in [Cachin 2004], [Haroutunian et al. 2018],
here Bob has no additional information about whether Alice is active or passive. There-
fore, considered stegosystem should not be perfectly secure, because otherwise Bob
cannot find out that he has received a covertext or a stegotext. Hence, we assume that
for distributions PC and PS , D(PC ||PS) > 0.

Comment 2. For given EI
2|1 ∈ (0, D(PC ||PS)) the following holds:

E∗,I
1|2 < D(PS ||PC).

If at the first stage Bob accepts the hypothesis H1, which means that he decides that
the data is a stegotext, then he uses the extraction algorithm to get the hidden message
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m = (m1,m2, ...,mN ).

Second stage. After the extraction using key sequence k = (k1, k2, ..., kN ) Bob has
to decide whether Eve or Alice sent him that message. So he moves on to the second
stage of hypothesis testing:

H1 : Q = PMK(m, k) {there was no attack}

H2 : Q = PM (m)PK(k) {there was attack}.

In this case the test ΦN is defined by partition of the set (M×K)N on two disjoint

subsets BN
l , l = 1, 2. The set BN

1 contains all data pairs (m,k) for which the hypothesis
H1 is adopted, which in our context means that message m is sent from Alice. Corre-
spondingly, the set BN

2 contains all pairs (m, k) for which the hypothesis H2 is adopted,
i.e. Bob decides that message is sent from Eve.

The probabilities of errors of the first and second kind by analogy to the case of the
first stage are defined as follows:

αII
2|1(ΦN ) = PN

MK(BN
2 ), (the first kind error probability)

αII
1|2(ΦN ) = (PMPK)N (BN

1 ), (the second kind error probability).

The error probability exponents of the infinite sequence of tests Φ, are defined
respectively as follows:

EII
i|j(Φ)

4
= lim

N→∞
− 1

N
logαII

i|j(ΦN ), i 6= j, i, j = 1, 2.

The second kind error probability in Bob’s decision essentially coincides with the
probability of Eve’s succeeding. Hence, the maximum value of EII

1|2 guarantees that the

attacker will fail.
As in the First Stage, for given positive value EII

2|1 we constructed the LAO sequence

of tests Φ∗ and the dependence of maximal value EII
1|2 from EII

2|1 is provided in the

following theorem.

Theorem2. For given

0 < EII
2|1 < D(PMPK ||PMK) (7)

there exists a LAO sequence of tests, the reliability E∗,II
1|2 of which is defined as follows:

E∗,II
1|2

(
EII

2|1

)
= inf

Q: D(Q||PMK)≤EII
2|1

D(Q||PMPK). (8)

When EII
2|1 ≥ D(PMPK ||PMK), then E∗,II

1|2 is equal to 0 .

Comment 3. For given EII
2|1 ∈ (0, D(PMPK ||PMK)) the following holds:

E∗,II
1|2 < D(PMK ||PMPK) = IPMK

(M ;K).



1262 HaroutunianM., Hakobyan P., Avetisyan A.: Two-Stage Optimal Hypotheses Testing ...

The proofs of the theorems are given in the appendix, the brief outline of which is the
following. Decision regions of the first and second stages, which are the disjoint subsets
of the corresponding sample spaces, are constructed by comparing the divergance of
the sample type and the distribution of the first hypothesis with the given reliability of
the first error. When divergance is less than or equal to the given reliability, the first
hypothesis is accepted, otherwise, the second hypothesis is accepted. According to the
properties of types, the optimality of such sample space divisions is substantiated and
the dependence of reliabilities is established.

5 Discussions

Obviously, by skipping the first stage of hypotheses testing, that is, using the extraction
algorithm for all the data received, Bob can gain in error probability of the first stage at
loss in time. Two questions arise.

- How much does the total error probability of the two-stage model differ from the
one-stage case?

- Is it possible to propose situations, where the total error probability of the two-stage
model is equal to the one-stage case, therefore, the gain will be in time without loss in
the error probabilities?

Let us consider the total error probabilities and exponents in two-stage approach.
First notice that αI

1|2 is not a principal error, because deciding that the data is a stegotext,

while it is a covertext, will be discovered on extracting phase and hence, this error can
be ignored.

If we denote by α2|1 the probability of Alice’s failure, i.e. that Bob erroneously
rejects the useful information sent by Alice, then

α2|1 = αII
2|1 + αI

C|S&Alice ≤ αII
2|1 + αI

2|1 ≤ 2max(αII
2|1, α

I
2|1),

where αI
C|S&Alice is the error probability when data includes message sent by Alice, but

Bob rejects it in the first stage deciding it as covertext.
For the corresponding reliability E2|1 in one-stage scenario the following inequality

takes place

E2|1 ≥ min(EII
2|1, E

I
2|1).

On the other hand
α2|1 = αII

2|1 + αI
C|S&Alice ≥ αII

2|1.

There is also one principal error probability α1|2, when accepting fake message sent
by Eve.

α1|2 = αII
1|2 + αI

1|2 = αII
1|2,

because as it was mentioned above we can ignore αI
1|2 as a not principal error.

Therefore, the overall reliability E1|2 is equal to E
II
1|2.

Thus, for E2|1 and E1|2 we have the following:

min(EII
2|1, E

I
2|1) ≤ E2|1 ≤ EII

2|1, (9)

E1|2 = EII
1|2. (10)
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Now through a pair (EI
2|1, E

II
2|1) of given reliabilities of the first and second stages,

we can make a judgement about the total reliabilities (E2|1, E1|2).
The pair of total reliabilities (E2|1, E1|2) can be also obtained by one-stage testing.

In this approach, Bob uses the extraction algorithm to get the hidden message m =
(m1,m2, ...,mN ). Оbviously the data which are covertexts, are not taken into account
during this process. This means that the error probability of the αI

C|S&Alice discussed

in the previous scenario is equal to zero. After that he performs hypotheses testing in
similar way at the second stage:

H1 : Q = PMK(m, k) {there was no attack}

H2 : Q = PM (m)PK(k) {there was attack}

For optimal testing we have

0 < E2|1 < D(PMPK ||PMK) (11)

and find optimal E∗
1|2:

E∗
1|2
(
E2|1

)
= inf

Q: D(Q||PMK)≤E2|1
D(Q||PMPK). (12)

We are interested in the situations where for the indicated reliabilities we will get the
same result with a two-stage approach as with the one-stage case. We shall show that
such cases exist.

According to (9), forEI
2|1 ≥ EII

2|1 the reliabilityE2|1 is equal toE
II
2|1. Thus, according

to (9),(10), (8) and (12), the results of two and one stage approaches are the same.
More specifically:

1. When
D(PMPK ||PMK) ≥ D(PC ||PS),

then for each
0 < EI

2|1 < D(PC ||PS)

Bob can choose the reliability EII
2|1, such that E

II
2|1 ≤ EI

2|1, satisfying this condition:

0 < EII
2|1 ≤ D(PC ||PS).

In this case the results of two-stage and one-stage approaches are the same for

E2|1 ∈
(
0, D(PC ||PS)

)
.

Under the condition D(PMPK ||PMK) ≥ D(PC ||PS) for each

D(PC ||PS) < EII
2|1 < D(PMPK ||PMK)

the reliability EII
2|1 is greater than EI

2|1, hence the total reliability of the two-stage

test E2|1 is less than the corresponding one-stage reliability (see (9)).

In this case the results of two-stage and one-stage approaches are not the same.
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2. When
D(PMPK ||PMK) ≤ D(PC ||PS),

then for each
0 < EI

2|1 < D(PC ||PS)

Bob can choose the reliability EII
2|1, such that

0 < EII
2|1 < D(PMPK ||PMK), EII

2|1 ≤ EI
2|1.

For this case the results of two and one stage approaches are the same always, because
the reliability of E2|1 for two-stage and one-stage testing stays the same (it is true
for all situations discussed above). Moreover, unlike the case 1, the changing ranges
of the corresponding reliabilities E2|1 for one-stage and two-stage testing are the
same.

For all situations discussed above, the reliabilitiesEI
1|2 of two-stage and one-stage testing

are equal. This claim is justified by considering (9), (10), (8), (11) and (12).

6 Illustration of Results

To see the behaviour of the functions obtained in Theorem 1 and Theorem 2, here we
consider simple examples with illustrations.

Consider the binary set X and the following distorions are given on X :

PC = {0.2, 0.8}, PS = {0.35, 0.65}.

The values of the following divergences are:

D(PC ||PS) ≈ 0.005419, D(PS ||PC) ≈ 0.00609.

On Fig. 3 the function E∗,I
1|2 (E

I
2|1) (6) is presented. Here (see (5) ),

0 < EI
2|1 < 0.005419.

For the values EI
2|1 ≥ 0.005419 the reliability E∗,I

1|2 equals 0.

Now let the distribution PMK on the setM×K is given by the following matrix

PMK =

(
0.1, 0.2
0.3 0.4

)
.

Then from the joint distribution PMK we find

PM = (0.3, 0.7), PK = (0.4, 0.6).

The values of the divergences are:

D(PMPK ||PMK) ≈ 0.004088, D(PMK ||PMPK) ≈ 0.004022.
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Figure 3: The dependence of reliabilities for the first stage of LAO test.

Figure 4: The dependence of reliabilities for the second stage of LAO test.

On Fig. 4 the dependence of reliabilities E∗,II
1|2 (EII

2|1) of the second stage obtained in
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Theorem 2 (see (8), (7)) is presented. As we see, when

0 < EII
2|1 < 0.004088

then
0 < E∗,II

1|2 (EII
2|1) < 0.004022.

In the case of one-stage approach the illustration of dependence of the reliabilities
E2|1 and E

∗
1|2 is similar to Fig. 4.

From two-stage testing we can get the same result for total reliabilities E2|1 and

E1|2, if for every EI
2|1 ∈

(
0, 0.005419

)
Bob will choose EII

2|1 ∈
(
0, 0.004088

)
, such

that EII
2|1 ≤ EI

2|1, and vice versa, for every E
II
2|1 ∈

(
0, 0.004088

)
Bob can find EI

2|1 ∈(
0, 0.005419

)
, such that EII

2|1 ≤ EI
2|1. According to case 2, the scatter plot of all pairs

(E2|1, E1|2) will have an image like Fig. 4.

7 Conclusions

Two-stage statistical hypothesis testing approach from the receivers point of view in
the stegosystem with active adversary is considered. The logarithmically asymptotically
optimal testing for this model is analyzed. As a result the functional dependence of
reliabilities of the first and second kind of errors in both stages is constructed. The
advantages of the two-stage approach are discussed. The elaboration on behavior of
derived exponents justifies the theoretical viability of the proposed framework.

In our future work, we will consider using this research to create an e-voting model
with added security.

APPENDIX

The proof of Theorem 1.

The proof of the theorem is carried out in the following steps. First we show that for
a given number EI

2|1 we can construct a test. And at the second part, we prove that the

constructed test is LAO. Let us consider the following subsets of XL:

BL
1 =

⋃
Px: D(Px||PS)≤EI

2|1

T L
Px
(X),

BL
2 =

⋃
Px: D(Px||PS)>EI

2|1

T L
Px
(X).

We want to prove, that this division for given EI
2|1 determines a test ϕ∗

L. Thus, we

are going to validate, that

1. XL = BL
1 ∪ BL

2 ;

2. BL
1 ∩ BL

2 = ∅;
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3. α2|1(ϕ
∗
L) ≈2−LEI

2|1

The proof of the fist and the second claims are obvious.
Let us prove the third claim, i.e. given EI

2|1 is the reliability of error probability

α2|1(ϕ
∗
L) of tests ϕ

∗
L.

For the proofs we use the known properties of types [Csiszár 1998]:
if x ∈ T L

Px
(X), then

PL(x) = exp{−L(HPx
(X) +D(Px||P ))}. (13)

(L+ 1)−|X| exp{−LD(Px||P )} ≤ PL(T L
Px
(X)) ≤ exp{−LD(Px||P )}. (14)

According to (1), (3) and (14), we can estimate αI
2|1(ϕ

∗
L) by the following way:

α2|1(ϕ
∗
L) = PL

S

(
BL
2

)
= PL

S

 ⋃
Px:D(Px||PS)>EI

2|1

T L
Px
(X)


≤ (L+ 1)|X | sup

Px:D(Px||PS)>EI
2|1

PL
S

(
T L
Px
(X)

)

≤ (L+ 1)|X | sup
Px:D(Px||PS)>EI

2|1

exp{−LD(Px||PS)}

≤ exp
{
−L

[
E2|1 − oL(1)

]}
,

where oL(1) → 0 when L → ∞. From the definition of the reliability we get the claim
3.

Now let us prove (6), for which the first we need to estimate second error probability
α1|2(ϕ

∗
L).

Using (1), (2) and (14) for this case we obtain:

α1|2(ϕ
∗
L) = PL

C

(
BL
1

)

= PL
C

 ⋃
Px:D(Px||PS)≤EI

2|1

T L
Px
(X)


≤ (L+ 1)|X | sup

Px:D(Px||PS)≤EI
2|1

PL
C

(
T L
Px
(X)

)
(15)

≤ (L+ 1)|X | sup
Px:D(Px||PS)≤EI

2|1

exp {−LD(Px||PC)}
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= exp

{
−L

(
inf

Px:D(Px||PS)≤EI
2|1

D(Px||PC)− oL(1)

)}
.

Moreover, we can prove the inverse inequality:

α1|2(ϕ
∗
L) = PL

C

(
BL
1

)

= PL
C

 ⋃
Px:D(Px||PS)≤EI

2|1

T L
Px
(X)


≥ sup

Px:D(Px||PS)≤EI
2|1

PL
C (T L

Px
(X)) (16)

≥ (L+ 1)−|X| sup
Px:D(Px||PS)≤EI

2|1

exp{−LD(Px||PC)}

= exp

{
−L

(
inf

Px:D(Px||PS)≤EI
2|1

D(Px||PC) + oL(1)

)}
.

Taking into account (15), (16), and the continuity of the functions D(Px||PC) and
D(Px||PS) we get that lim

L→∞
−L−1 logα1|2(ϕ

∗
L) exists:

lim
L→∞

− 1

L
logα1|2(ϕ

∗
L) = inf

P :D(P ||PS)≤EI
2|1

D(P ||PC).

On the other hand,

lim
L→∞

− 1

L
logα1|2(ϕ

∗
L) = EI

1|2(ϕ
∗)

4
= E∗,I

1|2 .

This means that for given EI
1|2 there exists ϕ

∗ test, for which

E∗,I
1|2 = E∗,I

1|2 (E
I
2|1) = inf

P :D(P ||PS)≤EI
2|1

D(P ||PC).

The proof of the first part of Theorem 1 will be accomplished if we demonstrate that
the sequence of the test ϕ∗ is LAO, that is for given EI

2|1 and every sequence of tests ϕ

EI
1|2(ϕ) ≤ E∗,I

1|2 takes place.

Let us consider any other sequence ϕ∗∗ of tests which for given EI
2|1 is defined

by partition of XL to disjoint subsets DL
1 and DL

2 such that E1|2(ϕ
∗∗) ≥ E∗,I

1|2 . This

condition is equivalent to the inequality

α1|2(ϕ
∗∗
L ) ≤ α1|2(ϕ

∗
L) (17)
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for L large enough.
Let us show that DL

2

⋂
BL
1 = ∅. If DL

2

⋂
BL
1 6= ∅, then there exists P ′

x such that

D(P ′
x||PS) ≤ EI

2|1 and T
L
P ′
x
(X) ∈ DL

2 from which it follows that

α2|1(ϕ
∗∗
L ) = PN

S (DL
2 ) ≥ PL

S (T N
P ′
x
(X)) ≥ exp

{
−L

[
EI

2|1 + oL(1)
]}

.

From DL
1

⋃
DL

2 = XL, DL
1

⋂
DL

2 = ∅ and DL
2

⋂
BL
1 = ∅, follows that BL

1 ⊆ DL
1 .

If BL
1 ⊂ DL

1 , then we have that α1|2(ϕ
∗∗
L ) ≥ α1|2(ϕ

∗
L), which contradicts to (17). Hence

DL
1 = BL

1 , as well as DL
2 = BL

2 . It is the same that ϕ∗∗ = ϕ∗.
The proof of the second part of the Theorem 1 is simple. Really, ifE2|1 ≥ D(PC ||PS),

then from (6) follows that E∗,I
1|2 is equal to 0.

The theorem is proved.

The Proof of Theorem 2.

The optimal division of the set (M×K)N is constructed in the following way.

BN
1 =

⋃
Qm,k: D(Qm,k||PMK)≤EII

2|1

T N
Qm,k

(M,K),

BN
2 =

⋃
Qm,k: D(Qm,k||PS)>EII

2|1

T N
Qm,k

(M,K).

We must prove, that this division for given EII
2|1 determines a test Φ∗

N .

The following equalities take place for (m,k) = [(m1, k1), (m2, k2), ..., (mN , kN )],
(m,k) ∈ T N

Qm,k
(M,K)

PN
MPN

K (m,k) = exp
{
−N

[
D(Qm,k||PMPK) +HQm,k(M,K)

]}
, (18)

and

PN
MK(m,k) = exp

{
−N

[
D(Qm,k||PMK) +HQm,k

(M,K)
]}

. (19)

Using (2), (4) and (19) we will get the estimation of the first kind error probability
αI
2|1(ϕ

∗
L):

α2|1(Φ
∗
N ) = PN

MK

(
BN
2

)
= PN

MK

 ⋃
Qm,k:D(Qm,k||PMK)>EII

2|1

T N
Qm,k

(M,K)


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≤ (N + 1)|M||K| sup
Qm,k:D(Qm,k||PMK)>EII

2|1

PN
MK

(
T N
Qm,k

(M,K)
)

= (N + 1)|M||K| sup
Qm,k:D(Qm,k||PMK)>EII

2|1

exp
{
−ND(Qm,k||PMK)

}

≤ exp
{
−N

[
EII

2|1 − oN (1)
]}

,

where oN (1) → 0 when N → ∞.
Now let us consider the second kind error probability. Using (2), (4) and (18) we can

find the lower and the upper bounds of the second kind error probability α1|2(Φ
∗
N ).

The following inequality gives the upper bound:

α1|2(Φ
∗
N ) = PN

MPN
K

(
BN
1

)

= PMPK

 ⋃
Qm,k:D(Qm,k||PMK)≤EII

2|1

T N
Qm,k

(M,K)


≤ (N + 1)|M||K| sup

Qm,k:D(Qm,k||PMK)≤EII
2|1

PMPK

(
T N
Qm,k

(M,K)
)

(20)

≤ exp

{
−N

[
inf

Qm,k: D(Qm,k||PMK)≤EII
2|1

D(Qm,k||PMPK)− oN (1)

]}
.

The lower bound is:

α1|2(Φ
∗
N ) = PN

MK

(
BN
1

)
= PMPK

 ⋃
Qm,k:D(Qm,k||PMK)≤EII

2|1

T N
Qm,k

(M,K)


≥ sup

Qm,k:D(Qm,k||PMK)≤EII
2|1

PMPK

(
T N
Qm,k

(M,K)
)

(21)

≥ (N + 1)−|M||K| sup
Qm,k:D(Qm,k||PMK)≤E2|1

exp{−ND(Qm,k||PMK)

≥ exp

{
−N

[
inf

Qm,k: D(Qm,k||PMK)≤EII
2|1

D(Qm,k||PMPK) + oN (1)

]}
.

According to (20), (21), the definition of reliability and the continuity of the diver-
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gence function we get

EII
1|2(Φ

∗
N )

4
= E∗,II

1|2 = inf
Q: D(Q||PMK)≤EII

2|1

D(Q||PMPK).

The proof of the optimality of the test Φ∗ is similar to the proof of Theorem 1.
The theorem is proved.
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