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Abstract: This paper outlines and proposes a new approach to cyber attack detection
on the basis of the practical application of the efficient lifelong learning cybersecurity
system. One of the main difficulties in machine learning is to build intelligent systems
that are capable of learning sequential tasks and then to transfer knowledge from a
previously learnt foundation to learn new tasks. Such capability is termed as Lifelong
Machine Learning (LML) or as Lifelong Learning Intelligent Systems (LLIS). This kind
of solution would promptly address the current problems in the cybersecurity domain,
where each new cyber attack can be considered as a new task. Our approach is an
extension of the Efficient Lifelong Learning (ELLA) framework. Hereby, we propose
the new B-ELLA (Balanced ELLA) framework to detect cyber attacks and to counter
the problem of network data imbalance. Our proposition is evaluated on a malware
benchmark dataset and we achieve promising results.
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1 Introduction

Network and information security are now one of the most pressing problems

of homeland security, as they affect the economy, citizens, and whole societies

directly. It is universally observed that the number of successful attacks on infor-

mation, civilians, even seemingly secure financial systems and most importantly

critical infrastructures [Kozik et al., 2015] is still growing [Kozik et al., 2016,

Choraś et al., 2016]. One of the reasons lies in the inefficiency of signature-

based approaches to detect cyber attacks. In situations, where new attacks
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(or even slightly modified families of malware) emerge continuously, the stan-

dard protection systems are not adequate until the new signatures are cre-

ated [Choraś et al., 2013]. On the other hand, anomaly-based approaches (sys-

tems which detect abnormalities in traffic, e.g. abnormal requests to databases)

[Andrysiak et al., 2014, Saganowski et al., 2013] tend to produce false positives

(false alarms).

Therefore, our objective is to address the demand of developing a system

that does not need to return to the previously learnt knowledge or data (e.g. in

previous generations or learning phases) since the knowledge would be already

preserved, encoded and embedded in the trained components. Such a capabil-

ity of intelligent systems (called lifelong machine learning) is currently vital in

cybersecurity, where each new cyber attack type can be considered as a new

task.

In our previous related papers, we have only presented the concept (without

the initial results) of applying a lifelong learning intelligent system (LLIS) to

cybersecurity [Choraś et al., 2017], and we have pondered the data imbalance

problems [Kozik and Choraś, 2016]. It is our firm belief that lifelong machine

learning systems can overcome the limitations of statistical learning algorithms

which need immense numbers of training examples and are suitable for isolated

single-task learning [Chen and Liu, 2016].

In the current work we propose, implement and evaluate the practical solu-

tion. We present the practical application of the lifelong learning approach to

cyber attack detection and a practical solution to the data imbalance problem.

The major contribution of this paper is our extension of the ELLA framework

[Ruvolo and Eaton, 2013] to detect cyber attacks and cope with the problem

of data imbalance (hereby termed as B-ELLA). Moreover, we evaluated our

solution, termed B-ELLA, and we report the promising results.

The original ELLA framework allows for building and maintaining a sparsely

shared basis for task models (so-called base classifiers). In the context of a mal-

ware detection problem, as considered in this paper, this basis can be perceived

as patterns of behaviour that build up more complex behavioural models. The

sparsity encourages knowledge transfers, which means that certain patterns can

be shared among tasks. More precisely the detection model is composed as a lin-

ear combination of sparse vectors maintained on the shared basis. Thanks to the

ELLA framework these vectors are constantly updated and used to approximate

the base classifiers parameters.

The remainder of the paper is organized as follows: in Section 2 the state of

the art in lifelong learning intelligent systems is presented. Section 3 contains the

description of the new proposed lifelong learning B-ELLA approach for cyberse-

curity, while in Section 4 the results obtained on malware datasets are presented

and discussed. Section 4 also contains a short description of the known ELLA
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framework. Conclusions are provided afterwards.

2 Overview of Lifelong Learning Intelligent Systems (LLIS)

Originally, lifelong learning was established as a sequence of learning tasks that

need to be solved using the knowledge previously acquired and stored in classi-

fiers that have already learnt [Chen and Liu, 2015]. According to

[Pentina and Lampert, 2015] and [Pentina and Lampert, 2014], theoretical con-

siderations on lifelong learning are relatively widely described in the literature,

in particular in the light of the growing popularity of machine learning ap-

proaches and applications. However, scientific communities usually put more

attention to aspects of learning based on well-known knowledge domains and

well-labeled training datasets, while approaches to lifelong learning (or learning

to learn) without observed data, e.g. to perform new, unforeseen tasks are not

yet very popular. In [Baxter, 2000], one of the first attempts to describe the

model of lifelong learning can be found. The author introduced a formal model

called inductive bias learning, that can be applied when the learner is able to

distinguish novel tasks drawn from multiple, related tasks from the same en-

vironment. Those considerations focused only on the finite-dimensional output

spaces, and mainly on linear machines rather than nonlinear ones, in contrary

to [Maurer, 2005], additionally extending earlier research with algorithmic sta-

bility aspects. In [Balcan et al., 2015], an approach to the problem of learning

a number of different target functions over time is introduced, with assump-

tions that they are initially unknown for the learning system and that they

share commonalities. Different approaches to solve this sequence of tasks in-

clude transfer learning [Segev et al., 2017], multitask learning, supervised, semi-

supervised, reinforcement learning [Ammar et al., 2015], and unsupervised tech-

niques. There are also works defining strong theoretical foundations for life-

long machine learning concepts. Particularly, in [Pentina and Lampert, 2014]

authors worked on a PAC-Bayesian generalization bound applied for lifelong

learning allowing quantification of relation between expected losses in future

learning tasks and average losses in already observed (learnt) tasks. The bulk

of approaches so far assume that the problem representation is not changing,

(i.e. the feature space). It is a common method in classical event correlation

based solutions [Choraś and Kozik, 2011, Choraś et al., 2011]. However, recent

works increasingly consider that also the underlying feature space can fluctu-

ate. To overcome those challenges, solutions such as changing kernels for feature

extraction [Qiu and Sapiro, 2015], changing latent topics [Chen and Liu, 2014],

or the underlying manifold in manifold learning [Yang and Crawford, 2016a,

Yang and Crawford, 2016b] are proposed. The Hybrid Intelligent Systems [?]

paradigm naturally addresses all the challenges of lifelong machine learning such

as learning new tasks while preserving the knowledge of the preceding ones. In
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fact, classifier ensemble management resembles some of the algorithms proposed

for lifelong learning. For example, a critical aspect of the lifelong learning sys-

tems is the ability to detect the task shift, which is quite similar to concept drift

detection [Widmer and Kubat, 1996], and can be tackled by hyper-heuristics

[Sim et al., 2015]. To deal with debatable cases in ensemble learning and to in-

crease transparency in such debatable decisions, our hypothesis is that argu-

mentation could be more effective than current resolution methods. Moreover,

recent work on hybrid classifiers has demonstrated promising results of using an

argumentation-based conflict resolution instead of voting-based methods for de-

batable cases in ensemble learning [Conţiu and Groza, 2016], showing that the

hybridization of ensemble learning and argumentation fits the decision patterns

of human agents.

In the next section, we propose the practical application of a lifelong learning

framework to solve cybersecurity problems such as intrusion, anomalies, and

cyber attack detection.

3 B-ELLA (Balanced ELLA) - the practical application of
lifelong learning to cybersecurity

The concept of a task appears in many formal definitions of lifelong machine

learning models [Pentina and Lampert, 2015]. For example, when considering

telecommunication network monitoring for cyber security purposes, it is often

difficult to distinguish when a particular task finishes and the subsequent one

starts, i.e. when a different family of attacks has started. Therefore, the lifelong

learning approach fits very well with the reality in the cybersecurity domain.

In practice, while designing and developing intelligent systems for anomaly

and cyber threats detection one can draw the following conclusions:

– When it comes to the cybersecurity and cyber-attacks detection, there is no

single classifier or IDS system that will allow the recognition of all kinds

of attacks. Likewise, the same system (even if it learnt to detect the same

type of attacks) has to be learnt again when changing the monitored net-

work (topology, services, characteristics etc.). In that regards, we will need

a transfer learning mechanism that will allow us to learn to detect attack B

from knowledge acquired for attack A.

– There is an overlap of knowledge that an intelligent and adaptive system

will need to be aware of. One can leverage this both to facilitate learning

of new tasks and improving the effectiveness when executing the old ones.

Using the cybersecurity example again, an IDS learnt in one network will

use already established knowledge to detect attacks in another new network

in a more accurate way (than without the lifelong learning approach).
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In the following subsections, we present our approach to feature extraction,

we discuss the previously conclusively proved ELLA framework, and we present

our extension called Balanced-ELLA (B-ELLA).

3.1 Feature Extraction

The data acquired by the system has the form of NetFlows. NetFlow is a stan-

dardised format for describing bi-directional communication and contains infor-

mation such as IP source and destination address, destination port, and the

amount of the exchanged bytes.

It must also be noted that we do not address the problem of a realistic

testbed infrastructure. The reason is that we have decided to evaluate the ef-

fectiveness of the proposed algorithms using the standard benchmark CTU-13

[Garcia et al., 2014] dataset, and we have followed the experimental setup of its

authors in order to methodologically compare our results.

The CTU-13 dataset contains different scenarios representing different infec-

tions and malware communication schemes with a command and control centre.

A single NetFlow usually does not provide enough evidence to decide if a

particular machine is infected, or if a particular request has malicious symptoms.

Therefore, it is quite common [Garcia et al., 2014][Garcıa, 2014] for NetFlows to

be aggregated into so-called time windows so that more contextual data can be

extracted and malicious behaviour recorded (e.g. port scanning, packet flooding

effects, etc.). In such approaches, various statistics are extracted for each time

window.

The comprehensive overview of the feature extraction pipeline is presented

in Fig.1. In general, the proposed feature extraction method aggregates the Net-

Flows within each time window. For each time window, we group the NetFlows

by the IP source address. For each group (containing Netflows with the same

time window and IP source address) we calculate the following statistics:

– number of flows

– sum of transferred bytes

– average sum of bytes per NetFlow

– average communication time with each unique IP address

– number of unique destination IP addresses

– number of unique destination ports

– most frequently used protocol (e.g. TCP, UDP).

6 Kozik R., Choras M., Keller J.: Balanced Efficient Lifelong Learning ...



7Kozik R., Choras M., Keller J.: Balanced Efficient Lifelong Learning ...



where λ and µ are the regularization coefficients. However, to reduce the com-

plexity related to the outer summation (over the number of training tasks T ) the

authors of the framework proposed to optimise s(t) only when training on task

t. Moreover, the inner summation is approximated with the second order Taylor

expansion around the optimal single task model. Therefore, the final objective

function is defined as:

g(L) =
1

T

T
∑

t=1

min
s(t)

{

1

nt

‖θ(t) − Ls(t)‖2
D(t) + µ‖s(t)‖1

}

+ λ‖L‖22 (2)

where θ(t) = min
θ

1
nt

∑nt

i
L
(

f(x
(t)
i
; θ), y

(t)
i

)

is the optimal single task model and

D(t) is the Hessian of the loss function evaluated at θ(t). The optimisation process

of the ELLA framework has the following steps:

1. Using the base learner, optimal model parameters θ(t) are calculated for a

task t.

2. Using the current basis L the model parameter vector θ(t) is reconstructed

in the way that θ(t) = Ls(t), where

s(t) = arg min
s(t)

(

µ‖s(t)‖1 + ‖θ(t) − Ls(t)‖2
D(t)

)

(3)

3. The updated matrix Lnew is calculated using the s(t) from a previous step,

solving the convex optimisation problem:

Lnew = arg min
L

(

λ‖L‖22 +
1

T

T
∑

1

(‖θ(t) − Ls(t)‖2
D(t)

)

(4)

From the optimisation point of view the formula (4) can be solved using

LASSO (Least Absolute Shrinkage and Selection Operator) regression method.

On the other hand, to find the optimal L one can first null the gradient and

obtain the following formula:

λL+
1

T

T
∑

1

D(t)
(

θ(t) − Ls(t)
)

s(t)
T

= 0 (5)

It can be shown that this is a special case of linear matrix equation of form

AXB = C,

B = λI +
1

T

T
∑

1

D(t)s(t)s(t)
T

(6)

and the constant C is equal to:
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C =
1

T

T
∑

1

D(t)θ(t)s(t)
T

(7)

We can use the Kronecker product notation and the vectorisation (vec) operator

to rewrite the equation. The vec operator indicates the vectorization of a matrix,

which is a linear transformation converting the matrix into a column vector.

Therefore, the equation can be rewritten as:

(BT ⊗A)vec(x) = vec(C) (8)

which has a closed-form solution in the form H−1b, where

H = λI +
1

T

T
∑

1

(

s(t)s(t)
T
)

⊗D(t) (9)

and

b =
1

T

T
∑

1

vec
(

s(t)
T

⊗
(

θ(t)D(t)
))

(10)

The original ELLA framework considers two type of base learners algorithms,

namely logistic regression and linear classifier. These have been chosen mainly

due to the closed-form formula for Hessian matrix calculation.

3.3 Data Imbalance

The problem of data imbalance has recently been thoroughly studied

[Kozik and Choraś, 2016, Wozniak, 2013] in the areas of machine learning and

data mining. In many cases, this problem negatively impacts the machine learn-

ing algorithms and deteriorates the effectiveness of the classifier. Typically, clas-

sifiers in such cases will achieve higher predictive accuracy for the majority class,

but poorer predictive accuracy for the minority class.

This phenomenon is caused by the fact that the classifier will tend to bias

towards the majority class. Therefore, the challenge here is to retain the clas-

sification effectiveness even if the proportion of class labels is not equal. The

imbalance of labels for the case of cyber security is significant. We may expect

that only a few machines in the network will be infected and produce mali-

cious traffic, while the majority will behave normally. In other words, most data

contains clean traffic, while only a few data samples indicate malware.

The solutions for solving such a problem can be categorised as data-related

and algorithm-related. The methods belonging to the data-related category use

data over-sampling and under-sampling techniques, while the algorithm-related

approaches introduce a modification to training procedures. This group can be

further classified into categories using cost-sensitive classification (e.g. assigning
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a higher cost to majority class) or methods that use different performance metrics

(e.g. Kappa metric).

In this paper we have used cost-sensitive learning as an effective solution for

class-imbalance in large-scale settings. The procedure can be expressed with the

following optimisation formula:

θ̂ = min
θ

{

1

2
||θ||2 +

1

2

N
∑

i=1

Ci||ei||
2

}

(11)

where θ indicates the classifier parameters, ei the error in the classifier response

for the i-th (out of N) data samples, and Ci the importance of the i-th data

sample. In cost-sensitive learning, the idea is to give a higher importance to the

minority class, so that the bias towards the majority class is reduced.

The original ELLA framework is designed to handle two types of machine

learning algorithms, namely logistic regression or linear classifier. In this paper

we have adapted the linear classifier. Therefore, the optimisation formula can be

expressed using a matrix notation, as it is presented below:

θ̂ = min
θ

{

(Y −Xθ)TC(Y −Xθ) + λ||θ||2
}

(12)

Setting the gradient to zero, it is easy to show that the closed form formula

for finding the optimal θ is:

θ̂ =

(

I

λ
+XTCX

)

−1

XTCY (13)

Therefore, the Hessian matrix for a weighted linear classifier will also have a

closed-form solution XTCX.

4 Experiments

For the evaluation, we have used the CTU-13 dataset [Garcia et al., 2014] and

the same experimental setup as its authors (to be able to compare our results).

This dataset includes different scenarios which represent various types of attacks

including several types of botnets. Each of these scenarios contain collected traffic

in the form of NetFlows. The data were collected to create a realistic testbed.

Each of the scenarios has been recorded in a separate file as a NetFlow using

CSV notation. Each of the rows in a file has the following attributes (columns):

– StartTime - Start time of the recorded NetFlow,

– Dur - Duration,

– Proto - IP protocol (e.g. UTP, TCP),
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– SrcAddr - Source address,

– Sport - Source port,

– Dir - Direction of the recorded communication,

– DstAddr - Destination Address,

– Dport - Destination Port,

– State - Protocol state,

– sTos - Source type of service,

– dTos - Destination type of service,

– TotPkts - Total number of packets that have been exchanged between source

and destination,

– TotBytes - Total bytes exchanged,

– SrcBytes - Number of bytes sent by source,

– Label - label assigned to this NetFlow (e.g. Background, Normal, Botnet)

It must be noted that the ”Label” field is an additional attribute provided

by the authors of the dataset. Normally, the NetFlow will have 14 attributes and

the ”Label” will be assigned by the classifier.

Before using the B-ELLA framework to train the base classifiers, the raw

NetFlows are processed in order to produce feature vectors. The procedure is

detailed in Section 3.1. The procedure for calculating metrics is as follows:

1. NetFlows are separated into comparison time windows (we have used default

time windows of 300s length).

2. Within the ground-truth NetFlow, labels are examined against the predicted

ones and the tTP, tTN, tFP and tFN values (true and false positives and

negatives) are amassed.

3. Recall, Precision, Accuracy, Error Rate and F-measure are estimated at the

conclusion of each comparison time window.

4. Finally, when the whole file with NetFlows is processed, the final error met-

rics are calculated and produced.

Each time the algorithm spots a Botnet IP address in the comparison time

window correctly, the True Positive counter value is raised. Likewise, a Normal

IP address evaluated as a Not-Botnet address increments the True Negative
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Table 1: Effectiveness of compared methods

Compared Detection False Positive Accuracy

Methods Ratio Ratio

Balanced ELLA 0.809 ± 0.093 0.017 ± 0.002 0.896 ± 0.046

Balanced STL 0.745 ± 0.104 0.034 ± 0.001 0.856 ± 0.052

Imbalanced ELLA 0.250 ± 0.121 0.000 ± 0.000 0.625 ± 0.061

Imbalanced STL 0.002 ± 0.018 0.000 ± 0.0001 0.501 ± 0.009

result. Each occurrence of a benign IP classified as a Botnet address increments

the False Positive value. At every instance of a Botnet IP judged as Non-Botnet

the False Negative counter is raised.

Each of the scenarios in the CTU dataset is considered as a separate task.

For the evaluation purposes, we have generated 10 random splits of the dataset

in order to produce training and test datasets.

The test environment we have used for experiments consisted of two machines

equiped with 24GB of RAM and 8 CPU cores. To calculate features described in

3.1 we have used Apache Spark. The ELLA algorithm runs as a python program

on one of these machines.

5 Results

The experimental results are presented in Tables 1 and 2. Table 1 contains

the comparison of results obtained with the B-ELLA algorithm, balanced single

task learner algorithm (STL), the original imbalanced ELLA algorithm, and

imbalanced STL algorithm. The results show that balancing the base classifier

embedded within the ELLA framework yields great improvements over the other

evaluated methods.

In Table 2 we have presented the effectiveness of B-ELLA at a single task

level. The average detection ratio is 80%, while the ratio of false positives

(alarms) is less than 1%. As presented in Tables 1 and 2, the achieved results

are very promising and motivate further work on both balanced lifelong learning

systems (B-ELLA) and their application to cybersecurity.

6 Conclusions

In this paper, we have presented the new B-ELLA framework for cyber attack

detection, where B-ELLA stands for Balanced Efficient Lifelong Learning. Our

contributions are as follows: we proposed the extension of the conclusively proved

ELLA framework to address the problem of data imbalance. Moreover, we pre-

sented an innovative practical implementation of the concept of lifelong learning
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Table 2: Balanced ELLA: per-task effectiveness

Task Detection False Positive Accuracy

Ratio Ratio

1 0.400 ± 0.291 0.025 ± 0.003 0.688 ± 0.145

2 0.300 ± 0.085 0.027 ± 0.000 0.636 ± 0.042

3 0.800 ± 0.245 0.040 ± 0.002 0.880 ± 0.122

4 0.944 ± 0.045 0.015 ± 0.004 0.964 ± 0.022

5 0.960 ± 0.080 0.003 ± 0.002 0.978 ± 0.039

6 0.839 ± 0.072 0.001 ± 0.000 0.919 ± 0.036

7 1.000 ± 0.000 0.010 ± 0.001 0.995 ± 0.000

8 0.988 ± 0.025 0.007 ± 0.000 0.990 ± 0.013

9 0.862 ± 0.096 0.037 ± 0.001 0.912 ± 0.048

10 1.000 ± 0.000 0.008 ± 0.005 0.996 ± 0.003

Average 0.809 ± 0.093 0.008 ± 0.005 0.996 ± 0.003

to cyber attacks (malware) detection. We conducted experiments on a standard

dataset with standard evaluation scenarios, and the achieved results demonstrate

the efficiency of our approach.
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