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Abstract: The literature presents several auto-tunning systems for compiler optimiza-
tions, which employ a variety of techniques; however, most systems do not explore the
premise that a large amount of program runtime is spent by hot functions which are
the portions at which compiler optimizations will provide the greatest benefit. In this
paper, we propose Pinh~ao, an auto-tunning system for compiler optimizations that uses
hot functions to guide the process of exploring which compiler optimizations should be
enabled during target code generation. Pinh~ao employs a hybrid technique – a machine
learning technique, as well as an iterative compilation technique – to find an effective
compiler optimization sequence that fits the characteristics of the unseen program.
We implemented Pinh~ao as a LLVM tool, and the experimental results indicate that
Pinh~ao finds effective sequences evaluating a few points in the search space. Further-
more, Pinh~ao outperforms the well-engineered compiler optimization levels, as well as
other techniques.
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1 Introduction

Modern compilers [Cooper and Torczon, 2011] provide several optimizations

(code transformations) [Muchnick, 1997], which can be turned on or off during

target code generation, to improve the target code quality; however, it is a diffi-

cult task to discover what optimizations should be turned on or off. To address

this issue, modern compilers provide several compiler optimization sequences1,

known as compiler optimization levels.

The first-generation auto-tunning systems, whose goal is to find an effec-

tive sequence2, employ the technique known as iterative compilation

[Park et al., 2011, Purini and Jain, 2013]. This means that such systems evalu-

ate3 several sequences, and return the best target code. Due to the diversity of

possible sequences, these systems tries to cover the search space selectively.

1 Compiler optimization sequence will be cited as sequence.
2 An effective sequence is a sequence that when enabled during target code generation
provides performance concerning the the desired goal – for example, to reduce the
runtime – surpassing a threshold.

3 Evaluating a sequence means compiling a program using this sequence and measuring
its runtime.
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The second-generation auto-tunning systems employ machine learning tech-

niques [Agakov et al., 2006, Cavazos et al., 2007, Kulkarni and Cavazos, 2012],

in order to minimize the number of sequences evaluated. In such systems, the

goal is to learn from past experiences and so using these experiences to find an

effective sequence.

Although, it is known that a large amount of program runtime is spent in

hot functions, neither iterative compilation nor machine learning techniques,

presented in the literature, take into account such functions to guide the process

of exploring sequences. In fact, hot functions are the portions at which compiler

optimizations will provide the greatest benefit.

In this paper, we propose an auto-tunning system for compiler optimizations,

called Pinh~ao4, which takes into account hot functions.

The motivation in developing Pinh~ao is based on three premises. First, it is

possible to find similar patterns among programs, which give important insights

for exploring potential sequences. Second, similar programs react approximately

equal, when they are compiled using the same sequence. Third, hot functions can

provide important insights at which sequence the code generator should enable.

Pinh~ao is classified as a hybrid technique, because it employs a machine

learning technique, as well as an iterative compilation technique. Employing a

machine learning technique indicates that Pinh~ao tries to solve a new problem

using a solution of an previous similar problem. Basically, training and test

programs are represented by feature vectors in a multidimensional space and

a similarity model operates in this space trying to find similar points, which

indicates similar patterns that should be exploited.

It is possible that previous solutions do not fit the requirements of new prob-

lems. In other words, the characteristics of a previously-compiled program do

not fit the characteristics of the new program. Thus, by employing an iterative

compilation technique Pinh~ao tries to find an effective sequence, if the machine

learning technique fails.

We implemented Pinh~ao as a tool of LLVM infrastructure [LLVM Team, 2016],

and evaluated Pinh~ao on different configurations. The experimental results in-

dicate that Pinh~ao surpasses the performance obtained by the well-engineered

compiler optimization levels, as well as other techniques.

The rest of this paper is organized as follows. Section 2 details our auto-

tunning system, Pinh~ao. As Pinh~ao relies on a database of previously-generated

sequences, Section 3 describes how we created this database. Section 4 describes

the experimental setup and the methodology used in the experiments, which

is followed by the experimental results in Section 5. In Section 6 we survey

some related work. Finally, Section 7 summarizes this paper and provides some

4 Pinhão is the seed of Araucaria angustifolia, a tree of great importance in the south-
ern and southeastern regions of Brazil.
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insights for future work.

2 Pinhão: An Auto-tunning System for Compiler

Optimizations

During compilation, the compiler applies several optimizations to improve the

target code quality; however, some optimizations can be useful to a specific

program, but not to another. Thus, the most appropriate approach is to choose

optimizations considering that it is a program-dependent problem. To address

this problem, this section presents Pinhão, an auto-tunning system for compiler

optimizations guided by hot functions.

Figure 1 depicts Pinh~ao’s workflow.

Figure 1: Workflow for Finding a Sequence

First, Pinh~ao extracts the program’s hottest function, which will be repre-

sented by a symbolic representation, similar to a DNA. This DNA will be aligned

with the previously-generated DNAs storage in a database, in order to find sim-

ilar previously-compiled programs. In the following step, Pinh~ao extracts from

the database N sequences. At this point, Pinh~ao invokes the code generating

system to evaluate such sequences. Which means that Pinh~ao will compile the

whole test program using each one of the N sequences, and measure the perfor-

mance (runtime) of each target code. After generating the target code, Pinh~ao

either returns the best target code or invokes an iterative compiler. Invoking an
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Iterative Compiler (IC) is an optional step, and it is performed if and only

if the performance of the target code is not better than a threshold (the perfor-

mance of LLVM compiler optimization levels). Finally, the last step is to update

the database with new knowledge.

Pinh~ao tries to find similar patterns among programs focusing on which

compiler optimizations will provide the greatest benefit when applied to hot

functions. In fact, Pinh~ao can focus on only one or several hot functions. It

is important to note that a program generally consists of several source codes

(modules); therefore each one has its hot function. If Pinh~ao is not able to find

an effective sequence after evaluating hot functions, it may call the Iterative

Compiler. We describe below the four possible different behaviours:

1. Pinh~ao.H: this configuration inspects only one hot function: the program’s

hottest function. The whole program will be compiled using the sequence

that fits the characteristics of its hottest function. It does not invoke the IC.

2. Pinh~ao.MH: this configuration inspects several hot functions. Each module is

compiled using the sequence that fits the characteristics of its hot function.

In addition, it turns off the IC.

3. Pinh~ao.H+IC: this configuration is similar to Pinh~ao.H, except that it turns

on the IC.

4. Pinh~ao.MH+IC: this configuration is similar to Pinh~ao.MH, except that it

turns on the IC.

The two first configurations (Pinh~ao.H and Pinh~ao.MH) are pure machine

learning techniques, and the last two (Pinh~ao.H+IC and Pinh~ao.MH+IC) are

hybrid techniques. Pinh~ao.H and Pinh~ao.MH are appealing techniques because it

reduces the response time using a model that provides insights on what sequence

the compiler should enable during target code generation. This means that such

techniques inspect few points in the search spaces. On the other hand, the hybrid

techniques are time-consuming as they inspect several points in the search spaces.

Aiming for diversity, we propose the use of multiple hot functions (MH). As

programs are composed of several modules (source code), each one will be com-

piled using its hot function. Then, the code generator links the object codes and

finally generates the target code.

2.1 Hot Function Parser

The Hot Function Parser is the static analysis profiler proposed in

[Wu and Larus, 1994], which estimates the relative execution frequency of pieces
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of the program, such as calls, procedure invocations, basic blocks, and control-

flow edges. Such profiler is an appealing tool, due to not requiring neither pro-

gram instrumentation nor execution.

Given the control-flow graph G for the function F, Wu-Larus Static

Analysis Profiler performs two steps:

1. Calculate for each edge its probability; and

2. Transverse the control-flow graph propagating the probabilities.

In the first step, the profiler starts by combining the branch prediction heuris-

tics proposed in [Ball and Larus, 1993], which are simple assumptions that take

into account specific compiler implementations and architecture designs. Namely,

there are seven of them:

1. OpCode Heuristic: if the branch condition is either a comparison of ”less

than zero” or ”less than or equal zero,” this branch will not be taken.

2. Loop Heuristic: if the successor is either a loop head or a loop pre-header,

this branch will be taken.

3. Pointer Heuristic: if the branch condition is a comparison between two

pointers, this branch will not be taken.

4. Call Heuristic: if the successor either contains a call or unconditionally

reaches a block with a call, the other branch will be taken.

5. Return Heuristic: if the successor either contains a return or uncondition-

ally reaches a block with a return, the other branch will be taken.

6. Guard Heuristic: if a register is an operand of this branch and it is used

in the successor before it is defined, this branch will be taken.

7. Store Heuristic: if the successor has a store operation, the other branch

will be taken.

These heuristics are only applied to what they call ”non-loop branch”, which

consist in branches whose outgoing edges are neither exit edges nor backedges. As

these heuristics are binary predictions, Wu-Larus Static Analysis Profiler

relies on the experiments excuted by Ball and Larus and employed the fre-

quency, at which the predictions were correct, as the branch probabilities. Table

1 presents these probabilities.

With the branch probabilities calculated, the second step takes place. In this

step, these probabilities are propagated throughout the basic blocks, yielding

the edge and basic block’s frequencies.
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Table 1: Branch probability of each heuristic [Ball and Larus, 1993]

Heuristic Branch Probability

OpCode Heuristic 84%
Loop Heuristic 88%

Pointer Heuristic 60%
Call Heuristic 78%

Return Heuristic 72%
Guard Heuristic 62%
Store Heuristic 55%

Let freq(bi) be the frequency of the basic block i and let freq(bi → bj) be the

frequency of the edge from basic block i to basic block j. Edge and basic block’s

frequencies are calculated as follows.

freq(bi) =

{

1 if b1 is the entry block
∑

bp∈pred(bi)
freq(bp → bi) otherwise

(1)

freq(bp → bi) = freq(bp)× prob(bp → bi) (2)

As the Equation 1 shows, the frequency of the basic block i is calculated by

the sum of all the edge frequencies from its predecessor, with exception of the

entry basic block which frequency is 1 (one). The Equation 2 uses the probability

calculated in step one and calculates the edge probability.

For functions that have loops, these equations become mutually recursive,

turning the algorithm too slow and unable to handle loops with no apparent

boundaries. To address this issue, Wu and Larus present an elimination algorithm

as follows.

cp(b0) =

k
∑

i=1

ri × prob(bi → b0) (3)

freq(b0) = in freq(b0) +

k
∑

i=1

freq(bi → b0) =
in freq(b0)

1− cp(b0)
(4)

where b0 is the loop header, cp(b0) is the cyclic probability and in freq(b0) is the

incoming edge frequency. In the Equation 3, ri represents the probability of the

control flow from b0 to bi. Therefore, its multiplication with the probability of

the branch represents the probability of taking the backedge from basic block bi.

The Equation 4 makes use of the cyclic probability to calculate the total basic

block frequency of the loop header.

By going through these two steps, it is possible to calculate an estimation

of a function’s total cost. This process is illustrated by Equation 5, where for

each function f its cost is calculated by summing the product of the basic block
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frequency (freq(bb)) by the cost of each instruction (cost(i)), for each basic block

inside the function. Hence, these steps are applied to all functions and identify

hot functions.

cost(f) =
∑

bb∈f

∑

i∈bb

cost(i)× freq(bb) (5)

It is important to note that the approach proposed by Wu and Larus always

assigns each function a score, which indicates its weight. As a result, Pinh~ao can

always extract the hot function. In case of ties, Pinh~ao uses a random strategy

to select one function.

2.2 Representing Hot Functions

Machine learning techniques rely on exposing the similarities among programs

to identify patterns and decide what sequence should be enabled during target

code generation.

Previous researchers represented programs using:

– performance counters [Cavazos et al., 2007];

– control-flow graphs [Park et al., 2012];

– compilation data [Queiroz Junior and da Silva, 2015];

– numerical features [Namolaru et al., 2010, Tartara and Reghizzi, 2013]; or

– a symbolic representation [Sanches and Cardoso, 2010, Martins et al., 2014].

Performance counters are dynamic characteristics that describe the program

behavior in regards to its execution. The others are static characteristics that

describe the algorithmic structures of the program. The appeal of dynamic char-

acteristics is that it considers both the program and hardware characteristics.

However, dynamic characteristics provide a disadvantage due to being platform-

dependent and, thus, incurring the need for program execution. Alternatively,

static characteristics are platform-independent and do not require program exe-

cution. However, such representation does not consider the program-input data,

which is an element that can alter the program’s behavior and consequently

cause parameter alterations of the code-generating system.

In this work, we use static characteristics to represent programs. Such rep-

resentation is a symbolic representation, similar to a DNA, which encodes pro-

gram elements into a single string. Our proposal differs from previous work

[Sanches and Cardoso, 2010, Martins et al., 2014], due to we apply transforma-

tion rules on intermediate code, instead of on source code. This has the advantage

of being programming language independent.
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As Pinh~ao is a LLVM tool, the transformation rules encode each LLVM’s in-

struction. Such rules are outlined in Table 2.

Table 2: DNA Encoding

Transformation Rules

Br A Store K
Switch B Alloca L
IndirectBr C Fence, AtomicRMW, AtomicCmpXchg M
Ret, Invoke, Resume, Unreachable D GetElementPTR N
Add, Sub, Mul, UDiv, SDiv, URem, SRem E Trunc, ZExt, SExt, UIToFP, SIToFP, O

PtrToInt, IntToPtr, BitCast, AddrSpaceCast
FAdd, FSub, FMul, FDiv, FRem F FPTrunc, FPExt, FPToUI, FPToSI P
Shl, LShr, AShr, And, Or, Xor G ICmp, FCmp, Select, VAArg, LandingPad Q
ExtractElement, InsertElement, SuffleVector H PHI R
ExtractValue, InsertValue I Call S
Load J Others X

The transformation rules group instructions into different genes. As a result,

Pinh~ao can identify which instruction group dominates the hot function, and

use these insights for exploring potential heuristics. Appendix A presents an

example of using the transformation rules.

2.3 DNA Sequence Aligner

Finding an effective sequence for an unseen program is based on similarity among

programs. Our premise is that similar programs react approximately equal when

they are compiled using the same sequence. In this manner, we need a method

to find similar programs.

We determine a similar program aligning its DNA representation with

previously-generated DNAs, in fact, the DNAs of hot functions. For this purpose,

Pinh~ao uses the algorithm proposed in [Needleman and Wunsch, 1970].

Needleman and Wunsch proposed an optimal global alignment algorithm

to find similarities between two biological sequences. The iterative algorithm

considers all possible pair combinations that can be constructed from two amino-

acid sequences. Given two amino-acid sequences, A and B, Needleman-Wunsch

Algorithm performs two steps:

1. Create the similarity matrix MAT; and

2. Find the maximum match.

The maximum match can be determined by a two-dimensional array, where

two amino-acid sequences, A and B, are compared. Each amino-acid sequence is

numbered from 1 to N, where Aj is the jth element of the sequence A and Bi

is the ith element of sequence B, with Ai representing the columns and Bi the
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rows of the two-dimensional matrix. Then, considering the matrix MAT, MATij

represents the pair combination of Aj and Bi.

To ensure that the sequence don’t have permutations of elements, a pair

combination MATij is a part of a pathway containing MATmn if and only if

their indexes are m > i, n > j or m < i, n < j. Thus, any pathway can

be represented by a number of pair permutations MATab to MATyz, where

a >= 1, b >= 1, and the subsequent indexes of the cells of MAT are larger than

the indexes of the previous cells and smaller than the number of elements in the

respective sequences A and B. A pathway begins at a cell in the first column or

first row of MAT, where the index of i and j needs to be incremented by one

and the other by one or more, leading to the next cell in the pathway. Repeating

this process until their limiting values creates a pathway where every partial or

unnecessary pathway will be contained in at least one necessary pathway.

As a result of this process, the maximum match returns a score which indi-

cates the similarity between the amino-acid sequences A and B.

Therefore, using Needleman-Wunsch Algorithm, Pinh~ao scores (and ranks)

past experiences aligning the DNA of the unseen program (its hot function) with

each DNA from the database.

2.4 Sequence Extractor

As stated before, Pinh~ao explores sequences taken from previously compiled

programs, which react approximately equal when they are compiled using the

same sequence.

Based on this assumption, we could conclude that the good strategy is to eval-

uate the best previously-generated sequence used by the most similar program.

This is true if and only if we ensure that the best sequence is safe. In fact, we

can not ensure that such sequence is safe5. Since some flags (optimizations) are

unsafe, meaning that such flags can generate problems in specific programs. As

a result, Pinh~ao evaluates N previously-generated sequences, in order to ensure

that a safe sequence will always be returned.

After evaluating N sequences and finding the best one, which fits the charac-

teristics of the unseen program, Pinh~ao returns the best target code or invokes

IC.

2.5 Iterative Compiler

Invoking the IC is an optional step. Thus, Pinh~ao can be tunned to use this step

or not. However, if the IC is enabled, it will be invoked if and only if the Target

Code Analyzer indicates that the performance of the target code is not better

than a threshold.
5 A unsafe sequence will crash the compiler.
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The IC is a genetic algorithm (GA), which consists in randomly generating an

initial population that will be evolved in an iterative process. Such process in-

volves choosing parents, applying genetic operators, evaluating new individuals,

and finally a reinsertion operation deciding which individuals will compose the

new generation. This iterative process is performed until a stopping criterion is

reached.

The first generation is composed of individuals that are generated by a uni-

form sampling of the optimization space. Evolving a population includes the

application of two genetic operators: crossover, and mutation. The former can

be applied to individuals of different lengths, resulting in a new individual whose

length is the average of its parents. The latter can perform four different opera-

tions, as follows:

1. insert a new optimization into a random point;

2. remove an optimization from a random point;

3. exchange two optimizations from random points; or

4. change one optimization in a random point.

Both operators have the same probability of occurrence, besides only one

mutation is applied over the individual selected to be transformed. This iterative

process uses a tournament strategy and elitism that maintains the best individual

in the next generation. The strategy used by the IC is similar to the strategy

proposed in [Purini and Jain, 2013] and [Martins et al., 2016].

2.6 Updating the Database

The final step is to update the database with new knowledge, in order to

learn from new compilations. This means that Pinh~ao updates the database

of previously-generated sequences, with information that indicates which DNA

should be compiled using a specific sequence.

3 A Database of Previously-generated Sequences

As Pinh~ao relies on previously-generated sequences, it is necessary to construct

in advance such sequences.

The database stores a pair <DNA, sequence> for different training programs.

The DNA represents the program’s hottest function, and the sequence is an effec-

tive sequence.

This database can be constructed in a process from factory. Thus, at the

factory, an engine collects pieces of information about a set of training programs

and reduces the optimization search space in order to provide a small database,

which can be handled in an easy and fast way.
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Training Programs Training programs are composed of programs took from

LLVM’s test-suite [LLVM Team, 2016], and The Computer Language Bench-

marks Game [Bechmarks Game Team, 2016]. These are programs composed

of a single source code and have short runtime. Table 3 shows the training

programs.

Table 3: Training Programs

LLVM’s test-suite

ackermann ary3 bubblesort chomp dry dt
fannkuch fbench ffbench fib2 fldry flops
flops-1 flops-2 flops-3 flops-4 flops-5 flops-6
flops-7 flops-8 fp-conver hash heapsort himenobtxpa
huffbench intmm lists lpbench mandel mandel-2
matrix methcall misr n-body nsieve-bits oourafft
oscar partialsums perlin perm pi puzzle
puzzle-stanford queens queens-mcgill quicksort random realmm
recursive reedsolomon richards benchmark salsa20 sieve spectral-norm
strcat towers treesort whetstone

The Computer Language Benchmarks Game

binary-tree fasta-redux pidigits regex-dna fasta mandelbrot

Optimizations Table 4 presents the optimizations which can compose a se-

quence.

Reducing the Search Space To reduce the search space and to find a good

compiler optimization sequence for each training program, we use the

IC described in Section 2.5.

4 Experimental Setup and Methodology

This section describes the experimental setup and the steps taken to ensure

measurement accuracy. It also presents the methodology used in the experiments.

Platform The experiments were conducted on different hardware configura-

tions, to evaluate Pinh~ao’s performance on different architectures. The hard-

ware configurations are:

– Hardware Configuration 1: a machine with an Intel processor Core

I7-3770 3.40GHz, and 8 GB of RAM. The operating system was Ubuntu

15.10, with kernel 4.2.0-30-generic.

– Hardware Configuration 2: a machine with an Intel processor Core I7-

3820 3.60GHz, and 32 GB of RAM. The operating system was Ubuntu

15.10, with kernel 4.2.0-18-generic.
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Table 4: Optimization Space

Optimizations

aa-eval adce add-discriminators alignment-from-assumptions
alloca-hoisting always-inline argpromotion assumption-cache-tracker
atomic-expand barrier basicaa basiccg bb-vectorize
bdce block-freq bounds-checking branch-prob break-crit-edges
cfl-aa codegenprepare consthoist constmerge constprop

correlated-propagation cost-model count-aa da
dce deadargelim deadarghaX0r delinearize die
divergence domfrontier domtree dse dwarfehprepare
early-cse elim-avail-extern flattencfg float2int functionattrs
globaldce globalopt globalsmodref-aa gvn indvars
inline inline-cost instcombine instcount instnamer
instsimplify intervals ipconstprop ipsccp irce
iv-users jump-threading lazy-value-info lcssa libcall-aa
licm lint load-combine loop-accesses loop-deletion
loop-distribute loop-extract loop-extract-single loop-idiom loop-instsimplify
loop-interchange loop-reduce loop-reroll loop-rotate loop-simplify
loop-unroll loop-unswitch loop-vectorize loops lower-expect
loweratomic lowerbitsets lowerinvoke lowerswitch mem2reg
memcpyopt memdep mergefunc mergereturn mldst-motion
nary-reassociate no-aa partial-inliner partially-inline-libcalls
place-backedge-safepoints-impl place-safepoints postdomtree prune-eh

reassociate reg2mem regions rewrite-statepoints-for-gc
rewrite-symbols safe-stack sancov scalar-evolution scalarizer
scalarrepl scalarrepl-ssa sccp scev-aa scoped-noalias
separate-const-offset-from-gep simplifycfg sink sjljehprepare

slp-vectorizer slsr speculative-execution sroa strip
strip-dead-prototypes strip-nondebug structurizecfg tailcallelim

targetlibinfo tbaa tti verify

– Hardware Configuration 3: a machine with an Intel processor Core

I5-2430 2.40GHz, and 4 GB of RAM. The operating system was Ubuntu

15.10, with kernel 4.2.0-30-generic.

– Hardware Configuration 4: one processor of a machine with two Intel

processor Xeon E5504 2.00GHz, and 24 GB of RAM. The operating

system was Ubuntu 15.10, with kernel 4.2.0-22-generic.

The experiments described from Section 5.1 to Section 5.3 were conducted

on Hardware Configuration 1, and the experiments described in Section

5.4 were conducted on the four configurations.

Compiler Our technique was implemented as a tool of LLVM 3.7.0

[LLVM Team, 2016]. The choice of LLVM is based on the fact that it allows

full control over the optimizations. This means that it is possible to enable a

list of optimizations through the command line, where the position of each

optimization indicates its order. Neither GCC nor ICC provide these features,

thus we chose to use LLVM.

Pinhão’s Parameters We performed experiments exploring 1, 3, 5 and 10 se-

quences. Using less than 10 sequences, Pinh~ao.H and Pinh~ao.MH are not

able to surpass the performance of LLVM compiler optimization levels. In
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such case, these configurations achieve a speedup of 1.85 and 1.79, and only

for 50% of the test programs. Based on these results, Pinh~ao explores 10

sequences. Furthermore, exploring 10 sequences ensures that Pinh~ao always

finds a safe sequence.

Iterative Compiler’s Parameters The crossover operator has a probability

of 60% for creating a new individual. In this case, the tournament strategy

(Tour = 5) selects the parents. The mutation operator has a probability of

40% for transforming an individual. In addition, each individual has an arbi-

trary initial length, which can ranges from 1 to the number of optimizations

(|Optimization Space|). The Pinhão’s IC (the optional step) runs over 10

generations and 20 individuals; however to create a database of previously-

generated sequences, the IC runs over 100 generations and 50 individuals.

Both ICs finish whether the standard deviation of the current fitness score is

less than 0.01, or the best fitness score does not change in three consecutive

generations.

Threshold We use as threshold the compiler optimization levels. This means

that an effective sequence is the one whose performance surpasses the per-

formance obtained by the best compiler optimization level.

Training Phase Cost The training phase, which builds the database, is a

time-consuming phase. It took precisely 20 days. However, it is important to

note that it was performed only one-time at the factory. The training phase

was conducted on Hardware Configuration 1.

Testing Phase Cost The testing phase is a fast task, which includes extract-

ing the DNA of the test program, scoring the training programs, selecting N

sequences, and evolving the population (when the system invokes the IC). It

takes less than 0.1% of the entire response time. It means that at least 99.9%

of the time is spent evaluating target codes. Therefore, we can conclude that

the machine learning process that Pinh~ao uses has almost no overhead when

compared with the target code evaluation.

Benchmarks The experiments use two benchmarks-suites as unseen (test) pro-

grams, namely: Polybench 4.1 [Louis-Noël Pouchet, 2016] with dataset

Extralarge, and cBench [cBench, 2014] with dataset 1.

Order of Compilation As Pinh~ao updates the database, the order of com-

pilation affects the results. Of course, we are not able to predict in which

order the user will compile his/her programs. Thus, we decided to compile

in alphabetic order.

Measurement The runtime is the arithmetic average of five executions. In the

experiments, the machine workload was as minimal as possible. In other
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words, each instance was executed sequentially. In addition, the machine did

not have an external interference, and the running time variance was close

to zero.

Metrics The evaluation uses five metrics to analyze the results, namely:

1. GMS: geometric mean speedup (Speedup = Runtime Level O0
Runtime

);

2. GMI: geometric mean improvement (Impr = (Speedup− 1) ∗ 100);

3. PPI: percentage of programs achieving improvement over the threshold;

4. GME: geometric mean number of sequences evaluated; and

5. GMT: geometric mean response time in seconds, i.e., the time consumed

by Pinhão including compilation and evaluation.

Other Techniques To evaluate the effectiveness of our technique, we compare

Pinh~ao against the following five techniques.

1. Random algorithm (Random10). This technique randomly generates 10

sequences.

2. Genetic algorithm with tournament selector (GA10). This technique is

the GA described in Section 2.5, running over 10 generations and 20

individuals.

3. Genetic algorithm with tournament selector (GA100). This technique is

the GA described in Section 2.5, running over 100 generations and 50

individuals.

4. Best10.PJ. Purini and Jain proposed to evaluate only 10 good sequences,

which are able to cover several classes of programs, and after returning

the best target code. We evaluate the 10 good sequences described in

[Purini and Jain, 2013].

5. Best10. This technique is similar to the previous one, except that we

found the 10 good sequences perusing our database using the strategy

proposed in [Purini and Jain, 2013].

5 Experimental Results

This section presents the results of the experiments that we performed. First

of all, we evaluate the Pinh~ao’s performance. In a second moment, we evaluate

the performance of Pinh~ao on different datasets. Next, we provide a direct com-

parison with other strategies. Finally, we evaluate again its performance but on

different hardware configurations.
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5.1 Pinhão Performance

As said before, our strategy is dependent on previous knowledge. Whenever a

new program is compiled and the sequence performs better than the compiler

optimization levels, this sequence is added to the database. This means that the

order of compilation influences the quality of the results. As we do not know the

order chosen by a user, we performed the experiments in alphabetic order, the

same order that the results are shown in Figure 2, from left to right.

Figure 2(a) shows that 46 (Pinh~ao.H) and 42 (Pinh~ao.MH) programs out

of 59 achieved speedup over all compiler optimization levels. This represents

77.97% and 71.19% of the total, respectively for Pinh~ao.H and Pinh~ao.MH. Both

techniques shows good results in most of the cases, with some cases extrapolat-

ing by some times all compiler optimization levels. One example of that is the

tiff2rgba, with a speedup of 8.90 for Pinh~ao.MH, against the speedup of 1.80,

1.72 and 1.74 from compiler optimization levels O1, O2 and O3, respectively.

Figure 2(b) show that if after 10 tries Pinh~ao couldn’t find an effective se-

quence, it applies a genetic strategy trying to find a better one. This strategy

always searches for only one sequence that covers the whole program, indepen-

dent of the technique adopted. With this approach, 50 (Pinh~ao.H+IC) and 47

(Pinh~ao.MH+IC) programs out of 59 reached speedup over all compiler opti-

mization levels, representing 84.75% and 79.66% of the total, respectively for

Pinh~ao.H+IC and Pinh~ao.MH+IC.

These results shows a good improvement over the original compiler optimiza-

tion levels, and the confirmation that Pinh~ao can find an efficient sequence in

the majority of the cases. This is supported by the fact that our GMS maintained

a higher value than the compiler optimization levels, being 2.01, 2.02, 2.05

and 2.07 for Pinh~ao.H, Pinh~ao.H+IC, Pinh~ao.MH and Pinh~ao.MH+IC and 1.69,

1.84 and 1.85 for O1, O2 and O3, respectively.

In general, our strategy always evaluates 10 sequences. However, as we men-

tioned before, not all sequences are safe, so there were cases where the number

of sequences evaluated was less than 10. Figure 3 shows the number of sequences

evaluated by Pinh~ao.

We observed that, in our experiments, there was only one occurrence of

generating 90% of invalid sequences; besides that the GME of the Pinh~ao.H and

Pinh~ao.MH was 8.17 and 6.16, respectively. Also, their standard deviation was

of 1.27 sequences for Pinh~ao.H, and 2.66 sequences for Pinh~ao.HM. These data

suggest that in the majority of the experiments there were at least 5 sequences

evaluated.

Using the strategies coupled with the IC, we noticed that even though they

evaluated up to 118 sequences, the IC strategy was only called in roughly 14% and

17% of the experiments when using the Pinh~ao.H and Pinh~ao.HM, respectively.

Thus, the data suggests that our technique can find effective sequences (that
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others and consumed more time are using the IC. This means that sequences with

lower quality affect the overall response time for Pinh~ao.H+IC and Pinh~ao.MH+IC

strategies, as they applied a genetic strategy which is time-consuming.

Observing the numbers of sequences generated for each benchmark and Fig-

ure 4, a high number of sequences can imply a greater response time, although

this is not valid for all cases because of the large time spent by the execution

phase.

To evaluate Pinh~ao’s performance when a test program is recompiled, we

performed two other experiments as follows.

1. Pinh~ao.H + Pinh~ao.H+IC: In this experiments Pinh~ao.H+IC uses the

database generated after running Pinh~ao.H.

2. Pinh~ao.MH + Pinh~ao.MH+IC: In this experiments Pinh~ao.MH+IC uses the

database generated after running Pinh~ao.MH.

In addition, Pinh~ao evaluates only 1 (one) sequence. Table 5 presents the

results.

Table 5: Recompilation Results

Strategy GMS GMI PPI GME GMT

Pinh~ao.H + Pinh~ao.H+IC 2.04 89.39 84.75 1.72 50.80
Pinh~ao.MH + Pinh~ao.MH+IC 2.09 92.34 81.36 2.55 68.78

O1 1.69 52.23 - - -
O2 1.84 70.31 - - -
O3 1.85 70.64 - - -

In these experiments, the speedups obtained a slight variation. They in-

crease 1.99% and 0.97% for Pinh~ao.H + Pinh~ao.H+IC and Pinh~ao.MH +

Pinh~ao.MH+IC, respectively. Concerning the number of programs achieving im-

provement, the improvement is 19.05% and 2.13% for Pinh~ao.H + Pinh~ao.H+IC

and Pinh~ao.MH + Pinh~ao.MH+IC. This means that 50 and 48 programs out of

59 achieved speedup over all compiler optimization levels.

The main impact in recompiling a program occurs in the number of sequences

evaluated, as well as the response time. The results show a decreasing up to

73% in the number of sequences evaluated, and a decreasing up to 90% in the

response time. As the database has effective sequences, it is possible to evaluate

only 1 (one) sequence. As a result, GME and GMT reflect the number of sequences

evaluated when Pinh~ao invokes IC.

5.2 Pinhão on Different Datasets

In order to evaluate Pinh~ao performance on different open-source datasets as-

sembled by the research community, we performed experiments with three dif-
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ferent datasets from cBench using our strategy without resorting on the IC.

The performance is displayed in Figure 5 (Dataset 1), Figure 6 (Dataset 5)

and Figure 7 (Dataset 10).
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Figure 5: Results for Dataset 1
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Figure 6: Results for Dataset 5
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Figure 7: Results for Dataset 10

The experiments show that, overall, the strategy Pinh~ao.H was better than

the compiler optimization levels and Pinh~ao.MH. The strategy was better in

73% and 50% of the time when compared to the compiler optimization levels

and Pinh~ao.MH, respectively. However, the average improvement over the com-

piler sequence was between 5% and 8%, reaching up to 52% faster than the well-

engineered sequences.

From the results, we can infer that Pinh~ao.MH performance is highly dam-

aged by the variations on the dataset (at least more than Pinh~ao.H). While the

performance of the latter also varies - with the standard deviation of 0.068 of

the average speedup between the datasets runs - it yielded a higher speedup on

the majority of experiments. It is possible to verify that as it was better than

the compiler optimization levels sequence on 72% of the programs evaluated, MH

achieved an average of 59% among the three datasets.

5.3 Pinhão Versus Other Techniques

In Table 6 we show the results of the experiments for Pinh~ao and the other

techniques.

We can notice that the geometric mean values of all techniques reveal a

slight significant change in values, with the greatest geometric mean being of

Pinh~ao.MH+IC, with 2.07 of speedup. The others techniques, with exception

of GA100 with 2.04 of speedup, got a better performance than the compiler

optimization levels, but inferior to all of our strategies. All five metrics indicate

that our technique was most effective than the others.

Although the speedup of GA100 is considerably high, but not surpassing

Pinh~ao.MH, the number of evaluated sequences is at least 82% higher than all

others averages. This implies a larger response time, while our technique kept a
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Table 6: Pinh~ao versus Other Techniques

Strategy GMS GMI PPI GME GMT

Pinh~ao.H 2.01 81.15 77.97 8.17 518.80
Pinh~ao.MH 2.05 82.73 71.19 6.16 518.80
Pinh~ao.H+IC 2.02 87.18 84.75 10.62 617.19
Pinh~ao.MH+IC 2.07 90.27 79.66 9.60 663.99

Random.10 1.63 47.35 27.12 3.54 492.86
Best10.PJ 1.97 83.19 66.10 9.96 482.48
Best10 1.98 78.22 81.36 8.60 482.48
GA.10 1.80 65.90 47.46 44.62 2597.29
GA.100 2.04 85.99 71.19 242.55 15878.26

O1 1.69 52.23 - - -
O2 1.84 70.31 - - -
O3 1.85 70.64 - - -

comfortable amount of sequences even when using the IC, maintained a signifi-

cantly higher speedup and improvement than all others strategies. Our response

time is similar to the strategies Random.10, Best10.PJ and Best10, but as said

before, we still yield more speedup, making the lost time worth.

Thus, from the results we can deduce that our techniques maintained a great

speedup performance on all benchmarks with a reasonable response time, sur-

passing the well-engineered compiler optimization levels and others techniques.

Despite the fact that our IC is time-consuming, the improvement brought by it

is valuable, helping us create higher quality sequences on cases that Pinh~ao.H

and Pinh~ao.MH couldn’t exceed the compiler optimization levels.

5.4 Pinhão on Different Hardware Configurations

Table 7 shows the performance obtained by Pinh~ao, Best10.PJ, Best10 and the

compiler optimization levels on four different hardware configurations.

It is important to note that there clearly was consistency across the ma-

chines. The experiments show that, overall, Pinh~ao is better than Best10.PJ

and Best10, analyzing several metrics. In general, Pinh~ao surpasses these tech-

niques in up to 15.79%, 17.82%, 84.45% and 58.21%, analyzing GMS, GMI, PPI

and GME, respectively. Analyzing the compiler optimization levels indicates a

better scenario. This means that Pinh~ao always surpasses the compiler opti-

mization levels’ performance; on the other hand, this is not true on Best10.PJ

nor Best10.

Pinh~ao is the best approach, since it employs a program-dependent strategy

to select sequences. It does not occur on other approaches evaluated. Of course,

there is an increase in response time when we evaluate several sequences; however

this provides better results than the compiler optimization levels.

Pinh~ao indicates that it is possible to achieve good results evaluating a few

points in the search space using a simple strategy, even for the case where train-

ing and deployment stages take place on different hardware configurations. Fur-
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Table 7: Performance
Hardware Configuration 1 Hardware Configuration 2

Strategy GMS GMI PPI GME GMT GMS GMI PPI GME GMT

Pinh~ao.H 2.01 81.15 77.97 8.17 518.80 1.92 77.22 33.90 7.87 557.32
Pinh~ao.MH 2.05 82.73 71.19 6.16 518.80 1.98 77.30 66.10 5.76 623.67
Pinh~ao.H+IC 2.02 87.18 84.75 10.62 617.19 2.01 83.78 76.27 20.58 1003.35
Pinh~ao.MH+IC 2.07 90.27 79.66 9.60 663.99 2.09 90.25 74.58 9.30 957.46

Best10.PJ 1.97 83.19 66.10 9.96 482.48 1.76 60.66 11.86 10.00 598.66
Best10 1.98 78.22 81.36 8.60 482.48 1.90 74.17 33.90 8.60 606.69

O1 1.69 52.23 - - - 1.71 54.53 - - -
O2 1.84 70.31 - - - 1.87 72.82 - - -
O3 1.85 70.64 - - - 1.88 73.96 - - -

Hardware Configuration 3 Hardware Configuration 4
Strategy GMS GMI PPI GME GMT GMS GMI PPI GME GMT

Pinh~ao.H 2.04 86.31 71.19 8.11 611.23 2.28 105.31 77.97 8.24 879.50
Pinh~ao.MH 1.98 78.43 52.54 5.03 581.15 2.25 104.30 72.88 6.17 924.90
Pinh~ao.H+IC 2.08 92.15 72.88 13.07 834.25 2.32 115.73 84.75 15.10 1229.69
Pinh~ao.MH+IC 2.11 93.95 72.88 10.60 772.24 2.27 109.88 81.36 13.35 1256.34

Best10.PJ 1.87 75.22 32.20 10.00 656.78 2.00 92.42 35.59 10.00 1044.17
Best10 2.00 82.21 57.67 8.64 629.41 2.29 111.16 71.19 8.67 1017.17

O1 1.74 58.55 - - - 1.92 71.70 - - -
O2 1.88 72.77 - - - 2.08 93.53 - - -
O3 1.90 76.36 - - - 2.08 92.98 - - -

thermore, a good strategy is to inspect several hot functions, besides handling

the problem of discovering what optimizations should be turned on or off as a

program-dependent problem.

6 Related Work

The first-generation auto-tunning systems employ iterative compilation tech-

niques. In such systems, the test program is compiled with different sequences,

and the best version is chosen. Due to the diversity of sequences and the need of

compiling and running the program several times, iterative systems try to cover

the search space selectively. Based on the behavior of the search, these systems

can be classified into three categories: partial search; random search; or heuristic

search.

Partial search systems try to explore a portion of all possible solutions

[Pan and Eigenmann, 2006, Kulkarni et al., 2009, Foleiss et al., 2011]. Random

or statistical systems perform the search employing statistical and randomiza-

tion techniques, in order to reduce the number of sequences evaluated

[Haneda et al., 2005, Shun and Fursin, 2005, Cooper et al., 2006]. Heuristic sys-

tems use random searches based on several transformations [Kulkarni et al., 2005,

Che and Wang, 2006, Zhou and Lin, 2012].

In the context of iterative compilation, an interesting work was proposed in

[Purini and Jain, 2013]. Although it can be classified as a first-generation auto-

tunning system, it reduces the system’s response time using effective sequences,
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which are able to cover several programs. The process of finding effective se-

quences is as follows. First, using random and heuristic searches the strategy

creates effective sequences for several programs. After that, the strategy selects

the most effective sequence for each program, and eliminates, from each sequence,

the optimizations that do not contribute to the performance. Finally, a covering

algorithm analyzes all sequences and extracts the best 10 sequences. As a result,

this strategy evaluates only 10 sequences to find an effective sequence for a new

program.

Even though, first-generation auto-tunning systems provide good results,

the problem is that they require a long response time. Thus, we decided not

to implement a pure first-generation auto-tunning system. In fact, Pinh~ao is

a hybrid-system and posseses several characteristics that belongs to the first-

generation auto-tunning systems, as well as characteristics founded into the

second-generation. It is important to note that Pinh~ao can use an iterative com-

piler, if it is not able to find an effective sequence in previous steps. In fact, at

this moment Pinh~ao can be viewed as a first-generation auto-tunning system,

which employs a heuristic-based search.

The second-generation auto-tunning systems employ machine learning tech-

niques. The goal is to project expert systems, which is able to reduce the response

time needed by systems that fit the first-generation, while finding effective se-

quences for an unseen program. Second-generation systems create in a training

stage a prediction model, based on the behavior of several training programs.

Then, in a deployment (or test) stage the prediction model predicts the sequence

that will be enabled to compile the unseen program [Long and O’Boyle, 2004,

Agakov et al., 2006, de Lima et al., 2013].

The prediction model creates a relation between effective sequences and char-

acteristics of programs. It requires two steps. First, it is necessary to find ef-

fective sequences for several test programs and based on these sequences to

build the model. This step is performed by an iterative compilation process like

a first-generation auto-tunning system. Second, it is necessary to represent a

program as a feature vector. To model a program as a feature vector, several

works use different program’s characteristics, such as: characteristics that de-

scribe the loop and array structure of the program [Long and O’Boyle, 2004],

performance counters [Cavazos et al., 2007, de Lima et al., 2013], control-flow

graphs [Park et al., 2012], compilation data [Queiroz Junior and da Silva, 2015],

numerical features [Namolaru et al., 2010, Tartara and Reghizzi, 2013], or a

symbolic representation, similar to a DNA [Martins et al., 2014]. After these two

steps, it is possible to relate effective sequences to feature vectors, and so building

the prediction model.

The deployment stage has been implemented using different strategies, such

as: instance-based learning [Long and O’Boyle, 2004], case-based reasoning
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[de Lima et al., 2013, Queiroz Junior and da Silva, 2015], or logistic regression

[Cavazos et al., 2007]. Such strategies infer what optimizations should be enabled

[Cavazos et al., 2007], or what sequence should be used [de Lima et al., 2013,

Queiroz Junior and da Silva, 2015].

Although Pinh~ao employs a hybrid approach, it is primarily a machine learn-

ing technique. Pinh~ao models a program using a symbolic representation, similar

to a DNA, and based on this representation Pinh~ao infers what sequence should

be used and not what optimizations should be enabled or disabled. This process

is similar to a case-based reasoning strategy.

As stated before, Pinh~ao explores the premise that hot functions are the

portions at which compiler optimizations will provide the greatest benefit. So

that, the auto-tunning system is guided by such functions. The works

[Long and O’Boyle, 2004] and [Hoste et al., 2010] are close to Pinh~ao, concern-

ing to the use of hot functions. However, while Pinh~ao extracts hot functions

from C source code, these works explore a Java Virtual Machine

[Alpern et al., 2000, M. Paleczny and C. Vick and C. Click, 2001]. This means

that these works implicitly focus on hot functions, due to modern Java Virtual

Machines employ different compilations plans on hot functions.

The third-generation auto-tunning systems employ a long-term machine

learning technique. Such system tries to learn from every compilation, without

employing a training stage.

The work [Tartara and Reghizzi, 2013] demonstrated that is possible to elim-

inate the training stage, using a long-term learning. The strategy performs two

tasks. First, it extracts the characteristics of the test program. Second, a genetic

algorithm creates heuristics inferring which optimizations should be enabled dur-

ing target code generation. This process creates knowledge that is used in new

compilations.

Pinh~ao and Tartara’s and Crespi’s work differ at least in two points. First,

they characterize programs using different features. The former uses a symbolic

representation, similar to a DNA. The latter uses the numeric features proposed

in [Namolaru et al., 2010]. Second, which is the most important one, Pinh~ao

fits into the second-generation, while Tartara’s and Crespi’s work fits into the

third-generation of auto-tunning systems.

7 Concluding Remarks

Finding an effective compiler optimization sequence is a program-dependent

problem. For that, a good strategy is to inspect the characteristics of the pro-

gram, and based on these characteristics to explore the search space looking for

effective sequences. In addition, a considerable amount of runtime is spent in a

small portion of code. Therefore, the ideal features to consider is that extracted

from hot functions.
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In this paper, we proposed Pinh~ao an auto-tunning system for compiler op-

timizations, which is guided by hot functions. This means that Pinh~ao finds the

compiler optimization sequence that will be enabled during target code genera-

tion, inspecting hot functions.

Pinh~ao is a fast auto-tunning system, which finds effective sequences and

outperforms traditional iterative compilation techniques.
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A An Example

This appendix provides an example of extracting a hot function, and after trans-

forming this function into a DNA. The program in this example computes PI by

probability, and was taken from LLVM’s test suite [LLVM Team, 2016]. This pro-

gram is a training program used by our system.

As stated in Section 3, our system relies on previously-generated sequences.

So that, a database stores a pair <DNA, sequence> for different training pro-

grams. To store such pair, our proposed system performs the following steps:

– Transform the source code (C language) into LLVM’s instructions;

– Find the cost of each function represented in LLVM’s instruction;

– Extract the hottest function (LLVM’s instruction); and

– Transform the hottest function into a DNA.

Subsection A.1 presents the source code of the training program. Subsection

A.2 presents the training program in LLVM’s instruction. Subsection A.3 presents

the cost of each training program’s function. Subsection A.4 presents the training

program’s hottest function as a DNA.
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A.1 Program PI in C Language

#include <stdio.h>

void myadd(float *sum,float *addend) {
*sum = *sum + *addend;

}

int main(int argc, char *argv[]) {
float ztot, yran, ymult, ymod, x, y, z, pi, prod;
long int low, ixran, itot, j, iprod;

printf("Starting PI...\n");
ztot = 0.0;
low = 1;
ixran = 1907;
yran = 5813.0;
ymult = 1307.0;
ymod = 5471.0;

#ifdef SMALL_PROBLEM_SIZE
itot = 4000000;

#else
itot = 40000000;

#endif

for(j=1; j<=itot; j++) {
iprod = 27611 * ixran;
ixran = iprod - 74383*(long int)(iprod/74383);
x = (float)ixran / 74383.0;
prod = ymult * yran;
yran = (prod - ymod*(long int)(prod/ymod));
y = yran / ymod;
z = x*x + y*y;
myadd(&ztot,&z);
if ( z <= 1.0 ) {

low = low + 1;
}

}
printf(" x = %9.6f y = %12.2f low = %8d j = %7d\n",x,y,(int)low,(int)j);
pi = 4.0 * (float)low/(float)itot;
printf("Pi = %9.6f ztot = %12.2f itot = %8d\n",pi,ztot*0.0,(int)itot);
return 0;

}

A.2 Program PI in LLVM’s Instructions

; ModuleID = ’pi.c’
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-pc-linux-gnu"

@.str = private unnamed_addr constant [16 x i8] c\
"Starting PI...\0A\00", align 1

@.str.1 = private unnamed_addr constant [45 x i8] c\
" x = %9.6f y = %12.2f low = %8d j = %7d\0A\00", align 1

@.str.2 = private unnamed_addr constant [37 x i8] c\
"Pi = %9.6f ztot = %12.2f itot = %8d\0A\00", align 1

; Function Attrs: nounwind uwtable
define void @myadd(float* %sum, float* %addend) #0 {

%1 = alloca float*, align 8
%2 = alloca float*, align 8
store float* %sum, float** %1, align 8
store float* %addend, float** %2, align 8
%3 = load float*, float** %1, align 8
%4 = load float, float* %3, align 4
%5 = load float*, float** %2, align 8
%6 = load float, float* %5, align 4
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%7 = fadd float %4, %6
%8 = load float*, float** %1, align 8
store float %7, float* %8, align 4
ret void

}

; Function Attrs: nounwind uwtable
define i32 @main(i32 %argc, i8** %argv) #0 {

%1 = alloca i32, align 4
%2 = alloca i32, align 4
%3 = alloca i8**, align 8
%ztot = alloca float, align 4
%yran = alloca float, align 4
%ymult = alloca float, align 4
%ymod = alloca float, align 4
%x = alloca float, align 4
%y = alloca float, align 4
%z = alloca float, align 4
%pi = alloca float, align 4
%prod = alloca float, align 4
%low = alloca i64, align 8
%ixran = alloca i64, align 8
%itot = alloca i64, align 8
%j = alloca i64, align 8
%iprod = alloca i64, align 8
store i32 0, i32* %1, align 4
store i32 %argc, i32* %2, align 4
store i8** %argv, i8*** %3, align 8
%4 = call i32 (i8*, ...) @printf(i8* getelementptr\

inbounds ([16 x i8], [16 x i8]* @.str, i32 0, i32 0))
store float 0.000000e+00, float* %ztot, align 4
store i64 1, i64* %low, align 8
store i64 1907, i64* %ixran, align 8
store float 5.813000e+03, float* %yran, align 4
store float 1.307000e+03, float* %ymult, align 4
store float 5.471000e+03, float* %ymod, align 4
store i64 40000000, i64* %itot, align 8
store i64 1, i64* %j, align 8
br label %5

; <label>:5 ; preds = %51, %0
%6 = load i64, i64* %j, align 8
%7 = load i64, i64* %itot, align 8
%8 = icmp sle i64 %6, %7
br i1 %8, label %9, label %54

; <label>:9 ; preds = %5
%10 = load i64, i64* %ixran, align 8
%11 = mul nsw i64 27611, %10
store i64 %11, i64* %iprod, align 8
%12 = load i64, i64* %iprod, align 8
%13 = load i64, i64* %iprod, align 8
%14 = sdiv i64 %13, 74383
%15 = mul nsw i64 74383, %14
%16 = sub nsw i64 %12, %15
store i64 %16, i64* %ixran, align 8
%17 = load i64, i64* %ixran, align 8
%18 = sitofp i64 %17 to float
%19 = fpext float %18 to double
%20 = fdiv double %19, 7.438300e+04
%21 = fptrunc double %20 to float
store float %21, float* %x, align 4
%22 = load float, float* %ymult, align 4
%23 = load float, float* %yran, align 4
%24 = fmul float %22, %23
store float %24, float* %prod, align 4
%25 = load float, float* %prod, align 4
%26 = load float, float* %ymod, align 4
%27 = load float, float* %prod, align 4
%28 = load float, float* %ymod, align 4
%29 = fdiv float %27, %28
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%30 = fptosi float %29 to i64
%31 = sitofp i64 %30 to float
%32 = fmul float %26, %31
%33 = fsub float %25, %32
store float %33, float* %yran, align 4
%34 = load float, float* %yran, align 4
%35 = load float, float* %ymod, align 4
%36 = fdiv float %34, %35
store float %36, float* %y, align 4
%37 = load float, float* %x, align 4
%38 = load float, float* %x, align 4
%39 = fmul float %37, %38
%40 = load float, float* %y, align 4
%41 = load float, float* %y, align 4
%42 = fmul float %40, %41
%43 = fadd float %39, %42
store float %43, float* %z, align 4
call void @myadd(float* %ztot, float* %z)
%44 = load float, float* %z, align 4
%45 = fpext float %44 to double
%46 = fcmp ole double %45, 1.000000e+00
br i1 %46, label %47, label %50

; <label>:47 ; preds = %9
%48 = load i64, i64* %low, align 8
%49 = add nsw i64 %48, 1
store i64 %49, i64* %low, align 8
br label %50

; <label>:50 ; preds = %47, %9
br label %51

; <label>:51 ; preds = %50
%52 = load i64, i64* %j, align 8
%53 = add nsw i64 %52, 1
store i64 %53, i64* %j, align 8
br label %5

; <label>:54 ; preds = %5
%55 = load float, float* %x, align 4
%56 = fpext float %55 to double
%57 = load float, float* %y, align 4
%58 = fpext float %57 to double
%59 = load i64, i64* %low, align 8
%60 = trunc i64 %59 to i32
%61 = load i64, i64* %j, align 8
%62 = trunc i64 %61 to i32
%63 = call i32 (i8*, ...) @printf(i8* getelementptr\

inbounds ([45 x i8], [45 x i8]* @.str.1, i32 0, i32 0),\
double %56, double %58, i32 %60, i32 %62)

%64 = load i64, i64* %low, align 8
%65 = sitofp i64 %64 to float
%66 = fpext float %65 to double
%67 = fmul double 4.000000e+00, %66
%68 = load i64, i64* %itot, align 8
%69 = sitofp i64 %68 to float
%70 = fpext float %69 to double
%71 = fdiv double %67, %70
%72 = fptrunc double %71 to float
store float %72, float* %pi, align 4
%73 = load float, float* %pi, align 4
%74 = fpext float %73 to double
%75 = load float, float* %ztot, align 4
%76 = fpext float %75 to double
%77 = fmul double %76, 0.000000e+00
%78 = load i64, i64* %itot, align 8
%79 = trunc i64 %78 to i32
%80 = call i32 (i8*, ...) @printf(i8* getelementptr\

inbounds ([37 x i8], [37 x i8]* @.str.2, i32 0, i32 0),\
double %74, double %77, i32 %79)

ret i32 0
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}

declare i32 @printf(i8*, ...) #1

attributes #0 = { nounwind uwtable "disable-tail-calls"="false"\
"less-precise-fpmad"="false" "no-frame-pointer-elim"="true"\
"no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false"\
"no-nans-fp-math"="false" "stack-protector-buffer-size"="8"\
"target-cpu"="x86-64" "target-features"="+fxsr,+mmx,+sse,+sse2"\
"unsafe-fp-math"="false" "use-soft-float"="false" }

attributes #1 = { "disable-tail-calls"="false" "less-precise-fpmad"="false"\
"no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"\
"no-infs-fp-math"="false" "no-nans-fp-math"="false"\
"stack-protector-buffer-size"="8" "target-cpu"="x86-64"\
"target-features"="+fxsr,+mmx,+sse,+sse2" "unsafe-fp-math"="false"\
"use-soft-float"="false" }

!llvm.ident = !{!0}

!0 = !{!"clang version 3.7.0 (tags/RELEASE_370/final)"}

A.3 Cost of PI’s Functions

The cost finds by Wu-Larus Static Analysis Profiler for each function is:

– myadd = 12.0,

– main = 1050.6954.

Based on these results we can conclude that the function main is the hottest

function. As a result, the database will store the DNA of this function and an

effective sequence for this DNA.

A.4 Program PI’s Hottest Function as a DNA

LLLLLLLLLLLLLLLLLKKKSKKKKKKKKAJJQAJEKJJEEEKOPFPKJJJJFPOFFKJJFK \

JJFJJFFKSJPQAJEKAAJEKAJPJPJOJOSJOPFJOPFPKJPJPFJOS
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