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Abstract: Microarray technology is widely used to report gene expression data. The
inclusion of many features and few samples is one of the characteristic features of this
platform. In order to define significant genes for a particular disease, the problem of
high-dimensionality microarray data should be overcome. The Artificial Bee Colony
(ABC) Algorithm is a successful meta-heuristic algorithm that solves optimization
problems effectively. In this paper, we propose a hybrid gene selection method for
discriminatively selecting genes. We propose a new probabilistic binary Artificial Bee
Colony Algorithm, namely PrBABC, that is hybridized with three different filter meth-
ods. The proposed method is applied to nine microarray datasets in order to detect
distinctive genes for classifying cancer data. Results are compared with other well-
known meta-heuristic algorithms: Binary Differential Evolution Algorithm (BinDE),
Binary Particle Swarm Optimization Algorithm (BinPSO), and Genetic Algorithm
(GA), as well as with other methods in the literature. Experimental results show that
the probabilistic self-adaptive learning strategy integrated into the employed-bee phase
can boost classification accuracy with a minimal number of genes.
Key Words: microarray, normalization, gene selection, machine learning, artificial
bee colony
Category: I.2 I.2.6 H.3.2 L.3.2

1 Introduction

DNA (Deoxyribo nucleic acid) microarray technology involves microscopic DNA

spots that are formed in sequence by observing thousands of genomic expression

levels at the same time and are attached to a solid surface such as glass, plas-

tic, or silicon chip. Measurement of gene expression using microarrays is feasible

in many areas of biology and medicine. For example, microarrays can be used

to identify disease-related genes by assessing gene expression in diseased and

normal cells [Govindarajan et al. 2012]. Gene expression analysis includes two

important steps: identifying disease-related genes and developing a classification
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model for unseen data, because each gene in microarray analysis allows evalu-

ation of different tissue types [San Segundo-Val and Sanz-Lozano 2016]. When

microarray data images are digitized, this reveals noisy data consisting of thou-

sands of features. However, because they generally include few samples and many

features, the process of clustering or classifying genes is difficult. To identify sig-

nificant genes and analyze gene expression, it is critical to eliminate irrelevant

features from microarray data.

Feature (gene) selection is a pre-processing step aims to improve performance

and to facilitate classification and clustering processes [Guyon and Elisseeff 2003].

Feature selection is a kind of multi-objective optimization problem. Its goal is

to minimize feature size and maximize classification or clustering performance.

Feature selection methods are generally classified into three categories: filters,

wrappers, and hybrid methods. In filter approaches, features are ranked accord-

ing to a specific criterion like Chi squared test, information gain etc. and those

with high rank are selected. Wrapper methods evaluate the performance of fea-

ture subsets using a learning algorithm. The features in subsets can be selected

sequentially. In this way, all possible combinations of features are evaluated. An-

other strategy involves selecting feature subsets heuristically: without testing all

of the combinations, the features that are likely to be successful are combined.

Hybrid methods are formed by the combination of filter and wrapper methods

[Tsamardinos and Aliferis, 2003].

Feature selection has a critical role in a wide range of applications such as

gene expression analysis, image processing, and text mining etc. In microarray

analysis, it is at challenge to, select the most important genes from a set of

thousands. Statistical methods are inadequate because the number of samples

is small.This situation led researchers to try different methods such as tradi-

tional feature selection methods and hybridized optimization algorithms. For a

simple and fast solution, the feature selection process can be realized with filter

and feature extraction methods. [Bolón et al. 2017], applied Mutual Information

Maximization and Minimum Redundancy and Maximum Relevance (mRMR) al-

gorithms in a distributed environment. [Aziz et al. 2016], combined Fuzzy Back-

ward Feature Elimination and Independent Component Anaylsis (ICA). The

hybrid model proposed by [Kalaviani and Kumar 2017], used Gaussian kernel

approximation and constructed a fuzzy rough set model for selecting significant

genes. [Sun et al. 2016] proposed a Lagrange Multiplier-based feature selection

method with Support Vector Machines (SVM) classifier and compared their re-

sults with traditional filter methods. [Mortazavi et al. 2016] introduced a robust

filter method that used qualitative mutual information.

Because of the high dimensionality of microarray data, hybrid methods that

include a filter and a wrapper method are generally preferred. [Guo et al. 2016]

applied Linear Discriminant Analysis (LDA) with Logistic Regression to data.
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The class centroid is determined with kernel-based expectation. Logistic Regres-

sion is used as an optimization algorithm, and the class separability measure is

used as the fitness function. The authors applied Partial Least Squares (PLS) for

feature extraction after logistic regression in their next study [Guo et al. 2017].

The Discrete Bacterial Algorithm was also applied to the feature selection prob-

lem. The feature subset that was selected via individuals was restricted; there-

fore, no filter method was needed. The results were compared with some tra-

ditional methods and three evolutionary algorithms [Wang et al. 2017]. From

the study of [Yang et al. 2008], datasets filtered with Information Gain (IG)

and Correlation-Based Feature Selection (CFS), and subsequently feature sub-

sets, were optimized with an Improved Binary Particle Swarm Optimization

algorithm. The feature subset accuracies were evaluated with K Nearest Neigh-

bor (K-NN) and SVM classifiers. [Abdi et al. 2012], used Particle Swarm Op-

timization (PSO) for two purposes: optimizing kernel parameters in SVM and

weighting gene subsets after selecting the top n genes with the mRMR filter

method. BinPSO was hybridized with rough set theory for the gene selection

problem, as reported in [Dara et al. 2017]. As an improvement of Univariate

Marginal Distibution Algorithm, which is an Estimation of Distribution-based

algorithm, MOEDA, when combined with an mRMR filter, yielded promising

results [Lv et al. 2016]. The Genetic Algorithm is a widely used evolutionary

method, also employed for selecting important genes after filtering datasets with

the mRMR filter [El Akadi et al. 2011]. GA has also been applied with the IG

filter method [Yang et al. 2010]. Optimization methods can also be applied in

a multi-objective way. There are two fitness values: classification accuracy and

feature subset size. The former involves maximization, and the latter is a mini-

mization problem. Microarrays are normalized with min-max normalization, and

gene size is reduced by a correlation coefficient-based filter method. For the op-

timization process, a multi-objective GA is used at [Hasnat and Molla 2016].

[Tabakhi et al. 2015] utilized Ant Colony Optimization as a filter for unlabeled

data; they did not employ a learning algorithm. The sum of mRMR values of

the genes in the subset were normalized and used as the fitness function. In

the ABC Algorithm proposed by [Alshamlan et al. 2015a] for finding discrimi-

native genes, the authors improved upon their previous studies and proposed a

method that combined GA with ABC [Alshamlan et al. 2015b]. They compara-

tively applied ABC, PSO, and Cuckoo Search (CS) with three fitness functions

[Mohamed et al. 2017]. [Apolloni et al. 2016] proposed a Differential Evolution

(DE) Algorithm with IG filter. MCSO [Mohapatra et al. 2016] is an improved

version of the Cat Swarm Optimization (CSO) Algorithm that is used for the

microarray gene selection process.

In this paper, we focus on improving an effective hybrid gene selection method

for microarray data. Before the gene selection process, datasets are normal-
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ized using three microarray normalization methods: Robust Multi-Array Average

(RMA) [Irizarry et al. 2003], Guanine Cytosine RMA (GcRMA) [Wu et al. 2004],

and Micro Array Suite 5.0 (MAS5) [Hubbell et al. 2002]. According to purity and

accuracy values, RMA yielded better results. Then, three filter methods in com-

bination are applied to the normalized data. The top n features are selected for

each filtered result, and these three sets are combined. Finally, the proposed bi-

nary ABC Algorithm is applied to the gene set selected by the filters to find the

optimized feature subset. Results are compared to well-known meta-heuristic

optimization methods. Additionally, we compared PrBABC results with some

other gene selection methods in the literature. Consequently, we demonstrate

that using the genes selected by three different filter algorithms increases the

performance of the pre-processing step. Furthermore, the proposed binary ver-

sion of the ABC Algorithm, because of its self-learning strategy, can easily adapt

to the problem.

The remainder of this paper is structured as follows: Section 2 gives brief

information about methods that used in this paper. Section 3 describes normal-

ization phase, filtering phase and optimization phase of the proposed method.

Datasets description, parameter settings and simulation results are given in Sec-

tion 4. Finally, conclusion is drawn in Section 5.

2 Related Methods

2.1 Normalization

DNA microarray is a technology used to examine global changes in gene expres-

sion profiles in cells and tissues. Affymetrix GeneChips are a commonly used

technology for expression profiling [Dalma et al. 2006]. The DNA sequences in

microarrays are called ‘probes’. Thousands of density values are associated with

oligonucleotide probes, and these are grouped into probesets. Probe pairs include

Perfect Match (PM) and Mismatch (MM) oligonucleotides. A Perfect Match is

an exactly match with a particular gene; therefore, it measures the expression of

this gene. A Mismatch contains a difference at the center of the sequence. MM

probes find the correct transcript levels for genes that are expressed at low levels

[Liu et al. 2010].

Transforming intensity values to expression values is accomplished by nor-

malization. Normalization for microarray data aims to remove or minimize non-

biological data at measured signal intensity levels. In this way, biological dif-

ferences in gene expression can be appropriately detected [Quackenbush 2002].

Three common normalization methods are used for microarray data normaliza-

tion: MAS5, RMA, and GcRMA. In MAS5 normalization, each probe is indepen-

dently and sequentially normalized. It depends on the differences between perfect
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match and mismatch. The value of a probe-set summary is normalized using lin-

ear scaling based on a reference array in MAS5. RMA is a multichip linear model

and uses only perfect matches; i.e., it ignores the mismatches. RMA values are

in log2 units. The value of each probe is normalized using quantile normalization

in multiple arrays. MAS5 results are effective for correlation analysis, whereas

RMA results are effective for detecting differentially expressed genes. Additional

removal of mismatches can cause the loss of important signals of many probes

[Do and Choi 2006]. The difference between GC-RMA and RMA is that RMA

uses a convolutional model for background correction, but GcRMA uses the

Guanine Cytosine (GC) content of the probes. In this way, it is intended to re-

duce the variance in the MM probe levels. According to position-dependant base

effects, probe affinity is calculated. After MMs are adjusted based on probe affin-

ity, they are subtracted from PM so that the MM values are not lost. GcRMA

does not keep the probe-level information, and reports one value for each probe

set [Wu et al. 2004].

2.2 Information Gain

Information Gain is an entropy-based feature ranking method. Entropy is a

measure of purity of a sample. The information gain is the difference of the

information using to recognize to feature Y (Eq. (1)) and the information about

feature Y after observing X (Eq. (1)). As a feature selection method, IG measures

the distinctiveness of a feature for a given class. The value of IG is the range of

0-1. The more independent the feature is from the class information, the closer

the value of IG is to 0 [Hall 1999].

H(Y ) = −
∑

y∈Y

p(y)log(p(y)) (1)

H(Y |X) = −
∑

x∈X

p(x)
∑

y∈Y

p(y|x)log(p(y|x)) (2)

IG = H(Y )−H(Y |X) (3)

where p(y) is the marginal probability density function for the random variable

Y. p(y|x) is the conditional probability of y given x.

2.3 Correlation-Based Feature Selection

Correlation-Based Feature Selection is based on the hypothesis that good feature

subsets are composed of features that are high in relation to the related class,

and have low correlation with each other. CFS uses a search algorithm with

a function that measures the information values of the feature subsets. The

‘correlation’ term refers to ‘measure of feature similarity’. The aim is to select
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the features that are high in relation to a particular class and low in relation to

other features. The correlation value is a range between -1 and 1. The ‘-1’ value

indicates that there is a full negative linear relation between features, whereas

the ‘1’ value indicates a full positive linear relation between features. If the value

is ‘0’, there is no relation [Hall 1999].

Ms =
krcf

√

k + k(k − 1)rff
(4)

where k is number of features at subset, rcf is the mean feature-class correlation,

rff is the average feature-feature inter-correlation.

2.4 ReliefF

ReliefF is a statistical-based filter method. It takes a sample from a dataset and

creates a model according to its closeness to the samples in the same class and

distance from the samples in other classes. Therefore, ReliefF aims to maximize

the margins that separate the classes [Robnik-Sikonja and Kononenko 2003]. At

the beginning of the algorithm, weights for all attributes are 0. The algorithm

selects a random observation and iteratively updates the weights according to

Eq. (5).

Si =

∑m

j=1
−diff(Aij , Hij) + diff(Aij , Cij)

m
(5)

where i is the corresponding feature, m is the number of samples in dataset,

diff(Aij , Hij) is the distance between the sample Aij and the nearest sample

Hij in same class. diff(Aij , Cij) is the distance between the sample Aij and the

nearest sample Cij in different class.

2.5 Artificial Bee Colony

[Karaboga and Akay, 2009] introduced at 2009, the Artificial Bee Colony Algo-

rithm, which is a swarm-based heuristic method. ABC is a multi-dimensional

optimization algorithm that imitates the foraging behaviour of bees. According

to this algorithm, the purpose of the bees is to maximize the quantity of nectar

sources and minimize the distance of the sources. For optimization problems,

sources are represented by vectors. The vector dimension is the parameter num-

ber of the problem. Each source is a possible solution of the problem, and the

source quality is represented by the amount of nectar; this is called the fitness

value. Each source has a trial value and is set to 0 in the initialization phase.

When a source is improved, this value remains the same; otherwise, it is incre-

mented by 1. A colony has three kinds of bees: employed bees, onlooker bees, and

scout bees. There are an equal number of employed and onlooker bees, whereas

there is always a single scout bee. The algorithm includes four steps:
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1. Initialization Phase: Sources are randomly initialized using Eq. (6).

xij = xmin
j + U(0, 1)(xmax

j − xmin
j ) (6)

The current source number is represented by i, and j is the dimension of the

vector. U(0,1) is a uniformly distributed random number.

2. Employed Bee Phase:Each employed bee selects a random neighbour, then

using Eq. (7) generates a new solution. The fitness values of the new and

current solutions are compared. If the former is better, it becomes the current

solution; otherwise the trial value is incremented by 1.

vij = xij + φij(xij − xkj) (7)

xi and xk are current and randomly selected neighbour sources respectively.

Ø is uniformly distributed random value between [-1,1].

3. Onlooker Bee Phase: The duty of onlooker bees in a swarm is optimization.

After the employed bees exploitation phase, they return to the hive and

provide information about their own sources. Each onlooker bee selects a

source according to this information using the roulette-wheel scheme given

in Eq. 8.

pi =
fitnessi

∑n

j=1
fitnessj

(8)

pi is the probability of ith source. If this probability is greater than a ran-

dom value this source is selected otherwise the trial number of ith source is

incremented by 1.

4. Scout Bee Phase: At the end of the employed bee and onlooker bee phases,

the scout bee checks if the trial value has exceeded the ‘limit’ value by

any source. If so, it is assumed that this source fell into a local optimum;

therefore, it is abandoned and the scout bee generates a new source using

Eq. (6).

3 Proposed Method

3.1 Normalization

Normalization is one of the key processes used in data mining. If the mean and

variance of the variables are significantly different from each other, the variables

with large mean and variance have a higher pressure on the others, and their

role is significantly reduced. Therefore, data normalization should be performed.

In order to reduce the effect of these factors, we firstly normalized microar-

ray datasets by using MAS5, RMA, and GcRMA normalization methods for
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microarray data. The normalization process is applied using the R statistical

programming language, employing the Bioconductor package, which is a com-

monly used tool for genomic data. In order to compare datasets that normalized

using three different methods, purity, Silhouette coefficient, and accuracy mea-

sures are used. Purity and Silhouette coefficient are criteria that indicate the

quality of clusters. Purity is calculated as the ratio of the number of samples

in the correctly assigned cluster to the total number of samples. The Silhouette

coefficient measures the similarity of each sample to its cluster and is calculated

with the mean nearest-cluster distance and mean of the intra-cluster distance.

Normalized datasets are clustered using K-Means and Hierarchical Clustering

methods. Clustering and Classification algorithms were applied with MATLAB

R2017a.

3.2 Filtering

Figure 1: Flow Chart of Filtering Process

One of the most typical characteristic properties of microarray is that it has

thousands of features and very few samples. Filtering methods that work by

reducing feature size provide a preliminary process for determining the distin-

guishing features. For this purpose, we applied three filter methods to datasets

before the optimization algorithm was applied. These are entropy-based Infor-

mation Gain, Correlation Based Feature Selection, and distance-based ReliefF

algorithms. Subsequently, we combined the results of all three methods. Filtering
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process is given in Figure 1. Genes are ranked according to these filter methods

separately. Top n genes are selected from each ranked sets. Subsequently, it is

checked whether there is/are same gene(s) in the clusters. If any the next gene

(n+1) is taken from randomly selected ranked set. These filtering algorithms

ranks genes according to different criteria. In this way, after the filtering pro-

cess is complete there are 3n features that have different levels of discrimination

in datasets obtained by three different filter methods. Filter algorithms were

applied with MATLAB R2017a.

3.3 Probabilistic Binary Artificial Bee Colony Optimization

The ABC Algorithm is proposed for continous optimization problems. How-

ever, gene selection requires a binary solution space. The binarization process

is accomplished by two basic approaches: to use binary vectors and to edit

the new source generation equation to work with binary vectors or transform-

ing continous values to binary space with a transformation function. Similarity

measures (Jackard etc.) [Kasha et al. 2012], bitwise operators (AND, OR, XOR

etc.) [Jia et al. 2014, Kiran and Gündüz 2013], insertion and/or swap operators

[Zhang and Gu, 2015], substitution and/or shift operations [Ozmen et al. 2018]

and genetic operators (cross-over, etc.) [Ozturk et al. 2015, Ozturk et al. 2014,

Yurtkuran and Emel 2016] are used for the former approach. The round func-

tion [Wei and Hanning, 2012], sigmoid function [Tran and Wu 2014], mod oper-

ator [Kiran 2015] and, tangent function [Mandala and Gupta 2014] are used for

transformation of continuous values to binary space.

Feature selection is a binary optimization problem. Certain assumptions are

necessary for binary ABC variations: Food sources are binary vectors and their

size is equal to the number of features of the dataset. If a feature is included in a

feature subset, the corresponding value of the vector is 1; otherwise, it is 0. The

fitness value is the classification/clustering performance of the selected subset.

For the ABC algorithm, sources are real vectors and are initialized by using

Eq. (6). We adopted an initialization phase that is suitable for binary space, and

sources are initialized with the following rule:

xij =

{

1 if rand(0, 1) ≥ threshold

0 if rand(0, 1) < threshold
(9)

The learning strategy is a critical issue for an optimization algorithm; it is

highly dependent on the problem or data used. In ABC, the learning strategy

is a new source generation formula that is given by Eq. (7). Researchers have

proposed various novel source generation formulas for the employed bee phase

in binary ABC variations. Feature selection can be defined as a multi-objective

optimization problem. It aims to reduce the number of features while increasing

the accuracy. At the stage of the binarization of the ABC algorithm, we tested
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(a) (b)

Figure 2: New source generation procedures (a) cross-over (b) bitwise AND

various learning methods. Some of them achieved improved classification accu-

racy and some of them yielded reduced feature size. Therefore, inspired by the

study [Qin et al. 2005], we used two learning strategies in a probabilistic man-

ner; one is intended to increase accuracy, and the other is intended to reduce

feature size.

We applied some learning strategies to fit binary ABC and saw from our ex-

periments that cross over and bitwise operators produce promising results, and

have widespread use for the binarization process of ABC. In ABC, each current

source contributes to the knowledge of other sources. Therefore, we constructed

our learning strategies according to this information sharing. To increase accu-

racy, we used a partially-mapped crossover operator in the employed bee phase.

According to this, a random source from a swarm is selected, and the applied

partial-mapped crossover operator is shown in Figure 2. In the partial-mapped

crossover operation, two points are selected randomly, then sub-strings between

these points are exchanged. So, a new source is generated for the employed bee

phase. If new source has a better fitness value than the current one, the new

source becomes the current source. This means that the current source is im-

proved. The advantage of the crossover operation is that the sub-strings are

combined with different sub-strings in this way. These combinations can pro-

duce better classification results because in optimization algorithms, superior

solutions has a better chance of survival. Additionally, crossover provides diver-

sity and prevents falling into a local optimum.

We used bitwise operators as a second learning strategy. Similarly, a random

source is selected from the swarm and the bitwise ‘AND’ operator is applied to

sub-strings of sources, as shown in Figure 2b.

One of the these two learning strategies is probabilistically selected by the

algorithm according to performance. When the algorithm is initialized, both of

them have the same probability of selection: 0.5. As the iterations progress, these
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probabilities are updated according to the rate of improvement of fitness value

using Eq. (10).

p1 =
imS1

#totalImprovement
, p2 = 1− p1 (10)

p1 and p2 are the probability of the first and second learning strategy re-

spectively. imS1 is the number of successful new sources that generated by the

first learning strategy. For each source in the employed bee phase and for some

sources at the onlooker bee phase of ABC, new sources are generated. If it is

better than the previous one, they are exchanged. imS1 is incremented by 1 if

it improves the source when it selected as the learning strategy. Similarly, if the

second strategy is selected and improves the source, imS2 is incremented by 1.

#totalImprovement is the total success number of both strategies. The total

probability of the two strategies is 1.

imS1, imS2, #totalImprovement, p1 and p2 values are updated at the end

of each iteration.

A uniformly distributed random number between 0 and max(p1,p2) is gen-

erated in each new resource generation stage. If this random number is smaller

than p1 a new source is generated by the first learning strategy; if it is smaller

than p2 a new source is generated by the second learning strategy. If the random

number is smaller than both of the probabilities, the algorithm randomly selects

one of the two methods. We experimentally saw that, if a strategy improved

sources several times in an iteration, in the next iteration its probability is very

high, according to the other strategy. In this way, we prevented such obvious

differences in probabilities.

In the employed bee phase, we used the improvement capability of learning

strategies. Similarly to the onlooker bee phase, we used failure rates of learning

strategies. Unlike before, the probabilities were calculated using Eq. (11), and

a lower probability value, indicated less failure. Namely, the selection chance

of a strategy is increased, according to the magnitude of the random value.

Thus, the algorithm takes into account both improvement and failure rates. We

call our method "Probabilistic Binary Artificial Bee Colony (PrBABC)", and to

demonstrate its effectiveness we applied it to the gene selection problem.

p3 =
#failure1

#totalFailure
, p4 = 1− p3 (11)

4 Experiments

We used nine differently sized microarray datasets listed in Table 1, in our ex-

periments to measure the effectiveness of the proposed methods. All datasets are

high-dimensional data, and the feature size is much larger than the sample size.

Microarray normalization methods were compared according to purity, accu-

racy, and silhouette coefficient values. Purity values were measured according to
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Table 1: Datasets that used in experiments

MA
#
Ins

#
Cls

#
Feat

Description MA
#
Ins

#
Cls

#
Feat

Description

Cll-
Sub

111 3 12626
Subgroups of B-cell
chronic lymphocytic
leukemia [NCBI]

Stjude 327 7 12625
Sub type of pediatric
lymphoblastic leukemia
[St.Jude]

Dlbcl 77 2 7129
Diffuse Large B-
Cell Lymphoma
[Broad Institute]

Lung
Can

235 5 12625
Human Lung Carcino-
mas [Broad Institute]

Glim. 50 2 12625 Brain Tumor [NCBI] Leuk2 72 3 12626
Sub types of Leukemia
[Broad Institute]

Pros
Can.

102 2 12625
Prostate tumor ver-
sus normal genes
[Broad Institute]

WBC 97 2 24482
Breast cancer relapse
free survival [NCBI]

CNS 60 2 7129
Central nervous system
embryonel tumour out-
come [Broad Institute]

K-Means and Hierarchical clustering methods. In order to establish a baseline

to assess the clustering results, the clustering process was applied 10 times, and

mean purity values were taken into account for K-Means. Silhouette coefficients

were calculated according to clusters produced by the K-Means Algorithm. The

class number of datasets is set as the cluster number. To obtain the accuracy

values, the 3-NN algorithm was applied with 10-fold cross-validation. Clustering

and Classification algorithms were applied in the MATLAB R2017a environ-

ment. The obtained results are given in Table 2.

Table 2: Normalization methods comparison

Purity Accur.
Sil. Co-
eff.

Purity Accur.
Sil. Co-
eff.

Dataset Method
K-
Means

Hierar 3NN
K-
Means

Dataset
K-
Means

Hierar 3NN
K-
Means

Cll-Sub
MAS5 0.252 0.513 0.829 0.491

Lung
0.302 0.715 0.962 0.154

RMA 0.423 0.468 0.892 0.217 0.506 0.715 0.983 0.168
GcRMA 0.577 0.459 0.883 0.251 0.451 0.723 0.974 0.187

CNS
MAS5 0.617 0.633 0.783 0.161

WBC
0.507 0.622 0.787 0.172

RMA 0.617 0.633 0.817 0.252 0.535 0.622 0.78 0.183
GcRMA 0.683 0.633 0.783 0.208 0.528 0.629 0.773 0.111

DLBCL
MAS5 0.61 0.74 0.948 0.174

Leuk2
0.444 0.389 0.944 0.193

RMA 0.714 0.74 0.974 0.182 0.667 0.389 0.986 0.153
GcRMA 0.714 0.74 0.948 0.131 0.639 0.389 0.972 0.109

Stjude
MAS5 0.177 0.231 0.865 0.125

Prostate
0.627 0.5 0.892 0.373

RMA 0.217 0.24 0,939 0.056 0.569 0.5 0.931 0.358
GcRMA 0.217 0.24 0.96 0.066 0.598 0.52 0.912 0.391

Glioma
MAS5 0.6 0.54 0.88 0.12
RMA 0.72 0.54 0.88 0.147
GcRMA 0.72 0.54 0.88 0.29

According to the results in Table 2, the purity values obtained by hierarchical

clustering are generally equal to each other. For some datasets, the purity val-
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ues obtained by K-Means clustering are also equal. Generally, for this, measure

RMA and GcRMA normalization methods yielded good clustering results. With

respect to accuracy, RMA normalization is better than the other methods. When

the silhouette coefficients are taken into account, the methods show equivalent

performance. Overall, we saw that, RMA produced generally good results for

these datasets. Therefore, we used datasets normalized with RMA method in

our experiments.

In the optimization phase, datasets were classified with the 5-NN algorithm.

Datasets were randomly divided into 3 sections: 60% of the data was the training

set, 20% of the data was the validation set, and the remaining data is the test set.

It is guaranteed that each set has at least one sample of each class. During the

optimization phase, the selected subset is trained with the training set, and its

accuracy value is measured with the test set. The samples in the validation and

test sets were not used in the training phase. After all iterations had completed,

the performance of the best feature subset was measured by the test set.

PrBABC was compared with three well-known algorithms: Genetic Algo-

rithm [Sivanandam S. and Deepa 2008], Binary Particle Swarm Optimization

Algorithm [Kennedy and Eberhart 1997], and the binary Differential Evolution

Algorithm (BinDE) [Engelbrecht and Pampara 2007]. To ensure a fair compar-

ison, 3 filter methods were applied to datasets as in PrBABC before the algo-

rithms were run. The results were compared in terms of test set misclassification

errors, number of genes in the subset, and CPU time. Algorithms are applied

according suggestions; for GA in [Sivanandam S. and Deepa 2008] for BPSO in

[Kennedy and Eberhart 1997] and for BinDE in [Engelbrecht and Pampara 2007]

using MATLAB r2017a. The source code available for all algorithms at github.

com/ZBaOz/MicroarrayGeneSelection.

The threshold value in the initialization phase was set as 0.85; this value

represents the probability of a gene in the subset. The limit value that was

used in the scout bee phase was 100. The number of employed bees was 25,

and the population size for GA, BinPSO, and BinDE was 50 (2 x #employed-

Bee). For GA, crossover rate was 0.8 and mutation rate was 0.2, as reported in

[Sivanandam S. and Deepa 2008]. As recommended in [Mirjalili and Lewis 2012],

the learning factors c1 and c2 were set to 2, initial weight (w) was set to 0.9, and

the maximum speed (Vmax) was set to 0.6 for BinPSO. For BinDE the scaling

factor (F) was set to 1, perturbation parameter (P) was set to 0.25, and cross-over

rate (CR) was set to 0.1 as recommended in [Engelbrecht and Pampara 2007].

Maximum iteration number for all algorithms was 100. Algorithms ran 20 times

with different random seeds and were averaged to verify the results statisti-

cally. The algorithms were executed on a PC with 16 GB Ram and an Intel (R)

Core(TM) i7-3630QM 2.4 GHz CPU by using MATLAB R2017a. The source

code available at github.com/ZBaOz/MicroarrayGeneSelection.
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Exploration in ABC is done in the scout bee phase and is controlled by the

‘limit’ value; therefore this value directly affects the performance of the ABC

algorithm. [Karaboga and Basturk 2008] proposed to determine the limit value

according to the following formula:

limit = ne ∗D (12)

ne is the number of employed bees and D is the dimension of the problem.

However, in [Veček et al. 2017], the authors tried different ne and D value pairs,

and they demonstrated that there does not exist a linear relationship between

ne and D as in Eq. (12), especially in high-dimensional problems. In the gene

selection process, problem dimension is equal to the gene number of dataset. For

example, for a microarray with 10,000 genes, the problem dimension is equal

to 10,000. Determining the ‘limit’ value according to Eq. (12), will significantly

reduce exploration. ‘Limit’ is a problem-dependent parameter; therefore, we set

it to 100 by trial and error.

The fitness value is calculated according to accuracy and the number of gene

values of the subset. The constant ‘c’ in Eq. (13) is used for regulating the weights

of accuracy and gene number. In our study, since increasing accuracy is more

important than reducing the number of genes, c was set as 0.9995. Thus, it is

guaranteed that the algorithm always selects a subset that has high accuracy,

but if any two subsets have identical accuracy, PrBABC selects the subset that

has fewer genes.

fitness = (c ∗ accuracy) + ((1− c) ∗
#selectedGene

#totalGene
) (13)

accuracy =
#correctlyClassifiedInstances

#totalInstances
(14)

The maximum iteration number is an important parameter of an iterative

algorithm, and it is a problem-dependent parameter. The difficulty of the prob-

lem is directly related to the size of the search space. If this value is small,

the algorithm cannot converge to the optimal solution. A characteristic of mi-

croarrays is that they have many features and a few samples. Therefore, the

validation and test sets have few samples for each class. When the maximum

iteration number was too large, we saw that, initially, the error decreased, but

subsequently, the error began to increase because of over-training. Taking this

into consideration, the maximum iteration number was experimentally chosen

as 100. Figure 3 shows the convergence graph related to test set misclassification

error of PrBABC-3F and iteration number, from a randomly selected run with

the top 1,500 features. According to these graphs, 100 iterations are sufficient,

and the algorithm is terminated without over-training.

The IG, CFS, and ReliefF filter methods were applied to the microarrays

and the top 1500, 1000, 750, 500, 300, and 100 genes were selected. PrBABC
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Figure 3: Convergence Graph

was applied after the datasets were filtered by three filter methods both com-

bined and separately. PrBABC-3F represents filtering process performed with

all three filtering methods. For example, as mentioned above, the top 1500 genes

are composed of the top 500 genes obtained by each filter method. PrBABC-IG,

PrBABC-CFS, and PrBABC-RF represent IG, CFS, and ReliefF filters with

PrBABC, respectively. The test set misclassification error results and their stan-

dard deviations of methods are given in Table 3. The best results for each dataset

are shown in bold text.

According to the results shown in Table 3, applying three filter methods

together is better than the other strategies for most of the datasets. For DLBCL

and Leukemia2 datasets, test set misclassification errors were generally smaller

than 0.1, and other methods yielded better results for some conditions; however

the error differences are very small and not meaningful. When 3 filter methods

were compared with each other, ReliefF produced better results than IG and

CFS, and it obtained the closest results to the PrBABC-3F method. ReliefF

aims to maximize the margins that separate classes. The results clearly show

that applying three filtering methods together selects the gene subset with the

fewest errors. In this way, we took advantage of these 3 different methods.

To show the effectiveness of PrBABC, the results are compared with the

GA, Binary PSO, and Binary DE algorithms. As in PrBABC, the datasets were

filtered by all 3 methods, and the top 1500, 1000, 750, 500, 300, and 100 genes

were selected.

GA-3F represents Genetic Algorithm with 3 filters, BinPSO-3F represents
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Table 3: Misclassification Error Comparison for Filter Methods

Method
CLL-
SUB

CNS DLBCL Glioma Leuk2 Lung Prostate Stjude WBC

1
5
0
0

PrBABC-
3F

0.259±
0.1

0.242±
0.08

0.031±
0.04

0.14±
0.1

0.03±
0.04

0.042±
0.03

0.1±
0.07

0.125±
0.04

0.325±
0.05

PrBABC-
CFS

0.355±
0.12

0.367±
0.1

0.081±
0.06

0.255±
0.14

0.083±
0.09

0.076±
0.03

0.165±
0.07

0.174±
0.04

0.383±
0.06

PrBABC-
IG

0.289±
0.09

0.383±
0.14

0.044±
0.05

0.205±
0.14

0.053±
0.05

0.053±
0.03

0.153±
0.05

0.131±
0.04

0.372±
0.05

PrBABC-
RF

0.284±
0.1

0.308±
0.09

0.069±
0.06

0.16±
0.1

0.06±
0.06

0.053±
0.03

0.123±
0.07

0.139±
0.03

0.361±
0.04

1
0
0
0

PrBABC-
3F

0.227±
0.1

0.279±
0.13

0.031±
0.05

0.15±
0.09

0.023±
0.03

71.85±
8.23

0.095±
0.06

0.116±
0.05

0.333±
0.04

PrBABC-
CFS

0.286±
0.1

0.375±
0.17

0.116±
0.08

0.285±
0.13

0.1±
0.06

0.08±
0.03

0.21±
0.07

0.22±
0.05

0.397±
0.06

PrBABC-
IG

0.314±
0.09

0.35±
0.01

0.028±
0.03

0.165±
0.11

0.033±
0.05

0.053±
0.03

0.143±
0.07

0.13±
0.04

0.368±
0.05

PrBABC-
RF

0.275±
0.11

0.313±
0.11

0.059±
0.05

0.2±
0.11

0.067±
0.05

0.057±
0.03

0.122±
0.07

0.142±
0.04

0.348±
0.04

7
5
0

PrBABC-
3F

0.223±
0.11

0.263±
0.09

0.028±
0.04

0.12±
0.08

0.013±
0.03

0.053±
0.03

0.09±
0.06

0.109±
0.05

0.33±
0.04

PrBABC-
CFS

0.354±
0.11

0.45±
0.12

0.138±
0.09

0.305±
0.14

0.137±
0.08

0.077±
0.04

0.22±
0.07

0.219±
0.04

0.4±
0.06

PrBABC-
IG

0.282±
0.09

0.371±
0.12

0.031±
0.05

0.21±
0.16

0.033±
0.05

0.05±
0.03

0.1±
0.06

0.138±
0.05

0.384±
0.05

PrBABC-
RF

0.282±
0.09

0.283±
0.08

0.034±
0.04

0.165±
0.12

0.073±
0.07

0.053±
0.03

0.14±
0.09

0.145±
0.04

0.365±
0.04

5
0
0

PrBABC-
3F

0.234±
0.1

0.263±
0.12

0.047±
0.05

0.12±
0.11

0.017±
0.04

0.046±
0.03

0.08±
0.06

0.127±
0.04

0.339±
0.06

PrBABC-
CFS

0.302±
0.12

0.383±
0.14

0.125±
0.06

0.33±
0.13

0.163±
0.11

0.112±
0.04

0.2±
0.08

0.23±
0.05

0.395±
0.06

PrBABC-
IG

0.314±
0.12

0.375±
0.12

0.047±
0.05

0.17±
0.13

0.04±
0.06

0.054±
0.03

0.118±
0.06

0.137±
0.05

0.414±
0.05

PrBABC-
RF

0.286±
0.1

0.271±
0.09

0.037±
0.05

0.185±
0.09

0.057±
0.05

0.066±
0.03

0.135±
0.08

0.162±
0.03

0.341±
0.05

3
0
0

PrBABC-
3F

0.241±
0.09

0.25±
0.14

0.037±
0.05

0.155±
0.09

0.04±
0.05

0.059±
0.03

0.087±
0.07

0.13±
0.05

0.328±
0.05

PrBABC-
CFS

0.352±
0.1

0.404±
0.12

0.197±
0.1

0.285±
0.1

0.187±
0.1

0.079±
0.04

0.223±
0.09

0.275±
0.05

0.428±
0.06

PrBABC-
IG

0.266±
0.08

0.363±
0.15

0.034±
0.05

0.19±
0.12

0.037±
0.034

0.068±
0.04

0.113±
0.09

0.148±
0.03

0.43±
0.05

PrBABC-
RF

0.268±
0.1

0.267±
0.1

0.041±
0.04

0.16±
0.11

0.043±
0.05

0.059±
0.03

0.113±
0.07

0.151±
0.03

0.351±
0.04

1
0
0

PrBABC-
3F

0.209±
0.06

0.233±
0.08

0.047±
0.05

0.145±
0.14

0.043±
0.05

0.07±
0.04

0.068±
0.08

0.144±
0.04

0.337±
0.04

PrBABC-
CFS

0.418±
0.13

0.483±
0.15

0.2±
0.07

0.335±
0.16

0.223±
0.14

0.128±
0.04

0.237±
0.11

0.398±
0.06

0.43±
0.05

PrBABC-
IG

0.275±
0.12

0.304±
0.11

0.081±
0.05

0.165±
0.12

0.077±
0.08

0.07±
0.04

0.137±
0.08

0.18±
0.05

0.402±
0.06

PrBABC-
RF

0.289±
0.09

0.271±
0.1

0.069±
0.07

0.16±
0.13

0.087±
0.09

0.105±
0.05

0.143±
0.08

0.166±
0.04

0.342±
0.05

the BinPSO algorithm with 3 filters, and BinDE-3F represents the Binary Dif-

ferential Evolution Algorithm with 3 filters. Algorithms are compared in terms

of test set misclassification errors (Table 4) and gene set size (Table 5). In the

Table 4, the first row shows test set error of accuracy values and their standard

deviations. The second row shows statistical significance obtained by Wilcoxon

Rank Sum Test. ‘+’ indicates that the PrBABC results are statistically better
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than the corresponding algorithm, whereas ‘-’ indicates that the PrBABC results

are statistically worse than the corresponding algorithm. ‘=’ shows that there

is no statistical significance between algorithms. The number of selected genes

of the algorithms and their standard deviations are shown in Table 4. The best

results are shown in bold text.

It is clearly shown from Tables 4 and 5 that PrBABC outperforms the other

algorithms, in terms of test set error, for the majority of datasets. As in Table 3,

other methods produced better results for some gene set sizes for the DLBCL,

Leukemia 2, and Lung datasets, but due to the simplicity of these datasets,

all algorithms were able to classify with almost 100% accuracy effectively, the

differences among these algorithms are not meaningful. When the accuracy val-

ues were evaluated together with the gene set size, PrBABC was easily able

to eliminate non-distinctive genes and achieve better or equivalent classification

accuracy with a smaller number of genes for all datasets. There are two learning

methods in PrBABC. While choosing the learning methods, we paid attention

to the fact that they were able to find differentiated groups of genes. The results

in 4 and 5 show that we were able to realize our goal.

To decide how many genes are sufficient for each dataset, we performed a gene

selection process with the different number of genes: 1500, 1000, 750, 500, 300,

and 100. This is important to establish a balance between the number of genes

and test set errors. As the size of the dataset decreases, the number of selected

genes is decreasing, but the test error does not always increase. For DLBCL,

Leukemia2, and Lung, error results are close to each other for all dataset sizes;

therefore, starting with the top 100 genes is sufficient. For the CLL-SUB, CNS,

and Prostate Cancer datasets, PrBABC yielded the best performance with the

top 100 genes. For the remaining datasets, WBC, Stjude, and Glioma, the top

300 or 750 genes are sufficient for PrBABC to select an efficient subset.

In Table 6, we compared PrBABC with other gene selection methods in

the literature according to classification accuracy and number of selected genes.

The numbers in parentheses indicate the numbers of selected genes. We note

that there may be some differences among datasets. We use the datasets in raw

data format without any feature selection or normalization method. In some

sources, the same dataset is available with different numbers of genes, samples,

or classes; in such cases, we ignored the difference in the number of genes and

samples. However, we paid attention to the fact that the datasets we intended to

compare contain the same number of classes. Only the DLBCL dataset that we

used is the same size as the DLBCL dataset in the other studies. Additionally,

there were also some differences in the parameters and train-test sizes. Therefore,

we could not perform a 1 to 1 comparison, but our results nevertheless provide

information about general trends. We compared these methods with the average

validation set accuracy results of PrBABC because most of these methods did not
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Table 4: Misclassification Error Comparison for Evolutionary Algorithms

CLL-SUB CNS DLBCL Glioma Leuk2 Lung Prostate Stjude WBC

1
5
0
0

Pr BABC
0.259

±0.1

0.242

±0.08

0.031

±0.04

0.14

±0.1

0.03

±0.04

0.042

±0.03

0.1

±0.07

0.125

±0.04

0.325

±0.05

GA

0.268

±0.08

0.354

±0.09

0.044

±0.06

0.195

±0.12

0.047

±0.05

0.051

±0.03

0.14

±0.07

0.142

±0.04

0.338

±0.05

+ + + + - = - + +

Bin PSO
0.273

±0.09

0.383

±0.14

0.106

±0.1

0.355

±0.19

0.037

±0.05

0.041

±0.031

0.207

±0.17

0.141

±0.03

0.367

±0.054

+ + + + + + + + +

Bin DE
0.264

±0.11

0.308

±0.11

0.041

±0.04

0.17

±0.11

0.027

±0.03

0.041

±0.03

0.123

±0.06

0.14

±0.03

0.362

±0.04

+ + + + + + = + +

1
0
0
0

Pr BABC
0.227

±0.1

0.279

±0.13

0.031

±0.05

0.15

±0.09

0.023

±0.03

0.035

±0.03

0.095

±0.06

0.116

±0.05

0.333

±0.04

GA

0.273

±0.12

0.321

±0.11

0.063

±0.06
0.2 ±0.07

0.02

±0.03

0.047

±0.033

0.125

±0.07

0.133

±0.03

0.358

±0.05

+ + = + + + + + +

Bin PSO
0.284

±0.11

0.367

±0.14

0.113

±0.13

0.42

±0.16

0.043

±0.1

0.052

±0.034

0.155

±0.1

0.153

±0.04

0.359

±0.04

= + + + + + + + +

Bin DE
0.284

±0.11

0.338

±0.09

0.041

±0.04

0.195

±0.13

0.023

±0.04

0.043

±0.03

0.12

±0.06

0.131

±0.04

0.36

±0.03

+ + - + + + + + +

7
5
0

Pr BABC
0.223

±0.11

0.263

±0.09

0.028

±0.04

0.12

±0.08

0.013

±0.03

0.053

±0.03

0.09

±0.06

0.109

±0.05

0.33

±0.04

GA

0.259

±0.08

0.337

±0.11

0.053

±0.06

0.19

±0.09

0.03

±0.04

0.053

±0.03

0.12

±0.06

0.13

±0.03

0.369

±0.06

+ + = + + + + + +

Bin PSO
0.284

±0.11
0.4 ±0.12

0.094

±0.12

0.295

±0.15

0.03

±0.05

0.049

±0.02

0.202

±0.13

0.153

±0.04

0.363

±0.06

+ + + + + + + + +

Bin DE
0.277

±0.1

0.287

±0.12

0.041

±0.05

0.245

±0.11

0.023

±0.04

0.053

±0.03

0.118

±0.06

0.127

±0.04

0.343

±0.06

+ + - + + + + + +

5
0
0

Pr BABC
0.234

±0.1

0.263

±0.12

0.047

±0.05

0.12

±0.11

0.017

±0.04

0.046

±0.03

0.08

±0.06

0.127

±0.04

0.339

±0.06

GA

0.257

±0.09

0.304

±0.12

0.063

±0.05

0.185

±0.13

0.03

±0.03

0.049

±0.03

0.118

±0.06

0.145

±0.06

0.361

±0.06

+ + - + + + + + +

Bin PSO
0.282

±0.12

0.333

±0.1

0.091

±0.13

0.37

±0.22

0.057

±0.13

0.03

±0.02

0.133

±0.11

0.146

±0.03

0.36

±0.05

+ + + + - + + + +

Bin DE
0.268

±0.09

0.296

±0.12

0.053

±0.05

0.195

±0.12

0.017

±0.03

0.049

±0.03

0.113

±0.05

0.128

±0.03

0.366

±0.05

+ + = + + - + + =

3
0
0

Pr BABC
0.241

±0.09

0.25

±0.14

0.037

±0.05

0.155

±0.09

0.04

±0.05

0.059

±0.03

0.087

±0.07

0.13

±0.05

0.328

±0.05

GA

0.259

±0.08
0.3 ±0.11

0.053

±0.05

0.175

±0.14

0.037

±0.05

0.055

±0.03

0.118

±0.1

0.144

±0.03

0.356

±0.05

+ + = + + + + + +

Bin PSO
0.252

±0.08

0.313

±0.1

0.113

±0.13

0.295

±0.19

0.067

±0.12

0.049

±0.03

0.105

±0.1

0.168

±0.03

0.346

±0.04

+ + + + + + + + +

Bin DE
0.245

±0.09

0.292

±0.1

0.044

±0.05

0.18

±0.08

0.02

±0.03

0.051

±0.04

0.095

±0.06

0.145

±0.04

0.374

±0.04

+ + - + + + + + +

1
0
0

Pr BABC
0.209

±0.06

0.233

±0.08

0.047

±0.05

0.145

±0.14

0.063

±0.06

0.07

±0.04

0.068

±0.08

0.144

±0.04

0.337

±0.04

GA

0.27±0.1 0.317±0.110.066±0.060.215±0.120.073±0.050.072±0.030.153±0.060.151±0.030.371±0.05

+ + + + + - + + +

Bin PSO
0.282

±0.09

0.317

±0.09

0.134

±0.11

0.35

±0.16

0.12

±0.24

0.064

±0.035

0.133

±0.07

0.156

±0.04

0.369

±0.04

+ + + + + - + + +

Bin DE 0.28 ±0.1 0.27 ±0.1
0.044

±0.04

0.18

±0.11

0.07

±0.04

0.071

±0.04

0.11

±0.07

0.156

±0.04

0.361

±0.05

+ + + + + = + + +
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Table 5: Gene Size Comparison of Evolutionary Algorithms

CLL-SUB CNS DLBCL Glioma Leuk2 Lung Prostate Stjude WBC

1
5
0
0

Pr BABC
98.5

±2.31

103.3

±19

118.15

±11.6

113.35

±12.7

121

±13.8

110.7

±10.5

114

±16.16

98.85

±2.14

58.35

±2.19

GA

148.8

±11.98

155.5

±12.9

151.65

±16.14

225.7

±18.18

217.1

±16.13

226.8

±13.89

148.25

±11.46

228.2

±12.4

162.5

±10.18

Bin PSO
261.9

±181.6

183.2

±25.93

338.9

±26.96

2.9

±4.86

325.15

±221.4

436.6

±20.84

299.7

±28.61

486.5

±136.4

318.4

±22.61

Bin DE
241.6

±13.15

236.3

±13.49

230.7

±14.19

229.3

±14.36

231.9

±14.64

235.1

±16.45

227.6

±9.94

247.8

±17.86

245.5

±15.63

1
0
0
0

Pr BABC
59.55

±1.89

61.4

±1.39

79.1

±7.88

75.65

±2.81

82.95

±8.87

71.85

±8.23

74.1

±9.16

65.1

±1.41

39.05

±1.4

GA

99.15

±9.02

154.8

±12.91

99.35

±10.01

102.35

±9.9
152 ±8.84

152.25

±10.8

103.1

±9.54

114.7

±12.32

106.2

±10.28

Bin PSO
256.4

±14.16

88.1

±15.31

192.25

±167.37
40 ±12

312.45

±15.1

302.2

±11.5

306.95

±152.8

333.65

±67.5

268.7

±11.73

Bin DE
241.6

±13.1

152.4

±11.94

156.55

±13.55

149.85

±14.8

152.1

±10.82

156.2

±10.78
152 ±12.3

163.65

±10.19

163.75

±14.6

7
5
0

Pr BABC
45.45

±1.1

45.1

±6.07

60.35

±7.4

56.35

±1.07

61.95

±4.39

53.95

±9.34

53.05

±1.14

47.6

±15.29

28.4

±1.01

GA

114.65

±9.12

114.3

±10.2

74.45

±8.69

111.45

±6.21
77.9 ±8.4

114.35

±10.17

77.4

±6.92

84.55

±9.25

124.9

±10.3

Bin PSO
181.05

±93.1

71.4

±10.83

134.31

±88.9

34.45

±79.11

219.85

±84.14

187.2

±96.01

79.05

±10.34

245.4

±56.77

150.2

±10.57

Bin DE
118.65

±9.17

115.55

±8.49

113.2

±11.52

114.55

±8.49

111.55

±7,49

115.35

±10.12

109.7

±7.78

124.95

±7.23

0126.6

±11.01

5
0
0

Pr BABC
33.25

±6.7

31.65

±9.6

38.25

±8.04

36.2

±6.45

38.3

±6.05

38.95

±7.6

37.25

±8.87

33.45

±6.06

20.85

±7.73

GA

75.45

±8.39

51.4

±5.04

48.5

±5.73

75.15

±9.67

52.15

±7.52

50.8

±6.66

75.85

±7.84

59.85

±9.72

57.75

±6.77

Bin PSO
137.55

±56.63

47.5

±64.06

110.4

±9.08

12.15

±40.13

136.95

±58.69

159.35

±57.1

115.45

±69.95

187.4

±32.9

126.1

±55.93

Bin DE
80.3

±10.03
77 ±6.54

77.2

±9.93

75.13

±7.05
78 ±7.04 74 ±7.26

77.1

±7.12

83.6

±8.62

85.75

±9.89

3
0
0

Pr BABC
23.35

±7.6

24.45

±5.7

23.55

±4.01

21.25

±4.35

24.4

±4.31

25.45

±4.37

27.15

±5.51
28 ±4.77

15.55

±5.36

GA

48.55

±6.06

30.2

±4.81

31.15

±4.02

46.35

±5.56

29.9

±4.58
30.2 ±5.6

44.1

±6.72

55.45

±7.4

50.2

±6.06

Bin PSO
79.6

±40.5

42.55

±43.1

59.6

±51.3

28.2

±4.69

94.6

±46.28

82.05

±35.93

136.1

±81.1

106.35

±13.9

96.4

±18.9

Bin DE
47.35

±4.89

46.3

±8.77

45.05

±6.76

43.2

±5.86

47.15

±6.22

45.2

±7.79

45.65

±7.61
50 ±6.5

50.15

±5.78

1
0
0

Pr BABC 8 ±2.49
9.1

±3.14

9.65

±2.85
7.8 ±2.9

8.4

±2.66

8.95

±2.44

8.35

±3.52

15.95

±2.8

10.8

±2.95

GA

15.95

±5.07

19.05

±2.83

15.9

±4.05

14.45

±3.88

15.25

±4.22

12.8

±3.46
14.3 ±2.9 24.4 ±3.4

21.65

±4.25

Bin PSO
30.2

±8.42

20.7

±14.71

16.4

±17.6

6.75

±11.71

29.05

±14.74

34.4

±10.83

23.65

±15.67
40 ±6.45

36.9

±8.86

Bin DE
17.1

±3.27

14.75

±3.29

15.6

±3.31

17.3

±4.09

16.15

±3.69

15.95

±3.10

15.7

±3.54

22.75

±2.51

18.75

±3.86

use a separate test set and gave accuracy results according to train set accuracy.

All methods selected the top n genes for each dataset, and this n number is

between 10 and 100. Generally, in such studies, the average accuracy results

of these top 10, 20, ..., 100 genes are provided. Therefore, the given results of

PrBABC are obtained by the top 50 genes selected with the 3-Filter method. In

some studies, there is not an exact gene size, so we could not report the number

of genes in these datasets.

BCO [Wang et al. 2017] is a discrete bacterial algorithm. The population

size of this algorithm was 50, iteration number was 100, and classifier was

5-NN, as in the current reported work. These authors did not use any fil-

ter algorithm; instead, they limited the selected gene number to a predefined
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Table 6: Accuracy and Gene Size Comparison with Other Methods

Method
Cll-
Sub

DLBCL Glioma
Pros
Can

CNS Stjude
Lung
Can

Leuk2 WBC

PrBABC
0.973
(6.6)

1 (5.4)
1
(4.65)

0.99
(5.6)

1 (5.3)
0.935
(12.7)

0.99
(6.95)

1 (5.8)
0.836
(6.65)

BCO
[Wang et al. 2017]

- 1(3.1) - 1(7) - - - 1(3.5) -

RLR
[Guo et al. 2016]

0.747 0.93 - - - 0.854 - - -

PLSDR5
[Guo et al. 2017]

0.821 0.928 - - - - 0.941 - -

[Aziz et al. 2016] - -
0.793
(25)

0.886
(50)

- - - - -

MOEDA
[Lv et al. 2016]

-
0.99
(4)

-
0.96
(12)

- -
0.96
(25)

1 (4) -

LM
[Sun et al. 2016]

- 0.958 - 0.947 - - - - -

mRMR-CS
[Mohamed et al. 2017]

- - - -
0.714
(7)

- - - -

[Mortazavi et al. 2016] - 0.929 - 0.901 - - - 0.921 -
mRMR-ABC
[Alshamlan et al. 2015a]

- - - - - - - 1 (20) -

GBC
[Alshamlan et al. 2015b]

- - - - - - - 1(8) -

MGSACO
[Tabakhi et al. 2015]

- - -
0.731
(20)

- -
0.857
(20)

- -

[Yang et al. 2008] - 1(4) - - - - - 1(11) -
IG-GA
[Yang et al. 2010]

- 1 (107) -
0.961
(343)

- -
0.956
(2101)

0.986
(782)

-

MCSO
[Mohapatra et al. 2016]

- - -
0.996
(50)

- - -
0.817
(10)

-

number. This limit value differed according to dataset, and it could not ex-

ceed 50. RLR [Guo et al. 2016] is a logistic regression-based feature selection

method that uses SVM as the classifier. The authors used the top 1, 2, ..., 50

features selected by different filter algorithms, and the results in Table 6 are

the average accuracy results of these subsets. PLSDR5 [Guo et al. 2017] is an-

other logistic regression-based method; in contrast to the previous work, the

authors used Partial Least Squares for feature extraction. The results in Ta-

ble 6 is present the average accuracy results obtained by LDA using the top

10, 20, ..., 100 genes. [Aziz et al. 2016] eliminated irrelevant features using ICA

and Fuzzy Backward Feature Elimination. They classified data with SVM and

Naive Bayes. We present their best results. MOEDA [Lv et al. 2016] is a multi-

objective heuristic algorithm. Datasets are filtered with the mRMR method, and

an EDA-based heuristic algorithm is applied to the selected top n genes, where

n varies from 1 to 50. The population size was 100, and SVM is used as classifier.

In [Sun et al. 2016], the gene selection process was performed with a Lagrange

Multiplier. Naive Bayes, K-NN, Random Forest, and Classification and Regres-

sion Tree (CART) algorithms were used as the classifier with the top 100 genes

and Table 6 reports the best results. In mRMR-CS [Mohamed et al. 2017], the

authors applied CS, PSO, and ABC algorithms with the mRMR filter method.
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They took the best performance with CS; therefore, we provide the CS results

in Table 6. The population size of swarms was 50, and the algorithms ran 1,000

iterations. [Mortazavi et al. 2016] reduced the size of datasets with Fisher Ra-

tio or Mutual Information methods; subsequently features were weighted using

Cooperative Game Theory. mRMR-ABC [Alshamlan et al. 2015a] is a combina-

tion of the mRMR filter and ABC algorithm. The colony size was set to 80,

and the iteration number was set to 100. For each dataset, the top 50, 100,

150, ..., 400 genes were selected with mRMR, and these subsets were classified

with SVM. ABC is initialized with the subset that has 100% accuracy. GBC

also [Alshamlan et al. 2015b] hybridized mRMR and ABC algorithms with the

same parameters. Unlike mRMR-ABC, GBC proposed a new binary ABC ver-

sion using genetic operators. MGSACO [Tabakhi et al. 2015] is an Ant Colony

Optimization-based gene selection method. The colony size was 100, and the

maximum number of iterations was 50. SVM, Naive Bayes, and Decision Tree

Algorithms were used as classifiers. The top 10, 20, 30, ... , 100 genes were selected

with mRMR, and classification accuracy was given for each of them. We list the

best classifier results at Table 6 when the feature size is 20. In [Yang et al. 2008],

IG and CFS are used as filters. A threshold value is determined, and features

with weight higher than this threshold value are selected. The authors proposed

an improved Binary PSO version and used it as a wrapper. There are 30 particles

in the swarm, and the iteration number was 100. Datasets were classified with

K-NN and SVM. The accuracy results in Table 6 were obtained using a K-NN

classifier. IG-GA [Yang et al. 2010] includes GA with the IG filter method. There

is not an exact feature size that is selected by this filtering method; instead, all

features with an IG value of 0 were eliminated. There were 30 individuals in

population, and the generation number was 100. Datasets were classified with

1-NN. MCSO [Mohapatra et al. 2016] is an improved version of CSO Algorithm.

Ten gene subsets that include 10, 20, ... , 100 genes were obtained using MCSO;

they were classified with K-NN; and the best one was selected. We provide the

best accuracy results in Table 6.

According to the results in Table 6, BCO produced better results for the DL-

BCL, Prostate Cancer, and Leukemia 2 datasets. For the DLBCL and Leukemia

2 datasets, BCO classified datasets with the same accuracy but fewer genes than

PrBABC. For the Prostate Cancer dataset, the gene set size of PrBABC was

smaller than that of BCO, and the difference of accuracy values of these two

algorithms is very small. For other datasets, the results of PrBABC is superior

in terms of accuracy and gene set size values.

We analyzed gene subsets that were selected by algorithms to identify the

most commonly selected genes For each dataset, how many times each gene was

selected in 80 gene subsets (4 algorithms x 20 runs) is calculated. The most-

selected 10 genes for the datasets are given in Table 7. Numbers in brackets
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indicate gene ranks.

Table 7: Mostly Selected Genes

Dataset Affymetrix Number
CLL-
SUB

100_g_at(1), 1040_s_at(46), 1076_at(85), 104_at(45), 1080_s_at(90),
1014_at(17), 1045_s_at(51), 103_at(34),1030_s_at(35), 1077_at(86)

Dlbcl

D61380_at(618), D13897_rna2_at(260), D64142_at(659),
AB000584_at(16), AFFX-BioB-M_at(121), AFFX-LysX-M_at(162),
AFFX-HUMGAPDH/M33197_M_st(149), D10522_at(203),
D78261_at(675), AB006782_at(44)

Glioma 1113_at(126), 1130_at(145), 108_g_at(89), 1088_at(98), 1150_at(167),
1176_at(195), 1243_at(265), 1046_at(52), 1090_f_at(101)

Pros.
Can.

1074_at(83), 1008_f_at(10), 1088_at(98), 1020_s_at(24), 1045_s_at(51),
108_g_at(89), 1086_at(96), 1133_at(148), 1178_at(197), 1003_s_at(5)

CNS

AB000460_at(10), AC002486_at(67), AF001548_rna1_at(85),
AB000467_at(14), AF000430_at(77), AF006084_at(98),
AF007111_at(101), AB000410_s_at(7), AB000462_at(11),
AB006190_at(42)

Stjude
154_at(584), 1066_at(74), 1262_s_at(285), 1428_at(463), 1512_at(554),
1603_g_at(679), 1046_at(52), 1335_at(361), 1391_s_at(423),
1461_at(499)

Lung
Can.

104_at(45), 1175_s_at(194), 1342_g_at(369), 1416_g_at(450),
1072_g_at(81), 1092_at(103), 1365_at(394), 1231_at(253), 1235_at(257),
1290_g_at(315)

Leuk2
1126_s_at(140), 1271_g_at(300), 1011_s_at(14), 1249_at(275),
1310_at(343), 1038_s_at(43), 1068_g_at(76), 1107_s_at(119),
1239_s_at(264), 1337_s_at(372)

WBC
200708_at(236), 200770_s_at(298), 200884_at(412), 200068_s_at(89),
200617_at(145), 200846_s_at(374), 200917_s_at(445), 200096_s_at(117),
200706_s_at(234), 1294_at(6)

Figure 4 shows CPU time comparisons when the algorithms were initialized

with the top 100 genes. According to these results, the execution time of PrBABC

is close to that of BinDE, and the execution time of GA is close to that of BinPSO

in most of the datasets. Generally, PrBABC required more time to select subsets,

but the time differences between algorithms are approximately 5-10 seconds. This

is a small difference.

5 Conclusion

In this paper, we have proposed an efficient gene selection method for microar-

ray data based on the ABC algorithm. In order to decide which normalization

method is useful, we normalized datasets with three well-known microarray nor-

malization methods: MAS5, RMA, and GcRMA, and compared results according

to their clustering accuracy, purity, and silhouette coefficient values. We saw that
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Figure 4: CPU Time Comparison

RMA is the most useful normalization method among them. We applied a hy-

brid gene selection process to microarrays that include filter and wrapper steps.

Genes are weighted using three filter methods: Information Gain, Correlation-

Based Feature Selection, and ReliefF. We combined the weighted results of the

three filter methods in the pre-processing step. In this way, we benefited from

the advantages of 3 different filter methods. For the gene selection process, we

proposed a self-adaptive binary ABC algorithm that can efficiently select a learn-

ing method according to the current dataset. Results show that applying the 3

methods together yielded more successful results than applying them individu-

ally. Additionally, we compared the results of PrBABC with well-known meta-

heuristic algorithms: Genetic Algorithm, Differential Evolution, and Binary Par-

ticle Swarm Optimization. The proposed probabilistic ABC method outperforms

these methods by obtaining superior results with respect to both classification

accuracy and gene set size. Finally, we provide the top selected genes for each

dataset for using subtype prediction selected by all methods.
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