
Efficient Peer-to-Peer Content Sharing for Learning in

Virtual Worlds

Bingqing Shen, Jingzhi Guo
(University of Macau, Macau, China

daniel.shen@connect.um.edu.mo, jzguo@um.edu.mo)

Abstract: Virtual world technologies provide new and immersive space for learning, training,

and education. They are enabled by the content creation and content sharing function for

allowing users to create and interoperate various learning objects. Unfortunately, virtual world

content sharing based on persistent virtual world content storage, to the best of our knowledge,

does not exist. In this paper, we address this problem by proposing a content sharing scheme

based on Virtual Net, a virtual world persistency framework. For efficient content retrieval,

three strategies have been proposed to reduce communication overhead and content load delay.

By integrating these strategies, a virtual world content search and retrieval algorithm has been

devised. The experiment results verify the effectiveness of the algorithm.

Keywords: Virtual world, e-Learning, Content sharing, Content retrieval, Peer-to-peer

Categories: L.3.0, L.6.0, L.6.1, L.6.2, C.2

1 Introduction

Virtual worlds have attracted millions of people around the world. The platforms,

such as Second Life (secondlife.com), and Sansar (sansar.com), can extend the form

of in-classroom learning to interactive learning [Dickey, 2005], experiential learning

[Jarmon et al., 2009], immersive learning [De Freitas et al., 2010], social learning

[Smith and Berge, 2009], and constructivist learning [Gül et al., 2008] by simulating

real-world environments [Kim and Ke, 2016] and offering more forms of

collaboration [Burton, 2010] and interaction [Ha and Fang, 2018]. One key enabling

element is content sharing. Different from multiplayer online games (MMOGs), users

can utilize their expertise and creativity to create discoverable, reusable, and sharable

learning objects [Wiley, 2002]. Through augmented reality and internet of things, for

example, context-aware learning objects can be created and distributed at different

locations for student discovery with mobile applications [Sampson et al., 2013].

Moreover, wearable virtual reality allows museum visitors to create and share

personalized content for collaborative touring [Kosmopoulos and Styliaras, 2018].

To support the core characteristic of reusability [Wiley, 2002], learning objects

should be persistently maintained. Thus, for content sharing, a virtual world, together

with all the generated contents, should exist forever regardless of any change on

virtual world owners or users. Currently, however, nearly all existing virtual worlds are

created and owned by certain entities (often commercial companies), and user-generated

contents are stored on the servers of these entities. When the entity owning a virtual

world dies, bankrupts, or withdraws its operations, the affected virtual world will

Journal of Universal Computer Science, vol. 25, no. 5 (2019), 465-488
submitted: 1/10/18, accepted: 20/5/19, appeared: 28/5/19 J.UCS

collapse
1
together with the loss of the user-created contents.

To protect virtual world users and their created contents, the persistency feature of

virtual world must be maintained. In the previous research [Shen et al., 2017], a peer-to-

peer (P2P) computing [Schollmeier, 2001] platform, called Virtual Net, has been

introduced to prevent the possible collapse of virtual world and maintain the persistency

feature. The central idea of Virtual Net is that nobody owns the virtual world but all

users collectively create a self-organized virtual world, so that it will not fail due to the

departure of any entity. In this approach, each virtual world user contributes a part of

his/her computing resources, including a certain amount of CPU time, memory, storage,

and bandwidth of his/her computing device(s). Devices can be smart phones, personal

computers, etc. The contributed part of each device is then virtualized into one or

multiple nodes. Each user of Virtual Net is then assigned one or multiple nodes which

can store his/her contents or deploy some applications without a central management.

Content sharing is challenging without the coordination of a central server. It can be

divided into two steps: content storage and content retrieval. The first step, reliable

content storage over Virtual Net, has been studied in [Shen, 2017]. The second step will

be discussed in this paper. In virtual world content sharing, content discovery is

location-based. Users can dynamically perceive new contents along with their

movement. Also, content retrieval needs to be complete. When multiple users access to

a shared environment, they can interact with the same set of objects in the environment.

Virtual world content retrieval has been studied in [Symborski, 2008] and

[Symborski, 2010] for reducing the communication cost of servers in content

distribution. These works utilize summary descriptor to achieve content discovery

completeness. The design is based on the central-server model. On the other hand, P2P

file sharing [Lua et al., 2005] has been intensively studied within the last decade. But

most of them do not support location-based query. P2P semantic file search [Gupta et.

al, 2003], [Tang et al., 2003] allows file retrieval based on range query by providing

multiple semantic variables, which is most related to location-based content retrieval.

However, semantic file search do not require search completeness. Thus the solutions

cannot be applied in virtual world content retrieval.

In this paper, we provide a new content sharing scheme tailored for virtual world

over Virtual Net. The basic idea is to provide each user a list of contents in a virtual

world. A user client then downloads the contents from the nodes of Virtual Net. A new

service, called object resource lookup, is devised for looking up the network address of

nodes. The basic scheme is, however, inefficient, since there could be many contents to

be download, leading to three challenges: 1) high content load delay, 2) redundant

content retrieval, and 3) high communication overhead.

We then address these problems by proposing three strategies. The proximity-based

content retrieval strategy searches and loads nearby contents first, followed by pre-

loading the remote contents within a certain range. The region-based content inventory

is designed for local cache management, which can eliminate redundant object retrieval.

Lastly, the location mapping service is designed to reduce communication overhead by

caching the actual content storage location. The experiment results have validated the

effectiveness of these strategies.

The remainder of the paper is organized as follows. Section 2 provides the

1 The inactive virtual world list in http://opensimulator.org/wiki/Grid_List.

466 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

preliminary techniques used in the solution design, including a brief introduction of the

Virtual Net Architecture. Section 3 gives an overview of virtual world content sharing

and the related problems. Section 4 solves the problems by providing the efficiency

improvement strategies. Section 5 provides the algorithm design to integrate and

implement the strategies. Section 6 evaluates the algorithm with experiments. Related

work is discussed in Section 7. Lastly, Section 8 concludes the paper.

2 Preliminaries

In this section, some preliminary techniques are introduced for supporting the design

of the content sharing scheme. First, since our scheme is devised based on Virtual

Net, its architecture is briefly described. Then, two P2P overlay networks, CAN and

Chord, are introduced, which are utilized as the building blocks in our solution. They

can provide the function of distributed hash table (DHT) [Lua et al., 2005] to reliably

store information without a central server.

2.1 Virtual Net Architecture

In the Virtual Net architecture [Shen et al., 2017], the user contributed devices are

virtualized into one or more equally capable virtual machines, called nodes. That is,

all nodes have the same amount of computing, storage, and communication capacity.

Each user is assigned one or several nodes for storing his/her virtual world

applications. All the nodes of a user forms a computing unit, called logical computer.

To overcome node failure, the contents on each node in a logical computer is

replicated to multiple nodes, called replica nodes or replicas. Multiple replica nodes

hosting the same contents form a replica group. In a replica group, if the number of

surviving replicas is less required, new replicas will be created by the surviving

replicas. Thus, a replica group can survive by monitoring the state of the replicas and

repeating the replication cycle.

The logical computer model can not only support reliable content storage, but

also support reliable program execution [Shen and Guo, 2018]. In a virtual world

application, a user can interact with his/her virtual objects by sending events to all the

replicas. Through a fast consensus protocol [Shen and Guo, 2018], all the replicas can

deliver the events in the same sequence so that they always maintain the same state.

Thus, any failure of a node will not interrupt the user playing in the virtual world.

2.2 Content-Addressable Network (CAN)

CAN [Ratnasamy et al., 2001] is a P2P overlay network protocol. As illustrated in

Figure 1 (a), the geometry of a CAN overlay is a d-dimensional Cartesian space, with

each dimension normalized to 1. The entire space is dynamically partitioned into

zones and each zone is assigned to a peer node. Each object is assigned a location

with a deterministic function converting the object ID to a n-d coordinate. The object

is stored on the node whose zone range covers the object coordinate. Thus, locating

an object is reduced to routing to the node storing the object. Routing in a CAN

overlay involves traversing from one zone to another. Thus, the routing length is

O(n
1/d

) where n is the size of the overlay. When a new node joins the overlay network,

467Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

it will randomly picks a coordinate. Then, the node will be routed to the zone

covering the coordinate, and equally split the zone with the current owner.

0.0

0.0

1.0

1.0

A

(0-0.5, 0-0.5)

C

(0-0.5, 0.5-1)

D

(0.5-1, 0.5-1)

B E

(0.5-0.75, 0-0.5)

(0.75-1, 0-0.5)

Node D’s zone

(a) 2-d CAN Space with 5 nodes

Finger Table

i Neighbor

0
1

2

000

001

010

011

100

101

110

111

001

011
101

Successor

001

Finger Table

i Neighbor

0
1

2

011

100
111

Successor

010

Finger Table

i Neighbor

0
1

2

100

111
000

Successor

100

(b) Chord with 8 nodes and b = 3

Figure 1: Examples of (1) CAN overlay and (2) Chord overlay

2.3 Chord

Chord [Stoica et al., 2001] is another P2P overlay network protocol. Each node is

assigned a unique hash key of b bits as the node ID. The ID space is partitioned into

multiple segments. One node is the predecessor of another if it has the largest node ID

smaller than the successor among all nodes. Then, the predecessor is assigned the

segment from its ID to the ID of its successor. Moreover, the node with the smallest

ID is the successor of the node with the largest ID. Thus, the basic network structure

of a Chord is a ring, as illustrated in Figure 1 (b). Each node also maintains a finger

table which contains b entries. For the i-th entries, the node maintains some neighbors

whose IDs are within the range [2
i
, 2

i+1
). An object is also assigned an ID with the

same length. It is stored on the node whose segment contains the object ID. Thus,

similar to CAN, locating an object is converted to find the node managing the

segment. Routing in a Chord overlay can utilize finger tables. Thus, the routing length

is O(log(n)) where n is the size of the overlay.

2.4 Notations

The data formats are defined with basic set and logic notations to facilitate

description. Throughout the paper, the symbols for representing the relations of

elements are listed in Table 1.

468 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Notation Description

≔ Definition

〈⋯ 〉 Tuple, representing data or

message format

�⋯ �
Set, representing one or more

items of the same type

∥ String concatenation

. Membership

Table 1: Notations

3 Overview of Content Sharing

Different from MMOGs, the contents in a virtual world is mainly created by users

[Zhou et al., 2018]. Virtual world contents include various virtual objects, such as

user avatar and virtual building. They are presented with 2D or 3D models simulating

real- or imaginary-world objects. For rendering, a virtual object (or object in short) is

composed of different types of resource files. The basic resource files include the

image files and modelling files describing the geometry, texture, and material of the

object. For more vivid presentation, some objects also contain animation files, sound

files, and script files. Each object can be uniquely identified by object identity and

described by some properties, including the name, author, version, etc.

One important property is the object location in a virtual world. It can be

described with a 2- or 3-dimensional coordinate. User-created contents are spatially

distributed at different places in a virtual world. After a user creates an object, other

users can see or interact with it by retrieving the resource files.

A user needs to see the objects within his/her visual range, when he/she enters a

new scene. Moreover, when the user moves, new objects need to be discovered. Thus,

a mapping between geographic location and object need to be maintained for

location-based object query. As illustrated in Figure 2, the mappings of all objects can

be maintained by a content list. The network location where the resource files of an

object can be downloaded is maintained as the storage address property of the object.

3.1 Object Resource Lookup Service

In Virtual Net, objects are stored on the logical computers of their authors. Thus, the

storage address property maintains the ID of the object author’s logical computer.

When a user needs to load an object to a scene, the user client firstly finds the

network location of the logical computer by searching against the logical computer

ID.

In Virtual Net, some reliable nodes are employed to provide common services

which may be needed by all users. These nodes are called soft bots. One type of soft

bots provides the object resource lookup service, called addressing bots. They

maintain the mapping from a logical computer ID to the addresses of replica nodes.

Addressing bots are organized into a Chord overlay, as illustrated in Figure 2. Each

469Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

addressing bot maintains some hash keys generated from logical computer IDs. The

service supports three operations.

1. Mapping creation. When a new logical computer is created, a new mapping

record is added into the Chord overlay.

2. Mapping Update. When a logical computer changes its replica nodes, the

mapping record will be updated with the network addresses of the new replica

nodes.

3. Mapping Query. Given a logical computer ID, the network addresses of the

replica nodes are replied to the requester.

The common function shared by the three operations is mapping record lookup.

For a given logical computer ID, firstly, a hash key is generated by hashing the ID.

With the hash key, the addressing bot maintaining the mapping can be

deterministically found through the routing over the Chord overlay with O(log(n))

hops on average, n denoting the number of addressing bots.

Through the addressing bots, the replica nodes of a logical computer can be

found. Then, the object resource files can be retrieved by requesting it from one of the

replica nodes with the object identity.

Key1: 10.156.211.10: 80

93.156.48.221: 80

112.66.154.25: 80

⋯

Logical Computer ID 1

Hash (∙)

Content List
Geographical Content

Distribution

Object Resource Lookup

Service

Network Addresses

of Replica Nodes

User

O5

O4

O1

O2

O3

Figure 2: Illustration of content sharing: Mapping from object location to object

storage through the content list and the object resource lookup service

3.2 Content Retrieval

Figure 3 shows the flowchart of the content retrieve process. When a user enters a

new scene, there are a bunch of objects distributed at different locations of the

simulated space. Firstly, the user client retrieves a complete list of these objects

(maybe from a specific logical computer or a server). For each object on the list, the

client uses the logical computer ID in the storage address property to find the network

address of the replica nodes through the mapping query operation of the object

resource lookup service. With the returned set of replica node network addresses, the

client then picks one and sends a request to the node for the object resource files.

After receiving the object resources, the client renders the object to the GUI. The

same process will repeat until all the object on the content list are loaded.

In a virtual world, since contents are created or modified by users from time to

time. The above content retrieval process is thus periodically executed, by retrieving

470 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

the latest content list, to ensure that the objects interacted by users are up-to-date for

state consistency among all clients.

Retrieve

content list

Query object

storage address
Any more

objects?

Retrieve object

resource files

Yes

No

Render to GUIStart

End

Figure 3: Flow of basic content retrieval

3.3 Major Challenges

The basic idea of content sharing is straightforward, but there are three major

challenges to overcome before it can work efficiently.

High content load delay. Following the sequence for object load, some of them

remote to the user could be loaded first, while other nearby objects may be loaded

later. When the number of objects is large, the user may get aware of the delay of

nearby object load. As illustrated in Figure 2, the objects (O4 and O5) within the

perception range could be lastly loaded.

Redundant object retrieval. Some objects may have already been downloaded

before. If they are not modified, they do not need to be downloaded again. On the

other hand, if an object has been modified since the last access or some resource files

have been corrupted, only the related files need to be retrieved.

High communication overhead. Suppose there are k objects to be downloaded.

On average, each object retrieval requires O(log(n)) hops to find the addressing bot

for logical computer lookup, communicating with O(log(n)) intermediate bots. Then,

searching all the k objects will generate O(k ∙ log(n)) communication overhead in

total.

These challenges can be concluded that the basic content retrieval idea is

inefficient in virtual world content sharing. They will be addressed in Section 4 in

detail.

4 Efficient Content Retrieval Strategies

To overcome the efficiency problem in content retrieval, objects should be retrieved

in the order of their distance to a user, objects should be locally cached and verified to

avoid redundant downloads, and the lookup of addressing bots should be minimized

to reduce communication overhead. This section introduces the design of these

strategies in a consistent way.

471Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

4.1 Proximity-based Content Retrieval

To reduce the content load delay, the search of the share content is proximity-based in

two aspects. First, the contents close to the user will be retrieved and loaded first, then

the remote ones. Second, some remote contents within a specific range will be

searched after nearby contents for pre-load to minimize the chance of content load

delay that a user may be aware of in movement.

Without loss of generality, suppose the content of a virtual world is distributed on

a 2D map. Let the lower-left corner of the map be the origin point. The map has the

range of [0, X] and [0, Y] respectively along X-axis and Y-axis. The map is

partitioned into multiple regions, and each partition is divided into m grids. The

location of a grid is determined by the coordinate of the lower-left corner of the grid.

So is the region coordinate. It is recommended that the size of a grid is no smaller

than the user perception range such that a user can retrieve all the perceived contents

by loading the contents of at most four grids. Figure 4 illustrates a partition of a 2D

map partitioned by 20 regions and 9 grids in each region.

0
0

X

Y

User

Figure 4: Map partition of virtual world

When a user logs into the virtual world, the objects within the grid of user

location will be retrieved first, then all the contents located in the neighbour grids.

From each neighbour gird, new search routes will be generated to traverse all the

unvisited neighbours. These cascaded search routes traverse the map from closing

grids to remote grids, allowing nearby contents to be loaded first. Figure 5 illustrates

part of the search routes originated from Grid 1.

The proximity-based content search needs to be terminated when a specific range

of grids have been traversed, so that a new search can be started with a new origin

location. Let dr be the radius of the pre-defined search range. By appropriately design

the region size, a search can terminate when it has already cover the range of a region.

For simplicity, suppose the shape of a grid and a region is a square. Let l be the side

length of a grid. The length of the half diagonal of a region is
� = √�
� � ∙ √�. Let p0 =

(x0, y0) be the search origin and p = (x, y) the coordinate of a grid. To cover the range

of a region, a search route stops if |� − ��| = ��� − ���� + �� − ���� >
� . Figure

4 illustrates the search over the area filled with diagonal lines.

472 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

With new content creation and user movement, the above content retrieval

process needs to be repeated with cycle length T. In each cycle, the central location p0

is changed to the current user location. T can be determined by the user movement

velocity v and the size of a region for minimizing content load delay, e.g., � = √���
� .

1

3

42

5

Figure 5: Example of search routes

4.2 Region-based Content Inventory

Retrieved content can be cached in the local storage to minimize download overhead.

If a content has already been retrieved and unchanged since the last access, it does not

need to be downloaded again from the network. Thus, only the newly added or

modified content resources need to be retrieved. For this purpose, content inventory is

needed to maintain content retrieval completeness, content integrity, and content

freshness.

The entire content inventory is divided by regions. The devised content inventory

scheme hierarchically contains three types of entries: inventory, objects, and files.

Inventory Each region has an inventory file, identified by a unique Region ID

(RID). It contains region coordinate and a set of objects, as in Def. (1). A sample

inventory file is illustrated in Figure 6 in JSON.

 !"#!$%&� ≔ 〈' (, �*+,#-$�, '.%%&
〉
(1) '.%%&
 ≔ 〈�, �〉

{

“RID”: “XLGkgq61BTaQ8NhkcqyU7rLcnSa7dS”,

“RCoord”: “900, 800”,

“Object”: [<Object 1>, <Object 2>, <Object 3>]

}

Figure 6: Sample inventory

Object An object is identified by the object ID (OID), located by its coordinate

(OCoord) and the logical computer ID (LCID), and composed of one or multiple

components, as in Def. (2). One indispensable component is OProperties which

contains the properties of an object, including object name, author, version, etc. Other

components are the files related to the object, which are classified into animation,

473Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

sound, texture, script, etc. Each set of files belonging the same class forms a file type

(FileType) which includes the type name (Type) and the hash code (FTHash). FTHash

is calculated by the Merkle root [Merkle, 1987] of the file hashes (FHash) within the

FileType. The hash code of Properties and the hash codes of all FileTypes form a

Merkle tree [Merkle, 1987] which calculates the object hash code (OHash). A sample

object description is illustrated in Figure 7 in JSON.

+,#-$ ≔ 〈 (, */01ℎ, , *.%%&
, 3. (, *4&%�#&$5#1, �65�#���#�〉

(2)

*4&%�#&$5#1 ≔ 〈70�#, 89$ℎ%&, :#&15%!, ⋯ , 4/01ℎ〉

65�#���# ≔ �〈���#, 6�/01ℎ, �65�#�〉�

6�/01ℎ ≔ ;#&<�#'%%$��65�#. 6/01ℎ��

*/01ℎ ≔ ;#&<�#'%%$�4/01ℎ, �65�#���#. 6�/01ℎ��

{

“OID”: “2039THflwkjgp0q3pwojfolga”,

“OHash”: <Object1’s Hash>,

“OCoord”: “101, 203”,

“LCID”: “Logical-Computer-100”,

“OProperties:” {

“PHash”: <Properties Hash>,

“Name”: “Object 1”,

“Author”: “John Lee”,

…},

[{

“Type”: “Texture”,

“FTHash”: < Textures Hash>,

“Files”: [<File 1>, <File 2>]},

…]

}

Figure 7: Sample object description

File A file entry contains file hash code (FHash) and file properties

(FProperteis), as in Def. (3). FProperties contains the descriptions of a file, including

file name, author, version, etc. FHash is calculated by hashing the content of a file

and its properties.

65�# ≔ 〈6/01ℎ, 64&%�#&$5#1〉

(3) 64&%�#&$5#1 ≔ 〈70�#, 89$ℎ%&, :#&15%!, ⋯ 〉
6/01ℎ ≔ /01ℎ�65�#.%!$#!$ ∥ 64&%�#&$5#1�

Based on the structure of the content inventory, Merkle trees can be hierarchically

constructed with the file hash code (FHash), component hash code (PHash &

FTHash), and object hash code (OHash), which is illustrated in Figure 8. Based on

Def. (2), a component hash code (C) is constructed by all the file hash codes (F) of

the component; an object hash code (O), which is the root hash of a Merkle tree, is

474 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

O

C

F FF

CP

F F L2 Hashes

L1 Hashes

Root Hash

Figure 8: Content inventory Merkle Tree

constructed by all the component hash codes of the object. The P node represents the

PHash value, a special component node. With the Merkle tree, the integrity of a

parent node is determined by the integrity of its children nodes. With the tree

structure, the number of node visit in searching a corrupted node is O(logbN) where N

is the number of files and b is the average number of children of a parent node.

For object modification, the content inventory scheme facilitates object retrieval

completeness and content integrity check. All object changes will be reflected on the

object files with the updated file hashes which will be aggregated up to the object

hash. The content inventories are also maintained in the local storage of clients. After

retrieving the content inventory of a region, a user client checks the content integrity

by comparing it with the local copy. For each object, if the user finds that the object

hash code remains unchanged, no file of the object needs to be retrieved. Otherwise,

the object resources will only be retrieved by identifying the modified files through

PHash comparison, FTHash comparison, and finally down to FHash comparison.

4.3 Location Mapping Service

To reduce communication overhead, in Virtual Net, another type of soft bots, called

region bots, is introduced to provide the location mapping service. Each region bot

manages one or multiple grids and maintains the inventory of the objects on the grid.

For each object, a region bot also maintains the logical computer ID of the author and

caches the addressing bot which maintains the network location of the logical

computer. Periodically, each region bot looks up the addressing bot for each object

against the logical computer ID for cache freshness check. If the addressing bot for

maintaining an object has been changed due to bot dynamics, the region bot will

update the cache with the new addressing bot.

When a client queries a region bot for the storage address of an object, the bot

replies both the logical computer ID and the addressing bot to the client. The client

firstly directly queries the object resource from the addressing bot. In case of wrong

addressing bot, the client then looks up the correct one against the logical computer

ID through the object resource lookup service.

To support proximity-based content storage, all region bots are connected to a 2-

dimensional CAN overlay network. The coordinate space of a map is also mapped to

the 2-d space of CAN with the following two adaptations. First, a point p = (x, y) on

the map is normalized to a point p’ in the 2-d space of CAN by p’ = (x / X, y / Y)

where X and Y are the side lengths of the map. Second, a space partition will be

rounded up to a grid. Figure 9 shows an example of CAN space partition with 5

region bots. For simplicity, units are represented by the number of grids, denoted by

475Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

0
0

1

1

(1-8g, 1-6g) (9-15g, 1-6g)

(1-8g, 7-12g)

(9-11g,

7-12g)

(12-15g,

7-12g)

Bot 1

Bot 2 Bot 3

Bot 4 Bot 5

Object 1

(9.4g, 11.5g)

Inventory 1

(9.4g, 11.5g)

Figure 9: Example of 2-d CAN space with 5 region bots

g. In the example, when Bot 5 joins the zone belonging to Bot 4, Bot 4 horizontally

split the zone to 5g and 4g width, and leave the right side to Bot 5. These adaptations

ensure that each region bot manages one or multiple grids.

A 2-d CAN overlay supports search against a coordinate to the region bot in

charge of the coordinate with O(n
1/2

) hops on average, where n denotes the number of

region bots. With the CAN overlay, the location mapping service supports the

following five operations.

Object Creation. When an object is created, the author’s logical computer ID

and the addressing bot in charge of the actual storage location will be stored on the

region bot in charge of the object coordinate, illustrated in Figure 9 (Object 1).

Content Inventory Creation. When an inventory is created, it will be stored on

the region bot in charge of the region coordinate, illustrated in Figure 9 (Inventory 1).

Object location Retrieval. Given the coordinate of an object, the CAN overlay

can find the region bot in charge of the object storage information.

Inventory Retrieval. Given the coordinate of a region, the CAN overlay can find

the region bot in charge of the content inventory of the region.

Neighbor Query. A region bot replies up to four bots to the requester, which are

the neighbors of the requested bot in the CAN space.

The last operation directly supports the proximity-based content retrieval, as

shown in the algorithm design in Section 5.

4.4 Discussion

The efficiency of content retrieval can be largely improved with the proposed

strategies. First, the proximity-based content retrieval strategy can address the first

problem. The pattern of the search routes, like a ripple, can maximize the chance that

the objects close to a user will be found first, then the remote ones. By pre-loading

some of the remote objects, the strategy can minimize the chance of content load

delay.

Proximity-based content retrieval also provides flexibility in cache management.

Content cache can be prioritized based on object distance to users. Nearby objects

476 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Region 1

Region 2

Region 3Region 4

Region 5Region 6
User

Figure 10: Example of neighbor region determination

have higher priority than remote objects. If the cache is full, then the low priority

objects outside the perception range can be recycled. This is important for resource-

limit (e.g., handheld) devices. If their storage space or transmission rate is limited, the

perception range will be reduced and the objects within the range will still be firstly

retrieved.

Second, the content inventory design can reduce the chance of object resource

download. By comparing the retrieved content inventory with the local one, the up-to-

date objects or object resource files that are already in the local cache can be removed

from the download list.

Third, the design of the location mapping service can address the last problem.

By caching the network address of the addressing bot for each object, the search over

the addressing bot overlay network can be minimized. In the same example, suppose

there are k objects to be downloaded, the addressing bot overlay has n1 bots, and the

region bot overlay has n2 bots. The objects on the first grid will be found with

*>!�
? �⁄ A hops searching for the first region bot in charge of the grid. Then, the nearby

grids will be accessed to find more objects within the range of a region. This will

generate around m search hops to communicate with all the neighbor bots. Lastly,

with great chance, up to k addressing bots will be contacted for the actual storage

location of object resource files. Thus, the total communication overhead for

retrieving all the k objects is *>!�
? �⁄ + � + <A. Compared with O(k ∙ log(n1)), if n1

and n2 have the same magnitude, the content retrieval approach with the location

mapping service has much less communication overhead than the basic approach.

Note that the last strategy actually trades communication overhead in content

retrieval with the overhead in cache maintenance. To validate the correct addressing

bot for each object, region bots have to periodically query the object resource lookup

service. Yet, since addressing bots are reliable nodes in Virtual Net, cache validation

rate is expected to be low. How to determine the optimal rate of cache validation will

be studied in our future work.

Moreover, although soft bots are constructed by reliable nodes, there is still a

chance of node failure or connection failure, which may cause temporary network

partition (i.e., the Chord or CAN overlay network). Unexpected overlay network

partition may cause requests from one partition unreachable to another partition [Qiu

et al., 2007], reducing object availability. Fortunately, existing P2P computing

477Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Figure 11: Algorithm of CRC inventory construction

Algorithm 1. CRC Inventory Construction

1. FUNCTION ConstructCRCInv(p)

2. �& ← CD�.�
�∙�E �� ∙ ��, D�.�

� ∙�E �� ∙ �� F

3. Regions ← {pr}

4. �- ← ��& . � + �� ∙ ��, �& . � + �� ∙ �� �

5. IF p.x < pc.x / 2 ∧ pr.x ≠ 0

6. prn1 ← (pr.x − m· l, pr.y)

7. Regions ← Regions ∪ {prn1}

8. ELSE IF p.x > pc.x / 2 ∧ pr.x ≠ xmax

9. prn2 ← (pr.x + m· l, pr.y)

10. Regions ← Regions ∪ {prn2}

11. IF p.y < pc.y / 2 ∧ pr.y ≠ 0

12. prn3 ← (pr.x, pr.y − m· l)

13. Regions ← Regions ∪ {prn3}

14. ELSE IF p.y > pc.y / 2 ∧ pr.y ≠ ymax

15. prn4 ← (pr.x, pr.y + m· l)

16. Regions ← Regions ∪ {prn4}

17. IF |Regions| = 3

18. prn5 ← (x, y) : x ∈ Regions.X ∧ y ∈ Regions.X ∧ (x, y) ∉ Regions.X

19. FOR EACH prn ∈ Regions

20. inv ← QueryCAN(prn)

21. CRCInv ← CRCInv ∪ {inv}

22. FOR EACH object IN CRCInv

23. IF |object − p| > dr / 2

24. Remove object from CRCInv

25. RETRUN CRCInv

techniques have provided recovery algorithms for handling network partition [Shafaat

et al., 2009], [Qiu et al., 2007] by merging partitions once discovered. Thus, the

proposed content retrieval strategies are periodically executed. In the case of network

partition, unavailable objects could be retrieved in the next cycle as long as the

partitions are merged with the underlying recovery algorithm.

5 Algorithm Design

To implement the proximity-based content retrieval strategy, a greedy algorithm is

devised. The algorithm is periodically executed. In each cycle, it has two steps: 1) the

retrieval of content inventories and 2) the retrieval of contents.

5.1 Content Inventories Retrieval

Let p0 = (x0, y0) be the search origin. At the start of a cycle, the content inventories are

retrieved by querying the CAN overlay with the region coordinate pr. pr is calculated

by �� = CDKL
M E �, DNL

M E � F. To restrict content retrieval within a region centered at user

location, the inventory of three neighbor regions are also retrieved. Two of them,

478 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Figure 12: Algorithm of proximity-based content retrieval

Algorithm 2. Proximity-based Content Retrieval

1. FUNCTION ContentRetrieval ()

2. p0 ← CurrentLocation()

3. CRCInv ← ConstructCRCInv(p0)

4. �O0 ← CD�0 .�
� E �, D�0 .�

�∙� E � F

5. n0 ← QueryCAN(pg0)

6. Visit ← (n0, pg0)

7. WHILE Visit ≠ ∅

8. (ni, pgi) ← Visit.Pop()

9. Visit ← Visit \ {(ni, pgi)}

10. d = |pgi − p0|

11. IF d < dr / 2

12. (Neighbors, Objects) ← Request(pgi)

13. FOR EACH object ∈ Objects

14. LoadContent(object)

15. Contents ← Contents ∪ Objects

16. FOR EACH (nj, pgj) ∈ Neighbors

17. Visit ← Visit ∪ {(nj, pgj)}

18. FOR EACH obj IN CRCInv

19. IF obj NOT IN Contents

20. object ← QueryCAN(obj.OCoord)

21. LoadContent(object)

22.

23. FUNCTION LoadContent (object)

24. OHash ← Lookup(LocalInv, object.OID)

25. OHash’ ← Lookup(CRCInv, object.OID)

26. IF OHash ≠ OHash’

27. SearchAndDownload(object.OID)

denoted by rn1 and rn2, are the regions closest to p0. The third region is the common

neighbor of rn1 and rn2. With pr, the coordinates of the neighbor regions can be easily

calculated. Figure 10 shows an example of region selection. In this example, the

content inventory of Region 1, Region 4, Region 5, and Region 6 are retrieved.

After retrieving the region content inventories, they are merged into one, called

the cross-region content (CRC) inventory. For each object i in the CRC inventory, its

distance d to p0 is calculated. If d > dr, the object will be removed from the CRC

inventory. The entire CRC inventory construction process is described in Figure 11.

5.2 Content Retrieval

Firstly, through routing in the region bot overlay network, the region bot in charge of

the grid containing p0, denoted by g0, is found first. The location mapping service

returns a pair (n0, pg0) to the user client where n0 and pg0 denote the corresponding

region bot and coordinate of the grid respectively. On receipt of (n0, pg0), the client

requests two types of data from n0: the set of objects B0 located on g0 and the neighbor

grids of g0. Meanwhile, the client puts pg0 into the local cache P. On receiving the

479Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

request, n0 replies the objects located within g0 and 4 pairs (n1, pg1), (n2, pg2), (n3, pg3),

and (n4, pg4) to the client, which refers to the 4 neighbor grids and their managing

bots. Note that n1 … n4 do not necessarily refer to four region bots, as one bot may

cover multiple grids.

For each received pair (ni, pgi), the client checks the search stop condition for grid

gi. First, if pgi is in P, it means the grid has already been explored and one stop

condition is met. Secondly, if R�S� − ��R >
�, another stop condition is met, which

indicates the search has reached the search area bound. When either stop condition is

met, the content search along the route originated from gi will be terminated.

For each retrieved object, its integrity will be verified with the object hash in the

CRC inventory. After all the routes have terminated in the proximity-based content

retrieval process, the client checks with the CRC inventory whether all the objects

within the range of a region have been retrieved or updated. If there is any missing

object, it will be retrieved individually with the object coordinate in the inventory.

For each object, if it is already in the local cache and its OHash in the local

inventory is identical to the one in the newly retrieved region inventory, then the

object of the latest version has already been downloaded and it can be directly loaded

from the local cache. Otherwise, the client will query for the logical computer through

the object resource lookup service and download the object file from one of the

replica nodes. The complete content retrieval algorithm is described in Figure 12.

6 Experiments and Evaluation

In this section, the proposed routing and addressing scheme is evaluated by

simulation. The content retrieval algorithm described in Section 5 has been

implemented in OMNeT++
2
, a module-based network simulator. To avoid hardware

impact, all experiments are run in the unit of cycles instead of real time. The default

values of the simulation parameters are listed in Table 2. In particular, an experiment

can be controlled with or without (addressing or region) bot dynamics, i.e., bot join

and bot leave the (CAN or Chord) overlay network. If bot dynamics is applied, a

random variable is evaluated for determining node join or leave per 10 cycles. Since,

bots are reliable nodes, their dynamics are expected to be low. Thus, without loss

generality, both probabilities are configured to be 0.1.

Figure 13 shows the composed simulation GUI with 1 client and 100 objects. The

red flag represents the virtual objects distributed on the map. The black solid lines

represent the trail of client movement. A random walk algorithm is employed to

generate the path for client movement. The dashed circle represents the content

discovery range, while the solid circle represents the user perception range. The top

two components run the object resource lookup resources (i.e., the Chord overlay) and

the location mapping service (i.e., the CAN overlay). The left-hand components

provide global parameters and record experiment results to facilitate simulation. We

have uploaded the simulation code to GitHub
3
 for reader verification.

2 OMNeT++ official website: http://omnetpp.org/
3 Simulation code: https://github.com/sunniel/VirtualNetContentSharing

480 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Simulation Parameter Default Value

Number of addressing bots 100

Number of region bots 100

Number of regions 20

Number of grids per region 9

Node dynamics period 10 cycles

Probability of bot join 0.1

Probability of bot leave 0.1

Simulation time length 1000 cycles

Table 2: Simulation parameters and default values

Figure 13: Virtual world content retrieval simulation with 5×4 regions and 9 grids

per region.

The proposed algorithm is evaluated from communication overhead, content

retrieval delay, and load distribution, which are the main achievements of the design.

Efficiency and is measured by the number of hops in content retrieval, from retrieving

the content inventories to receiving all the objects in one content retrieval cycle.

Content retrieval delay is measured by the duration from the start of inventory

retrieval to the end of the last object download. Load distribution is measured by the

number of routing and forwarding requests on each node within a given length of the

period. Moreover, all experiments are tested with and without bot dynamics to study

the impact of bot dynamics on system performances.

481Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

6.1 Communication Overhead

The first experiment evaluates the number of hops per routing as a function of the

number of objects. In the experiment, the number of objects in a virtual world is

scaled from 100 to 500, and randomly distributed on the map. Though, only the

objects located within the range of a region are retrieved, increasing the total number

of objects also proportionally changes the number of objects within a region with high

probability. The experiment result is shown in Figure 14. Figure 14 (a) describes the

content retrieval process without addressing bot dynamics, while Figure 14 (b)

describes the process with addressing bot dynamics. It can be found that, the

communication overhead increases when addressing bot dynamics is applied, because

some cached addressing bots are no longer in charge of the specified objects. Thus,

searching over the Chord overlay has to be performed, which increases

communication overhead. In both Figures, however, the communication overhead in

the improved content retrieval scheme is much lower than that in the basic content

retrieval scheme, showing the effectiveness of the proposed strategies. Moreover, the

communication cost increases in the improved scheme is also slower than that in the

basic content retrieval scheme, meaning that the improved scheme is optimal for

virtual world content sharing.

Figure 14: Number of hops of routing versus number of objects (a) without

addressing bot dynamics and (b) with addressing bot dynamics

6.2 Perceived Content Retrieval Delay

The second experiment evaluates the user-perceived delay of content retrieve. The

experiment contains three approaches. The improved content retrieval approach

follows the sequence of proximate-based content discovery to download the objects.

The basic approach follows the sequence of contents listed in the cross-region content

inventory. Moreover, the third approach augments the basic approach by sorting the

objects in distance to the client position. Figure 15 (a) and (b) shows the experiment

result. It is obvious that users can perceive shorter content retrieval delay in the

proximate-based approaches than in the inventory-based approach (i.e., the basic

approach), because, in the former class, more objects within the user perception range

can be retrieved and loaded to the screen first, reducing the time of waiting in play. In

(a) (b)

482 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

this experiment, the proposed approach shows the similar performance to the third

approach. To this point, it seems that the basic design with distance sort is simpler

than the proposed model. However, the last experiment shows that the basic model

will generate more communication overhead than the proposed model. Thus,

combining the two results, the proposed model is optimal.

Figure 15: Content retrieval time versus number of objects (a) without addressing bot

dynamics and (b) with addressing bot dynamics

6.3 Load Distribution

The third experiment increases the experiment time 100,000 cycles to study the load

distribution on region bots as a function of time. The load on each region bot is

quantified and measured by the number of routing request handling and forwarding

during a certain period. In the experiment, region bot load is sampled in every 1000

cycles so that 100 samples can be collected in total. Figure 16 shows the trend of the

mean load per addressing bot without and with addressing bot dynamics respectively.

The results show that both the mean value and the greatest value are large at the

beginning of the simulation. With the increase of cycles, load starts decreasing. This

is because, with the increase of routing process, more objects are locally cached,

unchanged, and do not need to be downloaded again. This result validates the

effectiveness of the second strategy that utilizing local cache and content inventory

can reduce the number of content retrieval. Moreover, Figure 16 (a) and Figure 16(b)

have the similar trends, showing that region bot dynamics does not have large impact

on the performance.

7 Related Work

The techniques and studies in virtual world content retrieval, P2P file sharing, and

virtual world content storage are survey in this section. They are closely related to the

work in this paper.

(a) (b)

483Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Figure 16: Region bot load versus number of cycles (a) without addressing bot

dynamics and (b) with addressing bot dynamics

7.1 Virtual World Content Retrieval

Existing studies in virtual world content retrieval focuses on reducing the load of

content servers in transmitting user-created contents. Compared to MMOGs service,

virtual world services needs higher bandwidth for uploading new contents to clients

[Symborski, 2008]. To address the issue, [Symborski, 2008] proposed two strategies:

local object caching and visibility-based object download restriction. [Symborski,

2010] uses the content reconciliation technique to identify the freshness of local

cached objects with summary descriptor. These studies inspire some of the efficient

content retrieval strategies in this paper. However, they targeted centralized virtual

worlds which have fundamental differences from P2P virtual world. For example,

content lists and resource files can be easily retrieved from a server. [Santos et al.,

2011] proposes a P2P texture distribution approach by querying the resource files

from other user clients in the same region. Thus, the efficiency of the approach

heavily relies on the user distribution in a virtual world. Users in the desolate places

have to resort to the server for content download. Compared to this approach, our

design do not have such concern.

7.2 Peer-to-peer File Search

Numerous P2P file search systems [Lua et al., 2005] have been designed and

implemented to allow users share files to each other. Most of them focus on the

efficiency improvement in searching a shared file. In contrast, virtual world content

sharing aims at searching multiple objects within a specific area. The most related

work is the P2P semantic file search based on keywords [Gupta et al., 2003] or

semantic dimensions [Tang et al., 2003][Haghani et al., 2009]. Different from virtual

world content sharing, semantic file search requires many (usually over 100)

dimensions to describe a file. Moreover, the semantic file search problem does not

require search completeness. Thus, their solutions cannot be applied in virtual world

content sharing.

(a) (b)

484 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

7.3 Peer-to-peer Virtual Object Storage

In the early design [Frécon and Stenius, 1998], virtual objects are only maintained by

the nodes accessing the objects. If these nodes fail, the object could be lost. To make

virtual world persistency, recent approaches [Engelbrecht and Gilmore, 2017],

[Holzapfel et al., 2011], [Varvello et al., 2009] store objects on a storage overlay

which replicates an object to a fixed number of nodes independent of object access.

The storage overlay also handles node failure by creating new replicas of the objects.

However, the content of a user is distributed on different nodes, which does not

support distributed program execution. To run a virtual world program, the content of

a user needs to be retrieved from the storage nodes to the client first. This not only

increase communication overhead, the reliability of program execution also relies on

the client. If the client fails, user activity will be interrupted. To support both

decentralized content storage and program execution, a new redundancy model, called

logical computer redundancy (LCR) is proposed in [Shen et al., 2017], which is used

as the content storage model in this paper.

8 Conclusion

This paper addresses the content sharing issue in virtual world, which is an important

function to support collaborative education in a virtual environment. Based on the

Virtual Net framework for persistent content storage, we have designed a P2P virtual

world content sharing scheme, which allows virtual objects to be efficiently

downloaded based on the user location in a virtual world. Our work made the

following contribution:

1. A P2P virtual world content sharing and content retrieval scheme has been

devised based on the Virtual Net framework.

2. A proximity-based content retrieval strategy has been proposed to reduce the

content load delay. The delay could be perceived by users and reduce user

experience.

3. Based on the designed content inventory, a local cache verification strategy

has been proposed to eliminate the redundancy in content download.

4. A location mapping service has been designed to minimize the

communication overhead in storage address query.

The evaluation experiments show the effectiveness of the proposed strategies for

improving the efficiency of content sharing. Based on the solution, some prospective

and useful applications, such as collaborative mobile immersive education, can be

implemented. Our work can be extended to the content sharing problem in augmented

reality and mixed reality in which the map is the real-world geography.

The underlying P2P techniques (including Chord, CAN, and Virtual Net)

generate additional delay and overheads for reliability [Shen and Guo, 2018],

compared with a centralized solution. Yet, we argue that they are the necessary costs

to achieve content sharing without a central server. P2P content sharing has its niche

and advantages (e.g., scalability and availability) over the centralized counterparty.

485Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

Most importantly, it can create a platform without the control from any entity,

allowing learning objects on which to be truly persistent and reusable.

The work in this paper is more theoretical than practical in design. We have not

implemented the design in a real virtual world application, which may result in some

gaps between the design and the actual implementation. We plan to do so in future

and run the human subject experiments to further validate the work and check the user

experience improvement based on the proposed strategies.

There are some other limitations in the work. First, in the current design, the

objects are discovered solely relying on the addressing bots (for both location

mapping and content inventory retrieval). This approach can be complemented by

peer-assisted object discovery [Ricci et al., 2013] to lighten the load of addressing

bots. Peer-assisted object discovery relies on nearby players to discover new objects.

We will apply it and seek the balance between these two node discovery mechanisms

in the next phase.

Moreover, the objects are assumed to be immobile or rarely moved. But, in a

virtual world, some objects are highly dynamic, such as virtual animals and traffic

tools. Their positions on a map may change frequently. When an object moves to

another region, it has to notify the region bot of the old region and the one of the new

region for responsibility transfer. Also, the region-based content inventories

maintaining the object have to be updated for content retrieval completeness. Thus,

highly dynamic objects will add system and network overhead in location update. To

mitigate the issue, dynamic objects could be referred to by their anchor location (e.g.,

their initial location) instead of their real-time location and they can be discovered

through nearby players. This solution will be studied and evaluated in our future

work.

Acknowledgment

This research is partially supported by the University of Macau Research Grant No.

MYRG2017-00091-FST.

References

[Burton and Martin, 2010] Burton, B. G., Martin, B. N.: "Learning in 3D virtual environments:

Collaboration and knowledge spirals"; Journal of Educational Computing Research, 43, 2

(2010), 259-273.

[Claypool and Claypool, 2006] Claypool, M., Claypool, K.: "Latency and player actions in

online games"; Communications of the ACM, 49, 11 (2006), 40-45.

[De Freitas et al., 2010] De Freitas, S., Rebolledo‐Mendez, G., Liarokapis, F., Magoulas, G.,

Poulovassilis, A.: "Learning as immersive experiences: Using the four‐dimensional framework

for designing and evaluating immersive learning experiences in a virtual world"; British Journal

of Educational Technology, 41, 1 (2010), 69-85.

[Dickey, 2005] Dickey, M. D.: "Brave new (interactive) worlds: A review of the design

affordances and constraints of two 3D virtual worlds as interactive learning environments";

Interactive Learning Environments, 13, 1-2 (2005), 121-137.

486 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

[Engelbrecht and Gilmore, 2017] Engelbrecht, H. A., Gilmore, J. S.: "Pithos: Distributed

Storage for Massive Multi-User Virtual Environments"; ACM Transactions on Multimedia

Computing, Communications, and Applications, 13, 3 (2017), 31.

[Frécon and Stenius, 1998] Frécon, E., Stenius, M.: "DIVE: A scaleable network architecture

for distributed virtual environments"; Distributed Systems Engineering, 5, 3 (1998), 91.

[Gupta et al., 2003] Gupta, A., Agrawal, D., El Abbadi, A.: "Approximate Range Selection

Queries in Peer-to-Peer systems"; In Proceedings of the First Biennial Conference on

Innovative Data Systems Research (2003), 1-11, http://cidrdb.org/cidr2003/program/p13.pdf.

[Gül et al., 2008] Gül, L. F., Gu, N., Williams, A.: "Virtual worlds as a constructivist learning

platform: evaluations of 3D virtual worlds on design teaching and learning"; Journal of

Information Technology in Construction, 13, 36 (2008), 578-593.

[Ha and Fang, 2018] Ha, O., Fang, N.: "Interactive Virtual and Physical Manipulatives for

Improving Students’ Spatial Skills"; Journal of Educational Computing Research, 55, 8 (2018),

1088-1110.

[Haghani et al., 2009] Haghani, P., Michel, S., Aberer, K.: "Distributed similarity search in

high dimensions using locality sensitive hashing"; In Proceedings of the 12th International

Conference on Extending Database Technology: Advances in Database Technology, ACM,

New York (2009), 744-755.

[Holzapfel et al., 2011] Holzapfel, S., Schuster, S., Weis, T.: "VoroStore--A Secure and

Reliable Data Storage for Peer-to-Peer-Based MMVEs"; In 2011 IEEE 11th International

Conference on Computer and Information Technology, IEEE (2011), 35–40.

[Jarmon et al., 2009] Jarmon, L., Traphagan, T., Mayrath, M., Trivedi, A.: "Virtual world

teaching, experiential learning, and assessment: An interdisciplinary communication course in

Second Life"; Computers & Education, 53, 1 (2009), 169-182.

[Kim and Ke, 2016] Kim, H., Ke, F.: "OpenSim-supported virtual learning environment:

Transformative content representation, facilitation, and learning activities"; Journal of

Educational Computing Research, 54, 2 (2016), 147-172.

[Kosmopoulos and Styliaras, 2018] Kosmopoulos, D., Styliaras, G.: (2018). "A survey on

developing personalized content services in museums"; Pervasive and Mobile Computing, 47

(2018), 54-77.

[Lua et al., 2005] Lua, E. K., Crowcroft, J., Pias, M., Sharma, R. Lim, S.: "A survey and

comparison of peer-to-peer overlay network schemes"; IEEE Communications Surveys &

Tutorials, 7, 2 (2005), 72-93.

[Merkle, 1987] Merkle, R. C.: "A digital signature based on a conventional encryption

function"; In Conference on the theory and application of cryptographic techniques, Springer,

Berlin, Heidelberg (1987), 369-378.

[Qiu et al., 2007] Qiu, T., Chan, E., Chen, G.: "Overlay partition: Iterative detection and

proactive recovery"; In 2007 IEEE International Conference on Communications, IEEE (2007),

1854-1859.

[Ratnasamy et al, 2001] Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: "A

scalable content-addressable network"; In Proceedings of the 2001 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM '01),

ACM, New York (2001), 161-172.

487Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

[Ricci et al., 2013] Ricci, L., Genovali, L., Guidi, B.: "HyVVE: A Voronoi based hybrid

architecture for massively multiplayer on-line games"; In 2013 International Conference on

Data Communication Networking (DCNET), IEEE (2013), 1-9.

[Sampson et al., 2013] Sampson, D.G., Isaias, P., Ifenthaler, D., and Spector, J.M.: "Context-

Aware Adaptive and Personalized Mobile Learning Systems"; Ubiquitous and Mobile Learning

in the Digital Age, Springer, New York (2013), 3-17.

[Santos et al., 2011] Santos, M., Fernandes, S., Kamienski, C.: "SimP2P: A peer-to-peer system

for texture distribution in social virtual worlds"; In 2011 IEEE Global Telecommunications

Conference - GLOBECOM 2011, IEEE (2011), 1-5.

[Schollmeier, 2001] Schollmeier, R.: "A Definition of Peer-to-peer Networking for the

Classification of Peer-to-peer Architectures and Applications"; In Proceedings First

International Conference on Peer-to-Peer Computing, IEEE (2001), 101-102.

[Shafaat et al., 2009] Shafaat, T. M., Ghodsi, A., Haridi, S.: "Dealing with network partitions in

structured overlay networks"; Peer-to-Peer Networking and Applications, 2, 4 (2009), 334-347.

[Shen and Guo, 2018] Shen, B., Guo, J.: "Virtual Net: A Decentralized Architecture for

Interaction in Mobile Virtual Worlds"; Wireless Communications and Mobile Computing, 2018

(2018), 9749187:1-9749187:24.

[Shen et al., 2017] Shen, B., Guo, J., Li., L. X.: "Cost optimization in persistent virtual world

design"; Information Technology and Management, 19, 3 (2017), 108-114.

[Smith and Berge, 2009] Smith, M., Berge, Z. L.: "Social learning theory in Second Life";

Journal of Online Learning and Teaching, 5, 2 (2009), 439-445.

[Stoica et al., 2001] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., Balakrishnan, H.

"Chord: A scalable peer-to-peer lookup service for internet applications"; In Proceedings of the

2001 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communications (SIGCOMM '01), ACM, New York (2001), 149-160.

[Symborski, 2008] Symborski, C.: "Scalable user content distribution for massively multiplayer

online worlds". Computer, 41, 9 (2008), 38-44.

[Symborski, 2010] Symborski, C.: "Improving content download performance in online virtual

worlds"; In Proceedings of the International Academic Conference on the Future of Game

Design and Technology, ACM, New York (2010), 227-230.

[Tang et al., 2003] Tang, C., Xu, Z., Dwarkadas, S.: "Peer-to-peer information retrieval using

self-organizing semantic overlay networks"; In Proceedings of the 2003 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Communications (

SIGCOMM '03), ACM, New York (2003), 175-186

[Varvello et al., 2009] Varvello, M., Diot, C., Biersack, E.W.: "P2P Second Life: experimental

validation using Kad"; IEEE INFOCOM 2009, IEEE (2009), 1161–1169.

[Wiley, 2002] Wiley, D. A.: "The instructional use of learning objects (Vol. 1) "; Agency for

instructional technology / Bloomington (2002).

[Zhou et al., 2018] Zhou, M., Leenders, M. A., Cong, L. M.: "Ownership in the virtual world

and the implications for long-term user innovation success"; Technovation, 78 (2018), 56-65.

488 Shen B., Guo J.: Efficient Peer-to-Peer Content Sharing ...

