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Abstract: In this paper, we present an approach for football players pose estimation
on very low-resolution images. The camera recording the football match is far away
from the pitch in order to register at least half of it. As a result, even using very
high resolution cameras, the image area presenting every single player is very small.
Additionally, variable weather conditions or shadows and reflections, make this aim very
hard. Such images are very hard to annotate by human. In our research we assume lack
of manually annotated training data from our target distribution. Instead of manual
annotation of large dataset, we create simple python script for rendering synthetic
images with perfect annotations. Then we train vanilla CycleGAN (Cycle-consistent
Generative Adversarial Networks) for transformation of raw synthetic images into more
realistic. We use transformed images to train CPN (Cascaded Pyramid Networks)
model. Without bells and whistles, we achieve similar precision on our images as the
same CPNmodel trained with COCO (Common Objects in Context) keypoints dataset.
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1 Introduction

Visual analysis of football matches and training sessions is a demanding task,

consisting of multiple aspects such as proper video acquisition, tracking in a

multi-view system with occlusions, 3D calibration and human behavior analysis.

The latter can be split in various conceptual and algorithmic problems, one of

each is player’s pose estimation. Human pose helps football analysts to validate

players’ mobility during match and ability to properly perform various game
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interceptions. In particular analysts check how often player uses non-dominant

leg during ball repossession. Accurate pose estimation is also a key step for higher

level tasks as analysis of visibility of action for each player, or having an open

position while ball pass receiving.

Visual tracking systems installed in football academies uses wide view cam-

eras, spanning on whole pitch or near half. Depending on installation site cameras

could be positioned near ground, producing substantial occlusions, or on a high

pylons giving non-standard human view from above. Moreover, wide view cam-

eras imposes very low-quality human visuals even for top tier recording hardware.

We did not find any literature nor the databases with annotated human pose for

the high view and low resolution scenario, what imposed the presented research

problem. All successful pose estimation approaches concern high or medium res-

olution images. The literature presents two generalized approaches in that case.

The first one is called bottom-up and the second is top-down. We tested multiple

known state-of-the-art algorithms for pose estimation with our custom test im-

ages. The images have been acquired form real system with four high-view and

high-class wide-view cameras. In next subsections we present analysis of related

work in different pose estimation approaches.

1.1 2D multi-person bottom-up approaches

Bottom-up approach predicts all keypoints, which are considered as skeleton

model parts in a single scene. Those are further assembled into full skeleton by

assigning the parts to appropriate place in the model. In [Cao et al., 2017] the

multiple-stage fully convolutional networks for estimating Part Confidence Map

(heat map) and PAF (Part Affinity Field) 2D vector field, have been considered.

This solution uses multi-stage convolutional network that generates heat map

and 2D vector field for each body part (e.g. right elbow, left wrist, neck). The

affinity graph is build using 2D vector field part. Based on it, the 2D skeleton

with a particular heuristic graph relaxation technique proposed in the article

can be constructed. The approach presented in [Lin et al., 2014] achieved the

best result in COCO 2016 Keypoint Detection Task, being valid proposition

for solving our problem. Along with work of [Simon et al., 2017], this approach

has publicly available implementation called OpenPose [Hidalgo et al., 2017].

Highest mAP (mean Average Precision) on MPII multi-person pose dataset

[Andriluka et al., 2014] got an approach presented in work of [Newell et al., 2017].

Authors trained a network to simultaneously output detections and group as-

signments. Output of their neural network consist of detection heatmaps with

respective associative embeddings. Grouping body parts is performed by an al-

gorithm based on thresholding the parts embeddings distances. This approach

differs from other bottom-up approaches by the lack of separation between de-

tection and grouping. An entire prediction is done at once by a single-stage,
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generic network based on a stacked hourglass architecture [Newell et al., 2016].

1.2 2D multi-person top-down approaches and single person pose

estimation

Top-down approaches localize and crop all persons from an image at first, then

solve the single person pose estimation problem (which becomes the main dif-

ficulty). Modern single person pose estimation techniques incorporate priors

about a structure of human bodies. Best results in COCO 2017 Keypoint De-

tection Task [Lin et al., 2014] were achieved by CPN (Cascaded Pyramid Net-

work) [Chen et al., 2018]. This algorithm focuses on the ”hard” keypoints (i.e.

occluded, invisible and with non-trivial background). It is achieved by explicitly

selecting the hard keypoints and backpropagating the gradients only from the

selected keypoints.

Stacked hourglass [Newell et al., 2016] achieves state-of-the-art result on

MPII [Andriluka et al., 2014]. It presents a CNN (Convolutional Neural Net-

works) architecture for bottom-up and top-down inference with residual blocks.

Approach introduced in [Ke et al., 2018] aims to improve stacked hourglass

[Newell et al., 2016] achieving the best score on MPII single person pose dataset.

Approach called Mask R-CNN (Mask Regions with CNN features)

[He et al., 2017], extends Faster R-CNN [Ren et al., 2017] by adding a branch for

predicting an object mask in parallel with bounding box recognition. Using this

simple modification, Mask R-CNN can be applied to keypoints detection. This

approach achieves high AP in all COCO 2017 challenges (i.e. object detection,

object segmentation, keypoint detection).

[Simon et al., 2017] presents precise hand 2D keypoint detector. It introduces

a semi-supervised training algorithm called Multiview Bootstrapping. Initially,

the algorithm needs a set of annotated examples. The model is trained using

only these examples at the beginning. Then, the model detects keypoints on

unannotated examples with multiple camera views. Each multi-view example is

then robustly 3D triangulated, and reprojected creating additional training set.

1.3 Other approaches

Modern pose estimation approaches are already robust to blurring and low-

resolution in general. Significantly improving their performance with simple

methods, like heuristic data augmentation or upscaling the images with generic

upscaling algorithms may be extremely hard with limited training data.

A straightforward solution for improving the results on images from a specific

distribution may be manual annotation of some examples (e.g. a few thousands)

for training or fine-tuning existing state-of-the-art models. Manual annotations
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on low resolution images not only require immense amount of work, but also

may be hard to be done precisely in our case.

In our approach we consider single person pose estimation on large dataset

of blobs detected with external tracking system. We create synthetic dataset

and improve it using modern achievements of GANs (Generative Adversarial

Networks). In the following sections, we discuss selected existing approaches

that use synthetic dataset, and use of GANs for pose estimation.

2 Synthetic datasets

In this section we present successful approaches that focus on generating large

(practically infinite, but every distribution have it’s effective variety limit) anno-

tated synthetic or partially synthetic (e.g. [Dwibedi et al., 2017]) datasets with

minimal effort. They show that limited realism may provide enough training

signal for current state-of-the-art object/keypoints detector models.

In [Dwibedi et al., 2017] to create the dataset authors propose simply ‘cut’

real object instances and ‘paste’ them on random backgrounds (without any per-

spective or lighting adjustment). This process implemented in naive way would

give the trained model possibility of exploiting subpixel discrepancies at the

boundaries. To address this problem, the approach blends ’cut’ objects into the

background with heuristic methods. Additionally, it blends in the same way the

distractor objects along with the correct ones. Synthetic data is then feed into

the model along with the real data. In the end, such training set gives signifi-

cantly higher performance, than the non-augmented dataset. (e.g. 51 AP instead

of 42 AP on GMU Kitchen Scenes [Georgakis et al., 2016] dataset).

In [Gupta et al., 2016] Gupta et al. introduce a method of ’pasting’ syntheti-

cally rendered text into the real images with respect to the local region cues, i.e.

surface geometry predicted with other models and local colors. Models trained

with such dataset achieve high accuracy in the task of text detection in the wild.

In [McCormac et al., 2016] authors create fully synthetic dataset using ray-

trace rendered scenes — interiors of buildings. It shows that large-scale high-

quality synthetic RGB datasets with task-specific labels can be more effective

for pre-training than the large-scale real-world images dataset like ImageNet

[Deng et al., 2009].

Many modern successful approaches concerning synthetic dataset use in some

way real images to create it:

– [Dwibedi et al., 2017] uses both real examples and synthetic. Synthetic im-

ages are made by simple editions of the real images, therefore they are not

dependent on graphics renderings.

– [Mueller et al., 2018] uses real examples (unpaired with synthetic) for im-

proving the distribution of 3D rendered synthetic images.
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– [Gupta et al., 2016] ’pastes’ rendered text into the real images (background).

– [McCormac et al., 2016] does not use real images explicitly, but the 3D mod-

els of furniture may be using textures that are created at some degree using

real photos.

In paper [Dwibedi et al., 2017] authors suggest that state-of-the art detection

methods like Faster R-CNN [Ren et al., 2017] care more about local region-based

features for detection than the global scene layout. This fact somehow justifies

their result.

In our previous article [Sypetkowski et al., 2019] we have shown robustness

to low resolution and small distortions, of CPN [Chen et al., 2018] trained on

large datasets. One may suspect, that in our case artifacts of rendered synthetic

dataset will not cause the optimizer to find significant exploits, or stuck in a bad

local minimum.

3 Generative Adversarial Networks for image generation and
pose estimation

In recent years, we observe a rapid progress in results achieved by Generative

Adversarial Networks for image generation. In this section, we review selected

approaches and discuss application of GANs in pose estimation task.

Initial research concerning image generation using GANs was done by

[Goodfellow et al., 2014]. In recent years, there was many improvements for loss

functions, model architecture and overall training process (DCGAN

[Radford et al., 2015], LSGAN [Mao et al., 2017], SRGAN [Ledig et al., 2017],

StackGAN [Zhang et al., 2017], Wasserstein GAN [Arjovsky et al., 2017], Im-

proved Wasserstein GAN [Gulrajani et al., 2017]). Modern state-of-the art ap-

proaches (StackGANv2 [Zhang et al., 2018], Progressive growing of GANs

[Karras et al., 2017]) can infer photo-realistic high-resolution images using multi-

stage generator architecture. Recent paper [Karras et al., 2018] introduced an

architecture that allows unsupervised separation and control of high, mid, and

low-level attributes of high-resolution, photo-realistic generated images.

Adversarial PoseNet [Chen et al., 2017] presents an interesting approach that

trains a GAN, with multi-task pose generator and two discriminator networks.

It achieves state-of-the-art results on MPII [Andriluka et al., 2014] single per-

son pose estimation dataset. The model consists of the generator network, the

pose discriminator network and the confidence discriminator. Half of gener-

ated heatmaps represent keypoint locations and the other half occlusion pre-

dictions. The generator architecture is based on stacked hourglass architecture

[Newell et al., 2016].
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In pose estimation from low-resolution images, an idea worth consideration

is generative upscaling. Modern generic upscaling deep learning methods are fo-

cused on minimizing MSE (Mean Squared Reconstruction Error)

[Dong et al., 2016]. SRGAN (Super Resolution GAN) [Ledig et al., 2017] is ca-

pable of inferring photo-realistic natural images for 4x upscaling factors. The

approach uses GAN, trained using a perceptual loss function consisting both of

an adversarial loss and a content loss. Such generic upscaling algorithms like

these will not improve results on our dataset as we have shown in our prelimi-

nary article version [Sypetkowski et al., 2019], because of too low resolution and

characteristic distortions caused during the scene recording (e.g. compression).

Super-FAN [Bulat and Tzimiropoulos, 2018] addresses the problem of genera-

tive upscaling of very low resolution images. It focuses on improving the quality

of low resolution facial images and locating the facial landmarks on such images.

The idea is to connect third network (Face Alignment Network) to GAN. This

third network detects facial landmarks on the upscaled image. Generator loss

includes additional component – landmark detection loss. Therefore it learns to

generate face that fits geometrically.

3D Hand pose estimation approach [Mueller et al., 2018] focuses on enhanc-

ing a synthetic dataset to make their distribution more like the distribution of

the real images. It uses CycleGAN with an additional geometric consistency loss.

The paper shows, that training with generated images significantly outperform

standard augmentation techniques. Similar approach may be applied to pose

estimation.

In our approach we propose to use CycleGAN for enhancing synthetic dataset

for pose estimation. Our images are very low-resolution and the human body

details are not visible on our images, therefore GANs are easier to learn their

distribution.

4 Proposed approach

For our tests we gathered data using 4 cameras placed at the field corners. Be-

cause of resolution limits, in practice we can assume that for a given player only

2 cameras are close enough to produce usable visuals. The cameras are produc-

tion class CCTV devices with 4K resolution and high compression bandwidth.

Even though the crop factor around single player magnifies compression and

optics artifacts, which renders high frequency data unusable. Low quality and

viewing angle creates uncommon characteristics of the images. Comparing this

scenario with the standard pose estimation datasets like COCO [Lin et al., 2014]

and MPII [Andriluka et al., 2014] we can list main problems:

– Human based annotations are much more difficult and time consuming for

our images. Some images have practically indistinguishable joint locations,
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even with much human time and effort spent

– Border areas of the pitch generates almost top down views, where the human

parts are mostly occluded by upper body

– Images are blurred with non-deterministic distribution, which makes generic

upscaling algorithms useless

– All players wear single-color clothes, which makes it harder to distinguish

limbs (especially hands) from the body

In our preliminary article [Sypetkowski et al., 2019] we selected most efficient

network architecture trained with external data (see Table 1). In all experiments,

we used CPN model [Chen et al., 2018] (smaller version – with input resolution

of 256x192 and based on ResNet50 [He et al., 2016]).

Our new approach consists of 4 steps:

1. rendering synthetic dataset (see Section 4.1),

2. training CycleGAN [Zhu et al., 2017], using generated synthetic dataset as

first distribution examples, and real players blobs for the second (see Section

4.2),

3. training CPN [Chen et al., 2018], with synthetic dataset, cycled-synthetic

dataset, and mixed with COCO [Lin et al., 2014] dataset,

4. measuring pose estimation accuracy on our benchmark (see Section 4.3).

4.1 Rendering synthetic dataset

We use Blender1 for scene modelling and rendering, and ManuelbastioniLAB2 for

creating human 3D models. We use blender ray-trace rendering engine – cycles.

We design armature pose distribution empirically – by randomizing bones IK

(Inverse Kinematics) targets transform (with respect to the rest pose - A-pose)

with normal distributions. One character armature has 8 IK targets in total: 2

for hands, legs, elbows, 1 for body center and a head look-at position. Each IK

target, has hard-coded means and standard deviations for each axis, e.g.:

– hands IK targets have higher standard deviation on backward-forward axis

than on left-right axis, because hands are moving usually switching between

front and back position during running

– similarly feet IK targets have higher standard deviation on backward-forward

axis than on left-right axis, because running is usually for forward movement

1 https://www.blender.org/
2 http://www.manuelbastioni.com/
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– mean of body center IK is lower than in the rest pose, because it is usually

lower during dynamic actions like running or kicking

We randomize each IK target independently. Additionally, we constraint ran-

Approach Implementation /

experiment

Training

set

Language

Library

corr.

pose

corr.

legs

N

/A

PAF OpenPose1 COCO C++,

Caffe

58 106 29

Stacked

hourglass

original implementation2,

8-stack model

MPII Lua, Torch 142 203 -

alternative implementation3,

hg refined 200, 4-stack model

MPII Python,

Tensorflow

29 90

alternative implementation -

not official4, 8-stack model

MPII Python,

Pytorch

135 186

CPN original implementation5,

COCO.res50.256x192,

snapshot 350.ckpt

COCO Python,

Tensorflow

171 224 -

SRGAN for upscaling 90 167

blurred images, 50 more

epochs, lr 1.6e-5

(from COCO.res50.256x192)

155 206

COCO.res101.384x288,

snapshot 350.ckpt

158 223

Table 1: Selected human pose estimation implementation results (original and

our experiments). The table contains results of experiments from our previous

paper. Measured implementations vary in skeleton structure used as a reference,

therefore the measurements are done without annotated testset. We’ve taken into

account few the easiest football aspects for automation. We measured precision

on 300 test images with human based decision, whether the answer is one of 4

classes: correct, only correct legs pose estimation, wrong pose, N/A. The human-

based bias has been lowered by cross-checkup with industry football analyst

but still may produce significant variance, opposed to keypoint-based difference

metrics.

1 https://github.com/CMU-Perceptual-Computing-Lab/openpose
2 https://github.com/umich-vl/pose-hg-demo
3 https://github.com/wbenbihi/hourglasstensorlfow
4 https://github.com/bearpaw/pytorch-pose
5 https://github.com/chenyilun95/tf-cpn
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domized pose with heuristics:

– in general, feet are standing on the ground (jumping positions are rare)

– if left foot is moved forward and standing on the ground, then probably right

knee is bent backwards (as it is during the run)

– foot in the air (not standing on the ground) is usually rotated similarly to

the corresponding calf

– heel may be lifted when leg is standing

We rendered 1000 football fields with constant camera position, various light-

ing angle, and randomly (with uniform distribution) placed and rotated 100

players. Each image has resolution 4000x3000 (like the original cameras). Then,

we cut 100k training blobs from the large images. Example synthetic blobs are

shown in Fig. 1.

4.2 CycleGAN-ing synthetic dataset

In experiments we train vanilla CycleGAN [Zhu et al., 2017] architecture with

256x256 input / output. We use 100k synthetic blobs for first distribution, and

186K real blobs from 2.1k captured sequences for the second distribution. Ex-

ample CycleGAN-ed training images are shown in Fig. 2. The model is trained

with batch size of 1.

4.3 Benchmark

We annotated 400 real blobs with full skeletons. First, all testing blobs are fit into

256x192 rectangles. For each blob we measure OKS (Object Keypoint Similarity)

given by:

OKS =

∑

n

i
exp(−d2

i
)

n
, (1)

where

di =

√

(

xi − xi

32

)2

+

(

yi − yi

32

)2

,

xi, yi are ground truth keypoint coordinates in pixel space,

xi, yi predicted coordinates in pixel space,

n is number of keypoints (in our case it is 13).

In COCO human keypoint annotations, head has 5 defined keypoints (eyes,

ears and nose). For our benchmark we merge it into one keypoint (averaging
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Figure 1: Example synthetic blobs with drawn ground truth skeletons.

coordinates of these 5 keypoints, both in prediction and ground truth), because

such details are not visible at all on our images. In the end, we consider 13

keypoints (the network predicts 17). We measure mean OKS over all test blobs.

We consider our testset sufficiently large for measurement (see Fig. 3).

Additionally we create raw synthetic benchmark on raw synthetic images to

better illustrate capabilities of our trained models. This testset consists of 10k

blobs (it is not included CycleGAN training set).

692 Sypetkowski M., Sarwas G., Trzcinski T.: Synthetic Image Translation ...



Figure 2: Example images from CycleGAN with drawn ground truth skeletons.

The skeletons are drawn with thin lines, so that visual artifacts are visible. First

column shows original synthetic images, others correspond to training iterations

– from left: 5k, 10k, 15k, 50k, 100k, 180k. Transformed images are not perfectly

consistent geometrically, but characteristic distortions occurring in the real con-

ditions are performed in appropriate parts of the image – it enables the network

comprehensible inference on the real images.
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ple detections for selected experiments are shown in Fig. 5. Mean OKS value of

these experiments over training epoch is shown in Fig. 4. Because of different

train and evaluation data distributions, the plots are noisy. Still, as we discussed

testset sufficiency in Section 4.3, the plots (including the noise) are meaningful.

COCO Minival and raw synthetic benchmark scores for selected checkpoints are

shown in Table 2.

Training set Training

epoch

Mean OKS

(our

benchmark)

Mean OKS

(our synthetic

benchmark)

COCO

(Minival)

AP

@0.5:0.95

COCO 163 (best) 0.725 0.824 0.691

COCO 400 0.700 0.836 0.700

COCO+CycleGANed 46 (best) 0.725 0.926 0.595

CycleGANed 23 (best) 0.691 0.923 0.009

Raw synthetic 5 (best) 0.572 0.966 0.006

Raw synthetic 100 0.303 0.977 0.004

Table 2: Summary of selected checkpoints scores. Epoch marked with ”(best)”, is

the one after which the model achieves best score (among the other checkpoints

from this experiment) on our real images benchmark.

Usually, best score is achieved in early epochs of training. It is possible,

because our training and evaluation images are from different distributions.

Clearly, long training with only raw synthetic data causes the model to exploit

synthetic artifacts and assumptions based on imperfect artificial heuristic pose

distribution. In this case the model learns artificial distribution very easily –

achieves almost perfect results on this distribution after only 5 epochs (see

Table 2).

Training with CycleGAN-ed data achieves high mean OKS (close to train-

ing on COCO) in early training epochs, therefore our augmentation method of

raw synthetic dataset makes its distribution more similar to the real images

distribution. Training with CycleGAN-ed images from early checkpoint (5k it-

erations) shows somewhat averaged results between training with raw synthetic

and later checkpoint (18k iterations) CycleGAN-ed dataset. In general, models

trained with artificially created (for our domain) data doesn’t work at all on

COCO benchmark – their score is close to 0. Moreover, mixed dataset training

decreases the score.

Despite our experiments are not exhaustive (e.g. in this paper we try only one

695Sypetkowski M., Sarwas G., Trzcinski T.: Synthetic Image Translation ...



696 Sypetkowski M., Sarwas G., Trzcinski T.: Synthetic Image Translation ...



Figure 5: Example pose estimations for best checkpoints. Columns from left:

ground truth, coco, coco + CycleGAN-ed, only CycleGan-ed, raw synthetic.
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6 Conclusions

In this paper, we focus on football players pose estimation on very low-resolution

images, received from the actual High Quality CCTV system located on lighting

spots in the corners of the football pitch. To omit the need for the manual anno-

tation of many thousands of training examples we create simple python script for

rendering synthetic images. In order to give more realism to our raw synthetic

images we used vanilla CycleGAN. Conducted experiments proved, that training

neural networks for pose estimation without manually annotated data can (in

some cases) achieve as good results as training with large, manually annotated,

generic datasets (like COCO keypoints). With more exhaustive experiments, it

may be possible to achieve even better results by changing synthetic dataset

generation method, various hyperparameters, and architectures of both image

translation and pose estimation models.

Precise annotation of a large training set requires many hours of human labor,

while script for rendering synthetic dataset for a specific task using heuristics,

can be created by one person and much faster.
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