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Abstract. We address several problems in intelligent log management of distributed cloud
computing applications and their machine learning solutions. Those problems concern various
tasks on characterizing data center states from logs, as well as from related or other quantitative
metrics (time series), such as anomaly and change detection, identification of baseline models,
impact quantification of abnormalities, and classification of incidents. These are highly required
jobs to be performed by today’s enterprise-grade cloud management solutions. We describe
several approaches and algorithms that are validated to be effective in an automated log analytics
combined with analytics from time series perspectives. The paper introduces novel concepts,
approaches, and algorithms for feasible log-plus-metric-based management of data center
applications in the context of integration of relevant technology products in the market.

Keywords: Cloud computing, distributed systems, automated log management, time series,
anomaly detection, change detection, forecasting, state characterization, baseline model,
sampling with confidence control, binomial distribution, clustering, machine learning.
Categories: C.3, C.4, E.O.

1 Introduction

Cloud management solutions provide an effective control over data centers only
through continuous and granular monitoring of time series indicators and logs of those
complex environments. Diagnosing IT systems from their logs is subject to many
studies. The papers [He et al 2016], [Lin et al 2016], [Jia et al 2017], [Ambre et al
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2015], [Hu et al 2017] (see also references therein) are targeting automated log analysis
from different perspectives. Anomaly and change detection are major topics in those
studies (see also [Harutyunyan et al 2018], [Harutyunyan et al 2014], [Brown and
Kushmerick, 2015]). We share our experiences while dealing with other relevant
problems in automated log management. In particular, we discuss methods for learning
baseline models of log streams, classifying data center incidents using log data,
quantifying impact of issues based on log content, etc. We describe our approaches to
these problems using machine learning techniques.

Leveraging cloud management products to effectively control performance of IT
applications and infrastructures inevitably leads to the issue of automatically
identifying baseline structures (typical behavioral patterns) of measured data sets
including log sources. Those structures can be utilized for a variety of purposes, from
anomaly and change detection to characterization of the application or infrastructure
state in large. For instance, high/low stress levels, sickness, overprovisioning, security
threats, etc. Particularly, VMware vRealize Operations Manager [VR Ops, 2019]
performs such an analysis for any time series metric of an IT object through its basic
dynamic thresholding analytics [Marvasti et al 2014] and forecasting of capacity
indicators, while building a similar capability for log analytics is challenging - the very
high volume of log data makes machine learning extremely expensive. To overcome
the learning complexity, we propose a random sampling technique based on the
binomial distribution. Our method allows for controlling the confidence of the learned
model by tuning the sampling rate.

With growing interest in the industry in application-aware cloud management and
analytics, the log intelligence becomes especially important. The above-mentioned
cloud management solutions are enterprise platforms to empower the modern Software-
Defined Data Center (SDDC) management with automated machine learning
capabilities, self-tuning and optimization, to further evolve into Al-enabled
autonomous solutions in cloud computing. vRealize Log Insight (LI) [Log Insight,
2019] supports two important machine learning features of 1) Event Types as similarity
clusters of raw log data and the 2) Event Trends allowing to compare two selected time
windows by their differences of corresponding event types. While vR Ops performs
pattern detection for any metric data from data center objects and derives expected
ranges of processes based on a complex time series analysis, accounting for change,
trends, and periodicity, LI is lacking a similar capability to automatically identify the
main behavioral patterns of the log source. It makes troubleshooting and pattern
detection in log data mostly a query-based task with intensive user efforts to find
problem root causes or track the application state in general.

In this regard, to have a deeper characterization of the application, identification of
its baseline model or behavioral fingerprint from logs history is of exceptional
importance. Intelligent proactive management of data centers and applications from
logs perspective with building an accurate expert baseline requires a huge
knowledgebase and extensive efforts. At the same time, it cannot be easily
generalizable because of many factors coming from conditions of the IT ecosystem.
Hence, machine identification of application baselines can be a powerful addition to
any log analytics. Evidently, with such a fundamental structure then, the real-time
anomaly detection and many other core tasks will be easily automated. By comparing
the current log stream against its historically typical model, we’ll be able to effectively
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describe the state of the application in real-time and efficiently identify issues and
incidents. Those can be new software bugs, sickness conditions, hardware failures,
software upgrades, configuration changes, changes in workload. They all are related to
various aspects of data center management (troubleshooting, performance monitoring,
capacity planning, provisioning and configuration, compliance auditing, policy
enforcement, etc.) This means that those structures should be enough informative to
reveal the whole complexity of the log stream with sophisticated relationships between
events. Any method dealing with extracting and continuously updating baseline
structures along the log stream requires an expensive unsupervised learning plan.
Although alternative approaches applying meta-data analysis or quantification of log
information bypass such a complexity (discussed in Section 2), however they address
only a specific problem without structural characterization of the log source in general.

In this paper, we focus on learning the baseline model of log sources in terms of
the distribution of log event types generated by LI. Moreover, our algorithms identify
the expected normal discrepancy from such a baseline that the log source exhibits. We
demonstrate the proposed approach by applying our prototype algorithms to data
measured from controlled experiments.

Although the task of learning baselines is central to the paper, we focus also on the
other analytical tasks mentioned above. Sections 4-6 are devoted to each of those
frameworks tackling the automated log management from various perspectives with
different levels of complexity and sophistication. In Section 2, we motivate our
research and discuss the related work. Section 3 describes our methods to identifying
baselines of log sources and also demonstrateing their application to log data sets. In
Section 7, we conclude the paper, mention about future works and larger experimental
plans.

2 Motivation and Related Work

As we mentioned in the introduction, one approach to overcome the complex machine
learning tasks for log data is to extract different meta-data properties from those sets
and proceed with numeric data (time series) analysis (e.g. [Marvasti et al 2014]) or
build event correlation models (e.g. [Harutyunyan et al 2014]). In particular, in our
earlier work [Harutyunyan et al 2018], we applied quantification of log data with
information theory [Cover and Thomas (1991)]. The quantified/extracted time series
metric representing stream’s Jensen-Shannon divergence over time was analyzed for
change detection purposes. Although this kind of metric plus log analytics framework
empowers the log intelligence with highly effective toolset of low complexity, but it
remains an indirect method for behavioral analysis (without revealing the complete
characteristics of the log source and hiding much of the content in logs).

In [Harutyunyan et al 2018], we intensively utilized distributions of event types
generated by LI in change point detection for a single source, sickness detection of a
source within population of similar sources, as well as for an application topology
discovery using hierarchical clustering. Earlier works by [Ambre et al 2015] and [Hu
et al 2017] analyze specific change patterns related to security of applications. Below,
we are going to utilize LI's event types further to identify the sought baseline models
for log sources.
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Importance of universal baseline models for log analytics was first realized in
[Brown and Kushmerick, 2015], where authors applied information divergence
measures to detect anomalies subject to a known/assumed baseline distribution of event
types. The work was largely motivational for us to address the problem of automatic
discovery of baseline distributions of log events.

For a short overview on Event Types (ET) by LI, let us mention that they are the
main machine learning constructs of the product that represent abstract clusters of raw
log events into similarity groups. With such a similarity grouping the product performs
a dramatic data reduction, mapping thousands or millions of log messages into a
manageable number of groups/types. Fig. 1 illustrates log data of a source for a 10-
minute period as a bar chart of events of distinct types (in different colors). It highlights
those distinct groups in a fractional view within each bar of the chart. Those
fractions/rates in each bar (10 seconds) of the chart can be converted into relative
frequencies or probability distributions of ETs within the window. Then if we want to
compare two log portions in terms of their content, we can apply information measures
(or other similarity distances like cosine) to estimate their “difference”.

In particular, taking relative frequencies of ETs observed in two log portions as
probability distributions

P = (pyp2, .., Pn) and @ = (41,92, > Gn)

of n different ETs, we applied Jensen-Shannon divergence varying between 0 and 1:
JSD(P,Q) = 2D (P, M) +>D(Q, M),
where M = % and D(P, Q) is the Kullback-Leibler divergence [Cover and Thomas

(1991)] between P and Q:
D(P,Q) = iy pilogeh
Respectively, the cosine similarity is based on the angle between two vectors:
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For more details regarding ETs, their probabilistic representation and application of
information measures to anomaly, change, and sickness detection, we refer the reader
to the same papers [Harutyunyan et al 2018], [Brown and Kushmerick, 2015].

Based on the above review, the proposed machine learning identification of baseline
structures for log sources is a novel formulation.

ot gopedtyenLipe -

Figure 1: Bar chart representation of fractions of distinct event types by LI for each
10 seconds within a 10-minute window.
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3 Identifying Baselines with ML

Our algorithms are based on random sampling employing the binomial probability
distribution. This allows us to tune the confidence of our ML algorithms. Below, we
give a brief information about the binomial distributions.

3.1 Binomial Distribution and Sampling

The binomial distribution with parameters n and p is the discrete probability
distribution of the number of successes in a sequence of n independent experiments.
The probability of number of success (Yes) k versus n — k failures (No) in n trials is
given by the formula:

Prob(k success inn) = Ckp*(1 —p)**,
where p is the probability of success in a single trial.

Let us assume that the log source stays at its normal operational state most (99%) of
the time. Instead of 99% can be another prior probability. This means that if we
randomly sample some log portions during the progress of the stream, we’ll get mostly
normal (i.e., the success outcome) behavioral patterns of the log source (let us say in
terms of its ETs).

How many randomly sampled event type distributions are “enough” to verify if 99%
of those distributions describe the normal mode of the log stream? The answer of the
question can be given with the help of binomial distributions. Namely, if normal
samples occur with probability 0.99 versus 0.01, then applying the binomial
distribution (see the online calculator http://stattrek.com/online-
calculator/binomial.aspx), we can measure how many sampled probability distributions
of ETs are “enough” to identify the “normal” (success) ones. Fig. 2 shows the
calculator in action.

Probability of success on a single trial | 0.99

Number of trials 5

Number of success 4

Binomial Probability: P(X = 4) 0.0480298005
Cumulative Probability: P(X <4) 0.0009801496
Cumulative Probability: P(X <=4) 0.0490099501
Cumulative Probability: P(X > 4) 0.9509900499
Cumulative Probability: P(X >=4) 0.9990198504

Figure 2: Results of the binomial distribution calculation for 5 trials with 4
“success”.

The table in Fig. 2 illustrates that from 5 distributions at least 4 are the normal
patterns with confidence (cumulative probability) equal to 0.999. The number of
necessary samples will evidently grow if we assume lesser probability of success, while
guaranteeing the same level of confidence in our experiment/trial. In general, for a large
number of samples collected, say, 10,000, we need to calculate the relevant quantiles
of the binomial distribution https://keisan.casio.com/exec/system/1180573200. So, for
the cumulative distribution equal to 0.999, with number of trials equal to 10,000 and
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the probability of success to be 0.99, we expect at least 9,868 sampled distributions
representing the normal state of the log source which should be identified.

3.2  Algorithms and Experiments

As we mentioned in Section 1 and 2, when performing anomaly detection and other
important tasks for a log source using LI, we face the problem of having a baseline
model for the source as a typical characteristic of its historically normal behavior. More
specifically, if the streams’ current distribution of ETs is largely deviating (as a matter
of a distance measure) from the baseline, we can automatically raise an alert to the
system administrator. We have already shown in [Harutyunyan et al 2018] that in tasks
such as anomaly, change, and sickness detection, the ETs are invaluable “signatures”
or “fingerprints” of log sources to rely on.

In this subsection, we describe our ML algorithms implemented in Python for
identification of that baseline structure using LI’s ETs with random sampling. We
describe two methods to perform such a learning task. The first method applies random
sampling of log messages with confidence control of the inference. The second
algorithm indicates the most generic and sophisticated solution to the problem although
with much higher complexity.

Method I (with random sampling). How to identify the baseline distribution with
the sampled 5 distributions in the example in subsection 3.1? The next question is then
how to identify those 4 dominant (in terms of characterizing the state of the source)
distributions out of 5?

Our solutions below indicate how to choose the baseline event type distribution
and the related normal discrepancy radius of the stream that quantifies the tolerable
“distances” of the observed event type distributions from this baseline as still within
the expected behavior:

1. compute cosine similarity distances between all pairs of event type distributions
(histograms) derived for each of sampled log portion;

2. compute average cosine similarity distance (ACSD) for each sample histogram
from the rest;

3. rank sampled histograms in decreasing order of their ACSDs and pick up the top
4 (tries to identify the most similar subset of 4 distributions.);

4. pick up the histogram with minimum ACSD as the baseline (centroid) distribution;

5. if'there are several histograms with min ACSD, compute Shannon entropy of those
and pick up the one with maximum entropy value as a baseline distribution.

In an alternative implementation, the step 4 can be replaced with the maximum entropy
principle applied to the top distributions directly to identify the most unbiased baseline
distribution.

Shannon entropy [Cover and Thomas (1991)] measures the uncertainty in a random
variable defined by

H(P,a) = —Yp;log, p; <log,n

and its binary version’s plot is depicted in Fig. 3.

For a demonstration purposes, we performed a small experiment on an Apache
server (consisting of web, email, and ftp services), a similar experiment described in
[Harutyunyan et al 2018] for sickness detection task within a population of peers. We
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emulated a stress or security attack (using ApacheBench test tool) on the web host with
a high-rate service requests for a 5-minute duration, after observing it in a “normal”
operational workload for half an hour. Then, we sampled 5 different five log portions
of 5-minute length that captured the stressed window (Sample 2) as well. For each of
log portions (Samples 1-5 shortened to S1-S5), we computed the probability
distributions of observed 25 ETs within, which are shown in Table 1.
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Figure 3: Shannon entropy function for binary distribution and log base a = 2 with
the maximum uncertainty at probability = 0.5.

By ranking (step 4) samples/distributions in decreasing order of the distance
measure, we pick up the following four having highest average similarity (this is the
dominant similarity set representing the normal workload mode of the host):

ACSD(S1) = 0.97, ACSD(S3) = 0.96, ACSD(S4) = 0.97, ACSD(S5) = 0.97.

The chosen four distributions are the baseline “candidates”. With this ranking, the
anomalous Sample 2 indicated in red in Table I dropped from the “candidates” list.

Since there are three samples with the same score, we are going to identify the one
with maximum uncertainty as the “safest” unbiased model for the baseline distribution.
The entropies (in nats, a = 10) of sample distributions are:

H(S1) = 2.83,
H(S2) = 2.78,
H(S3) = 2.85,
H(S4) = 2.80,
H(S5) = 2.84.

Which is the best “candidate” for a baseline? Applying the maximum entropy
principle, it is the distribution that has the highest information uncertainty. Sample 3
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(green column in Table I) has the maximum entropy distribution (Fig. 4) and is chosen
to be the baseline for the log source.

Probabilities
LI's S1 S2 S3 S4 S5
Event Types
v4 18ca9254 0.03 0.02 0.03 0.03 0.03
v4 lab6ac047 0 0 0 0 0
v4 28077ade 0 0 0 0 0
v4 2f6ed1a2 0.03 0.02 0.03 0.03 0.03
v4 36c81efo 0.05 0.04 0.07 0.05 0.06
v4 393c8071 0.2 0.17 0.18 0.21 0.19
v4 59¢d0174 0.03 0.02 0.03 0.03 0.03
v4 68116046 0.05 0.04 0.07 0.05 0.06
v4 69475ccl 0 0.08 0 0 0
v4_6dd466a5 0.03 0.02 0.03 0.03 0.03
v4 7118387 0 0 0 0 0
v4_802bd0d4 0.11 0.1 0.1 0.12 0.11
v4_ 87e0ca23 0.03 0.02 0.03 0.03 0.03
v4 88deSel2 0.03 0.02 0.03 0.03 0.03
v4 8ebbb638 0.03 0.02 0.03 0.03 0.03
v4 94680e71 0.03 0.02 0.03 0.03 0.03
v4 9d3e7bdd 0.03 0.02 0.03 0.03 0.03
v4 9fd2eafd 0.04 0.11 0.04 0.03 0.04
v4 a7f56el3 0.06 0.05 0.05 0.06 0.06
v4 a8a71825 0.03 0.02 0.03 0.03 0.03
v4 b610232 0.03 0.02 0.03 0.03 0.03
v4 b9100c8f 0.05 0.04 0.07 0.05 0.06
v4 bafd4270 0.03 0.02 0.03 0.03 0.03
v4 bfebb8d 0.05 0.04 0.07 0.05 0.06
v4 0533255 0.03 0.02 0.03 0.03 0.03

Table I: Five samples of log event types taken from a host for a 5-minute time range
each.

The final step is to derive the “normal discrepancy radius” of the baseline/source.
This is the variance in ACSD that we observe in the top similarity subset of 4.
The normal discrepancy radius (R) then can be defined as the range of ACSD’s in
the “dominant” similarity set. In our experimental example, it is the following
difference:

R =0.97 — 0.96 = 0.01.
Then, computing the ACSDs for each distribution from the rest, we get:
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ACSD(S1) = 0.97, ACSD(S2) = 0.89,
ACSD(S3) = 0.96, ACSD(S4) = 0.97, ACSD(S5) = 0.97.

Max Entropy Distribution of Event Types

0.10 |-
0.08 |-

0.06 -

Probability/Relative Frequency
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0 5 10 15 20 25
Event Type Index

Figure 4: Maximum entropy distribution as a learned baseline.

Method II (clustering of event type distributions without random sampling). In
an alternative, highly complex implementation, without randomized sampling, with
continuously measured and stored probability distributions/histograms of ETs that
contain all normal and abnormal patterns in the log stream, our algorithm performs the
following steps:

1. calculate local outlier factors of all histograms using LOF algorithm [Breunig et al
20007;

2. pick up the “centroid” event type distribution as the histogram having the smallest
LOF;

3. if those are several, the one that has the highest entropy;

4. compute the average and standard deviation of distances of all histograms from the
centroid;

5. define the “normal discrepancy radius” of the log source from its baseline with 3-
sigma rule, assuming that distances are distributed normally.

LOF is based on a concept of a local density (or similarity distance in our case),
locality defined by k nearest (similar) neighbors. Those neighbors are employed to
estimate the density. Based on this evaluation, outliers are detected as those
distributions that have substantially lower density than their neighbors. The local
density is estimated by the distance at which a point can be "reached" from its neighbors
[Breunig et al 2000]. In a simpler implementation, the centroid can be the histogram
having the minimum average distance from the rest of the histograms. The normalcy
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radius can be also linked to Chebyshev’s inequality without making the assumption of
normality.
Fig. 5 pictorially supports the main ideas of Methods I and II.

Figure 5: Illustrating Baseline as a Centroid Distribution of the cluster and its
Normal Discrepancy Radius.

Abnormality degree of baseline violation. We can measure the abnormality degree
or criticality of alerts raised using the baseline. It is defined by how far is the run-time
ET distribution from the centroid (excluding the discrepancy radius). So, if the normal
operations are within 0.1-radius, a run-time distribution having distance=0.4 exceeds
the tolerance by 0.3. Then we can use a scale to map those over-tolerance distances into
a score range from “lowest” to “highest” (continuous or discrete). Alternatively,
measure and communicate to the user how many times or by which percent the
tolerance radius is exceeded.

It can happen that the event source operates in different modes and have different
baseline characteristics accordingly (for example, the corresponding IT resource has
high and low utilization modes). In such cases, k-means clustering can be applied to
derive relevant clusters and their centroids, then apply the above-mentioned normality
assumption or Chebyshev inequality to extract the normal discrepancy radius for each
of the clusters. This means that for the corresponding anomaly detection we identify in
which mode the system operates and apply the relevant centroid baseline.

We conducted another controlled experiment as in [Harutyunyan et al 2018], again
choosing vR LI as our proof-of-concept application. We monitored LI’s logs in INFO
and DEBUG modes using another LI instance. This is a way to observe the application
in two different stress modes (high and low). In those logging modes, our algorithm
implemented in Python observes different event type distributions. Representative
distributions are depicted in Figs 6 and 7, respectively.
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The graphs illustrate different number and rates of ETs. Therefore, having detected
possible workload modes of an application with complex clustering methods, then the
sampling technique of Method I can be applied to derive the baseline for each mode
individually.
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Figure 6: Representative distribution in INFO logging mode of LI.
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Figure 7: Representative distribution in DEBUG logging mode of LI.
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To validate how effective is the learned baseline we had to focus on specific data
center management tasks it can be leveraged for, rather than benchmarking it against
either an existing expert-built model or a model obtained with similar unsupervised
way of deduction. Both of those are hard to provide — in one case because of various
and complex environment-specific factors and enormous human efforts, and of
unavailable relevant prior art known to us in the other case. According to our
experimental evaluations, the algorithms introduced here were enough indicative to
capture the specific change and outlying behaviors in the log sources of interest.

4 Quantifying Log Content into Metric Indicators

As motivated in Section 2, one of our approaches to implement analytics for log data
and alleviate the hard problem of learning from voluminous log events is through
quantification of characteristics of the log source.

Uni-Variate case. First, we apply a “property extractor” for the log stream to
quantify its parameters over time, such as volume, velocity (rate of growth) and
acceleration, variety (number of different ETs), etc., which can be out-of-the-box meta
data indicators. Those parameters are stored as time series data. That allows to leverage
analytical modules designed for metric data [Marvasti et al 2014]. It means we can learn
historical patterns of those properties and forecast their expected behavior. Out-of-
normalcy states of properties are subject to property-digression alerts. Within a less-
complex data analytics scenario, those property-digression alerts can be formed based
on Extreme Value Theory (see [Poghosyan et al 2016]) not counting for periodic
patterns in the time series.

The next natural step is to correlate those alerts with other violations (out-of-
expected patterns) or events observed in the environment in a temporal “closeness”.
That helps in a faster identification of the root causes of system’s deterioration from its
historical profile. Furthermore, keeping track of historical co-occurrences of property
digression alerts with other anomalies in the system is an alternative way to measure
their correlations to recommend the user. The list of recommended high co-occurrence
anomalies currently active or expectedly appearing makes the user planning of the best
remediation strategies of the source much easier, since it accounts for long-term
correlation patterns of those alerts. Some of the co-occurrence patterns might indicate
bottleneck issues in the system permanently impacting its performance.

Entropy is an indicative property defined on log ET’s. Let we measure the entropy
of distribution of ET’s of a source at every time stamp t. Aggregating the entropy
property in a time series data allows us analyzing it with the above-mentioned time
series analytics. Thus, we can observe uncertainty increase/decrease patterns which
might indicate different issues in the system. An automatic workload placement
decision can be made for a VM to reside under a host with a “stable” entropy.

Fig. 8 demonstrates a computed property of entropy (not normalized) with a spike
for a host and a short period of time.

Multi-variate case. Property indicators can be aggregated into a multi-variate
representation to analyze the event source behavior using unsupervised learning. In
other words, the values of k different properties at time stamp t

Pl(t):PZ(t)' "'IPL(t)
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make a point in L-dimensional space (let those points be measured for the past
monitoring time stamps over several weeks/days/hours). It is an interesting perspective
to evaluate the source performance in terms of the trade-off of those properties by
analyzing the vector of values. In particular, the stand-alone properties may stay within
their historical typicality but be in a trade-off conflict with each other. Therefore, using
clustering algorithms (such as Local Outlier Factor algorithm [Breunig et al 2000],
DBSCAN [Ester et al 1996], etc.) we detect anomalous trade-off states of the source at
run-time as vector values deviating from the dominating cluster.

Entropy Property
25

1234567 8 910111213141516171819 2020122 2524 252627 2329 30

Tirne

Figure 8: Time series representing entropy property for an event source/host.

Based on the clustering results the enhanced analytics generates alerts that point out
trade-off breaches between the meta-data indicators.

2D and 3D meta-data analysis are the most reasonable variants of the generic idea
to consider. Fig. 9 demonstrates a volume vs variety analysis of a log source with an
outlying (volume, variety) point far away from the historically dominant cluster —
although the volume of logs has decreased, the variety (number of different ET’s) has
significantly increased.
This ML approach can be applied to store all historical anomaly patterns in multi-
variate property analysis with appropriate tags/labels on their context which can then
be used to correlate newly observed outlying patterns with for root causing purposes
(see also Section 6).
Quantification of properties of log sources and pattern detection on those within a
“metrics-logs-events” integrated management substantially increases holistic visibility
into the data center and its characterization accuracy. That also enables more proactive
control over those systems and faster troubleshooting. Use case scenarios for
application of our approaches are many. We are not going to focus on evaluation results
for a specific problem to solve using the above-mentioned principles and ML
algorithms but note that the example on a breakage of the trade-off between Volume vs
Variety was indicative to detect invisible problems otherwise. At the same time, the
classical ML algorithms (LOF/DBSCAN) for outlier detection, as well as our
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proprietary engine [Marvasti et al 2014] for analyzing any time series metric/property
are highly effective in identifying atypical behaviors subject to parameter tuning and
thus largely automating data center operations.

Volume vs Variety for a Log Source
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Figure 9: Multi-variate analysis of a log source by events volume vs variety values.

5 Quantifying Problem Impacts using Log Structures

Cloud management solutions notify the users/admins of the infrastructures and
applications on performance and capacity anomalies as well as compliance/configu-
ration issues in the system. Design and appropriate management of alerts that react to
unwanted patterns in diverse systems is a hard process. Cloud ops/log management
platforms can have multitude of alerts with implications of noise, alert fatigue, etc.
Prioritization of alerts for optimal troubleshooting of the infrastructure is a need for the
users. It is not an easy task to prioritize those alerts for troubleshooting purposes, as
well as estimate their indicative power in terms of real implications for the system or
environment. Moreover, the same alert can have different indicative value in different
environments. It is especially hard to measure the impact of alerts which are triggered
based on behaviors of different time series metrics of the application/infrastructure and
relevant IT objects. Therefore, having a more objective way of measuring alerts impact
on the system might greatly reduce the noise they produce, optimize their indicative
power, thus maximize their effectiveness. The simplistic algorithms below demonstrate
an effective way of identifying criticality of an alert condition measured by change
magnitude in the log space.

Algorithmic notes. We quantify Alert’s impact by the change it introduces into the
system. For this kind of approach, the log data is of pivotal importance. In particular,
the ETs of log messages remain important for such a task. Our method is generic in
nature and addresses the following three problems:

1. Categorization of alerts per global and local impact generation ability;
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2. Estimation of run-time impact of an alert or its rank (categorized per global
and local classes): is measured by the change it provokes in the system that
can be interpreted also as abnormality degree of the system;

3. Historic impact factor of an alert: as the average change level (per item 1)
observed for the same alert in the past.

To perform such an analysis, we quantify the alert impact (real importance for
infrastructure or admin) based on the change it actually reflects. Steps of the algorithm
to perform such a quantification for change are:

1. Take a snapshot of log messages for a pre-alert and post-alert time intervals;

2. Compute relative frequencies or probability distributions of corresponding
ETs (or a specific field values) for those two intervals;

3. Apply distance measures between two probability distributions that shows
how distinct are log patterns for pre- and post-alert periods and assign to the
alert as a run-time impact factor.

4. Alerts showing “low” distance between pre- and post-alert periods are
categorized as having no global impact on the system, and subject to
inspection for a local impact;

5. Alerts showing “high” distance (higher than during normal operations)

between pre- and post-alert periods are categorized as having global impact

on the system.

Rank alerts having global impact according to their impact factors in item 3.

7. Rank alerts according to their historical impact factors as an average
(including weighting with time importance) of all run-time impacts observed
in the past.

o

The above-mentioned steps can be particularized with additional filters for the
snapshots of log messages (like event sources, e.g., hosts, app-names, etc.).

Inspecting local impacts. As mentioned above, alerts having no global impact are
further checked for their local impact. In this case, attributes of an alert definition are
used to filter those fields (and their values) of log messages that are responsible for the
alert occurrence. Then the above-mentioned algorithm is applied to those field values
instead of ETs in items 1-3. The rest of the steps 6 and 7 (omitting 4 and 5) in the
algorithm are analogously applied to rank locally impacting alerts run-time and
historic-based.

Below, we bring two examples of alerts with high local and global impacts,
respectively.

Example 1. Alert defined as a condition on metric data and having a global impact.
For a simulated DDOS attack scenario on a server, an alert is triggered on the number
of messages logged from the system using time series analytics. We want to measure
how this anomaly impacted the environment (for the time range correlated with the
alert’s trigger time) in overall from the corresponding log space perspectives. Fig. 10
and Fig. 11 depict those ET distributions measured right before and immediately after
the alert was triggered, respectively.

Before the attack on the server, the “difference” between event type distributions
was negligible, but as soon as the alert on “unusually high volume of log messages”
popped up, we observe a significant change in the system in terms of Jensen-Shannon
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Example 2. Security alert in LI impacting locally (field-level granularity). Assume
we are interested in an event that indicates a security issue at the web service (one of
services at the VCI — virtual computing instance: physical server, VM, container), and
configure the corresponding alert based on httpd status codes count (20x, 30x, 401,
404) to be high. Our algorithm takes probes of the corresponding field data immediately
before the alert’s occurrence and after it and computes relative frequencies of the status
codes interpreted as probabilities (Table II). The change between pre- and post-patterns
of the log field computed by Jensen-Shannon Distance is 0.316, which is a big shift
compared to two consecutive normal operations patterns (where the same distance was
very small/negligible).

At normal operations At Alert time
(after 5 min of normal operations)
Status code Probability Status code Probability
20x 0.80 20x 0.22
30x 0.05 30x 0.03
401 0.05 401 0.55
404 0.10 404 0.20

Table II: Httpd status codes distribution before and after the alert.

6 Classifying Problems based on Log Structures

For a rapid troubleshooting of performance incidents in data centers, it is crucially
important to rightly characterize the nature of the problem. Managing IT systems from
measured time series perspectives, it is hard to identify the nature of an alert that
indicates an out-of-normal operations/states (or out of hard or dynamic thresholds) of
one or several processes. Two aberrations in the same flow (say application response
time, which is a Key Performance Indicator (KPI)) at different time instances can
indicate totally distinct problems in nature. To effectively characterize an incident, we
need to fully utilize the knowledge and experience of admins from the already occurred
problems. This is not realistic for increasingly huge and complex infrastructures and
applications requiring highly automated recommendations and solutions.

Integrating the system’s log data into the metric management plate empowers us
with such an automation solution. Namely, statistically characterizing the system’s log
content of historic incidents and using them as training data, we can then classify a real-
time incident into one of problem types (which is tagged with an indicative description
hinting the remediation solution). In such a way, we perform an automated
“management with memory”. This is a typical supervised learning or multiple
hypothesis testing task.

The method below trains a ML model on ET distributions (can be regarded as an
artificial labeling problem) for the data center application in order to categorize
incidents identified in the metric space.

Algorithmic notes. Our solution relies on integration of two management platforms
(metrics and logs). ETs greatly help in implementing the above-mentioned
classification solution.
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Assume we already have a history of incidents detected by an aberrative/anomaly
behavior of a relevant KPI (Fig. 12). Let the corresponding log data feature be extracted
for each of those incidents (for a selected time window) and attached to its descriptions.
Then, for every occurring incident, we need to perform an appropriate classification of
the related log sample into the existing classes of problems using a closeness distance.
For instance, if ET distribution is the log characteristic, then cosine similarity distance
between two vectors can be chosen.

This will be the most generic solution with storing all extracted log feature data, the
set of probability distributions of ETs for each incident, so we have the representation
in Fig. 13. It pictorially demonstrates the main concept behind the algorithm:

Problem 1

i allil {..mn..\.\. ’ 5 I |‘!w| 1 |11|§|!||\|\|\ .

i X / Aberration 4
Aberration 1 \
/ \ Aberration3
upper control line \ =

Key Performance Indicator

lower control line ~
Aberration 2

Time

Figure 12: Different aberrations in the KPI (time series). For each aberration/
incident, the corresponding log data structure is extracted and stored. Aberration 4 is
similar to Aberration 1 and they might indicate similar problems of the same type.

1. Over time, we have observed different incidents/aberrations in a KPI of an IT
service (for instance, Aberrations 1 to 3 as our historic patterns);

2. Each aberration is represented by relevant log data feature (distribution of
ETs) for an actual time window;

3.  When facing Aberration 4, we take its log data feature and compare it against
the representative features of the past incidents and observe that it is a similar
or identical problem with Aberration 1;

4. So, if the latter was caused by a low network bandwidth issue (a tag), then it
turns out that for Aberration 4 we have that issue again and thus remediation
becomes much more efficient.

A simplified alternative solution does not store the event type distributions for all
incidents, but only an “average” representative — a task to identify a centroid
distribution. Then based on those representative distributions of problems, we can
perform a multiple hypothesis testing of a newly observed incident or aberration’s
pattern with maximum likelihood principle: voting for the Problem type which is
maximally close to the observed distribution.
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Effectiveness of this method was validated for the same security-related problem of
Section 5 with correct association of new atypical pattern in the logs with historically
occurred DDOS attack.

Problem 1
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o Problem3
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Incidents . .
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-~ 24 i o ., -
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~ i ) =

Figure 13: Problem types as classes of incidents.

7 Conclusion and Future Work

The current contribution focuses on specific problems in automated and intelligent log
management that can be addressed with practical machine learning solutions
continuously delivered at the customer data center. Those solutions can be core
analytics functions of larger industrial products on an integrated setting. Our methods
(subject to pending patents, see, in particular, [Harutyunyan et al 2019a], [Harutyunyan
et al 2019b]) deal with identifying baseline distributions of log streams, controlling
properties of log streams through quantified time series data, measuring impact of data
center problems through change in the log structure, as well as classifying data center
incidents for faster characterization of their nature. Those solutions are building blocks
of a much more comprehensive data center management platform leveraging both logs
and metrics and tending to self-drive the IT operations.

We introduced the concept of baseline models for log sources employing event types
as clustered log messages and described algorithms to efficiently identify those
structures using statistical sampling and machine learning. Baseline models are
comprehensive for various analytical tasks in log management from real-time anomaly
and change detection to other pattern detection problems. With controlled experiments,
we demonstrated how the baselines are learned.
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We plan to run experiments on huge data sets. In particular, within a large
experimental setup we are going to learn baselines of ESXi hosts in various
environments by applying our sampling concepts with confidence control and employ
the learned structures in real-time anomaly detection. Then we will be able to validate
observed anomalies with the incident data regularly being reported by operations teams.
The live never-ending stream of ESXi events in large cloud infrastructures make a big
volume. This means that even we observe a large number of different event types and
hence deal with storage of large-size histograms, with the sampling techniques based
on binomial distributions, the number of those histograms will be moderate. Therefore,
feasibility of our implementations is not under risk because of algorithmic complexity.
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