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Abstract: We suggest to widen the focus of the scientific computations community from an
isolated consideration of reliable numerical algorithms using standardized arithmetic to a broad
user-centered system modeling and simulation approach relying on an appropriate verification
and validation (V&V) design. Most V&V works rarely consider human-related issues
specifically. However, modern applications generate and employ huge amounts of heterogeneous
data and usually exhibit high complexity — challenges that are best tackled by augmenting human
reasoning with automated techniques. That is, novel visual and collaborative approaches are
needed to interpret the results, which has to be accounted for in the general V&V procedure. This
should include an assessment of (meta-) data and code/outcome quality, selection of methods to
propagate and bound uncertainty and, lastly, formally rigorous validation efforts. We present an
approach to reliable visual analytics (i.e., analytics subjected to this V&V assessment), which can
in turn contribute to the overall V&V procedure after that. Two use cases illustrate the potential
of the introduced framework for reliable visual analytics.
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1 Introduction

With the advance of ubiquitous computing, sensor-based systems with various
interaction modes (responsive systems RS) gain more and more importance for
supporting mobile users in all areas of their daily lives, helping them to interact and
collaborate in a natural way. For example, people are supported in their surroundings by
ambient assisted living systems [Munstermann 12] that rely on information gathered and
used for inference by corresponding hardware devices or their networks. Nowadays,
such environments deal with a wide spectrum of tasks, from those at peoples’ homes
(e.g., from the areas of elderly care or general healthcare), to those pertaining to
commerce and business, up to museums and other leisure activities as well as to group
decision-making [Sadri 11]. Larger systems (e.g., in smart city applications) employ
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technologies like Internet of Things that depend on reliable cloud computing methods to
guarantee high performance, data integrity, privacy, network security and accuracy.

Apart from the obvious societal concerns about privacy loss, this implies a number
of technical difficulties which must be overcome for RS to fulfill the requirements. To
handle large amounts of heterogeneous data in these systems, techniques in the visual
analytics (VA) domain offer indispensable tools allowing developers and users to exploit
the information encoded in the input data and the system outcome. Additionally, novel
concepts are needed for collaborative human computer interaction based on new task
(meta-)models for post-WIMP (windows, icons, menus, pointer) interfaces, for solving
arising user awareness, security and privacy issues or for assessing user satisfaction.

The RSs we focus on require a high level of reliability so that it is essential to apply
a modern verification and validation (V&V) assessment to the process of their
development. This includes appropriate user interaction and recommending services
based on criteria which are adaptable to the addressed task, supplemented by a careful
evaluation of these activities. The term validation concerns the process of determining
the degree to which a computer-based model is an accurate representation of the real
world and is appropriate for its purpose. Validation can be carried out using special
metrics that help to establish the similarity degree to real life or to compare reconstructed
objects and their behavior with the real world instances. Verification is necessary to
ensure that the implementation of the developed model of a system or a process and its
result are correct. If human-centered visualization environments are to be used as tools
for developing reliable responsive systems and interfaces, they need a specialized
evaluation methodology and V&V support [Kerren 07].
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Figure 1: Stakeholder domains and key terms from the Introduction, displayed in a processing
context based on a graphic from [Bingue 14] extended to user-centered aspects
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Current V&V management does not yet completely reflect the requirements of
modern computer-based systems (e.g., RS) and their interfaces, see Section 2. In
particular, since these highly complex applications generate and employ large amounts
of different kinds of data, it becomes necessary to augment automated techniques with
human reasoning (and vice versa), which in turn calls for changes in the general V&V
procedure. That is, new research questions have to be aimed at, on the one hand,
verifying, validating, and evaluating novel visual and collaborative approaches
employed in such systems. On the other hand, once their reliability is ensured, such
approaches can be used inside the overall V&V scheme.

In this work we focus on studying VA in the above context. Along the way, we
define reliability dimensions (such as visual integrity or quality of user interfaces and
interactions) together with their specific quality criteria and metrics. Special attention
is given to the criteria Accuracy, Adequacy, and Efficiency. Further important aspects
are recommendation of scientific tools that best meet the required quality criteria,
specification and calibration of corresponding measures as well as guidelines for the
evaluation of reliable VA environments. In accordance with these goals and based on
various community evaluation efforts for multi-purpose VA frameworks [Isenberg 12],
we introduce an enhanced V&V approach, which is the major contribution of this paper.
The proposed approach can provide the needed level of V&V that would allow
developers to use visual analytics as a reliable tool for RS development. Since our
general topic is very broad, some of the issues (e.g., evaluation) need to be covered in
separate publications. For example, in [Auer 19], we summarize and complement the
results of the biennial BELIV workshop (https://beliv-workshop.github.io) focusing on
the challenges of evaluation in visualization as well as those of VA Science and
Technology Challenge (2006-2014) offering a choice of metrics along with their
appropriate implementations, supplemented by datasets and evaluators [Scholtz 14].

The presented V&V procedure is shaped by the IEEE Standard for System, Software,
and Hardware Verification and Validation [IEEE 17] that specifies how to assess
systems and tasks using quality criteria and metrics. This includes analysis, evaluation,
testing, and inspection of software, hardware, and their interfaces. It has a much wider
focus than the approach to V&V management proposed by the authors in 2009 and
refined in [Auer 14]. There, a four-tier numerical V&V taxonomy is suggested with the
focus on result verification.

Human issues and usability analysis are addressed by the mentioned IEEE V&V
standard only peripherally: “Verify that stakeholder needs and interests are considered
during development, operation, and maintenance process activities. The analysis will
assure that: human-centered design activities are performed; human factors and
ergonomics considerations are incorporated into the design, potential adverse effects on
human health and safety are addressed in the design; and user needs are satisfied in a
manner that supports user effectiveness and efficiency” [IEEE 17, p. 216]. In Figure 1,
the key concepts from the standard and their interconnections are illustrated. We include
Tool Domain Methodologies because of our focus on visual analytics. However, to build
trust in the outcome of modern responsive systems, the general V&V principles need to
be complemented by a careful, well-specified and standardized study of human factors
such as interactivity, collaboration, and visual analytics, which we attempt in this paper.

First, we describe the state-of-the-art approaches to general V&V assessment
(Section 2). After that, we aim our attention at reliability dimensions, quality criteria and
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their measures in the area of visual analytics including various levels of interactivity and
collaboration in Section 3. In Section 4, we give a brief overview of our work in the field
of V&V assessment. Two use cases are presented in more detail: reliable VA in
computational neuroscience for the visualization of the activity of simulated neurons
over time and in steel quality rating helping to visually assess data on thousands of steel
samples. This article is an updated and extended version of the contributions [Auer 18,
Weyers 18] to the CODASSCA meeting on Collaborative Technologies and Data
Science in Smart City Applications in Yerevan, Armenia, September 12—15, 2018.

2 Approaches to V&V Assessment

In this section, we describe modern standards and approaches to V&V assessment to
point out their strengths and weaknesses. One of the most important recent documents
on V&YV is the already mentioned IEEE standard [IEEE 17]. It states that “the V&V
effort should analyze the artifacts (e.g., plans, models, and architecture) of the domain
engineering as part of the required V&V tasks. Significant analysis of the domain
engineering products should occur during system requirements review, software
requirements evaluation, interface analysis, software design evaluation, source code and
source code documentation evaluation, and all test planning.” [IEEE 17, p.202]. This
standard is synthesized from the following series of new or revised standards for system
and software quality:
e [EEE 12207-2017, which establishes a common framework for “defining,
controlling, and improving” software life cycle processes.
e IEEE 730-2014, which establishes requirements pertaining to quality assurance
processes.
e ISO9001:2015, which is a globally approved standard for quality management.
e ISO/IEC 25000 series, which is a framework for the evaluation of software
product quality.

The standard also defines “minimum software and hardware V&V tasks to address
system issues. These tasks include hazard analysis, security analysis, risk analysis,
migration assessment, and retirement assessment” [IEEE 17, p 11]. It doesn’t mention
the IEEE standard 1788-2015 for Interval Arithmetic [IEEE 15] which specifies basic
interval arithmetic operations with the help of one of the most widely used mathematical
interval models. As shown in [Auer 14], intervals complying with IEEE 1788-2015 are
efficient for modeling bounded uncertainty and propagating the associated error bounds.
IEEE 1788-2015 integrates the IEEE 754-2008 floating point format necessary for
interval computations.

The next important standard is NASA-STD-7009, the permanent NASA Standard
for Models and Simulations (M&S) issued by the NASA Chief Engineer M. G.
Ryschkewitsch on July 11, 2008 and revised in 2016 by M. J. Steele et al. [NASA-STD].
In [Blattnig 13], an instructive summary is published. According to it, a primary goal is
to “ensure that the credibility of the results from M&S is properly conveyed to those
making critical decisions”. This goal translates directly into assessment of the risk that
arises from the use of the M&S. Risk means “the probability a program or project will
experience an undesired event; and the consequences, impact, or severity of the
undesired event if it were to occur” [de Weck 15]. All of the standard’s 49 requirements
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(39 in the revised version) concern programmatics, development and use of an
application. Twelve of them deal directly with verification, validation and uncertainty
quantification. The introduced credibility assessment scale includes five level definitions
to assess the M&S results and key factors for the rigor of the processes used to produce
them. These level definitions contain nested requirements concerning the key factors
verification, validation, pedigree of input and other data, uncertainty of results,
robustness of results, use history, M&S management, and people qualifications. Data
pedigree is meant as “a record of traceability from the data's source through all aspects
of its transmission, storage, and processing to its final form used in the development of
an M&S”. For working with quality criteria, evidence meaning relevance for a given
factor or sub-factor must be given. In this case we can evaluate for quality criteria to
what extent they are met on a specified level. Level 0 is characterized by insufficient
evidence for all factors. To qualify for a higher level, a process must meet the criteria
for all the lower levels.

An important contribution of NASA-STD-7009 is the M&S criticality assessment
matrix (cf. Figure 2). The cells of the matrix contain the risk type and the corresponding
score for the likelihood of its occurrence. Risk types can have technical or programmatic
sources. Examples are cost overruns, schedule slippages, safety mishaps, health
problems, malicious activities, negative environmental impacts, or failure to achieve a
needed success criterion [de Weck 15]. A color scheme rates the risks according to
green: irrelevant, yellow: at project discretion, red: in the focus. Alternatively, a numeric
risk consequence scoring can be given. Columns describe bad decision consequences
(with failure effects from negligible to catastrophic). The rows show how M&S results
influence process/project engineering decisions, from negligible to near certainty. For
each category, there is a threshold level recommendation to avoid certain types of risk,
for example, project/mission failure, further costs, or technical (component) failure. For
reporting these “M&S credibility assessment and sufficiency thresholds” the bar graph
and the spider (or radar) plot were proposed. This standard, like the previously described
IEEE standard, addresses human factors only insufficiently. In this paper, we are
interested in the factors interactivity, collaboration and visual analytics. In the following,
we describe the newest developments in these areas.

The state of the art in building reliable interactive systems has been reported for the
first time in [Wise 93] and recently in [Weyers 17]. Technological systems today are
highly dependent on the interaction between humans and machines. The mentioned
books present systematic research on how this interaction can be described, formalized,
analyzed, and technically supported and how the reliability can be assessed. Interfaces
and interaction have to meet various requirements with regard to human performance
(or limitations) and their safety and fault tolerance.

Near certainty
Significant
Moderate
Minor
Negligible
Relevance of M&S outcome | Negligible Moderate | Critical | Catastrophic

Figure 2: Risk matrix “Scorecard” for project/process quality factors and descriptors
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In Figure 3, we augment the traditional modeling/simulation and V&V cycle in
engineering [Schlesinger 79] with features based on human-centered paradigms. In
particular, such an additional feature is the use of advanced data and visual analytics for
sense-making in big data environments. As a prerequisite for their employment inside
the V&V scheme, they need to be assessed with regard to their quality, their data
provenance and characteristics, and their safety, security and privacy. Cai and Zhu [Cai
15] describe a dynamic assessment process for big data based on a two-level quality
standard. At the first level, there are five important assessment dimensions: availability,
usability, reliability, relevance, and presentation quality. At the second level, reliability
consists of accuracy, integrity, consistency, completeness and auditability. The last term
means that it is possible for auditors to evaluate accuracy and integrity of data fairly.
[Cai 15] is complemented by [Blytt 13], where the author emphasizes the frequently
referred three Vs (volume, velocity, variety) as the biggest barrier to sense-making of
big data. Veracity, validity, volatility and value are mentioned as further assessment
factors. The value is postulated to comprise data discovery, integration and exploitation.
Moreover, advantages and challenges of VA methods in the context of big data are
described, which is also important for system evaluation. Finally, “interaction in the
context of VA” and “the need for collaborative analysis” are emphasized, which
highlights further human factors.

Obviously, not only (big) data, but also VA needs to be assessed. In [Keim 08], VA
is described as combining automated analysis techniques with interactive visualizations
for an effective understanding, reasoning and decision-making on the basis of a very
large and complex data set. Although VA methods can be employed efficiently for a
variety of applications, they sometimes exhibit a lack of attention to safety or reliability
issues. However, accurate understanding of, for example, complex health data is
necessary to make informed decisions about treatment of critically ill patients. For this
reason, reliable VA methods should be introduced in decision-making sessions of
various stakeholders. Only few publications explicitly address reliable VA, the main
topics of discussion being data conversion to standard formats for visualization on
various devices, accurate understanding of outcome using reliable mapping algorithms
and standardized procedures to automatically select, analyze, refine and combine visual
data. This makes developing clear guidelines for ensuring the reliability of VA an
important research direction.

A further feature added to the cycle in Figure 3 is the option of collaborative outcome
analytics done by various stakeholders with multiple expertise to cover the topics of
system evaluation, effective data mining and problem solving as well as to organize
follow-up actions. An example of using collaborative problem solving in combination
with VA is given in [Jeong 15]. Here, developers design and evaluate a complete VA
system and a collaborative touch-table application with two integrated components: a
single-user desktop and an extended system suitable for a collaborative environment.

The final enhancement in Figure 3 is the possibility of evaluation, which aims at
computing key indicators and parameters characterizing a computer-based system model
based on existing standards and rules, requirements, and individual needs. Evaluation
determines the extent to which goals are achieved and quality features are met, which
somewhat overlaps with verification and validation.
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While verification characterizes meeting requirements from a formal point of view,
evaluation allows us to draw conclusions concerning less rigorously specified aspects
such as feasibility, practicability or acceptability. It can be understood as a review and
validation of existing requirements and quality criteria. Similarly to data analytics and
VA features, evaluations including performance, efficiency and safety measures can be
used for V&V purposes if they comply with the requirements of underlying V&V
management [Wise 93]. Evaluation can be considered from the vantage points of
stakeholders, designers, software engineers, the general public and researchers involved
in the development and use of the model. In [Framework 99] and [Al-Hajj 17], examples
of how such evaluations can be conducted in health sciences are given. In [Framework
99], the quality of evaluation activities is assessed using the following four groups of
standards: utility, feasibility, propriety and accuracy. In [Al-Hajj 17], it is shown how
group analytics can be used to evaluate VA problem-solving and to support multi-
stakeholder decision-making sessions in the context of child injury prevention. Here,
typical questions concern group building, filtering visual data due to space, access time
or relevance, collection of stakeholders’ statements, information fusion and reporting.
Collected data include stakeholders’ observations, audio and video recordings,
questionnaires, and follow-up interviews. The group analytics sessions are analyzed
using the joint action theory protocol analysis and pair analytics methods that prove the
emergence of ‘common ground’, that is, mutual, common, or joint knowledge, beliefs
and assumptions among stakeholders. This is a precondition to solving problems
collaboratively using VA.
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3 Visual Analytics - Visualization and Interaction Techniques

As a typical multidisciplinary research area, which integrates knowledge from data
sciences, computer graphics and cognitive science, VA fosters constructive process
model validation, revision and improvement. Moreover, it facilitates data processing and
result evaluation by combining human and machine intelligence during interaction and
collaboration. In this section, we describe key steps of a VA process as well as VA
reliability dimensions, quality criteria and measures.

3.1 Key Steps of a VA Process

The key steps of the VA process are data representation and transformation, visual layout
and mapping, model-based analysis, and interaction/collaboration options [Sun 13].
Additionally, modeling, propagation and visualization of uncertainty at each step play a
crucial role in ensuring the reliability and trustworthiness of VA. Below, we point out in
short important issues at each step.

For the data representation and mapping process, a user-controlled selection of data
types and reduction of data dimensionality are essential as is shown in [Weyers 16, Potter
12].

At the next step, that is, actual visualization, it is important to properly take into
account sources of uncertainty, even for crisp data. To visualize certain and uncertain
scientific or information ensemble data, [Brodlie 12] introduces the E- resp. U-notation
which uses a subscript to indicate the number of independent variables or parameters
and a superscript to indicate the type of dependent variables, e.g., S for a scalar.
Uncertainty is visualized as a geometric form, such as a bar, a rectangle or a thick
surface, a truncated upper and lower PDF or the interval mean and the standard deviation
of a PDF. Additionally, color maps, glyphs or isosurfaces with color depending on Uy,
can be used.

At the final step of the result interpretation and general sense-making, a modern VA
system architecture and an appropriate task model should enable users to choose optimal
devices and interaction for their current task or collaboration style. Whereas WIMP
interfaces utilizing mouse and keyboard-based interaction on screens are well suited for
presenting text and 2D content, post-WIMP interfaces introduce new interaction
paradigms for users to navigate, manipulate and interact with objects within a 3D virtual
reality environment (e.g., with virtual hands and arms). Interaction styles are related to
application scenarios including virtual and augmented reality, ubiquitous and context-
aware computing and computer-supported cooperative learning or work. Extended post-
WIMP task models (i.e., collaborative VA or highly interactive systems like CAVEs
[Weyers 16]) have to include profiles depending on the application type, adequacy of
interaction elements, flexibility in partitioning the task among multiple actors.

3.2 Assessment of Reliability in VA Applications

VA tools can be seen as interactive computing systems necessarily including a human.
[Norman 88] defines this human-in-the-loop paradigm through the human action cycle. A
crucial part in Norman’s work is his discussion of the gulf of execution and the gulf of
evaluation. Both gulfs characterize a potential gap between the users’ mental model
(including their mental state and their knowledge) and the interactive system used in
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context of the users’ task. The user needs to understand both the current system state and
the available set of operations implemented in the system’s internal functional core, the
latter presented and accessible through the user interface. For example, users might not
be able to achieve a certain goal because their mental model of the system’s state is
wrong due to the fact that the interpretation of the perceived system values presented by
the user interface is wrong or incomplete (gulf of evaluation). An example for the gulf
of execution is that a user wants the system to execute a certain operation but
unfortunately presses the wrong button.

If these ideas are put into use for VA applications, the gulf of evaluation becomes
critical because it leads to wrong interpretation and thus to erroneous data visualization,
which is in turn inadmissible in the context of V&V. In the worst case, visualization
breaks visual integrity as has been characterized by [Tufte 91] with the help of the so
called lie factor. The lie factor relates the (normalized) size of a given effect shown in
the visualization to the size of the same effect in data. To answer the question of visual
integrity for mappings of data to more complex spatial geometries and structures, Tufte’s
definition can be applied by specifying the size of a complex object. For instance, the size
of a convex polygon with vertices (xi,1),.. ., (6,Vn), (x1,y1) can be defined by its area, which
grows proportionally to a? if the vertices are scaled with the factor a. To avoid or minimize
also the gulf of execution, all rules concerning usability and user experience need to be
applied to VA environments. That is, VA should be supported by formal methods not
only on system and data level but also on the level of user interaction if it is to be
employed in V&V context.

This paper relies on the concept of reliable visual analytics (RVA), originally
introduced in [Weyers 18], with the focus on the human-in-the-loop and the type of
visualization method, that is, on the interaction level. The general goal of the resulting
RVA framework is to offer a set of quality criteria (QC) that can be assessed empirically.
Users of various levels of experience can rate the subjective reliability of the inspected
VA application with the help of predefined metrics. Additionally,formal descriptions
and models of the application parts add an objective component to the reliability analysis
because they can be used to evaluate the compliance of a tool with predefined
requirements.

Reliability in the VA interaction context can be defined as the degree of accuracy of
the user’s mental model representing the visualized data. Along with the aspect of visual
integrity (VI), reliability depends on the quality of the user interface (UI) and the
interactive analysis process (IP) implemented by this user interface following the user’s
task. This specifies the potential VA exploration space (defined as set of all possible
interactive analysis processes) implemented by the user interface and thus by the set of
operations offered by the VA environment and its dialog model, similarly to [Weyers
14]. These three reliability dimensions (VI, Ul and IP) are embedded into the context of
the user’s task, experience, goals and organizational environment. Gathering subjective
estimations of the QC for solving a representative analysis problem with a VA tool helps
to map this information to the reliability dimensions and embed it into the working
context and organization [Weyers 18], thus evaluating the tool’s reliability from the
point of view of interaction.

We identify the following three QC: accuracy (AC), adequacy (AD), and efficiency
(EF). Their semantics depends on the interpretation in the context of each individual
dimension VI, UL IP. AC is the potential for error prevention the VA environment offers.
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Examples of issues AC addresses in the context of each reliability dimension are
correctness of the user’s interpretation (VI), usability of the user interface considering
the analysis task (UI), or robustness (IP). That is, VA environments should provide all
necessary operations at the right moment while users execute an operation sequence so
that interaction errors are prevented. AD is defined as the level of suitability of the VA
environment for the general analysis question. Applied to the reliability dimensions, AD
addresses the quality of the mapping of data to their visual representation (VI) or the
suitability of provided operations (e.g., as a number) of the user interface (UI)
considering the user’s task (IP). EF is defined as the performance achieved using the
VA environment for the general analysis question. EF addresses the ease with which the
visualization can be perceived (VI), usage simplicity of the user interface (UI), and the
speed with which an analysis workflow can be executed (IP).

3.3 Measures for Reliable Visual Analytics

A first draft of the set of measures with the help of which QC are evaluated in the context
of VI, UI and IP is shown in Figure 4 and has been initially presented in [Weyers 18].
The measures can be computed using the previously outlined empirical approach for a
given VA application v. Additionally, a formal approach complementing the empirical
one can be chosen for assessment. A quality function ¢ and the associated algorithm 4
are defined in dependence on the visualization tool v, several descriptors, for example,
pertaining to data, users, and tasks as well as some side conditions. As proposed in
[Behrisch 18], the algorithm A has to solve a multi-objective optimization problem in
order to find a visualization instance v to maximize (minimize) g. The choice of
parameters to optimize and their ranges depends on the task definition, requirements,
valid standards or measurements/experiments for validation. This choice can be made
by trial and error, searching or ranking, and may follow iterative processes similarly to
software engineering.

The goal of both the empirical and formal approaches can be formulated as finding
an optimal tool v for the task. In this case, automatic recommendation ranking the
suitability of v might be a different technique to achieve it if an effective and efficient
implementation A4 of the target function ¢ and its computation can be provided. The
function ¢ is characterized by QCs and QMs defined in the context of the user group and
its profile, the task and its model, the data, metadata and data types mapped via a tool v
belonging to a predefined set of computer-based visualizations, the hardware and its
interfaces. The QCs encompass performance of the task completion including
effectiveness and efficiency, reliability criteria for the data that need to be mapped by v
to the visual space accurately and efficiently as well as fidelity and usability of user
interfaces, graphical presentation and interaction styles with the focus on perception,
navigation and manipulation of the graphical objects. If the optimization problem can be
solved automatically with the help of A, then the visualization v and its QM parameters
fulfill the requirements and can be recommended to the user (group) with a certain
ranking for drawing conclusions and making decisions. [Behrisch 18] analyzes and
categorizes more than 300 references which address quality metrics and data categories
established in the information visualization (for multi- and high-dimensional, relational,
sequential, geospatial and text data) and requirements on quality criteria.

To describe measures from Figure 4, we use the abbreviations [RD|QC]QM, where
RD is the reliability dimension, QC the quality criteria and QM the addressed measure.
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[VIIJAC] Accuracy regarding visual integrity is a combination of two measures:
correctness as a constraint and mapping as a sufficient condition. Both (classes) of
measures are characterized by potential algorithmic evaluation using either formal
model checking or the comparison of rendered visualizations with a pre-defined
reference.

Correctness: This measure addresses the degree of correctness of the visual
representation of values in the considered data set (a constraint). For instance,
representing data with value 4 using the visual representation for 5 means low
correctness. This might be measured by an automatic comparison of the rendered
visualization (pixel by pixel, e.g. by calculating the distance between pixel’s colors) with
a set of reference images, (i.e., correct visual representations). Moreover, correctness
should reflect whether uncertainty in the data is visualized in such a way that users are
able to interpret it correctly in the context of both the data point and the whole data set.
The correctness of interpretation may be measured automatically or within an empirical
user study challenging/urging users to identify certain (known) features in a given
visualization and compare the results with the expected outcome.

Mapping: The quality of the mapping of a data set w.r.t. its visual representation can
be measured (automatically) via a function preserving the object descriptors, for
example, as defined by Tufte’s lie factor (the sufficient condition).

[VIJAD] Adequacy regarding visual integrity considers the task the user addresses
with the help of the given interactive visualization. It is characterized by mapping and
layout, which both need to be measured in accordance with the user’s task.

Mapping: This measure addresses the mapping of data values to their visual
representations in a sense similar to [ VI|AC]Mapping but with a focus on the user’s task.
A model-based description of the task might be necessary to evaluate for a giving
interactive visualization whether the visual representation is helpful for answering a
certain (sub-)question. These models need to define what mapping for a (sub-)task in the
analysis is adequate or required. For instance, the VA application’s engineer can check
in a testing session, in which he tries out all operations offered by the user interface,
whether all operations exist and can be executed in reasonable time.

Layout: This measure characterizes adequacy of the design of a visualization for a
given task with a specific focus on the layout of the visualization. Thus, this measure
needs to consider the task and might involve the analyst’s workflow. Not only the task
itself, but also specific dependencies between tasks and sub-tasks need to be assessed
w.r.t. adequacy with which their relevant visual representations are provided. This
measure can be assessed similarly to [V|[AD]Mapping in the same test session.

[VI|EF] Visual integrity influences the efficiency that characterizes the potential of
success in answering a research question using the visualization under consideration. We
identified two major measures to assess efficiency: readability and layout.

Readability: This measure characterizes the absence of visual clutter. Additionally,
the complexity due to unnecessary amount of represented information is considered
(e.g., complex plots rendered in limited screen space).

Layout: Similarly to [ VI[AD]Layout, this measure addresses the spatial organization
of the elements of the visualization, also taking the task to be solved into account.
Additionally, a visualization should be structured in such a way that the relevant content
for the task is easily recognized. Similarly to [VI|AD], both measures may be assessed
using an expert walk-through.
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[UIJAC] Accuracy of the user interface focuses on the basic requirements addressing
general usability. The three identified measures are understood as the bare minimum for
an interactive VA tool. A general guideline is the fulfillment of ISO 9241-11, the
compliance with which can be measured in an empirical user study with such
instruments as the SUS questionnaire [Brooke 96].

. Quality _
“_Criteria| Accuracy Adequacy Efficiency
Reliability ~_ (AC] [AD] (EF]
Visual Integrity | - Correctness - Mapping - Readability
[VI] - Mapping - Layout - Layout
- Readability g | s ooy
User Interface | _ Inluili\'cnc)ss - ll?cric:vablhly | - Usability
= : 2 TY ility _UY
U1 - Ergonomics R UX
Interaction - Intuitiveness | - Complexity | - Seq. Length
Process/Dialog | - Learnability | - Structure | - Usability
[IP] - Robustness - Mapping -UX

Figure 4: A measure matrix to characterize the reliability of VA by means of three reliability
dimensions and quality criteria

Readability: This measure addresses the quality of the user interface in terms of
clutter. All operations and interaction elements needed for a task or research question to
be answered should be well visible and easy to find. Thus, this measure is very similar
to that for visual integrity but in this case with the focus on the user interface. A potential
operationalization of this measure is a performance test, where better performance (that
is, better results the user is able to gather) indicates better readability.

Intuitiveness: This measure characterizes the level of the intuitiveness of the user
interface, for example, how easy it is to identify the right operation/widget for a specific
subtask. For quantification, this measure needs well designed user studies considering
the addressed task(s) and user group(s). A potential scale is the SUS questionnaire.

Ergonomics: Similarly to intuitiveness, this measure characterizes the quality of the
user interface design for a given task, for instance, ease of access to widgets or
operations. Quality of the used input and output devices (e.g., how heavy a hand-held
input device or how intrusive a display is) can be also addressed. In both cases, user
studies need to be carried out using certain scales (such as SUS).

[UIJAD] Adequacy regarding the user interface concentrates on higher level
qualitative measures such as perceivability and usability with an additional focus on the
considered task.

Perceivability: This measures how simple it is to find a certain widget or element
the user is looking for depending on the task. It needs to be characterized in a user study
very specifically focusing on a task or a class of tasks. Compared to [UI|AC]Ergonomics,
this measure characterizes how well a certain widget can be perceived in reference to the
point of view of task performance. Here, error prevention plays a lesser role, although
both can be measured by a task-dependent performance test involving the user.

Usability: This measure reflects compliance with ISO 9241-11 on usability with the
focus on the task.
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[UIIEF] Here, compliance with ISO 9241-11 is assumed as a prerequisite. That
means that a user interface can only make work efficient if usability is high. A high level
of user experience enhances interaction further.

Usability: Fulfillment of ISO 9241-11 with the focus on efficiency of completing a
certain task, measured with similar tools as discussed above.

UserExperience: Fulfillment of user experience requirements and measures. For
instance, the UEQ questionnaire [Laugwitz 08] can be used to measure user experience
for a given user interface, user and task.

[IP|AC] The interaction process refers to a dialog model of a user interface. The
dialog model describes what operations offered by the user interface (through widgets)
can be executed and under what conditions. The previously described measures consider
global qualitative characteristics of a user interface, such as usability. The dimension IP
considers instead the execution of specific (task dependent) operation sequences, which
might differ from task or sub-task sequence due to their atomicity. Thus, operations
cannot be split further but task and sub-tasks are still more abstract and need to be
mapped to operations. In the context of accuracy, the following measure can be applied.

Intuitiveness: Similarly to [UIJAC]Intuitiveness, intuitiveness in the context of
[IP|AC] refers to the level of simplicity needed to find and execute not only an operation
but a sequence or complex combination of (correct) operations in the context of the
addressed analysis task. Intuitiveness can be measured in a user study in which the user
has to execute a complex analysis processes and rate the system accordingly. An
operationalization can take place using such performance measures as number of errors
or quality of outcome/result of the applied process.

Learnability: This measure characterizes the effort needed to learn to work
effectively with the VA tool focusing on the addressed analysis process. Thus, this
measure is related to [IPJAC]Intuitiveness as high intuitiveness consequently reduces the
needed learning effort. A classic operationalization of learnability is to apply pre- and
post-knowledge tests before and after using the VA application. Questionnaires might
help to estimate the perceived learning effort.

Robustness: A high level of intuitiveness and learnability might result in a high level
of robustness of the tool when wrong input or similar errors happen. For instance, if the
user changes the camera position inappropriately, the tool should offer the possibility to
undo this change. That is, robustness also refers to basic usability measures and may be
included into a user study for measuring the usability level of a given VA tool within an
interaction process.

[TP|AD] Adequacy in the context of interaction processes addresses (in general) how
adequate the interactive analysis tools support a given analysis workflow or process.

Complexity reflects the relation of complexity of the potential interaction sequences
to the complexity required by the needs of the user’s task and the user’s experience. Too
high complexity might lead to frustration and errors, too low complexity to a lower level
of concentration resulting in missing operations and not completing the task. This measure
can be quantified in an user study covering everyday work situations and can also be
accompanied by formal methods to compare interaction sequences (from task models)
with an interaction operation space, for example, extracted from a formal process-based
description (e.g., Petri nets) [Weyers 17].
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Structure: This measure is similar to [I[PJAD]Complexity, but addresses the overall
structure of the interaction space defined by the tool’s interaction process/dialog. It can
be operationalized similarly to measures described for [IP|JAD]Complexity.

Mapping: This measure quantifies how adequately a VA tool maps a user’s task to
analysis processes. [[PJAD]Mapping is closely related to [IP|JAD]Complexity and
Structure since both can be affected by a given mapping. For instance, a user interface
offering a wizard-like guidance through the analysis process reduces the complexity,
simplifies the structure but simultaneously restricts the Ul to only one or a set of
processes, which might or might not be a good mapping to the user’s analysis task. Along
with a subjective characterization via a user study, a formal description of both process
and user interface can be employed (as it is the case for [IP|AC]).

[IP|EF] Compared with [IPJAC] and [IP|AD], [IP|EF] is characterized mainly by
subjective measures from user surveys accompanied by further empirical methods.

SequenceLength: This measure characterizes the minimum length of the needed number
of operations to finish a given task/interaction process. A specific measure could be the
needed number of mouse clicks or the number and complexity of gestures (characterized,
e.g., in time — see also Fitt’s law [MacKenzie 92]).

Usability: Similar to [UIJAC]Usability, but additionally addressing the analysis
process. Usability should be measured empirically (as said above) in a user study. For
assessing the interaction process, the study needs also to consider more complex analysis
processes. The similar is true for user experience described below.

UserExperience: Equivalent to [UIJAC] but addressing the analysis process.
Similarly to [IP|EF]Usability, this measure should be assessed in an empirical user study
using standardized questionnaires (e.g., UEQ).

In summary, the reliability assessment outlined above relies on a three step
engineering process: First, the relevant dimension and quality criteria need to be selected
for a given analysis tool and task. Based on this selection, the developed user interface
and analysis tool need to be investigated using a (partially) formalized interaction model
by the engineers in a second step. Finally, in a third step, user studies need to be planned
and conducted assessing the mentioned measures from a subjective, empirical point of
view. Eventually, the gathered insight should be used in an iterative development
process, for example, identified flaws in the design of a VA tool improved. The
adaptions can be further investigated in a next iteration of V&V assessment as outlined
above.

The presented framework is a first step towards a generalized set of qualitative and
quantitative measures and criteria. Generalization, extension and validation of the
presented measures is a challenging topic of (our) ongoing investigations. Nevertheless,
the presented framework introduces an overarching strategy for addressing V&V for VA
not only from the point of view of formal methods but also including empirical measures
with the human in the loop as major recipient of the generated visualizations.

4 Use Cases

In recent years, the three authors and their collaborators have contributed reliable
software tools and frameworks in various application areas, for example, analysis of
(bio-)mechanical systems, solid oxide fuel cell systems [Auer 14] and steel technologies
[Thurau 14, 14A]. We demonstrated how to enhance V&V assessment with the
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reasoning capabilities of VA through interactive visual interfaces, adding a dimension
of collaboration to creation and evaluation of complex and responsive systems. We
implemented virtual museums and laboratories, which showed, in particular, how
involving people in collaborative and crowdsourcing activities could transform
museums/labs into participatory spaces [Biella 16, Sacher 17].

Code verification and model validation techniques convinced in further projects:
Traffic simulation systems using MAUDE [Briigmann 14, MAUDE]; a framework for
development, assessment and interoperable use of verified methods with applications in
distance computation, global optimization, and comparison systematics [Kiel 14]; a
human autonomy assessment system [Munstermann 12] as well as uncertainty
quantification via verified stochastic methods in geographic information system (GIS)
applications [Rebner 15]. Moreover, a hardware and software architecture to assess and
visualize important risk parameters and environment entities under uncertainty was
described in [Weyers 16] with the aim to process, format and present relevant everyday
threats from several risk classes that appear in specific contexts with typical parameters
in a virtual house of risk. The layered architecture approach provided risk data and
metadata in a virtual reality environment allowing for appropriate 2D and 3D
visualization and various interaction styles, cooperation and co-creation of new content,
and an individual degree of immersion into situations where threats typically happened.

To make modeling and assessment center on humans, a reference nets approach for
modeling and reconfiguring user interfaces and their (inter)action logic can be employed
as shown in [Weyers 12]. It is described how two student groups working collaboratively
and on their own constructed their specific roles (Alice, Bob, Trusted Third Party, etc.)
in a standardized cryptographic protocol step by step. The system automatically
generated a reference net (a special type of the colored Petri net), which was matched
against the existing protocol logic and supported by the robust implementation
framework.

The examples mentioned above constitute relevant parts of the new human-centered
V&V assessment introduced in Section 3.3 which includes not only traditional code
and result verification, uncertainty management, validation and evaluation, but also
evaluated user interaction, recommender techniques and reliable VA. In the following
subsections, we will highlight two use cases, which address relevant parts of an
enhanced V&V assessment.

4.1 Visual Analysis in Computational Neuroscience (CN)

The goal in CN is to apply simulation methods to investigate the dependency between
structure and function of neural networks with the ultimate goal to understand the
human brain. Mathematical models of neurons and data structures describing the
connectivity of a neural network generate various types of data as output of a simulation
run, such as spike events of neurons or membrane potentials. In the CN community,
various types of simulators are being developed, for example, Neuron [Hines 97], TVB
[Jirsa 10] or NEST [Gewaltig 07]. These simulators address various levels of
abstraction, either focusing on very detailed neuron models (NEURON), the simulation
of simplified point neurons (NEST), or the investigation of models on the level of
neural areas (TVB). Here, visual analysis plays a central role in the investigation of
simulation outcome [Senk 18]. In most cases, visualization is used in an interactive
fashion in very early steps of a scientific workflow, for example, to validate the
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network’s characteristics and behavior. Therefore, various visualization tools have been
developed, such as VisNEST [Nowke 13], an interactive VR-ready tool visualizing
multi-area models simulated with NEST. In the following, we characterize the so called
“control view” (as shown in Figure 5, rendered in the aixCAVE [aixCAVE 18]) of
VisNEST using the measures from Section 3.3. The view is composed of three different
visualizations presenting activity data that results from the simulation of the visual
cortex of a Macaque monkey. The visualizations are (a) a dot plot showing the activity
of each neuron over time (also called spike plot), (b) a function plot showing the
accumulated activity in an area per time step and over the whole simulation time, and
(c) the accumulated activity per area mapped to a 3D rendered representation of the
visual cortex’ areas (right in Fig. 5). The measures from Section 3.3 are exemplified
with a focus on the 3D rendering (c).

Figure 5: A VA tool for the investigation of NEST-based simulation of neural networks

[VIJAC]: For the quantification of correctness and mapping, the transfer function
that maps the activity value to a color needs to be checked formally. In VisNEST, it is
necessary that a certain distance between two values is perceived similarly to the
perceived distance between the colors chosen for representing these values. This
requirement is fulfilled by the use of the color map NASA MRO ice_freq (blue to red
to yellow) [NASA GISS].

[VIIAD] The design is very simplistic relating to the measures Mapping and Layout.
It uses the underlying geometrical shape of the simulated brain areas. The geometries
are gathered from a scalable brain atlas, which offers anatomically correct mappings of
experimentally (valid) data of the represented brain to geometrical models [Bakker 12].

[VI/UI/IP|EF] concerns efficiency along the three reliability dimensions. VisNEST
has been investigated empirically by various experts who also took into account their
workflows to investigate the addressed data without VisNEST. In [Nowke 13], the
original authors present their findings, which were overall positive. The tool has been
developed in very close collaboration with the later users (the domain scientists), which
implies validation of the tool by design and through the design process. This is a benefit
gained by the user centric design methodology, which ensures the creation of a
successful user interface design that takes care of [UIJAC/AD] as a by-product.
Additionally, the authors focus on the design of the visualization and tools not only in
reference to the user’s requests but also with respect to the original workflow described
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in [Nowke 13]. This makes it possible to address relevant measures for [[PJAC/AD]
too.

Although a user centric design approach ensured the success for VisNEST, not all
aspects from Section 3.3 have been assessed for the tool, in particular, the empirical
measures usability and user experience have not been considered. This kind of
characterization needs well designed user studies with a statistically relevant number
of participants. Note that since VisNEST is a tool for a limited circle of experts, it is
challenging to acquire enough participants with a good understanding of both the
analysis workflow and of the simulation for a meaningful user study.

4.2 Analysis of Steel Samples SILENOS©O

In this subsection, we illustrate how to visualize big data influenced by uncertainty, an
aspect pertaining to data quality assessment, uncertainty management, performance
analysis, and reliability of VA, using the steel inclusion processing framework,
IPFViewer. It has been designed by the first author of [Thurau 14,14A] in cooperation
with a large German steel production facility to analyze collected data about
nonmetallic inclusions and other defects in steel samples using the steel inclusion level
evaluation by the numerical optical system SILENOSO patent-protected by
Hiittenwerke Krupp Mannesmann GmbH. The tool can analyze the ensemble data set
in various ways, for example, perform outlier detection to identify samples and defects
that differ from others by position, size, type and number. To rate steel quality, it can
carry out trend analysis to study the influence of different process parameters on the
steel samples and their meta-data and variance analysis to examine natural fluctuations
within the samples and desired variations that result from process parameters.

After the three-dimensional shape of inclusions and other defects is reconstructed,
the nonmetallic inclusions are classified into globular defects, crack-like defects and
artifacts near the border of the sample volume [Buck 16]. If a chemical analysis is
desired, it is possible to ask the system for a map with interesting inclusions. This
allows the engineers to analyze the spatial distribution of inclusions and defects in
general, classify them according to their three-dimensional shape and visualize the
items using real-time rendering methods. The development of two subsequent
IPFViewer versions involved a dozen university researchers and employees of the
industrial partner. An expert survey concerning usability [UIJAD], performance and
visualization concepts is ongoing work. In the following, IPFViewer is described using
some of the measures from Section 3.3.

[VI]JAD] Based on a new data tree and visualization model for the analysis of
hierarchical ensemble data sets, IPFViewer utilizes multiple view techniques, data
grouping and aggregation, data mining, and a reference data visualization (Mapping).
Due to the immense size of the ensemble data set, which can contain up to a hundred
thousand steel samples and ten billion defects, the main challenge is to present the
relevant data in a way that enables the users to perform the evaluation quickly.

[VIJAC] Uncertainty visualization is used to analyze variations in the data: Not only
small natural fluctuations from the production process can be visualized but also larger
variances due to variation in the process parameters (e.g., temperature in the smelting
furnace). The tool has a standardized and customizable reporting functionality and can
be used with ensemble data sets generated using other application tools as well.
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[TP|[EF] When required, IPFViewer relies on new incremental, approximate analysis
techniques to ensure the responsiveness of the application while sufficient precision is
guaranteed for queries with fast response times [Thurau 14A].

[IPJAD] The layout allows workers at the steel production facility to quickly and
interactively analyze data with millions of data rows. The resulting data tree is
visualized as a huge grid in a scrollable area. Each grid cell incorporates a multiple
view system with such standard visualization techniques such as scatter plots, bar charts
and trend graphs [VI|AD]. Steel experts examine the histogram about defect diameters
and the largest found defects to evaluate a sample quickly without having to analyze
each defect manually. They can also scroll through all the samples and compare them,
create and save various layouts that visualize different aspects.

5 Conclusions

This paper introduced human-centered paradigms into a formal V&V assessment
within a workflow for designing, modeling, and implementing various real life
processes. We showed that numerical result verification was only one of the important
issues. Big data quality assessment, accurate task and process modeling, user
interaction modeling and visual analytics should also be carried out in a reliable way.
For reliable VA, trust in its outcome should be established, which we proposed to do
by following the (meta-)design principles of a human-centered V&V assessment and
also in dependence on users' task models and interaction styles, since the possibility to
work with the visualization interactively was an integral part of VA. As use cases, we
described toolboxes supporting reliable VA for visualizing steel artifacts and activity
in simulated biological neural networks V&V assessment and evaluation of these
systems was conducted from various vantage points concerning design, code or
numerical result verification, software testing, visualization and usability. The subject
of VA evaluation, which is not covered in this paper but is highly interconnected with
the research questions posed by verifying and validating VA environments, is the topic
of a further paper [Auer 19].

Not every issue raised by the considered research area has been examined yet. For
example, the introduced list of reliability dimensions relevant for analyzing and
understanding visual artifacts is not complete. Nevertheless, the paper delivers a
description of an extended V&V assessment, an insight into the term reliable visual
analytics and its importance for result evaluation in engineering (possibly under
uncertainty) as well as a point of reference for the implementation of the specified
requirements (provided by our applications from two different areas of engineering).
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