
Precise Performance Characterization of Antivirus on the

File System Operations

Mohammed I. Al-Saleh

(Jordan University of Science and Technology

Department of Computer Science

P.O. Box 3030

Irbid, Jordan 22110

misaleh@just.edu.jo)

Hanan M. Hamdan

(Jordan University of Science and Technology

Department of Computer Science

P.O. Box 3030

Irbid, Jordan 22110

hmhamdan12@cit.just.edu.jo)

Abstract: The Antivirus (AV) is of an important concern to the end-users commu-
nity. Mainly, the AV achieves security by scanning data against its database of virus
signatures. In addition, the AV tries to reach a pleasant balance between security and
usability. When to scan data is an important design decision an AV has to make. Be-
cause AVs are equipped with on-access scanners that scan files when necessary, we
want to have a fine-grained approach that provides us with high precision explanation
of the performance impact of the AVs on different file system operations. Microsofts
minifilter driver technology helps us achieve exactly what we want. By deploying a
minifilter driver, we show that most overhead of the tested AVs are greatly imposed
on the OPEN operation. Interestingly, we also show that the AV greatly enhances the
timing for the READ operation. Finally, the WRITE and CLEANUP operations show
almost no differences in terms of performance.

Key Words: Antivirus, Performance, File system, Minifilter driver

Category: D.4.3, D.4.6, D.4.8

1 Introduction

Computer security is being integrated as part of the business model of compa-

nies. Companies store customers private data and credentials in their machines.

Consequently, they have to protect their machines against penetration. In ad-

dition, many online stores have to find ways to assure secure transactions. Any

mistake or vulnerability in the system leads to money loss and, more importantly,

reputation damage. To counter attacks, several security controls have been ap-

plied. Such controls try to prevent, deter, detect, and recover from attacks. In

many cases, data encryption comes with the solution. Data confidentiality and

integrity can be greatly obtained through different provably-strong encryption

Journal of Universal Computer Science, vol. 25, no. 9 (2019), 1089-1108
submitted: 12/1/19, accepted: 9/7/19, appeared: 28/9/19  J.UCS



techniques. However, not all security problems can be solved through encryption.

For example, data has to be in plain before it is encrypted or after it is decrypted.

An intruder might find a way to such plain data. Firewalls, intrusion detection

systems, intrusion prevention systems, anti-spyware, and anti-adware are exam-

ples of security technologies to fight malware and attacks. One of the widespread

security tools is the Antivirus (AV). According to a study [Richardson, 2011],

the AV is being used by 94% of the surveyed parties. This indicates how mature,

effective, and affordable the AV is. Basically, the AV keeps signatures for the

viruses it already knows and stores them in its database. The AV scans data of

interest against its virus signatures. If a match is found, then an extra action is

required to stop and recover from the attack.

Most AVs are being developed by profitable, competitive companies that do

not share their protection techniques with the security researchers and prac-

titioners. There are two ways to study such AVs, namely reverse engineering

and black-box testing. Researchers test the AV from either security or per-

formance perspectives. However, most AV performance studies are technically

superficial. They mainly discuss the overhead of the AV on systems without

reasoning. Deeper studies on the performance impact of the AV on systems

[Al-Saleh et al., 2013, Uluski et al., 2005] report the overhead of the AV and try

to explain such overhead by the extra events that happen during experiments.

Such events could be hardware events (such as cache hits and memory accesses),

or software events (such as system calls). Going beyond this to give a higher-level

explanation about such overhead has not been approached yet.

At the heart of the AV is the file system protection against reading or writing

infected files. In order to provide such protection, the AV needs to intercept the

file system operations and inspect the involved data. This study measures the

performance impact of the AV on the main file system operations. To get a precise

measurement, we have to get as close as possible to the AV scanning components

and the file system operations. Modern AVs use Microsoft Windows minifilter

driver technology to gain control over file system operations. Our approach to

measure the AV performance impact is also through utilizing the technology of

the minifilter drivers. In this study, we implemented a minifilter that is stacked

on top of the AVs minifilter to measure the performance impact of the AV. We

intercepted the file system operations using the same way the AV itself does and

reported the impact of the AV.

This paper first discusses related work. Then, we give background on minifil-

ter device drivers in Section 3. Section 4 illustrates methodology and experimen-

tal setup. Our results are shown in Section 5. Then, discussion and future work

are covered in Section 6. This is followed by the conclusion.

1090 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



2 Related work

Unfortunately, the topic of measuring the impact of the AV software on the un-

derlying systems has not received enough attention from the research community.

Currently, popular AVs are managed by commercial vendors who understand-

ably do not expose the structures of their products. Such profit-driven products

missed intellectual thoughts and suggestions from security research communi-

ties. Researchers speculate or reverse-engineer AVs in order to understand what

exactly they do [Post and Kagan, 1998]. Black-box testing is another option for

researchers to reason about AVs. Generally, AVs are being studied from two

perspectives, namely performance and security.

A vital concern for both AV vendors and users is the performance impact

of AVs on the systems they protect. The security vs. usability argument always

comes into the fore. Users undoubtedly are not willing to live with performance-

killing AVs. Consequently, AV vendors work hard to attain a good compromise

between the achievable security and the performance impact. Performance stud-

ies either test how much overhead the AVs incur on systems or try to suggest

methods that can make AVs more efficient.

Al-Saleh et. al. [Al-Saleh et al., 2013] study the overhead of AVs on sys-

tems. Several experiments which included common user activities such as Inter-

net browsing and document editing were designed to check how these activities

can be affected by AVs from performance perspective. An overhead is obvi-

ously shown on all of the activities. Then, the authors tried to reason about

this overhead by studying the events generated by the Operating System (OS).

The events include system calls, page faults, Input/Output operations, and pro-

cess/thread creations. Event Tracing for Windows (ETW) was utilized to log

events. In case of an AV, these events outnumbered that of no installed AV.

They finally showed that processes spend more time in event waiting queues in

case there exists an AV. This suggests that processes wait more for events be-

cause of the AV. This study is the closest to ours. However, it only explains the

overhead by the very general system symptoms (events) that were indirectly tied

to the AV. In this study, we try to work as closely as possible to the AV. More-

over, we want to tie the overhead to the AV more accurately by sandwiching the

kernel components of the AV. This position gives us direct and precise analysis

of where overhead is being spent. Both of this work and [Al-Saleh et al., 2013]

are complementary and concentrate on a different angle of the problem. While

in [Al-Saleh et al., 2013] the overhead is attributed to the AV due to various

system operations without going deeper to explain further, this work, however,

attributes the overhead to specific file system operations. To put both results

together, we can say that the events that the authors in [Al-Saleh et al., 2013]

were talking about take place inside the file system operations that are being

discussed in this paper.

1091Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



A hardware-level performance characterization study [Uluski et al., 2005]

showed that AVs incur extra CPU cycles, machine instructions, cache misses,

and memory accesses. These extra events can be attributed to the AV. Both of

[Al-Saleh et al., 2013] and [Uluski et al., 2005] are complementary.

In [Al-Saleh et al., 2013] the authors focus on the OS view of events that

might cause performance overhead. These events include file system operations,

processes and threads creations, various system calls, and page faults. While in

[Uluski et al., 2005], the authors focus on the hardware kind of events, such as

number of CPU cycles, cache hits/misses rates, and memory accesses.

Al-Saleh et al. [Al-Saleh et al., 2015] tested the trade-off of security and per-

formance of AVs. AVs were put under excessively concurrent attacks, where many

malware samples were read/written simultaneously. Interestingly, the study shows

that malware samples can evade the detection of some AVs.

Because pattern matching is at the heart of most AVs, enhancing the scanning

process is essential. Several studies propose to enhance the AV performance

[Hellal and Romdhane, 2016, Vasiliadis and Ioannidis, 2010, Jang et al., 2016].

Graphics Processing Units have been utilized to enhance the performance of

the AV detection [Cheng, 2010, Post and Kagan, 1998]. Thousands of threads

can be used in the scanning process. In [Vasiliadis and Ioannidis, 2010], Cla-

mAV, a popular open-source AV, is modified to utilize the GPU and enhance the

performance. Also, in [Lin et al., 2011] ClamAVs Wu-Manber and Aho-Corasick

pattern matching algorithms are modified to achieve a better performance.

AV security research concerns about enhancing malware detection by either

finding vulnerabilities or proposing effective detection techniques. An on-access

scanner that is capable of detecting malware written to disk by modifying the

open-source AV, ClamAV [Kojm, 2004] ,is developed [Miretskiy et al., 2004].

Extracting virus signatures out of an AV has been proven to be a real threat

[Christodorescu and Jha, 2004]. A semantic-aware malware detection algorithm

was developed [Christodorescu et al., 2005] to consider metamorphic viruses.

They solved the problem by integrating the semantics of instructions to detect

malicious instances.

Creating timing channel attacks against AVs to check how updated they are is

another attack dimension [Al-Saleh and Crandall, 2011]. Enhancing the AV ca-

pabilities to scan network data was also developed [Al-Saleh and Shebaro, 2016].

In [Bayer et al., 2009], the researchers studied the behavior of malware by col-

lecting one million malware instances. Then, they analyze them in order to help

improve the AV products. Finally, certain criteria that can help users assess AV

products were studied [Josse, 2006]. Finally, the impact of the AV on digital

evidence has been tackled [Al-Saleh, 2013].

1092 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



3 Background: minifilter device drivers

A file system filter driver is a kernel-mode module that is capable of inspecting

and (possibly) modifying the operations of the file system. The Windows I/O

manager passes the I/O request to the filter manager, which in turn passes it to

the file system filter driver before sending it to the file system drivers for com-

pletion. Windows filter drivers are currently implemented as minifilter drivers.

Minifilter drivers are managed by the filter manager. The filter manager is posi-

tioned on top of the file system drivers so it can intercept file system operations

before the file system driver does (see Figure 1). Each minifilter driver has an

altitude value that determines its position in the stack of the minifilter drivers;

the higher the altitude, the higher in the stack. Consequently, the minifilter with

a higher altitude can intercept I/O operations before others in the stack. In Mi-

crosoft Windows, the altitude values can be reserved and managed into groups,

each with a specific purpose.

Figure 1: Relationship between the different I/O components.

According to their functionalities, Microsoft Windows organizes the altitude

values into what is called load order group. A range of altitude values is reserved

for each group. Table 1 shows some of load order groups, short descriptions of

them, and their altitude range of values.

As in other types of Windows device drivers, a minifilter driver must have

DriverEntry() routine, which is called when the minifilter driver is loaded. In this

routine, the minifilter driver registers the file system operations (in which it is

interested) with the filter manager by calling FltRegisterFilter() routine. Filter-

1093Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



Load order group Altitude range Purpose

FSFilter Activity Monitor 360000-389999 Observing and reporting file I/O operations.

FSFilter Anti-Virus 320000-329999 Detecting viruses.

FSFilter Content Screener 260000-269999 Preventing certain contents or specific files creation.

FSFilter Encryption 140000-149999 Encrypting and decrypting data.

Table 1: Some load order groups as described by Microsoft.

ing takes place after calling FltStartFiltering() routine. If DriverEntry() routine

works normally, then it returns SUCCESS as a status value. A minifilter driver

selects which I/O operations to filter by registering PRE and POST callback

routines. Only one PRE callback routine can be registered for an I/O operation.

The same applies for the POST callback routine. Upon an I/O operation, the

filter manager passes the I/O operation to the top minifilter driver (i.e., with

the highest altitude), where the PRE callback routine of the minifilter driver

for that operation will be called. After the PRE callback routine is returned,

the filter manager takes the control again. The next PRE callback routine of

the next minifilter driver (if exists) on the stack is called, and so on until all

PRE callback routines of all minifilter drivers are called. After that, the filter

manager passes the I/O operation to the file system driver to process it. When

the file system driver completes the I/O operation, the filter manager takes the

control again and passes the completed I/O operation through the POST call-

back routines of the minifilter drivers from the lowest altitude in the minifilter

stack up to the highest. After finishing each POST callback routine, the filter

manager takes control and calls the next POST callback routine, and so on until

all POST callback routines are called. Figure 2 explains the flow of this process.

A PRE callback routine has three return cases. If the PRE callback routine

returns a status of FLT PREOP SUCCESS WITH CALLBACK, then this tells

the filter manager to call the POST callback routine for this operation. Similarly,

if it returns FLT PREOP SUCCESS NO CALLBACK value, then this tells the

filter manager not to call the POST callback routine for this operation. Finally,

the third case is to return FLT PREOP SYNCHRONIZE status. This tells the

filter manager to call the POST callback routine of this operation but in the

same context of the PRE callback routine. After a POST callback routine is

done, the status of FLT POSTOP FINISHED PROCESSING is returned as an

indication of a completed job.

1094 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



Figure 2: I/O request flow between the filter manager, minifilter drivers, and file

system drivers.

4 Methodology

Basically, this paper tries to answer the following question: How much over-

head do the kernel components of AVs impose on the file system

operations? Measuring the performance overhead of AVs by getting

as closely as possible to such components is our goal.

Consequently, we design the following experiment to answer the above ques-

tion.

4.1 Experiment: Measuring the AV performance overhead on the

file system operations

4.1.1 Our approach

We want a way that measures the performance impact of the AV on the main

file system operations, namely, CREATE, READ,WRITE and CLEANUP, at

the kernel-level. Deeper investigation shows that such AVs have special device

drivers, called minifilter drivers (see Section 3). In order to precisely measure

such overhead, we need to get as closely as possible to the minifilter device driver

of an AV. This can be perfectly implemented using the minifilter device driver

technology itself for our purposes. As previously explained, minifilter drivers can

be stacked on top of each other according to their altitude values. In this study,

we build a minifilter driver with a higher altitude than that of the AV in order to

intercept the I/O request before the AV does and after the AV complete its scan

using the PRE and POST operations, respectively. This enables us to compute

1095Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



the time that is being spent on the file system operations. Figure 3 illustrates our

approach to measure the AV performance overhead imposed on the file system

operations.

Figure 3: Our approach for measuring the AV performance overhead on the file

system operations.

There are many types of I/O Request Packets (IRP) that can be intercepted

by minifilter drivers. However, we are interested in four of them, which are:

IRP MJ CREATE, IRP MJ READ, IRP MJ WRITE, and IRP MJ CLEANUP.

An IRP MJ CREATE request is sent by the I/O manager upon file/directory

creation as a result of calling one of the following routines: CreateFile() (user

mode) IoCreateFile(), IoCreateFileSpecifyDeviceObjectHint(), ZwCreateFile(), or

ZwOpenFile()(kernel mode).An IRP MJ READ request is sent when reading

from files through ReadFile() routine (user mode) or ZwReadFile() routine (ker-

nel mode). In addition, an IRP MJ WRITE is sent when writing to files through

WriteFile() routine (user mode) or ZwWriteFile() routine(kernel mode). Finally,

an IRP MJ CLEANUP is sent when all handles of a file object are closed by call-

ing CloseHandle() routine (user mode) or ZwClose() routine(kernel mode).

All operations of interest are required to be registered as callbacks in the

minifilter driver. Consequently, we register PreCreate and PostCreate callbacks

1096 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



for the following operations: IRP MJ CREATE, IRP MJ READ,

IRP MJ WRITE, and IRP MJ CLEANUP.

In our minifilter driver, we use KeQueryPerformanceCounter() kernel rou-

tine, which returns a high resolution performance counter along with its fre-

quency that can be optionally set in the routine’s parameter. This performance

counter is updated based on the frequency that is measured in ticks/sec. The

frequency resolution of this counter is less than a micro second. The frequency

is set at system boot and then the performance counter is incrementally up-

dated according to the frequency. Time intervals can first be computed using

this routine in ticks and then converted into time by dividing a time interval

(in ticks) over the frequency (ticks/sec). We use this routine in PRE and POST

filter operations upon several file system operations. We get the value of the

performance counter in PRE operation. Then, we pass through the operation

to the next minifilter on the stack (probably the AV). Afterwards, we gain the

control again in our POST operation, after the AV passes the operation of inter-

est to the upper minifilter drivers, where our minifilter sits. We take the value

of the performance counter again and compute the elapsed time. This elapsed

time can be used to check the overhead of an AV installed on the system. One

important issue here is how we can distinguish operations from each other. For

example, more than read operation can be requested on the same file simulta-

neously. Consequently, two or more PRE filter operations might be hit for the

same file at very close times. The same applies to the POST filter operations.

The problem here is the need to exactly pair each PRE operation with its exact

POST peer, or otherwise the results will be erroneous. To solve this problem, we

observe that each filter operation can be accompanied with a context which can

be created when needed. The filter manager passes the context through from a

PRE filter operation and returns it back to its POST counterpart, where things

can be matched up. So, we create a context in each PRE operation and store in

that context a unique value (we used the performance counter itself) which we

should receive again in the POST operation to complete matching.

All performance counter readings are printed out to the default kernel log

buffer that can be viewed using the WinDbg system program. Logging into

a buffer storage is much faster that logging into an external file. We use the

DbgPrint() kernel function for logging. The following information is logged at

every PRE or POST opertion: the name of the file that is being manipulated,

the type of operation, and the current performance counter value. After the

experiment is completed, we copy all such information from WinDbg into an

output file that is then populated into a database to be analyzed with a query

system.

1097Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



4.1.2 Experiment design

To test the effectiveness of our approach explained, we designed the following

experiment. We went through the following steps:

– We prepared six identical machines with the following specifications:

1. OS: Microsoft Windows 7 Professional edition with Service Pack 1.

2. RAM: 4GB.

3. Hard Drive: 500GB.

4. CPU: Core i7-860 at 2.80GHZ.

– On each machine, we copied a directory (called RootFolder) into the C drive

of each machine. The directory contains four subdirectories, each of which

contains 20 files of the same type, but with sizes ranging from 1KBto 10MB.

The file types we used are DLL, EXE, DOC and PDF. So, we have 20

DLL files (named 1.dll, 2.dll, etc.) in one subdirectory, 20 EXE files (named

1.exe, 2.exe, etc.) in another, and so forth. These files are collected from the

Internet in an ad hoc manner.

– We copied our minifilter device driver we designed into each machine. We

gave our minifilter an altitude value equals to 389999, which is greater than

all of that of the AVs to make sure that ours is stacked on top of the AV’s

minifilter driver. We tested this using the fltmc command that can be exe-

cuted on a command line with a privileged account.

– Python 2.7 is installed on all machines.

– We copied a python script that programmatically copies our root directory

into another. This step should trigger all of the file system operations we are

interested in (CREATE, READ, WRITE, CLEANUP).

– We installed five well-known AVs on five of the six prepared machines. We left

the remaining machine with NO-AV so it will be considered as a reference for

later comparisons. More information about the AVs we installed are shown in

Table 2. Every AV is updated with its latest updates regarding its signatures

and software.

– All machines are restarted to obtain a fresh start point.

– An image of every machine is separately taken to enable us consistently

repeat the experiment from the very same state.

– Now, every machine is ready for the experiment, which proceeds as follows:

1098 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



1. Our minifilter is loaded and started.

2. The python script that copies the root directory is executed.

3. Enough time is given before stopping the minifilter to make sure that all

logging statements pass through.

4. After stopping the minifilter, our log file is copied into an external storage

and named appropriately (run1, run2, ).

5. Steps 1 through 4 are repeated for ten times on each machine.

– By now, each machine produces 10 logs for 10 different runs. We parse such

logs and save them into an SQLite database.

– We design different SQL queries to collect the time spent on every operation

type (CREATE, READ, WRITE, CLEANUP) on a file type (DLL, EXE,

DOC, PDF) for all files (1, 2, 3, ..., 20) on a different machine for different

runs (run1, run2, run3, ..., run10). For example, we query the database for

the average of all CREATE operations on all files of EXE type on all 10

runs for the NO-AV machine. The returned value forms the base for our

comparison to the cases where we have an installed AV. For example, to get

the overhead of an AV (call it AV1) on the CREATE operation of EXE file

types, we compare the average of the CREATE operation of AV1 on EXE

files and compare it to that of NO-AV case. The difference is the overhead

incurred by AV1 on CREATE operations of EXE files. The same argument

applies for all other operations, file types, and other AVs.

5 Results

In this section, we present our results for the experiment that is explained in

Section 4. Our aim is to check how much performance overhead the AV incurs

on the main file system operations.

Microsoft’s minifilter driver technique enables us to achieve our aim. File

system operations can be wrapped in a PRE and POST operations that are

called before an operation takes place and right after the operation, respectively.

It is not a surprise that the AV itself utilizes such capabilities and implements

its own minifilter drivers. As previously shown, minifilter drivers can be stacked

on top of each other based on their altitude values. Given that, we gave our

minifilter driver the max possible altitude value to make sure that it is going to

be stacked on top of that of the AV. Because we record a high-precision time

resolution at the PRE and POST operations, we are able to compute the elapsed

time of the main file system operations. This elapsed time includes the normal

1099Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



AV name Version Filter altitude

AVG 2015.0.6030 325000

AVIRA 15.0.11.574 320500

COMODO 8.2.0.4591 321200

KASPERSKY 15.0.1.415 (c) 320400

SYMANTEC 22.0.0.110 365100, 260600, 329000

Table 2: The AVs we experimented with in this paper. Also, detailed information

about them along with minifilter device driver information for each AV. An AV

might have more than one minifilter driver. We obtained altitudes using fltmc

command-line.

time that is spent on the file system operation itself and the overhead (if there

is any) the AV imposes on the operation. In the discussions below, we always

compare and highlight the difference between the NO-AV case and the AV case.

Because in each file type (DLL, EXE, DOC, PDF) we have 20 files and we repeat

each experiment 10 times. What we report is the average time of operations of

interest that take place over 20 files for 10 runs. For example, we compute the

average time for all CREATE operations on all EXE files over 10 runs. We do

the same thing for the other file types.

Figure 4 shows the average times for the NO-AV case and different AVs for

the CREATE (IRP MJ CREATE) operation on different file types. The increase

in the average CREATE time in all file types is obvious in the case of the AV.

Even though the CREATE (an open request is mapped to a create request by

the OS) caller only wants a handle to the target file, the AV is expected to scan

the target file in advance before successfully returning a handle to the CREATE

caller. Consequently, we expect that the AVs take extra time in reading and

scanning target files from the Hard Drive. One important highlight here is the

synchronous nature of the CREATE operation versus the asynchronous nature of

the WRITE operation. That is, the caller has to block until the whole operation

returns. However, with the existence of the AV, the operation does not return

until the AV is satisfied with the contents, which, in turn, imposes the extra

time. Different AVs have different times on different file types.

Figure 5 shows the average times for the NO-AV case and different AVs for

the READ (IRP MJ READ) operation on different file types. Interestingly, in all

cases, the average timing for the AV case is less than that of the NO-AV case. To

1100 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



(a) AVG case (b) AVIRA case

(c) COMODO case (d) KASPERSKY case

(e) SYMANTEC case

Figure 4: Average CREATE times for the AV cases and NO-AV case.

some extent, this confirms our conclusions for the CREATE operation. Because

the AV reads data in advance for scanning, afterwards such data will be available

in RAM, where it can be read from there so fast. For example, in Figure 4(a), the

READ operation for the DLL files are averaged to 2.85 milliseconds in the case of

AVG AV, while it is averaged to 33.87 milliseconds in the case of NO-AV, making

a difference of 31.02 milliseconds. However, if we compare the difference between

the overhead imposed by the AVG on the CREATE operation for DLL files (94.43

milliseconds as in Figure 5) and the CREATE operation for the NO-AV case (0.25

millisecond as in Figure 5), we can see the overhead on the CREATE operation

is much more than the enhancement on the READ operation. Moreover, we also

found out that the number of READ operations on the tested files is significantly

1101Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



more than that of the NO-AV case. For example, AVG AV makes an average

of 1172 READ operations on the EXE files. On the other hand, that number is

only 70 in case of NO-AV. The other AVs have similar behavior. For example,

Symantec AV makes an average of 1551 READ operations on the PDF files.

However, that number is only 68 in case of NO-AV.

(a) AVG case (b) AVIRA case

(c) COMODO case (d) KASPERSKY case

(e) SYMANTEC case

Figure 5: Average READ times for the AV cases and NO-AV case.

Figure 6 shows the average times for the NO-AV case and different AVs for

WRITE (IRP MJ WRITE) operation on different file types. We have two im-

portant observations. First, the WRITE operation is generally very fast whether

with or without an AV (less than 3 milliseconds in all cases). This is because

1102 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



the WRITE operation is asynchronous operation. This means that the operation

returns right after the request is grabbed by the Operating System (OS), not

until the data is written to the Hard Drive. The OS usually postpones writing

data to the Hard Drive for performance issues. Second, in case of AVG, CO-

MODO and SYMANTEC (Figures 6(a), 6(c), and 6(e), respectively), it seems

that the WRITE operation takes slightly less time than that of the NO-AV case.

Even though the timing difference is not significant, we speculate that this dif-

ference is due to the caching issues applied by the OS on data being used more

frequently. In other words, the Cache Manager and the Memory Manager might

observe different usage patterns in case of the AV, which, in turn, is reflected

on how readily the data to be written is. In case of AVIRA and KASPERSKY

(Figures 6(b) and 6(d), respectively), there is no common pattern to conclude

a difference.

Figure 7 shows the average times for the NO-AV case and different AVs for

CLEANUP (IRP MJ CLEANUP) operation on different file types. It is obvious

that the CLEANUP operation is called when the number of handles on a file

object has reached zero (i.e., the file is being closed). This might be a reason for

the AV to scan files upon being closed to check if the target file has malicious

contents. Our results show that, in some cases, there is no difference between

an AV case and the NO-AV case. In others, there is a slight difference. Our

conclusions about the CLEANUP operation are very similar to those we already

made for the WRITE operation. That is, the CLEANUP operation is very fast

operation and data to be scanned upon CLEANUP has already been scanned

when being read.

More Insights into the Results: Several parameters could interfere with

our results. For example, popped up, concurrent operations might affect the tim-

ing measurements. To countermeasure such impact, we repeat the experiment 10

times and we report the average over these runs. This way we can eradicate any

anomalous readings. Furthermore, AVs might be more aggressive to certain file

types than they are to others. For example, EXE and DLL files are more dan-

gerous than DOC and TXT file types. This is obvious in both AVG and AVIRA

antiviruses for the CREATE operation in Figures 4. Finally, because we CRE-

ATE operation is considered the most effective operation on the performance,

Symantec AV performs the best among the studied AVs.

6 Discussion and future work

To get an accurate performance impact of an AV on the main file system opera-

tions, we need to be as close as possible to the scanning components of the AV.

However, in theory, doing so does not completely assure us that an AV is not

triggering scanning activities that might not take place in the same sequential

1103Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



(a) AVG case (b) AVIRA case

(c) COMODO case (d) KASPERSKY case

(e) SYMANTEC case

Figure 6: Average WRITE times for the AV cases and NO-AV case.

line on which we start and end our timing measurements. For example, in its

minifilter driver, an AV might be sending a signal to some other AV components

to do some scanning and let the current operation proceeds. This theoretical

scenario does not affect the accuracy of our approach because we only compute

the elapsed times for file system operations. In other words, we do not com-

pute all execution times of AVs; we just compute the time spent on file system

operations.

In this paper, we want to highlight the AV activities on normal systems (i.e.,

those that are not compromised). Consequently, all the files we experimented

with are benign ones. Experimenting with malicious files, on the other hand,

does not provide much information. Extra actions will be triggered by the AV

1104 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



(a) AVG case (b) AVIRA case

(c) COMODO case (d) KASPERSKY case

(e) SYMANTEC case

Figure 7: Average CLEANUP times for the AV cases and NO-AV case.

to prevent any harm on the system and complete the clean up process. The

amount of time that AV takes to complete such a job is meaningless to the

end user from two perspectives. First, end users deal with malicious files very

occasionally compared with benign files. Second, it is well expected that the AV

will take much more time in case it finds malicious contents.

Another issue is that an AV might issue new file system operations that do

not go through our minifilter driver. Microsoft Windows has a set of routines

that can be called from a minifilter driver such as FltCreateFile(), FltReadFile(),

and FltWriteFile(). These routines can only be intercepted by minifilter drivers

with altitude values less than that of the calling minifilter driver. Even with

that, the extra times these FltX() routines are adding will be included in our

1105Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



calculations. In our experiments, we measured IRP MJ CLEANUP operation

but not IRP MJ CLOSE one. This is because, in practice, the IRP MJ CLOSE

request might be delayed for a long time (hours or even days) after the last

handle on a file is removed. This might have to do with the Memory and Cache

Managers. However, accounting for IRP MJ CLEANUP request is good enough

for our purposes. Furthermore, our results for both WRITE and CLEANUP

operations show that no significant difference is observed. As explained, this is

mainly because of the fact that the data to be written is the same data that has

been previously read (and probably scanned). Thus, there is no need to scan it

again. Designing another experiment to elaborate on this issue is a future work.

In this paper, we only concentrate on measuring the performance overhead

of AVs on the file system operations. AVs leverage various approaches to gain

scanning capabilities. In the case of file systems, modern AVs implant minifilter

device drivers to gain control and thus they impose performance overhead on

the critical path of the file system operations. Consequently, this overhead can

be measured pretty accurately. Nonetheless, AVs also have performance impact

on memory, network, and CPU operations. For example, modern AVs also uti-

lize various behavior-based or heuristic-based scanning techniques to recognize

malicious activities. In these cases, however, an AV might be doing its computa-

tion as a separate process that is running in parallel with the monitored process

(i.e., not in the critical path of the monitored process.), making the performance

measurement a little more complicated. In their AV performance measurement

work [Al-Saleh et al., 2013], the authors show that the performance impact of

AVs can occur from the fact that AVs enforce processes to create more memory

page faults, wait more in the system queues, or make more system calls. That

empirical study, however, does not explain precisely how these are incurred. This

paper is complementary to that one and tries to get as low as possible to where

exactly AVs are imposing the overhead. Exploring the other dimensions of this

issue is a future work.

7 Conclusion

Testing different aspects of AVs is important in order to understand their in-

ternal functionalities and enhance their performance. This paper measures the

performance impact of AVs on the main file system operations in a novel way.

Modern AVs implement minifilter drivers to intercept file system operations in

order to scan contents before an operation proceeds. To measure the performance

impact precisely, we use minifilter drivers in the same way the AVs do to take

control before and after the AVs do so. This paper shows that most overhead is

imposed on the CREATE operation, where AVs usually scan data and prevent

opening malicious files. Furthermore, as a side effect of reading the contents of

1106 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



the files in the CREATE operation in advance for scanning, the READ oper-

ation takes less time in the presence of AVs because such data will already be

in RAM when the READ operation is triggered. Finally, regarding the WRITE

and CLEANUP operations, we show that they are fast and that no difference is

intrinsically observed with existence of AVs. This is because we request to write

data that is obtained from the same files which the AVs have already scanned.

This suggests that the AVs apply clever ways not to scan the same data twice.

References

[Al-Saleh, 2013] Al-Saleh, M. I. (2013). The impact of the antivirus on the digital
evidence. International Journal of Electronic Security and Digital Forensics, 5(3-
4):229–240.

[Al-Saleh et al., 2015] Al-Saleh, M. I., AbuHjeela, F. M., and Al-Sharif, Z. A. (2015).
Investigating the detection capabilities of antiviruses under concurrent attacks. In-
ternational Journal of Information Security, 14(4):387–396.

[Al-Saleh and Crandall, 2011] Al-Saleh, M. I. and Crandall, J. R. (2011). Application-
level reconnaissance: Timing channel attacks against antivirus software. In LEET.

[Al-Saleh et al., 2013] Al-Saleh, M. I., Espinoza, A. M., and Crandall, J. R. (2013).
Antivirus performance characterisation: system-wide view. IET Information Secu-
rity, 7(2):126–133.

[Al-Saleh and Shebaro, 2016] Al-Saleh, M. I. and Shebaro, B. (2016). Enhancing mal-
ware detection: clients deserve more protection. International Journal of Electronic
Security and Digital Forensics, 8(1):1–16.

[Bayer et al., 2009] Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., and Kruegel, C.
(2009). A view on current malware behaviors. In LEET.

[Cheng, 2010] Cheng, Y. W. (2010). Fast virus signature matching based on the high
performance computing of gpu. In Communication Software and Networks, 2010.
ICCSN’10. Second International Conference on, pages 513–515. IEEE.

[Christodorescu and Jha, 2004] Christodorescu, M. and Jha, S. (2004). Testing mal-
ware detectors. ACM SIGSOFT Software Engineering Notes, 29(4):34–44.

[Christodorescu et al., 2005] Christodorescu, M., Jha, S., Seshia, S. A., Song, D., and
Bryant, R. E. (2005). Semantics-aware malware detection. In Proceedings of the 2005
IEEE Symposium on Security and Privacy (Oakland 2005), Oakland, CA, USA.

[Hellal and Romdhane, 2016] Hellal, A. and Romdhane, L. B. (2016). Minimal con-
trast frequent pattern mining for malware detection. Computers & Security, 62:19–
32.

[Jang et al., 2016] Jang, J.-w., Kang, H., Woo, J., Mohaisen, A., and Kim, H. K.
(2016). Andro-dumpsys: anti-malware system based on the similarity of malware
creator and malware centric information. computers & security, 58:125–138.

[Josse, 2006] Josse, S. (2006). How to assess the effectiveness of your anti-virus? Jour-
nal in Computer Virology, 2(1):51–65.

[Kojm, 2004] Kojm, T. (2004). Clamav. URL http://www. clamav. net.
[Lin et al., 2011] Lin, P.-C., Lin, Y.-D., and Lai, Y.-C. (2011). A hybrid algorithm of
backward hashing and automaton tracking for virus scanning. IEEE transactions on
computers, 60(4):594–601.

[Miretskiy et al., 2004] Miretskiy, Y., Das, A., Wright, C. P., and Zadok, E. (2004).
Avfs: An on-access anti-virus file system. In Proceedings of the 13th USENIX Security
Symposium (Security 2004, pages 73–88. USENIX Association.

[Post and Kagan, 1998] Post, G. and Kagan, A. (1998). The use and effectiveness of
anti-virus software. Computers & Security, 17(7):589–599.

1107Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...



[Richardson, 2011] Richardson, R. (2011). 15th annual 2010/2011 computer crime and
security survey. Computer Security Institute, pages 1–44.

[Uluski et al., 2005] Uluski, D., Moffie, M., and Kaeli, D. (2005). Characterizing an-
tivirus workload execution. SIGARCH Comput. Archit. News, 33:90–98.

[Vasiliadis and Ioannidis, 2010] Vasiliadis, G. and Ioannidis, S. (2010). Gravity: a mas-
sively parallel antivirus engine. pages 79–96.

1108 Al-Saleh M.I., Hamdan H.M.: Precise Performance Characterization ...


