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Abstract: Steganography is a promising technique for covert communications. However,
illegal usage of this technique would facilitate cybercrime activities and thereby pose a great
threat to information security. Therefore, it is crucial to study its countermeasure, namely,
steganalysis. In this paper, we aim to present an efficient steganalysis method for detecting
adaptive-codebook based steganography in adaptive multi-rate (AMR) speech streams. To
achieve this goal, we first design a new low-dimensional feature set for steganalysis, including
an improved calibrated Markov transition probability matrix for the second-order difference of
pitch delay values (IC-MSDPD) and the probability distribution of the odevity for pitch delay
values (PDOEPD). The dimension of the proposed feature set is 14, far smaller than the feature
set in the state-of-the-art steganalysis method. Employing the new feature set, we further
present a steganalysis scheme for AMR speech based on support vector machines. The
presented scheme is evaluated with a large number of AMR-encoded speech samples, and
compared with the state-of-the-art one. The experimental results show that the proposed
method is effective, and outperforms the state-of-the-art one in both detection accuracy and
computational overhead.
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1 Introduction

Steganography is an efficient technique used for hiding information, which can
achieve covert communication by concealing secret messages into seemingly normal
carriers [Zielinska et al., 14], such as, images [Zhang et al., 16], audios [Nedeljko and
Tapio, 05], videos [Mazurczyk et al., 16], and network protocols [Fraczek et al., 12].
In recent years, due to the increasing popularity and broad influence of Voice over IP
(VoIP), VoIP-based steganography has emerged as a new branch of steganography
[Mazurczyk et al., 13]. In contrast with traditional carriers, VoIP possesses many
advantages, such as instantaneity, massive carrier data, high covert bandwidth and
flexible carrier length [Tian et al., 14, Tian et al., 15a]. Thus, VoIP steganography is
considered as a promising technique for secure communications [Tian et al., 15b,
Mazurczyk et al., 10]. However, like some other security techniques, VolP
steganography is a double-edged sword. Illegal usage of this technique would
facilitate cybercrime activities and thereby pose a great threat to information security.
Thus, it is also very crucial to develop its countermeasure technique, VolP
steganalysis [Tu et al., 15, Tian et al., 16, Tian et al., 17, Lin et al., 18].

Generally speaking, VoIP steganography has two main implementation ways:
approaches based on protocol steganography [Wendzel and Palmer, 15, Waldemar et
al., 18] and approaches by embedding information into speech streams [Tian et al.,
14, Tian et al., 15a, Tian et al., 15b]. By contrast, the latter has attracted the most
attention in the research community [Mazurczyk et al., 13]. So far, fruitful studies
have been conducted on compressed speech streams based on various codecs, such as,
G. 711 [Tian et al., 15a, Tian et al., 15b], G. 729 [Wu et al., 15], G.723.1 [Tian et al.,
14, Liu et al., 16a], iLBC [Wu and Sha, 17], Speex [Janicki, 16]. More recently,
adaptive multi-rate (AMR) codec, due to being widely employed in not only 3G and
4G speech services [3GPP/ETSI, 16, Varga et al., 06] but also popular mobile instant
messaging apps (such as WeChat, WhatsApp, Snapchat and LINE), has attracted
increasing interest of the steganography research community [Ren et al., 17a, He et
al., 18, Nishimura, 09, Zhang et al., 18].

AMR is a typical speech codec based on Algebraic Code Excited Line Prediction
(ACELP). In general, according to the adopted parameters for embedding
information, the steganographic techniques based on ACELP codecs can be divided
into three categories, i.c., linear prediction coefficient (LPC) steganography [He et al.,
18, Peng et al, 16, Liu et al., 15, Liu et al., 16b], adaptive-codebook (ACB)
steganography [Nishimura, 09, Yu et al, 12] and fixed-codebook (FCB)
steganography [Ren et al., 17a, Miao et al., 12, Geiser and Vary, 08]. Of course, all
three types of parameters can be also employed to hide information together. In this
work, we focus on the ACB steganography and its steganalysis in AMR encoded
speech streams. In ACELP-based codecs, the ACB is often employed to model the
pitch excitation to obtain a high quality of synthesized speech [3GPP/ETSI, 16].
Accordingly, the ACB parameters for each subframe involve pitch delay and pitch
gain. Because it is difficult to determine the pitch periods of speech signals accurately
[Hess and O’Shaughnessy, 84], the pitch delay parameters are widely considered as
ideal carriers with sufficient redundancy for hiding information. In other words, secret
information can be embedded in speech streams by modifying the pitch delay
parameters. There have been many fruitful studies in this field. Nishimura
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[Nishimura, 09] first proposed two steganographic methods for AMR codec, i.e.,
adaptive pitch quantization (APQ) and pitch change point (PCP). The former achieves
information hiding by varying the quantization width of the pitch delay value, while
the latter replaces pitch delay data in even subframes with secret information when an
abrupt change in pitch is observed. Yu et al. [Yu et al.,, 12] proposed another
steganographic method for AMR speech, which determines the pitch delay sequence
according to the information to be embedded. Wu et al. [Wu et al., 15] proposed an
analysis-by-synthesis based data hiding method for G.729a, whose main idea is to
conceal information by modifying the least significant bits of pitch delay parameters.
Janicki [Janicki, 16] presented a data hiding method for Speex, where the secret
information is hidden into the approximated fine pitch values in the slowly varying
regions. Liu et al. [Liu et al., 13] designed a double-layer steganographic method, in
which the quantization rules for both integer and fractional pitch delay values are
modified to embed secret data. Huang et al. [Huang et al., 12] presented a
steganographic method, which achieves information hiding by modifying the search
rule of the closed-loop adaptive codebook. The main idea is idea to use suboptimal
pitch delay values to replace the optimal ones according to the secret information.
Further, to reduce the embedding distortion, Yan et al. [Yan et al., 15] presented a
double-layer steganography scheme, in which the first-layer embedding is realized by
limiting the search ranges of the pitch periods in the even subframes, and the second
one is achieved by selecting proper pitch delay values according to the information to
be embedded.

To detect the ACB-based steganography, some researchers have also made useful
attempts [Li et al., 14, Ren et al., 17b]. For example, Li et al. [Li et al., 14] presented a
steganalysis method based on codeword network with the correlation characteristic of
adjective frames, which can detect Huang’s method [Huang et al., 12] successfully;
Moreover, Ren et al. [Ren et al., 17b] proposed a steganalysis method for AMR-based
speech employing the calibrated Markov transition probability matrix for the second-
order difference of pitch delay values (C-MSDPD) as the feature, which can detect
both Huang’s and Yan’s methods [Huang et al., 12, Yan et al., 15] effectively and
outperforms Li’s method [Li et al., 14]. However, the feature based on the original
Markov transition probability matrix for the second-order difference of pitch delay
values (MSDPD), rather than C-MSDPD feature ultimately adopted for detection, is
used to determine the optimal threshold interval, which is apparently inappropriate.
Our further experimental analysis show that the threshold interval of C-MSDPD (i.e.,
[-6, 6]) employed in Ren’s method not the optimal one, and the dimensionality of the
C-MSDPD feature can be further reduced by determining the optimal threshold. In
addition, Ren's method only considers the influence of the steganographic operations
on the pitch delay values, while ignoring the steganographic influence on the odevity
of pitch delay values. That is, the C-MSDPD feature cannot sufficiently characterize
the influence of the steganographic operations.

Thus, in this paper, we present two types of statistical features for steganalysis,
namely, the improved C-MSDPD and the probability distribution for the odevity of
pitch delay values. The dimension of the adopted feature set is 14, far smaller than
169 dimensions of the previous C-MSDPD. Employing the new feature set, we
present a steganalysis of AMR speech based on support vector machines (SVM). The
proposed method is evaluated with a large number of AMR-encoded speech samples,
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and compared with the state-of-the-art one [Ren et al., 17b]. The experimental results
show that the proposed method is effective, and outperforms the state-of-the-art one
in both computational overhead and detection accuracy.

The remaining of this paper is organized as follows. To make this paper self-
contained, Section 2 introduces the principle of AMR encoding and adaptive
codebook search, and briefly reviews typical steganographic methods based on pitch
delay and the state-of-the-art steganalysis method. Section 3 describes the adopted
features, and the SVM-based steganalysis scheme. The performance of the proposed
scheme is comprehensively evaluated and compared with the state-of-the-art one in
Section 4. Finally, the concluding remakes are given in Section 5.

2 Background and Related Work

In this section, we first introduce the principle of adaptive codebook search in brief,
then give an overview of the typical steganographic methods [Huang et al., 12, Yan et
al., 15] for AMR speech, finally review the-state-of-the-art steganalysis method [Ren
etal., 17b].

2.1  Principle of Adaptive Codebook Search in AMR codec

AMR codec is an encoding algorithm based on ACELP. During the encoding
procedure, two appropriate code vectors are respectively chosen from the adaptive
codebook and a fixed codebook. Further, the codec can obtain the excitation signal by
using the vectors. Moreover, the two selected vectors are sent into a linear prediction
(LP) synthesis filter to construct the synthetic speech [3GPP/ETSI, 16]. The best
speech quality can be obtained by an analysis-by-synthesis search procedure under the
criterion of minimizing the perceptually weighted error between the original speech
and synthesized one. The encoding procedure of AMR codec is shown in Figure 1.

Raw speech Pre-
Processing
_ Fixed > Ge v(n) s(n)
CodeBook
N LP 8(n)
synthesis Synthetic

Adaptive . G speech
CodeBook m1 YP c(n)

*

Minimum mean | Perceptual weighting

square error D filter w(z)

Figure 1: The encoding procedure of AMR codec
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Pitch period is an important parameter for speech compression and synthesis,
which means the period when the vocal cords vibrate periodicity. Adaptive codebook
search, including an open-loop analysis process and a closed-loop analysis process,
aims to get optimal pitch delay. The open-loop analysis process is performed on a
perceptually weighted signal and aims to offer a search range of pitch delay to the
closed-loop analysis process. The closed-loop analysis process is performed on a
linear predictive residual signal. The pitch delay and pitch gain can be obtained after
the closed-loop analysis process, where the pitch delay is the value of the pitch
period. For ease of description, we take AMR at 12.2 kb/s mode as an example to
introduce the related principles in the following text.

Parameter 1st 2nd 3rd 4th Total Per
Subframe | Subframe | Subframe | Subframe | Frame

Two LSP Sets 38

Pitch Delay 9 6 9 6 30

Pitch Gain 4 4 4 4 16

Algebraic

Codebook 35 35 35 35 140

Indices

Codebook Gain | 5 5 5 5 20

Total 244

Table 1: Bit allocation of the AMR (12.2 kb/s) coding algorithm for a 20 ms frame
[3GPP/ETSI, 16]

Table 1 shows the bit allocation of the AMR at 12.2 kb/s mode [3GPP/ETSI, 16].
In the AMR codec, there are 4 subframes in each frame of 20ms and totally 244 bits
produced. According to the search criteria of minimizing the mean square error, the
optimum integer pitch delay of each subframe is selected from different search
ranges. During the encoding process of AMR at 12.2 kb/s mode, the open-loop pitch
analysis process is performed twice in a frame, and two estimated integer lags for the
first and third subframe are obtained at first. Next, the closed-loop pitch analysis
process is carried out to get an optimum pitch delay around the previous two
estimated lags. The search ranges of the first and third subframes can be formally
described as

[18, 24], T, <21
po; =41, -3,T,+3], 21<T, <140, (1)
[137,143], T, >140

where po, ; is the integer pitch delay of the first (or third) subframe in the i-th frame,
and T,, is the corresponding open-loop estimated lag.

Further, the pitch delays of the second and fourth subframes are determined by
performing the closed-loop pitch analysis process again around the integer pitch
delays of previous subframes. Their search ranges can be stated as
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[18,27], Do <23
P =11P0, =5 Py +4l, 23<p,, <139, 2)
[134,143], Do, >139

where p1,; is the integer pitch delay of the second (or fourth) subframe, and py, ; is the
integer pitch delay of the first (or third ) subframe.

2.2 Principle of Adaptive Codebook-based Steganography

From the principle of the adaptive codebook search, we can learn that the pitch delay
values obtained during AMR encoding are suboptimal. That is to say, there are some
other candidate values for constructing a high quality of synthesized speech.
Benefiting from this property, the existing AMR-based steganography methods
[Huang et al., 12, Yan et al., 15] incorporate the steganographic operation into the
adaptive codebook search process, and implement information hiding with no
perceptible distortion by replacing the original pitch delay values with “appropriate”
suboptimal ones based on the content of secret messages. In other words, they embed
secret data into speech streams by altering the quantization rules of pitch delay during
the adaptive codebook search.

Huang et al. [Huang et al., 12] first presented a steganographic adaptive codebook
search strategy, which can embed four bits of secret messages into each subframe for
AMR codec at 12.2 kb/s mode. The main idea is to modify the search range of pitch
delay according to the odd or even value of each secret bit. To be specific, for each
subframe, if the secret bit is “1”, only the odd integer pitch delay values are searched
and modified for information hiding; otherwise, only the even integer pitch delay
values are selected. Accordingly, the secret bit sequence can be extracted from the
received pitch delay values as

bix4+j = mOd(pi,_jﬂ 2)5 (3)

where p; ; is the j-th subframe integer pitch delay value of the i-th frame and bix4+; is
the secret bit embedded into p; ;.

Yan et al. [Yan et al.,, 15] further suggested a double-layer steganographic
algorithm to reduce embedding distortion, which, however, shares the similar idea
with Huang’s method, i.e., modulating the search rule of pitch delay in each frame to
conceal secret messages in the adaptive codebook search process. However, differing
from Huang’s steganography, to reduce the distortion caused by the change of pitch
delay values, only the pitch delays in the second and fourth subframes in each frame
are employed to hide messages. Moreover, the exclusive OR relationship between the
pitch delay values is used to embed more secret messages. The adopted exclusive OR
operation can be described as

my=|(p,, mod4)/2 |®| (p, ,mod4)/2], (4)

where mj3 is the third secret bit, while pi,; and p;,; are respectively the modified pitch
delay values of the second and fourth subframes in the i-th frame. Accordingly, the
secret message can be easily extracted from each frame at the receiver side according
to Egs. (3) and (4).
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2.3  Review of the-State-of-the-Art Detection Method for Adaptive Codebook-
based Steganography

To detect the existing AMR-based steganography methods described above [Huang et
al., 12, Yan et al., 15], Ren et al. [Ren et al., 17b] proposed a steganalysis method
based on the fact that the pitch delay values in cover speech samples are more stable
than those in steganographic ones. Accordingly, the Markov transition probability
matrix of the second-order difference of pitch delay (MSDPD) is employed to
describe the differences between the cover and the steganographic samples. The
MSDPD feature (denoted as M) can be calculated as follows:

ij(A(H )=y, AGi) = x)
M(x, y) =+ : )

Z P(AG) = x)

where M(x, y) is the transition probability that A(i+1) = y while A7) = x, A(P) is the
second-order difference of pitch delay in the i-th subframe, P(A(J) = x) is the
probability that A(f) = x, and P(A(i+1) = y, A(i) = x) is the probability thatA(i+1) = y
and A(7) = x in the meantime.

The calibration technique is a common means to strengthen the effect of
steganalysis features [Kodovsky, 09], which is also used to improve the MSDPD
feature. In the work, the ranges from [-1, 1] to [-10, 10], totaling ten intervals, were
tested to get the optimal threshold of MSDPD feature. Experimental results showed
that the detection accuracy was the best when the threshold was [-6, 6]. At this
moment, the dimension of the feature set is 13 x 13 = 169. Further, the calibrated
feature, defined as C-MSDPD, can be obtained as

C—-MSDPD = MSDPD,. — MSDPD,,, (6)

where the MSDPDo and MSDPDc are respectively the features before and after
calibration. Figure 2 illustrates the extraction procedure of the C-MSDPD feature.

Tested E Calcul
AMRspeech | xtra I ciay
sample pitch delay MSDPD
]
ey
= MSDPDg
= C-MSDPD
= MSDPD¢
o
Aﬁﬁbsraigh Extra | Calculate
P — pitch delay MSDPD
sample

Figure 2: The extraction procedure of the C-MSDPD feature

It has been proved that C-MSDPD is feasible for detecting the existing two
steganographic algorithms [Huang et al., 12, Yan et al., 15]. However, there still are
two obvious defects in this work:
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® Ren et al. adopted an inappropriate way to determine the optimal threshold
interval. Specifically, they used the MSDPD feature, rather than C-MSDPD
feature ultimately adopted for detection, to determine the optimal threshold
interval. Moreover, the dimension of the C-MSDPD feature is 169, which
inevitably induces considerable computational costs.

® The feature set is not complete enough to characterize the change rules of pitch
delay values in the existing steganographic methods. As mentioned above, both
the two steganographic algorithms exploit the odevity of pitch delay values to
hide messages. That is to say, the steganographic operations would affect not
only the distribution of pitch delay values but also their parity distribution. The
former was taken into account, while the latter was ignored in Ren’s work.
Given the shortcomings, we are motivated to find out more accurate and more

complete features, and accordingly, present a more effective steganalysis of AMR

speech based on pitch delay in this paper.

3 Proposed Steganalysis Scheme

In this section, we first give an improved set of the C-MSDPD feature by re-
examining the threshold for the second-order difference of pitch delay (denoted as IC-
MSDPD), and present a new feature based on the probability distributions of the
odevity for pitch delay (PDOEPD). Finally, incorporating the presented feature set,
we propose an SVM-based steganalysis scheme.

3.1 The optimal feature set based on calibrated Markov transition probability
matrix for the Second-order Difference of Pitch Delay (IC-MSDPD)

In Ren’s method [Ren et al., 17b], for the MSDPD feature, the totally ten candidate
thresholds from [-1, 1] to [-10, 10] were tested, and the results demonstrated that the
optimal one was [-6, 6]. This threshold was also directly considered as the optimal
one for the C-MSDPD feature. However, our further observation and analysis show
that the threshold of [-6, 6] is the best choice for MSDPD, but not for C-MSDPD.
Thus, we seek to find out the optimal threshold for the C-MSDPD feature by
reexamining the thresholds from [-1, 1] to [-10, 10].

In the experiment, all the speech samples are encoded with the AMR codec at
12.2 kb/s mode, and the steganographic samples are produced by performing the
existing steganographic methods at the embedding rate of 30%. Figure 3 shows the
ROC (Receiver Operating Characteristic) curves for different thresholds, from which
we can learn that the differences among the ten cases are slight. To further compare
them, we calculate the area under the curve (AUC) of each case, as shown in Table 2.
The larger the AUC is, the better performance the classifier has. Apparently, the AUC
for the threshold of [-1, 1] is the largest, indicating that the threshold of [-1, 1] is the
best choice for the C-MSDPD feature. In this case, the dimension of the feature set is
3 x 3 =9, far smaller than the 169 dimensions at the case of [-6, 6]. That is to say, the
C-MSDPD feature with the threshold of [-1, 1] (denoted as IC-MSDPD) can not only
achieve better detection performance but also reduce the computational costs.
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Figure 3: The ROC curves for detecting the existing steganographic methods at the
embedding rate of 30% with the C-MSDPD feature under different thresholds. (a) The
ROC curve for detecting Huang’s method. (b) The ROC curve for detecting Yan's
method.

Area Under Curve (AUC)
Thresholds For Huang’s method For Yan’s method
[-1,1] 0.9174 0.8012
[-2,2] 0.9010 0.7838
[-3, 3] 0.9048 0.7853
[-4, 4] 0.9056 0.7857
[-5, 5] 0.9051 0.7842
[-6, 6] 0.9047 0.7838
[-7, 7] 0.9038 0.7802
[-8, 8] 0.9026 0.7773
[-9, 9] 0.9026 0.7753
[-10, 10] 0.9013 0.7736

Table 2: The area under the curve of each case for detecting two steganographic
methods

3.2 Probability Distributions of the Odevity for Pitch Delay (PDOEPD)

As mentioned above, the existing steganographic methods share the same idea,
namely, exploiting the odevity of pitch delay values to hide secret messages. As is
well known, the encrypted message can be regarded as a random binary sequence,
where the bits of “0” and “1” are evenly distributed. Since the pitch delay values are
determined according to the parity of each secret bit, the probability distribution of
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odevity for pitch delay conforms to the distribution of embedded secret bits. To verify
this inference, we perform a statistical experiment to compare the probability
distribution of odevity for pitch delay in cover speech samples and steganographic
ones.

In the experiment, we construct three sample sets, namely, the cover set including
1680 speech samples encoded with the AMR codec at 12.2 kb/s mode, the
steganographic set produced by Huang’s method at the embedding rate of 100%, and
the steganographic set produced by Yan’s method at the embedding rate of 100%.
Moreover, we treat four pitch delay values in a frame f; as a statistical unit, and record
the number of odd pitch delay values (called parity factor) as v;. Apparently, there are
5 possible values for v;, i.e., v € {0, 1, 2, 3, 4}. For each speech sample, we extract
the parity factor sequence, V' = {vi, v, ..., va}, Where N is the number of the frames.
Theoretically, the steganographic parity factors are uniformly distributed between 0
and 4. Namely, the appearance probability for v; is

Cl
PO =" ()

Figure 4 shows the probability distributions of the parity factors in the three
speech sample sets, from which we can learn that the probability distributions of the
parity factors in the two steganographic sample sets meet the theoretical probability
distribution of steganographic parity factors on the whole, particularly at the cases of
v;=0, 1 or 4. That is to say, just as we inferred above, the steganographic operations
would inevitably cause apparent changes in the probability distribution of odevity for
pitch delay. Therefore, we employ the probability distribution of the odevity for pitch
delay (PDOEPD) as another steganalysis feature, whose dimension is 5.

3.3 SVM-based Steganalysis Scheme

In this section, employing the popular machine learning tool, SVM[Gu et al., 15, Gu
and Sheng, 16, Yuan et al., 16], we present a steganalysis scheme for detecting
adaptive codebook-based steganography in AMR speech streams, as illustrated in
Figure 5. In this scheme, we employ a 14-dimensional feature set, which consists of
the 9-dimensional IC-MSDPD feature and 5-dimensional PDOEPD feature. Moreover,
our scheme includes two phases, i.c., the training phase and the detection phase.
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Specifically, the training phase involves the following steps.

Step 1 Preparation of Sample Set. Collect a large number of AMR speech
samples, and perform Huang’s method and Yan’s method on each cover sample at the
established embedding rates to produce two groups of steganographic sample sets.

Step 2 Feature Extraction. For each speech sample, first extract the 5-
dimensional PDOEPD feature and 9-dimensional MSDPD feature; further, extract 9-
dimensional MSDPD feature from the corresponding calibrated sample, and get the
IC-MSDPD feature according to Eq. (6); finally, obtain the 14-dimensional feature set
by combining the PDOEPD feature and IC-MSDPD feature.

Step 3 Classifier Training. Train the SVM-based classifier with the selected 14-
dimensional feature set.

Accordingly, the detection phrase contains two steps listed as below:

Step 1 Feature Extraction. For each speech sample to be detected, first extract
the PDOEPD feature and original 9-dimensional MSDPD feature; further, extract 9-
dimensional MSDPD feature from the corresponding calibrated sample, and get the
IC-MSDPD feature according to Eq. (6); finally, obtain the 14-dimensional feature set
by combining the PDOEPD feature and IC-MSDPD feature.

Step 2 Detection (Classification). Feed the feature set into the trained SVM-
based classifier to detect whether the given speech sample is an original object or a
covert one.

4 Performance Evaluation

4.1  Experimental setup and evaluation criteria

In the experiment, the well-known open-source tool LibSVM [Chang, 11] is used as
the classifier. The default parameters, namely ¢ = 1 and g = 1/1064, and the linear
SVM (C-style) with RBF kernel are adopted. To evaluate the performance of the
proposed scheme, 3367 ten-second speech samples are collected from language-
learning materials, which consist of two categories: Chinese speech and English
speech, each includes male speech and female speech. Each sample is mono, sampled
at 8 KHz and quantized at 16 bits/s. In the experiments, all the samples are further
encoded with 3GPP public floating-point AMR codec at 12.2 kb/s mode to obtain the
cover samples. In addition, two steganographic methods, i.e., Huang’s method and
Yan’s method, are involved. Accordingly, there are two groups of steganographic
samples in each steganographic experiment. To evaluate the detection performance in
various scenarios, for each speech sample, we generate its steganographic versions at
various embedding rates (from 10% to 100%) and the versions with different lengths
(from 1s to 10s) at the embedding rate of 100%, respectively using Huang’s method
and Yan’s method. Table 3 shows all the speech sample sets used in the evaluation
experiments.
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Number of Steganographic samples for each steganographic method
Cover samples Embedding rate Number Length Number
10% 3367 Is 3367
20% 3367 2s 3367
30% 3367 3s 3367
40% 3367 4s 3367
50% 3367 Ss 3367
3367 60% 3367 6s 3367
70% 3367 7s 3367
80% 3367 8s 3367
90% 3367 9s 3367
100% 3367 10s 3367

Table 3: The speech sample sets used in the evaluation experiments.

In all steganalysis experiments, three statistical results on the accuracy (ACC)
rate, false-positive rate (FPR) and false-negative rate (FNR) are employed for
measuring the performance of the proposed scheme. ACC is the proportion of true
detention results among the total number of test samples, namely,

Ny + Ny,
NTP+NTN+NFP+NFN ’

ACC = ®

where Nrp is the number of steganographic samples correctly identified, N7y is the
number of cover samples correctly identified, Ngp is the number of cover samples
inaccurately identified, and Npy is the number of steganographic cover samples
inaccurately identified.

FPR, usually known as false alarm rate, is the proportion of cover samples
inaccurately identified among the total number of all cover samples, namely,

N

FPR=—"1" ©9)
NFP + NTN

FNR, usually known as missed-event rate, is the proportion of steganographic
samples inaccurately identified among the total number of all steganographic samples,
namely,

NFN

FNR=——""—-.
Npy +Npp

(10)

4.2  Performance comparison of the proposed method and existing one

To compare the performance of the proposed method with the state-of-the-art one
(i.e., Ren’s method [Ren et al., 17b]), we conduct steganalysis experiments
respectively for ten-second samples at various embedding rates (from 10% to 100%)
and the samples with different lengths (from 1s to 10s) at the embedding rate of
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100%. In each steganalysis experiment, a total of 3368 samples, including 1684
samples (with odd indices) selected from the cover samples and the corresponding
samples from each group of steganographic samples, are used to train the SVM-based
classifier; and for a given steganographic method, the remainder 1683 samples (with
even indices) from cover samples and their corresponding steganographic samples are
employed to evaluate the detection performance.

Figures 6 and 7 respectively show the experimental results for the ten-second
samples at various embedding rates (from 10% to 100%) and the samples with
different lengths (from 1s to 10s) at the embedding rate of 100%. From these results,
we can learn the following two facts:

First, for the two steganalysis methods, the detection performance has positive
correlations with the embedding rates of a given steganographic method. That is, the
higher the embedding rate, the better the detection performance. However, for all the
steganographic methods, the proposed steganalysis method can achieve significantly
higher detection accuracies as well as markedly lower FPRs and FNRs at any given
embedding rate than the state-of-the-art one. Particularly, for detecting Huang’s
method [Huang et al., 12], the accuracy of the proposed method is higher than 90%
when embedding rate is only 40%, while the state-of-the-art one achieves the same
accuracy rate when embedding rate is 60% or above. For detecting Yan’s method
[Yan et al., 15], the advantage of our method is more obvious. The accuracy of the
proposed method is about 6% higher than that of the state-of-the-art one for any
samples with the embedding rates larger than 50%.

Second, for the two steganalysis methods, the detection performance has positive
correlations with the lengths of the speech samples. That is, as the length of the
speech sample increases, the detection efficiencies of both steganalysis methods are
improved, but our method can still achieve better performance than the state-of-the-
art one. Particularly, in terms of detecting Yan’s method, the accuracy of the proposed
method is about 6% higher than that of the state-of-the-art one for any samples with
the length between 2s and 10s at the embedding rate of 100%.
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Figure 6: Experimental results for ten-second speech samples at various embedding
rates. A. The detection performance for Huang’s method. B. The detection
performance for Yan’s method.

To show the performance of the two steganalysis methods more clearly, we give
receiver-operating-characteristic  (ROC) curves for detecting the existing
steganographic methods at typical embedding rates of 30%, 60% and 100% with the
sample lengths of s, 5s, and 10s, respectively, as shown in Figure 8. The results
demonstrate once again that the two steganalysis methods are really feasible and
effective for detecting steganographic methods, while the proposed method can offer
better detection performance than the state-of-the-art one.

In addition, to show the advantages of our low-dimensional feature set, we test
the SVM-classifier average training and detecting time with the sample length of 10s,
as shown in Table 4. This experiment is conducted on an HP workstation with an Intel
Core 13-3220 Duo CPU at 3.30 GHz, 8 GB RAM and 7200 RPM 500 GB Serial ATA
drive with a 16 MB buffer.

As Table 4 shows, the training and detecting time in our work is far less than that
in Ren’s method, meaning that our proposed method is much more efficient in terms
of computational overhead. In other words, the proposed method would reduce much
less delay and achieve much better real-time capability for detection.
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. For Huang’s method For Yan’s method
Average time
(ms) s Proposed s Proposed
Ren’s method method Ren’s method method
Training 76.22 6.60 98.06 10.15
Detecting 16.84 1.44 18.74 1.72

Table 4: The average training and detecting time for the two steganalysis methods
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Figure 7: Experimental results for speech samples with different lengths at the
embedding rate of 100%. A. The detection performance for Huang’s method. B. The
detection performance for Yan’s method.

6 Conclusion

In this paper, we proposed an effective steganalysis method for detecting
steganography of AMR speech based on the modification of pitch delay. We design
two types of steganalysis features, namely, [C-MSDPD and PDOEPD. The first one is
the improved version of C-MSDPD employed in the state-of-the-art method, while
the latter one describes the odevity of pitch delay values. The total number of
dimensions of the adopted feature set is 14, far smaller than that of previous C-
MSDPD. Further, we design an SVM-based steganalysis scheme. With a large
number of AMR-encoded speech samples, the proposed method is comprehensively
evaluated and compared with the previous one. The experimental results show that the
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proposed method is feasible and effective, and achieves better detection accuracy than
the state-of-the-art one while requiring much less computational overhead. It is worth
noting that, although the method is described and evaluated with the AMR codec, it
can be extended to other ACELP-based codecs, such as G.723.1, G.729, and QECLP.
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Figure 8: The ROC curves for the two steganographic methods with the sample
lengths of 1s, 5s, and 10s at embedding rates of 30%, 60% and 100%. A. The ROC
curves for the sample length of 1s. B. The ROC curves for the sample length of 5s. C.
The ROC curves for the sample length of 10s.
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