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Abstract: Learning objects are digital resources that can be deployed by means of a web
system for supporting teaching. A key advantage is reuse, and this is possible thanks to learning
objects repositories that allow learning object search, management and categorization. In this
work, we propose a novel approach towards automatically learning object categorization taking
into consideration learning object usage information. We use a multi-label learning approach
since each learning object might be associated with multiple categories. We have developed a
methodology with three main stages allowing us to firstly select the most suitable set of text
features from learning objects metadata, secondly selecting how much historical learning object
usage information can enhance classification performance, and finally selecting the best multi-
label classification algorithms with our data. We have carried out an experimental work using
519 learning objects gathered from the AGORA repository for 8 years. We have compared 13
multi-label classification algorithms over 16 evaluation measures. The results obtained show
that usage information about the learning object can improve the classification.
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1 Introduction

A Learning Object (LO) is any digital entity with a specific didactic content and an
educational goal which can be used, re-used or referenced on technology supported
learning [IEEE 2016a]. With the increasing number of LOs and the availability of
web-based LO repositories, the possibility of their fast and effective finding and
retrieving has become a more critical issue [Zapata 2015]. Several metadata standards
such as SCORM (Shareable Content Object Reference Mode), LOM-ES (Learning
Object Metadata - Spanish), IEEE-LOM (Institute of Electrical and Electronics
Engineers - Learning Object Metadata), etc. have been proposed for characterizing
LOs and allowing powerful search [Rodés-Paragarino, 2016]. However, there are so
many possible metadata fields to characterize a LO that it can be quite time
consuming for users to provide all that information. As a consequence, often users
omit most metadata when entering a new LO to a repository, hampering this way an
efficient search later, preventing the reuse of LOs. For example, users sometimes
don’t provide information about what is the subject area, discipline or category that
the LO belongs to.

In order to try to resolve this problem, in this paper, we concentrate on how to fill
automatically some attributes of the IEEE LOM when a user adds a new LO to a
repository, in our case the AGORA repository [Zapata 2013]. In fact, our final goal is
to automatically recommend to the user the possible categories of a LO from just
provided information about the LO (such as the title, keywords and description). To
do it, we propose to use Multi-Label Classification (MLC) for the automatic
categorization of LOs in subject areas (discipline field in IEEE LOM, that is, the
subject area that the LO belongs to) from the terms or pure text features that
characterize these LOs. MLC is a classification paradigm where multiple target labels
can be assigned simultaneously to each instance [Gibaja 2014]. Since each LO might
be associated with multiple labels or disciplines, a MLC approach is better suited than
traditional classification techniques (single-label) where each LO can belong to just a
unique class. In this work, we propose an approach for MLC of LOs in subject areas
by using not only traditional LO textual metadata, but also social data about the usage
of these LOs. We start using all the metadata provided by the users/authors when they
add it to a LOs repository. But due to the high number of text features that can be
generated from these metadata, we propose to reduce its number by ranking and
selecting the best ones. Next, we propose to use usage information about LOs.
Repositories incorporate new metadata related to the contributions of the users, the
activities carried out and their execution date, which allows developing solutions that
facilitate their location, its recovery and its use in e-learning solutions [Lytras 2007].
The relationships between users and LOs allow us to assume that users and resources
in the same area of knowledge have a high interaction, some cases being quite
significant. For example, a repository may recommend LOs that are similar to those
that the user used in the past, considering, for this, other characteristics associated
with the resource (use, owner profile, content quality, etc.). [Ochoa 2008] establish a
set of metrics to calculate the similarity of LOs based on the activities associated with
management. Yen et al. [Yen 2009] establish a collection of similarity metrics based
on object downloads, combined with matching terms and the use of the object is
weighted more. So, we propose to use information about users’ interactions gathered
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over the years. The usage information of LOs can provide us information about what
are the disciplines or areas of the final users of the LOs [Ochoa 2011]. In this way, for
example if a LO is mainly used for mathematicians, then independently of its textual
metadata or the initial area/category assigned by his/her creator, then this LO can be
also associated to this area/category. The usage information available in AGORA for
each LO comprises the number of users who have accessed, downloaded and
evaluated the LO in the repository. In this way, we try to improve the traditional
classification that only uses content information by including usage information.
Finally, we propose to find the best MLC algorithm to be used as recommender
system in our problem of AGORA LOs categorization. So that, our research tries to
answer the following three research questions:

1. RQIl: Can we find the minimal number of LO text features that assure
sufficiently good classification performance?

2. RQ2: Can we enhance classification performance of a LO by adding to the
textual features historical usage information of the LO?

3. RQ3: Can we select an algorithm or group of algorithms as the best
performers for categorization recommendation?

The rest of this paper is organized as follows: section 2 briefly reviews the
background to our work; section 3 describes the proposed approach; section 4
describes the data set used in our research and the experimental work that we have
carried out; and finally, section 5 provides some concluding remarks and suggests
future lines of research.

2 Background

Next, the three main areas related to this work (learning objects, multi-label
classification and multi-label classification of learning objects) are introduced.

2.1  Learning Objects

Several definitions and taxonomies have been proposed for LOs [McDonald 2006,
Innis-Allen 2008]. We adopt the definition [IEEE 2016a] of LOs as any digital entity
which can be used, re-used or referenced during technology supported learning. In
this sense, any entity with a specific didactic content and an educational goal is a LO.
One of the main benefits of LOs is their potential reusability. The concept of reusable
LOs has evolved into a central component within the current context of e-learning
[Lépez 2012]. Often, LOs are developed and made available for anyone who wants to
use them. But reusability hinges on two important concepts: metadata and
repositories. Metadata allow to characterize a LO and hence, allow searching the LOs
that are best suited for our educational purposes. A good metadata scheme allows
powerful searches based on different criteria. Several metadata standards have been
proposed:

e SCORM is a standard proposed by ADL (Advanced Distributed Learning)
focused on LO sharing and reusability [ADL 2016].

e IMS-LD, proposed by IMS Global Consortium is a specification for a
language aimed at describing learning processes, rather than LOs [IMS 2016].
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e [EEE-LOM, proposed by the IEEE, is a standard with a label set allowing the
description of LOs [IEEE 2016b]. IEEE-LOM can use different serialization formats
for representating the metadata, being XML the most common.

e LOM-ES is the version of IEEE-LOM for the Spanish-speaking educational
community. It includes several modifications over the standard IEEE-LOM, mainly in
the form of new elements (for example 5.12 cognitive process and 6.4 access), as
extensions to the predefined vocabularies (by example the vocabulary of 5.2
LearningResourceType). An important difference is in the nature of the elements
defined as mandatory (such as title, description, coverage), recommended (such as
keyword, contribution, location) or optional (such as requirements, notes, cost)
[AENOR 2014].

In order to be able to perform LO searches, in addition to a language that
allows characterizing the LOs (metadata) we need a technological component that
allows the search on the real world, and this is the role that learning object
repositories (LORs) play. A LOR is a software component that allows the rational
storage of LOs (and their corresponding metadata) and their search. Obviously, since
E-learning relies on the Internet, LORs are usually web-based systems, allowing to
interact (definition and manipulation) with the repository through the web. Some
well-known LORs are:

e MERLOT (Multimedia Educational Resource for Learning and Online
Teaching), developed by the California State University Center for Distributed
Learning (CSU-CDL), is a LO repository that storages only metadata, referencing
LOs hosted on different external locations [MERLOT 2016].

e ARIADNE (Alliance of Remote Instructional Authoring & Distribution
Networks for Europe), developed by the European Commission’s Telematics for
Education and Training Program, consists in a hierarchical network of nodes storing
both LOs and metadata [ARTADNE 2016].

e MACE (Metadata for Architectural Contents in Europe) is a European
initiative to integrate LO repositories distributed over several countries to disseminate
digital information about architecture [Stefaner 2007].

e CAREO (Campus Alberta Repository of Educational Objects) is a Canadian
LOR that has as its primary goal the creation of a searchable, web-based collection of
multidisciplinary teaching materials for educators [Magee 2001].

e ColombiaAprende (Colombialearns) is a Colombian initiative for the
creation of an institutional bank of objects that organizes and distributes the existing
educational material in educational institutions, at the same time increasing the
possibilities of its reuse and promoting direct and indirect collaboration [Leal Fonseca
2010].

e AGORA (from a Spanish acronym that means Help for the Management of
Reusable Learning Objects) developed by the University of Castilla la Mancha
(Spain) and University of Yucatan (Mexico) it is a LO repository that includes
metadata and its associated resources [Zapata 2013]. This is the repository used in this
work.

Modern repositories, rather than simple spaces to publish digital resources for
education, are complete systems where users manage their Learning Objects allowing
new models of interaction between them. Within this context the function of metadata
extends beyond being simple static descriptors of resources: they become changing
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entities, recording everything that happens around the Learning Object over time.
This makes them an important source of knowledge to propose values, resources and
actions to users, streamlining and facilitating their activities and interactions. In this
sense, our proposal of search and recommendation of learning objects is enriched by
combining the categorization of resources along with the information on their use.
The determination of values for a list of categories is a difficult task for the teacher
and consequently is prone to failures [Sicilia 2005]. When this activity is carried out
manually, significant errors originate when defining the values of these metadata:
omission of values, capture errors, selection of incorrect values, misinterpretations or
ignorance, among other problems of a subjective nature [Cechinel 2009]. All these
errors and deficiencies cause the reduction of the quality of the stored information,
since in many cases the metadata is absent, incomplete or poorly constructed
[Paulsson 2006] [Currier 2003]. The quality of the metadata has a direct impact on all
the management processes of the Learning Objects [Bruce 2004], including the search
and recommendation of resources. If the categorization is correct, its interoperability
and reuse will be possible to a greater extent.

In this work, we have used IEEE-LOM meta-data standard and AGORA LO
repository. We have selected AGORA because we have available all the data from
this Ibero-American learning object management system. And we have used IEEE-
LOM because it is the standard followed by AGORA. IEEE-LOM defines a
hierarchical structure consisting of nine categories (general, lifecycle, metadata,
technical, educational, rights, relation, annotation, classification) that contains more
than 60 metadata items in total. These items can store values for different elements
and types. The LO metadata is stored using a structure that conforms an XML
Scheme, allowing a formal description of metadata structure and facilitating the
management, search and recovery of the described resources [Prieto Méndez 2014].

2.2 Multi-label Classification

Classification is one of the most studied tasks in machine learning and data mining
[Han 2011, Tan 2018] and it consists in predicting the value of a categorical attribute
(the class) based on the values of other attributes (predicting attributes). In a
classification problem, we have a classification criterion with a fixed set of possible
classes for each instance. Normally, classes are mutually exclusive, that is, a specific
instance can belong to just a single class. For example, if we are classifying animals
by sex, each one could be male or female, but not both. However, there are occasions
where classes present overlapping, that is, a specific instance can belong to several
classes. For example, if we are classifying pictures by subject, a picture could be
classified as mountains and sea simultaneously if it records a landscape of a beach
with mountains in the background. This particular type of classification setting is
known as multi-label classification (MLC) [Gibaja 2014]. In our work, we are
interested in MLC, because a specific LO could belong to several areas of interest, for
example education and science, if we have a LO aimed at teaching educational
techniques specific to scientific contents.

In the next subsection the three main approaches (problem transformation
methods, algorithm adaptation methods and ensembles of multi-label classifiers) have
been identified for tackling MLC [Gibaja 2014].
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2.2.1 Problem Transformation Methods

Problem transformation methods are based on the idea of transforming the multi-label
data set in into one or several single-label datasets in such a way that any single-label
classifier could be used. Binary Relevance (BR) [Gibaja 2014] decomposes the multi-
label problem into one independent binary problem per label and then a common
classifier is generated for each dataset. This method is so popular due to its efficiency
and simplicity, nevertheless one of its more criticized features is the fact of not
considering label relationships.

Several methods have been proposed to overcome this problem. One of them is
Classifier Chains (CC) [Read 2011] which generates a chain of binary datasets, one
for each label, in such a way that the feature space of each dataset is extended with
the label values of the previous datasets in the chain. Label Powerset (LP) [Boutell
2004] transforms the multi-label dataset into one multi-class dataset in such a way
that each combination of labels in the original one is considered as a new class. Then
a common classifier is generated. Its complexity is exponential with the number of
labels and is not able to predict labelsets which do not appear in the original dataset.
To overcome the complexity problem of LP, Pruned Sets (PS) [Read 2008] first
performs a pruning process to focus on the most frequent labelsets and then applies
LP. Calibrated Label Ranking (CLR) [Fiirnkranz 2008] generates a binary dataset for
each pair of labels. Therefore, each dataset contains as instances those instances
belonging to one of the labels, but not both. Besides, for each label, one binary dataset
is generated by considering that if the label is positive, then the pattern is also
positive, othercase a virtual label is assigned. This virtual label acts as split point for
relevant labels.

2.2.2  Algorithm Adaptation Methods

Algorithm adaptation methods adapt an existing single-label classification algorithm
to cope with a multi-label classification problem without applying any previous
transformation of the data.

Many classification algorithms have been adapted to the multi-label setting within
the algorithm adaptation approach. Multi-Label k-Nearest Neighbour (ML-kNN)
[Zhang 2007] is an adaptation of the well-known kNN algorithm. It counts the
neighbours belonging to each label and, for an unseen instance, the maximum a
posteriori (MAP) principle is used to determine the set of associated labels. Instance-
based Logistic Regression (IBLR) [Cheng 2009] combines instance-based learning
and logistic regression by using the labels of neighbours as extra attributes in a
logistic regression scheme. Another worthy method is AdaBoost.MH [Schapire 2000]
which is the adaptation of AdaBoost [Freund 1995], an algorithm which iteratively
generates a set of weak classifiers in such a way that each classifier can focus in those
instances more difficult to predict by the previous ones by weighting instances.
Adaboost. MH works similarly but maintaining weights over both instances and
labels. More recently, a deep-learning based method has been proposed [Fu 2018].

2.2.3 Ensembles of Multi-label Classifiers

Finally, a third category, so-called ensembles of multi-label classifiers can be cited.
Note that despite the fact that some of the proposals cited above involve the
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combination of several single-label classifiers (e.g. BR and CLR), only those methods
whose base classifiers are multi-label are considered into this group. A complete
review about this issue can be found in [Moyano 2018].

As the order of the chain may affect the performance of the CC classifier, an
Ensemble of Classifier Chains (ECC) [Read 2011] that follows a bagging scheme and
uses a different chain for each base classifier has been proposed.

Multi-Label Stacking (MLS) [Tsoumakas 2009] is based on BR and it applies BR
twice. It first trains a base-level consisting of an independent binary classifier for each
label. Then MLS learns a meta-level of binary classifiers following a stacking
approach [Wolpert 1992] that allows combining the predictions of the classifiers in
the base level, using predictions of previous classifiers as features and the true labels
as outputs. Hierarchy Of Multi-label classiiERs (HOMER) [Tsoumakas 2008] is
another algorithm based on BR, but specially designed to deal with domains in which
the number of labels is high. It transforms a multi-label classification problem into a
tree-shaped hierarchy of simpler multi-label problems containing each one a smaller
number of labels. As PS is based on LP, it cannot predict labelsets which are not
present in the training set. To overcome this problem Ensemble of Pruned Sets (EPS)
[Read 2008] was proposed. EPS trains a set of PS, each over a subset without
replacement of the instances of the original training set. Then the predictions are
combined by a voting scheme using a prediction threshold. Finally, Random-k-
LabelSets (RAKEL) [Tsoumakas 2011] randomly breaks the set of labels into several
small-sized sets and then an LP classifier is trained over each one. Outputs are
combined in a multi-label prediction by majority voting.

2.3  Multi-label Classification of Learning Objects

The specific application of MLC techniques to LOs categorization has being only
proposed and explored in a couple of previous works. In [Lépez 2012] the authors
apply only two multi-label algorithms from MULAN library (namely RAKEL and
MLKNN) to two different private data sets, one data set with 253 LO instances and
another one with 1000 LO instances. They apply multi-label classification based on
LO metadata with the goal of finding the corresponding class labels associated with
the topics covered by the LO. Both algorithms are compared based on six
performance metrics, showing that the RAKEL algorithm tends to present better
results than MLKNN.

In [Aldrees 2016] the authors present a comparison of only four MLC algorithms
(ECC, RAKEL, EPS and MLKNN) on the basis of 16 performance metrics. They use a
data set containing 658 LO instances extracted from the ARIADNE repository. Their
objective is to find the best multi-label classification algorithm for categorizing multi-
labeled LOs. They have also used MULAN library and the results obtained show that
ECC prevails over the other three algorithms.

Although these previous works have proposed the application of MLC for LO
categorization, both have considered a reduced number of MLC algorithms and their
results diverge on the best algorithm identified. In our work we carry out a deeper
experimentation comparing most MLC algorithms available and applying statistical
test in order to check statistically significant differences. Besides, we propose a novel
contribution: we analyse the possibility of enhancing classification performance by
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means of using information about LO usage. See [Tab. 1] for a concise comparison of
previous works and ours.

Ref. Repository | #LO | #features | #labels #algo- #metrics Information
rithms used
Private 253 1442 38 2 6 IEEE LOM
[Lépez repository features
2012]
Lornet and 1000 | 1442 -
Merlot
ARIADNE 658 3500 30 4 16 IEEE LOM
[Aldrees features
2016]
AGORA 519 1336 5 13 16 IEEE LOM
Our work features and
usage data

Table 1: Comparative of our approach with previous research

3  Proposed Approach

Our proposed approach towards automatically recommending the categories (subjects
areas or disciplines) that a LO belongs to when a user adds it to a repository is shown
in [Fig. 1].

Creating data file Pre-processing Data Mining New LO Recommendation
= Generating Reducing :
] Input Content 1 A
3 : : Multi-label | | /7 "\
Attributes Attributes -y " ;
J‘L 1 — Classification —M9 Model }—} Categories

- Adding Class/ Adding Usage algorithm | 1 N/
LOs repository | | Categories Attributes

OFF-LINE | ON-LINE

Figure 1: LO recommendation approach

Our approach has two stages, as customary in machine learning and data mining
solutions: an off-line one and an on-line one [see Fig. 1].

The off-line stage has several steps. The first step consists in creating a data file
from the LOs metadata. The terms or pure text features that characterize LOs are
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extracted from the LOR database and transformed to a suitable format. From each LO
title, key words and description, significant and meaningful terms are extracted. Then,
we count the number of instances of each term inside each LO and this count is
represented in matrix form. Next a data pre-processing is carried out. Usually, the
number of content attributes describing LOs tends to be very high, and this implies
very long processing times. This is the reason for performing an attribute selection.
Besides, we also try to improve classification performance by adding usage attributes
conveying information related to past usage of the LOs. The number of downloads (to
save LO to your computer), the number of visualizations (to show the content of LO
using a viewer) and the number of evaluations (to evaluate the quality of learning
objects using a questionnaire) of the LO provide valuable information that can be a
hint of the potential utility of a new LO for future users. The off-line processing
finishes with a data mining step in which several multi-label classification algorithms
are compared over different performance metrics in order to select the most suitable
algorithm and hence to obtain an optimal model for the on-line classification of new
LOs.

The on-.line stage is able to categorize/classify an unlabelled LO, effectively by
discovering the disciplines or subject areas to which it could be useful. In this way,
when a user adds a new LO to the repository, we can recommend automatically some
disciplines or subject areas that the LO could belongs to, due to this is not compulsory
to introduce them. We propose to use a metric that calculates the similarity degree
(Sim) between two LOs that it based solely on quantifying the co-occurrence of
values in the metadata to determine their importance. This context similarity value
(between 0 and 1) of an object (FOxcs) is calculated using the following equation
[Zapata 2013]:

ZsimMeta(mx ,m, )
FOx = Sim(0,,0, ) = 2

M|

Where | M| is the total number of metadata to compare and simMeta(my, my) is the
semantic distance between one LO metadata m(Oy) and other m(Oy) considering the
average metadata similarity. We then ranking all the LO based on their context
similarity value with the new LO and select the first one as the most similar. Finally,
we add this usage information of the most similar LO to the context features of the
new LO, in order to the previously selected multi-label classification algorithm
recommend us the disciplines or subjects areas of the new LO. It is important to
notice that this paper only show the experimental part of the off-line stage in order to
answer to the three research questions.

4 Experimental Work

4.1  Data Description

The data used in this work has been obtained from AGORA repository [Zapata 2013]
from 2009 to 2016. When users add new LOs to AGORA, they must provide all its
metadata such as the title, keywords, description and other related data such by filling
a specific form [see Fig. 2]. Users can also specify the subject areas (one or several)
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to which the LO belongs to from five academic disciplines. The categories used in our
work are generic and based on the areas of knowledge that are defined by the
University of Yucatan in Mexico. Our five specific subject areas are: Engineering and
Technology; Natural and Exact Science; Social and Administrative Science;
Education, Humanities and Art; and Health Science. These five categories are defined
by the university using AGORA and correspond to the labels that our system is able
to output. The distribution (in percentages) of LOs corresponding to each of the
categories in our data set is as follows: Engineering and Technology (31%);
Education, Humanities and Art (27%); Natural and Exact Science (18%); and Health
Science (14%); and Social and Administrative Science (10%). And about a half of
these LOs have two or more categories assigned in AGORA (54% only one category,
39% two categories and 7% three categories). So, multi labelling is really relevant in
this particular context.

AGORA
Aid Management Reusable Leamning Objects

7
7z

i Home :: s i 1 4 Users Online

edit resource

For each metadata you can view the description € and values used by other users 7. All metadata are optional.
Metadata marked with (*) are recommended.

7

identifier: eleven

User: Victor Hugo Dominguez Menéndez (6)
Archive: temario_agora.pdf /~

Location: Local

Extension: pdf

9. Classification

* Purpose ¥: Discipline B >
Taxonomy.Source * &; UADY
Taxonomy.Taxon.Identify * 000A

Taxonomy.Taxon.Entry * &

Description ¥: Health sciences o

Keywords ©: Natural and Exact sciencies e | 9
Social and Administrative Sciences

* Subject area ©: -

Education, Humanities and Art

= subject area (9.5 discipline)
S To return Area to which the learning object belongs. This will allow location and classification

Example: Engineering and Technology

Figure 2: LO recommendation approach
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In this work we have used data from 519 LOs. From the title, keywords and
description of all the LOs we extracted 1336 terms (content features), after removing
stop words and stemming (to reduce the terms to their roots). Next, we compute the
frequency of these roots for the LO at issue obtaining their term frequency (TF)
representation [Ochoa 2008]. So, we obtained a LO-term matrix, in which each
element represents how many times a term appears in an example. We normalized the
count of term frequency to measure the importance of a term and we add this content
information about 1336 attributes [see Tab. 2].

Next, we have added usage information attributes about LOs on a yearly basis
from 2009 to 2016. We have added information about the frequency or percentage in
the number of downloads, the number of visualizations and the number of evaluations
of the LOs on each academic discipline or category. In order to obtain the Learning
Objects frequency of use per category (a value between 0 and 1) we have used three
different equations. For example, the download frequency of a leaning object
(FOxUsage) is calculated using the following equation:

N
ZI=1DOXE'
FoxUsage =
MaxDOy

where DOxi is the number of downloads of a Learning Object (Oxi) and MaxDOy is
the maximum number of downloads that a learning object has (Oy) in the repository.
In the same way, the visualization and evaluation frequencies of a learning object are
calculated using similar equations. We have in total 15 usage attributes (3 usage
information * 5 categories) for each LO [see Tab. 2]. We include [Fig. 3] showing the
cumulative figures corresponding to past usage of the LOs used in our work. On the
one hand, we can see that the LOs usage starts with high values as a result of the
repository's novelty, but then the increment decreases until it becomes normal in a
range of values. In our case, there is a higher increment in the usage of LOs during the
three four years (from 2009 to 2012) than in the last five years (from 2012 to 2016).
On the other hand, we can see that the number of visualiztion is much higher than the
number of downloads and the last is the number of evaluations. A in deep analysis of
the management activity of the AGORA repository can be consulted in [Menendez
2012].
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Figure 3: LO usage over the years

Finally, we added 5 class labels (in binary format) to each LO as possible classes
to predict [see Tab. 2].

Attribute number | Description

1to 1336 Content information about the terms that appears in the LO
(real number between 0 and 1 - normalized count of the
number of times that a term appears in the title / key words
/ description of a LO).

1337 to 1351 Usage information of the LO during previous years (real
number between 0 and 1 — normalized count of the
number of downloads, visualizations and evaluations for a
LO. Since an LO can belong to several categories, these
values are obtained for each discipline.

1352 to 1356 Label about the class information (Boolean 0 or 1
indicating the subject areas that the LO belongs -1- or not -
0-).

Table 2: Attribute description
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4.2  Experimental Setting

We have used the MLDA framework [Moyano 2018a] for pre-processing and
preparing data for doing multi-label classification. MLDA is a tool for the exploration
and analysis of multi-label datasets. It comprises a GUI and a Java API, providing the
user with a wide set of charts and metrics about datasets, methods for transforming
and preprocessing multi-label data, as well as functionalities for the comparison of
several datasets. The MULAN library for MLC [Tsoumakas 2011b] has been used for
running all the MLC algorithms. A set of 13 different MLC algorithms have been
applied to the data set, 3 algorithm adaptation methods: AdaBoost.MH, Multi-Label
k-Nearest Neighbour (MLKNN) and Instance-based Logistic Regression (IBLR) and
10 problem transformation algorithms in which the J48 implementation of the C4.5
decision tree algorithm has been used as base classifier: Binary Relevance (BR),
Classifier Chains (CC), Calibrated Label Ranking (CLR), Label Powerset, Pruned
Sets (PS), Ensemble of Pruned Sets (EPS), Ensemble of Classifier Chains (ECC),
Random-k-LabelSets (RAKEL), Hierarchy Of Multi-label classifiERs (HOMER) and
Multi-Label Stacking (MLS). These algorithms have been selected as they can be
considered de state-of-art in multi-label classification as we can see in the background
section.

We have configured the following parameters in the MLC algorithms.
AdaBoost.MH used decision stump as base learner. BR, LP, CC, PS and CLR
transformations were run with the classical J48 as a base algorithm. IBLR used k=10
nearest neighbours. HOMER was run with a BR with J48 base classifier and 3
clusters. RAKEL was run with its default parameter setting, that is, an LP with a J48
base classifier, subset size equal to 3, number of models equal to twice the number of
labels and 0.5 as threshold value. MLKNN was configured with k=10 nearest
neighbours and a smoothing factor of 1.0. MLS used J48 as base classifier. ECC used
also its default configuration with J48 as base classifier, 10 models, using confidences
and sampling with replacement. EPS used the recommended MULAN’s configuration
consisting of 10 models in the ensemble, strategy A (keeping the top b = 2 ranked
subsets), 66% of data to sample, J48, a threshold of 0.5 and pruning label sets
occurring less than p=3 times. In all the executions we used a 10-fold cross validation
with 10 seeds.

Finally, we have used the 16 evaluation measures for assessing classification
performance. We have selected these metrics because they are the state-of-art in MLC
evaluation metrics and they have been used in similar recent works [Aldrees 2016].
They can be categorized into example-based and label-based:

o Example-based metrics are computed for each instance and then these values
are averaged. Example-based metrics include metrics to evaluate bipartitions
(Hamming loss, subset accuracy, precision, recall, F—measure and accuracy) and
metrics to evaluate rankings (average precision, coverage one error and ranking-loss).

e Label-based metrics compute any binary evaluation metric by considering
the number of true positives (tp), true negatives (tn), false positives (fp) and false
negatives (fn). As a contingency table is computed for each label, two different
strategies can be applied to average the values of the metric. The macro-average
approach first computes the metric for each label and then averages these values. The
micro-average approach first aggregates the values of all the contingency tables into
one single table and then computes the metric. This way, macro and micro-averaged
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precision, recall and f-measure can be considered. The definition of these metrics can
be found in [Gibaja 2015].

4.3  Experiments

We have carried out a series of experiments that allow us to study different factors
affecting classification performance. Firstly, we have applied an attribute selection
technique in order to analyse the influence of the number of attributes on
classification performance. Then, we have also studied if classification performance
can be enhanced taking into consideration historic information about past usage of the
LO. Besides, we carried out a comparison of classification performance of different
MLC algorithms for selecting the best with our data. These experiments are described
below.

4.3.1 RQI1: Can we find the minimal number of LO text features that assure
sufficiently good classification performance?

We have carried out an first experiment using only content features and labels for
testing what is the effect of reducing the number of attributes in the MLC
performance. Overall, the time employed by a MLC algorithm in order to generate a
model is proportional to the number of training instances and the number of attributes
describing each instance. Our hypothesis is that, if we reduce the number of attributes
then the computational cost will be reduced as well. However, a reduction of the
number of attributes could discard relevant information and hence the induced model
could perform poorly. Therefore, we have performed an attribute selection with
different reduction levels in order to find the minimal set of fatures that assure
sufficiently good performance. We want to reduce the number of attributes in the
dataset with the goal of enhancing training and classification times and removing
noisy and irrelevant attributes, which can have a negative impact on performance.
Feature selection has been performed as suggested in [Tsoumakas 2011a]. First, the
x2 feature ranking method was separately applied to each label. Thus, for each label,
the worth of each attribute is estimated by computing the statistic with respect to the
label to determine its independence. The rationale behind is that if an attribute is
independent on a class, this attribute could be removed. This way we obtain for each
label a score for each feature according to the %2 statistic. The top n features, where n
is set by the user, are selected based on their maximum score over all labels.

Our original data set contains 519 LO instances, each one characterized by 1336
textual attributes. From these, we have selected 1000, 750, 500, 250, 150, 100 and 50
attributes with highest ranking to create different datasets. Next, we have applied 13
MLC algorithms to each different version of the data set, in order to know if there are
significant differences in computational costs and performance by checking execution
time and 16 evaluation measures.

Regarding execution time, we have found a significant reduction of
computational costs (algorithms training time) as the number of features decreases
from using all attributes (1336) to only the best 50 attributes [see Fig. 4], especially
until 250 attributes.
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Figure 4: Algorithm training time when reducing the number of content attributes

Regarding algorithm performance, we have also found differences in all the
algorithms for each evaluation measure when we reduce the number of used content
attributes. As an example of classification evaluation performance, [Tab. 3] shows
results obtained for one evaluation metrics (Hamming loss). We can see that not
always the best results (lower Hamming loss value) are obtained when using all the
attributes (1336).

To compare the classification performance of the algorithms by considering
results for each feature reduction level (i.e. using all, 1000, 750, 500, etc. features), a
Friedman test [Demsar 2006] has been carried out for each evaluation measures. The
Friedman test is a non-parametric test that compares the average ranks of the
reduction levels, where the reduction level with the best metric value for a certain
algorithm is given a rank of 1 for that algorithm, the reduction level with the next best
metric value is given a rank of 2 and so on. Finally, the average ranks for each
reduction level are calculated. These ranks let us know which reduction level obtains
the best results considering all algorithms. In this way, the reduction level with the
value closest to 1 indicates the best reduction level in most algorithms.
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Alg./Num. | 1336 | 1000 | 750 500 250 150 100 50
features

BR(J48) 0,238 | 0,242 | 0,239 | 0,241 | 0,243 | 0,246 0,248 | 0,248
CC(J48) 0,251 | 0,257 | 0,250 | 0,253 | 0,253 | 0,255 0,259 | 0,259
CLR(J48) | 0,240 | 0,244 | 0,239 | 0,242 | 0,242 | 0,244 0,248 | 0,248
LP(J48) 0,254 | 0,259 | 0,260 | 0,249 | 0,265 | 0,263 0,263 | 0,265
PS(J48) 0,259 | 0,254 | 0,264 | 0,248 | 0,260 | 0,265 0,265 | 0,268
EPS(J48) 0,233 | 0,234 | 0,241 | 0,241 | 0,257 | 0,263 0,263 | 0,268
ECC(J48) | 0,234 | 0,237 | 0,242 | 0,247 | 0,246 | 0,247 0,254 | 0,256
RAKEL 0,226 | 0,234 | 0,236 | 0,233 | 0,241 | 0,242 0,249 | 0,249
HOMER 0,249 | 0,243 | 0,242 | 0,244 | 0,243 | 0,245 0,249 | 0,250
Stacking 0,238 | 0,242 | 0,245 | 0,246 | 0,245 | 0,246 0,248 | 0,248
AdaB.MH | 0,258 | 0,252 | 0,248 | 0,249 | 0,249 | 0,249 0,249 | 0,249
MLKNN 0,252 | 0,244 | 0,253 | 0,241 | 0,249 | 0,254 0,250 | 0,244
IBLR 0,246 | 0,249 | 0,240 | 0,238 | 0,241 | 0,247 0,248 | 0,248

Table 3: Algorithm performance on each reduced dataset (Hamming loss)

Friedman’s p-value = 0.000002 Bonferroni-Dunn post test
Reduction level Ranking(order) p-value Null hypotheses
50 6.8077 (8) 0.000369 Rejected
100 6.5(7) 0.001378 Rejected
150 5.7308 (6) 0.024319 Rejected
250 4.1923 (5) 1.305376 Accepted
1000 3.7692 (4) 2.649343 Accepted
750 3.1154 (3) 5.889487 Accepted
500 2.9615 (2) 6.776473 Accepted
1336 (control) 2.9231 (1)

Table 4: Friedman test and Bonferroni-Dunn's post-test for Hamming loss

1336

500
750
1000

250

150
100
50

Figure 5: Critical diagram of Bonferroni-Dunn’s post-test at 95% confidence for
Hamming loss on each reduction level
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As an example, [Tab. 4] shows the results obtained by Friedman’s test for
Hamming loss. We have done the same with the 16 evaluation measures. The p-value
(£ 0,05) evidenced significant differences among reduction levels with high
confidence level (95%). Next, in order to determine which reduction levels present
significant differences, a Bonferroni-Dunn’s post-test was performed. Results for
Hamming Loss are also shown in [Tab. 4]. The control reduction level was the one
with the best metric (i.e. using all features). The p-valued obtained show that there are
significant differences among 50, 100 and 150 reduction levels and the rest at 95%
confidence level. Therefore, the cut point given by Bonferroni-Dunn’s test for
Hamming loss is 250 attributes. We have also included a critical diagram
corresponding to the Bonferroni-Dunn’s post-test at 95% confidence for Hamming
loss on each reduction level [see Fig. 5].

Measure/Num. 1336 1000 750 500 250 150 100 50 Cut

features point
TAverage 4.19 3.11 3.42 3.77 3.88 5.46 6.23 592 150
precision

|Coverage 4.5 2.19 3.42 4.11 4.11 5.65 6.38 5.61 250

tExample-based 3.08 323 3.58 3.35 3.96 5.58 6.50 6.73 150
accuracy
TExample-based 4.77 4.38 3.65 335 335 4.81 5.69 6.00 100
f-measure
tExample-based 3.69 4.38 2.88 327 4.19 5.88 5.85 5.85 250
precision
1Example-based 5.08 4.00 4.19 3.58 3.58 4.27 5.85 5.46 ND
recall
|Hamming loss 2.92 3.77 3.11 2.96 4.19 5.73 6.50 6.81 250
tMacro-averaged | 2.00 3.00 3.50 3.96 435 5.11 6.92 7.11 250
f-measure
TtMacro-averaged | 2.31 2.69 3.58 3.96 4.73 5.73 6.23 6.77 250
precision
tMacro-averaged | 2.46 3.15 3.88 435 4.19 4.81 6.54 6.61 150
recall
tMicro-averaged | 3.73 3.61 3.73 3.58 3.77 4.73 6.35 6.50 150
f-measure
tMicro-averaged | 3.92 4.54 3.11 3.65 4.04 542 5.50 5.81 100
precision
TMicro-averaged | 4.69 4.00 4.23 4.04 3.61 3.96 5.85 5.61 ND
recall
1One error 3.69 3.61 3.58 431 3.65 6.19 5.81 5.15 250

|Ranking loss 4.50 3.11 3.88 4.42 3.96 4.88 5.96 5.27 ND

1Subset accuracy | 2.69 2.23 3.27 3.58 4.96 5.73 6.54 7.00 250
Average ranking 3.64 3.44 3.56 3.76 4.03 5.25 6.17 6.14

Table 5: Average ranking and cut point for all metrics in each reduction level
(1 minimized metric, 1 maximized metric)

Following the detailed procedure, the obtained ranking values for all metrics in
each reduction levels are shown in [Tab. 5]. Each row in [Tab. 5] shows performance
ranking and has been obtained from tables like that of [Tab. 3]. For each metric (each
row), the best ranking value is shown in bold. It can be observed that there are many
metrics in which the best ranking value is obtained by using less than the whole set of
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1336 textual features. Thus, average precision, coverage, ranking loss and subset
accuracy get the best ranking value for 1000 features. Example-based precision,
micro-averaged precision and one error get the best ranking value for 750 features.
Example-based f-measure, example-based recall and micro-averaged f-measure get
the best ranking value for 500 features. Finally, example-based f-measure, example-
based recall and micro-averaged recall get the best ranking value for 250 features.
[Tab. 5] also represents in the last row the average rankings obtained. Again, it can be
noted that, in average, the best ranking value is not obtained with the whole set of
1336 features but with 1000 features.

Friedman’s p-values (< 0,05) show significant differences among reduction levels
with high confidence level (95%) except for example-based recall, micro-averaged
recall and ranking loss. This means that, for these three metrics there are not
significant differences (ND) on using the complete set of features or a reduced set of
features. For the rest of metrics significant differences among reduction levels were
detected and we show the cut point (see last column of [Tab. 5]) for all the metrics
obtained by all the Bonferroni Dunn post-tests performed. There are no significant
differences in performance when using, at least, this number of features.

In addition, a meta-ranking (the rank of rank) of reduction levels has been
computed by performing another Friedman test but, in this case with the ranking
values gathered in [Tab. 6]. This way we can statistically evaluate which number of
features has the best overall performance in most of the metrics in order to obtain a
resulting meta-rank of reduction levels. It is remarkable that the best ranking value
does not correspond to the complete feature set. As the test detected significant
differences between reduction levels (p-value < 0.05), a Bonferroni-Dunn post-test
was performed. This test found that algorithms performed significantly worst with
150 attributes or less at 95% confidence level. So, we established 250 as our best
overall reduction level for our dataset due to this is the lower number of attributes that
we can select without losing significantly performance. A critical diagram
corresponding to [Tab. 6] is provided in [Fig. 6].

Friedman’s p-value = Bonferroni-Dunn post test
7.801870260948363E-11

Reduction level Ranking (order) p-value Null hypotheses
50 7.4062 (8) 0 Rejected

100 7.2812 (7) 0 Rejected

150 6.00 (6) 0.000372 Rejected

250 3.7188 (5) 1.115387 Accepted

1336 3.2812 (4) 2.56899 Accepted

500 3.0938 (3) 3.450742 Accepted

750 2.7188 (2) 5.604091 Accepted
1000 (control) 2.50 (1)

Table 6: Friedman test and Bonferroni-Dunn's post-test for meta ranking of reduction
levels
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Figure 6: Critical diagram of Bonferroni-Dunn’s post-test at 95% confidence for
meta ranking of reduction levels

4.3.2 RQ2: Can we enhance classification performance of a LO by adding to
the textual features historical usage information of the LO?

The LOs studied were compiled from year 2009 in AGORA. In the following years,
these LOs have been used by a diverse community of teachers. AGORA repository
record information about LO’s usage (the number of downloads, the number of
visualizations and the number of evaluations of each LO). These statistics are
provided in total number or grouped by subject areas or discipline. It is also important
to notice that we have detected that that in some cases, instructors of other areas have
used LOs initially associated (by their labels) to other specific areas. So, in this work,
we will use LOs usage information grouped in the five areas or disciplines. In fact, we
are interested in studying if this information about actual usage of LOs could help
improve classification performance.

We have carried out this second experiment using content features, usage features
and labels for testing what is the effect of increasing the number of years of
accumulative usage information in the MLC performance. In order to do it, we have
obtained a series of data sets characterised by that amount of past usage information
accumulated on a yearly basis. All these data sets use the same 250 attributes
previously selected in the first experiment described in previous section plus
accumulative information about usage. Hence, we have a first data set with no usage
information at all, corresponding to the beginning of year 2009 (Content). Then we
have a second data set with the same content data but with the new usage attributes
recording to the usage data recorded through year 2009 (2009u). The third data set
covers all usage data accumulated until year 2010 (2010u); and so on until year 2016
(2016u). Then, we have executed again all the 13 MLC algorithms to each one of
these datasets and we have obtained the 16 evaluation measures. As an example, we
present in [Tab. 7] the Hamming loss values obtained for each algorithm and data set.
We can see that almost always the best results (lower Hamming loss value) are
obtained when using accumulative usage information from 3 years old (2011u) and in
one occasion from 2 years old (2010u).
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Alg/Data | Content 2009u | 2010u | 2011u | 2012u | 2013u | 2014u | 2015u | 2016u
BR(J48) 0,2470 02462 | 0,1571 | 0,1410 | 0,1556 | 0,1618 | 0,1738 | 0,1888 | 0,1772
CC(148) 0,2584 0,2604 | 0,156 0,1423 | 0,1605 | 0,1624 | 0,1754 | 0,185 | 0,1791
CLR(J48) | 0,2462 02489 | 0,1537 | 0,1394 | 0,1568 | 0,1610 | 0,1753 | 0,1868 | 0,1868
LP(148) 0,2399 02352 | 0,1636 | 0,1539 | 0,1860 | 0,1947 | 0,2049 | 0222 | 0,2032
PS(148) 0,244 02296 | 0,592 | 0,1597 | 0,1848 | 0,1901 | 0,2093 | 0,2246 | 0,2114
EPS(J48) | 0,2301 02226 | 0,1492 | 0,1413 | 0,1629 | 0,1678 | 0,176 | 0,1856 | 0,1863
ECC(J48) | 0,2366 02333 | 0,1445 | 0,1357 | 0,1531 | 0,1572 | 0,1647 | 0,1747 | 0,1728
RAKEL 0,2234 02219 | 01472 | 0,1325 | 0,1568 | 0,1599 | 0,1738 | 0,181 | 0,1787
HOMER 0,2477 02508 | 0,1768 | 0,156 | 0,1722 | 0,1799 | 0,1911 | 02011 | 0,1984
Stacking 0,2462 02454 | 0,1548 | 0,1398 | 0,1568 | 0,1684 | 0,1776 | 0,1842 | 0,1772
fd‘ﬁB"Os' 0,255 02697 | 02697 | 0,2481 | 0,2678 | 02643 | 0,2682 | 02693 | 0,2693
MLKNN 0,2408 02477 | 02003 | 0,183 | 0,1884 | 0,1961 | 0,2035 | 0,2061 | 0,2092
IBLR 0,2265 02415 | 0,1884 | 0,1849 | 0,1907 | 0,1892 | 0,1945 | 0,198 | 0,2049

Table 7: Hamming loss of algorithms on each accumulative year of usage

As we did in the previous section, a Friedman test has been conducted for each
metric in order to determine if there are significant differences in performance
obtained with accumulated usage datasets. For example, we present in [Tab. 8] results

for Hamming loss evaluation metric. The p-value obtained shows that there are

significant differences between datasets so that a Bonferroni-Dunn’s post-test has

been also performed corresponding the control case to usage information in year

2011. Hypotheses that have a p-value < 0.05 are rejected at 95% confidence level

which means that there are significant differences among these past usage information

and the rest. In this case the cut point given by Bonferroni-Dunn’s test show that there

are not significant differences in the results obtained with the usage information of

years 2013, 2012, 2011 and 2010. The corresponding critical diagram is shown in

[Fig. 7].
Friedman’s p-value = Bonferroni-Dunn post test
5.068545583242212E-11
Usage info Ranking(order) p-value Null hypotheses
2009u 8.4231 (9) 0 Rejected
Content 8.0769 (8) 0 Rejected
2015u 6.6923 (7) 0.000001 Rejected
2016u 6.1538 (6) 0.000018 Rejected
2014u 5.1538 (5) 0.001179 Rejected
2013u 3.7692 (4) 0.097573 Accepted
2012u 2.9231 (3) 0.685388 Accepted
2010u 2.7308 (2) 0.989171 Accepted
2011u (control) 1.0769 (1)

Table 8: Hamming loss Friedman test and Bonferroni-Dunn's post-test for each
accumulative year of usage
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Figure 7: Critical diagram of Bonferroni-Dunn’s post-test at 95% confidence for
Hamming loss on each accumulative year of usage
Meas./Year | Content | 2009u | 2010u | 2011u | 2012u | 2013u | 2014u | 2015u | 2016u | Cut
point

tAvgprec | 8.46 792 | 2.85 138 | 331 392 | 523 | 6.15 577 | 2010
|Coverage | 8.38 800 | 3.92 154 | 308 | 346 | 446 | 6.15 6.00 | 2010
lcEc‘based 8.08 838 [323 | 115 | 315 | 346 |sis |63t |e08 | 2010
ITnE‘based Elgm 8.54 3.77 115 3.08 331 531 6.31 5.62 2010
]T)rEe'l’ased 8.38 7.77 3.00 1.15 3.19 3.88 5.15 6.62 5.85 2010
IeEc'based 6.08 7.15 6.08 1.69 4.08 3.85 3.92 6.54 5.62 2012
|Hamloss | 8.08 842 | 273 108 | 292 | 377 | 515 | 669 | 615 | 2010
[Macro-ave | g 3 815 | 285 | 138 |331 |36 |48 |623 |e615 | 2010
g\:c“r"'a"g 8.54 762 | 192 | 177 | 392 |415 |46 |631 | 608 | 2000
Ii\c’lam"a"g 8.08 823 | 508 | 223 |331 |277 |36 |59 |s577 | 200
}_lz/ln‘c“"avg 7.92 8.54 | 2.85 1.08 3.08 377 5.15 6.46 6.15 2010
g\:é“"'avg 8.46 760 | 238 | 115 | 308 |39 |s538 |677 |e615 | 2010
Iel\c’glcl“"avg 7.08 800 |58 | 177 |360 |308 |392 |e608 |55 | 2012
|One error | 8.38 800 | 2.54 138 | 346 | 385 | 5.81 619 | 538 | 2010
ll;::“kl"g 8.38 800 | 346 | 138 | 315 |377 |446 |623 |e615 | 2010
TSubset 8.54 8.38 3.31 127 2.50 3.65 4.58 6.42 6.35 2010
accuracy
Average 8.07 8.05 3.49 1.41 3.27 3.64 | 4.80 6.34 5.93
ranking

Table 9: Average rankings for all metrics and usage data (| minimized metric, 1
maximized metric)

[Tab. 9] summarises the ranking obtained for all the evaluation metrics in each

accumulative usage year. These results show that optimum performance is obtained
when taking into consideration usage data accumulated through three years old (until
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2011), but performance is even not significantly degraded if we used only data
compiled through two years old (until 2010).

As in the previous experiment, we have obtained a meta-ranking, this time
corresponding to usage information obtained through the years, in order to evaluate
which year has the best overall performance in most of the metrics. The results are
shown in [Tab. 10]. The corresponding critical diagram is provided in [Fig. 8].

Again, we can see that there is not statistically significant difference for
accumulative usage information of years 2010, 2011, 2012 and 2013. And although
the best results are obtained with 2012, we have selected 2010 as the best cut point
year for our dataset, since it is the lower one and in this way we only have to wait
during two years of accumulative usage information in order to obtain good
performance with MLC algorithms.

Friedmans’ p-value = Bonferroni-Dunn post test
8.938327855645412E-11

Past usage Ranking (order) p-value Null hypotheses
Content 8.4688 (9) 0 Rejected
2009u 8.4375 (8) 0 Rejected
2015u 7.0625 (7) 0 Rejected
2016u 5.8125 (6) 0.000005 Rejected
2014u 4.8125 (5) 0.000659 Rejected
2013u 354 0.078586 Accepted
2010u 3.1562 (3) 0.207597 Accepted
2012u 2.75 (2) 0.565609 Accepted
201 1u (control) 1(1)

Table 10: Friedman test and Bonferroni-Dunn's post-test for meta ranking of yearly
usage information

1 2 3 4 5 6 7 8 9
t t

L L L I L |
T T T T T 1

2011u - 2016u

2012y —mMm— 2015u

2010u

2009u

2013u Content

2014u

Figure 8: Critical diagram of Bonferroni-Dunn’s post-test at 95% confidence for
meta ranking of usage data
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4.3.3 RQ3: Can We Select an Algorithm or Group of Algorithms as the Best
Performers for Categorization Recommendation?

In this third experiment, another similar statistical analysis to the two previous ones
has been carried out in order to identify what is the best performing MLC algorithm.
For this final study we have used the previously selected configuration corresponding
to the data set with the best 250 attributes and with usage data until year 2010, in
accordance with the conclusions obtained in the preceding experiments. Starting from
the 16 performance evaluation metrics obtained by the 13 MLC algorithms we have
derived a final ranking where we record the algorithms performing ranking for each
metric [see Tab. 11]. Looking at the average ranking in [Tab. 11] we can see that ECC
is the best average ranked MLC algorithm because it has the highest ranking more
times (5 out of 13 times) and when it hasn’t the highest it always presents a quite
good ranking (it never has a ranks under 4). For example, if we compare to CLR, this
algorithm is the best one for 4 metrics, but for the other metrics it has a quite variable
ranking interval and RAKEL, an algorithm that is the best one for only one metric, has
an average ranking better than CLR.

Finally, we performed a Friedman test [see Tab. 12] post-test over the ranking
results that show that ECC is the best performing MLC algorithm (selected as control
algorithm), but the difference in performance is not statistically significant with some
other algorithms such as CC, EPS, CLR and RAKEL. The results of the Bonferroni-
Dunn test are shown in [Tab. 12]. Hypotheses that have a p-value < 0.05 are rejected
at 95% confidence level. The corresponding critical diagram is shown in [Fig. 9].

The results obtained [see Tab. 12] show that there are some MLC algorithms that
can be used for classifying our LOs with a similar performance with our dataset.
Then, if we are interested in having the best possible performance, we should use
ECC, but we must know that there are also other algorithms with similar performance
that we could choose like CC, EPS, CLR and RAKEL.
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Measure/Algorith BR CcC CLR LP PS EPS ECC | RAKEL HOMER MLS | AdaB.MH MLKNN IBLR
TAvg prec 5 8 1 13 4 3 2 7 11 6 12 10 9
|Coverage 4 6 1 13 5 8 2 10 11 3 12 9 7
1E-based acc 9 5 7 6 4 2 1 3 8 10 13 12 11
1E-based f-m 9 6 8 7 4 2 1 3 5 10 13 12 11
1E-based prec 8 6 7 5 2 1 4 3 10 9 13 12 11
1E-based rec 9 7 4 8 6 5 2 3 1 10 13 12 11
|Ham loss 7 6 4 9 8 3 1 2 10 5 13 12 11
tMacro-avg f-m 6 5 4 10 9 7 1 2 8 3 13 12 11
tMacro-avg prec 5 4 6 9 8 7 2 3 10 1 13 12 11
TtMacro-avg rec 6 5 4 10 9 8 2 3 1 7 13 12 11
tMicro-avg f-m 7 5 4 10 8 3 1 2 9 6 13 12 11
tMicro-avg prec 5 7 8 9 6 1 3 4 12 2 13 11 10
tMicro-avg recall 7 5 4 8 9 6 2 3 1 10 13 12 11
1One error 6 7 1 13 5 4 3 2 11 8 12 10 9
|Ranking loss 4 5 1 13 6 7 2 10 11 3 12 9 8
TSubset accuracy 8 5 4 7 6 2 3 1 10 9 13 12 11
Average ranking 6,56 5,75 4,25 9,38 6,19 4,31 2 3,81 8,06 6,38 12,75 11,31 10,25
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Friedmans’ p-value = Bonferroni-Dunn post test
9.243494858424128E-11

MLC algorithm Ranking (order) p-value Null hypotheses
AdaBoost. MH 12.75 (13) 0 Rejected
MLKNN 11.3125(12) 0 Rejected
IBLR 10.25 (11) 0 Rejected
LP 9.375 (10) 0.000001 Rejected
HOMER 8.0625 (9) 0.000128 Rejected
BR 6.5625 (8) 0.011052 Rejected
MLS 6.375(7) 0.017829 Rejected

PS 6.1875 (6) 0.02827 Rejected
CC 5.75(5) 0.077507 Accepted
EPS 4.3125 (4) 1.116641 Accepted
CLR 4.25(3) 1.226818 Accepted
RAKEL 3.8125(2) 2.256599 Accepted
ECC (control) 2 (1)

Table 12: Friedman test and Bonferroni-Dunn's post-test for meta ranking of MLC
algorithms

2 3 4 5 6 7 8 g 10 1 12 13

ECC - BR

RAkEL ———— HOMER

®R—- P

B IBLR

76 ——————— MUAN

Fs - AdaBoost. MH

MLS

Figure 9: Critical diagram of Bonferroni-Dunn'’s post-test at 95% confidence for
meta ranking of MLC algorithms

5 Conclusions and Future Works

In this work, we have proposed a novel approach for automatically categorizing LOs
by using MLC algorithms. The novelty value of our proposal is the enhancement of
LO classification performance by taking into consideration LO usage information. We
have compared 13 MLC classification algorithms over 519 LOs gathered from
AGORA repository and using a set of 16 performances metrics. We have used MLDA
and MULAN frameworks for our experimentation.
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Regarding the three research questions that we posed at the beginning of this
research, the answers found after experimenting with the AGORA repository data are
as follows:

1. Can we find the minimal number of LO text features that assure sufficiently
good classification performance? Yes, we have found a quite smaller subset of
attributes that allow a sufficiently good performance. In our case, we have been able
to reduce from 1336 (all the features) to only 250 attributes without losing significant
performance.

2. Can we enhance classification performance of a LO by adding to the textual
features historical usage information of the LO? Yes, we can enhance classification
performance by using historical information about usage of a LO. In our case, a good
performance is achieved when adding usage information corresponding to only two
accumulative years old with no statistical significant difference versus the best result
obtained of three accumulative years.

3. Can we select an algorithm or group of algorithms as the best performers for
categorization recommendation? Yes, we can select an algorithm as the best
performer for categorization recommendation. In our case, ECC is the best although
there are some other algorithms reaching similar performance levels like CC, EPS,
CLR and RAKEL.

Currently, we are working in the integration of the best obtained classification
model into AGORA for doing recommendation in real time. In our case we will
integrate the model obtained by ECC algorithm (with 250 content features and 2 years
of usage information) in order to recommend categories that a new LO could belong
to. In this way, we will test the on-line stage of our proposal by evaluating the
obtained recommendations. We also want to consider its impact in the perceived
usability by users in the labelling of new objects. In a previous related experiment we
have tested the interface of AGORA system in terms of its usability in general
[Menéndez 2010, Menéndez 2011b, Menéndez-Dominguez 2011] and we want to
extend this experiment to the specific usability of the LO recommendations.

In the future, we want to replicate the experiment using the same repository but
considering a higher number of categories, for example according to a new taxonomic
structure of knowledge that is based on that specified by the National Council of
Science and Technology of Mexico (CONACYT). We also want to test the
performance of MLC algorithms when using not only the optimal minimum number
of text features and the number of usage years without decreasing the performance,
but the best number of features and usage years in order to obtain the best
performance. We also want to test the result obtained if we use only the usage
information about the number of visualization due to the number of downloads and
evaluations are much lower than the number of visualizations.

Finally, we want to do more experimentation using data from other repositories,
in order to generalize our conclusions about the effect in MLC algorithms’
performance and the selection of the number of years of accumulative usage
information. We want to deal the problem of overfitting considering that the features
are unigrams extracted from training instances and in our dataset the number of
features is nearly 3 times higher than number of instances (LOs). We also want to test
our proposal when using a number of categories or areas and not only five classes.
We consider the study of the applicability of our system to other LORs different from
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AGORA as one of the main lines for future research. The most important advantage
of our proposal is the capability of recommending the categories that a newly
registered LO belongs to, but this applicability is restrained by several limitations:

e The repository must store LOs in some accessible format like for example
plain text, html, xml... Our system is not capable of working with LOs in binary
format.

e The repository must allow classifying LOs into categories, that is, the labels
that our system works with.

e In order to take full advantage of our system's potential, the repository must
be able to store LO usage information.
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