Journal of Universal Computer Science, vol. 19, no. 1 (2013), 2-24
submitted: 18/10/10, accepted: 28/12/12, appeared: 1/1/13 © J.UCS

From a Solution Model to a B Model for Verification of
Safety Properties

Philippe Bon
(Univ Lille Nord de France,”59000 Lille, France
IFSTTAR, ESTAS
philippe.bon@ifsttar.fr)

Simon Collart-Dutilleul
(Univ Lille Nord de France,F-59000 Lille, France
IFSTTAR, ESTAS
simon.collart-dutilleul@ifsttar.fr)

Abstract: In the context of safety requirement engineering, model transformation is
a task of interest. Indeed, it allows us to keep all the requirements while switching
from one point of view to another. The presented work assumes that a valid solution
has been found and proposes an approach in order to build a valid implementation.
As some fine dynamic properties are integrated into the specification, high-level Petri
nets are used to specify and verify the solution. Then, considering an industrial railway
context, the transformation of the Petri net model in order to provide an input to a
B process is considered. This last consideration leads to a proposition of a systematic
direct transformation of the Petri net model into abstract B machines. The approach
is illustrated by a theoretical railway example. The limitations of this approach are
discussed at the end of the paper and some prospects are detailed.

Key Words: Petri nets, B formal method, modelling languages translation, safety
critical system, railway transport

Category: J.6, J.7

1 Introduction

The aim of this paper is to describe the work to be performed when a fine
behavioural specification has to be assessed by an expert. The methodology is
presented, integrating the usual constraints of the railway systems, which will
serve as an instance of industrial context. Let us point out that in this industrial
context, the code generated by "Atelier B" is considered safe when the B model
is proved to be safe. For this reason, the safety proof is restricted to providing a
B model able to be assessed.

Petri nets have both the power of mathematics and the explicit graphical rep-
resentation of critical mechanisms, such as parallelisms, synchronizations, choices
and mutual exclusions. The rigorous underlying mathematical model is useful
for providing formal proofs of some needed properties. Methodologies based on
the UML modelling usually fail to provide formal proofs, because UML is only

Bon P., Collart-Dutilleul S.: From a Solution Model ... 3

a semi-formal language. Let us point out two other interesting characteristics of
Petri nets.

The first one is that it gives, in contrast to state charts, an explicit represen-
tation for synchronization. This is really an advantage when the use of a resource
in a mutual exclusion structure has safety consequences. The second one is that
Petri nets are able to provide dynamic specifications such as direct computa-
tion of minimum cycle durations and functioning margins [Sifakis 1977]. These
last results are more difficult to achieve using the B method [Abrial 1996] for
example.

Nevertheless, most of the requirements are difficult to express and to assess
using formal methods. In some industrial areas, such as railway systems, the use
of human expertise cannot be avoided [Defossez et al 2010]. A graphical model is
really an advantage for an industrial expert who may not be familiar with math-
ematical formalisms. Moreover, modelling power is needed in order to provide a
complex, but concise, model which will allow the expression of the know-how of
the expert. Considering this point of view, high-level Petri nets provide a very
strong modelling power, whereas they contain all the mathematical properties
of ordinary Petri nets [Jensen and Rozenberg 1991].

This leads to the following problem. When the model has been validated
by an expert, using some formal proofs or not, how can it be translated into a
model which can be verified with respect to the specifications and automatically
implemented? More precisely, the translation has to be proved in such a way
that the expert assessment is preserved. In the railway context the B method
is a formal method which is accepted as a good formalism for assessment. The
B method can be processed until an executable code is produced. Consequently,
the problem to be solved is the translation of a high-level Petri net language into
B formalism.

The first section presents the high-level Petri nets abbreviation. The second
part of this work deals with the B method. The third section is devoted to the
main contribution of this paper. It corresponds to a building methodology of
translation from high-level Petri nets to B abstract machines. The last section
proposes some further ideas for research before concluding.

2 Requirement engineering motivations

The aim of this section is to provide an overview of the global approach (figure 1).
It started with the elicitation phase which corresponds to the phase where all
requirements are identified in the informal specification.

Then, the requirements are modelled in order to be analysed. During the re-
quirement analysis, Petri net may be used in order to build a formal behavioural
analysis. The model of the requirements may be used to perform the synthesis
of a valid control [Collart Dutilleul et al.06], [Declerck and Guezzi 2009].

4 Bon P., Collart-Dutilleul S.: From a Solution Model ...

vl ,

Building a solution or ’
Assessment of a 4
solution ’

0 R snsnnnnis !
Implementation // : Implementation :
process 7 tests 1

T '
’

,
P\ ’

Figure 1: Diagram of the requirement engineering approach

Another way of using the requirement model is to check systematically the
correctness of a would-be solution. In this case, a formal tool may be used to
make a comparison between the behaviour of the would-be solution model and
the requirement model [Defossez et al 2010].

However, at the end of the analysis phase, the design process is expected to
deal with the specification of a valid solution.

Before the execution of the implementation task, a functional validity by an
expert of the domain is interesting. In this case, a compact readable graphical
model is useful. High-level Petri nets have both the quality of formal modelling
and language power. When the solution validated by the expert is expressed
with high-level Petri nets, as in [Philippi06], then the problem of translation of
this model into an implementation one has to be faced.

This is precisely the subject of this paper: the problem is to provide a valid
input into the process of implementation solution building. As the efficiency of
the B process for producing an implantation is well-known, the translation of
high-level Petri net into abstract B machines is really an interesting challenge.

3 Petri Net model

Petri nets were developed by C. A. Petri [Petri 1962] in order to model concepts
of asynchronous and concurrent actions. Petri net theory allows modeller to
specify dynamic behaviour of a system but also to understand and assess it. In
this section, we start to present the basic theory and then we present high-level
Petri nets, and more precisely, coloured Petri Net.

Bon P., Collart-Dutilleul S.: From a Solution Model ... 5

3.1 Place/transition Petri net

Petri nets are used in order to model the behaviour of discrete dynamic systems
[Murata 1989]. A Petri net is a particular class of directed graphs with an initial
state called initial marking. A Petri net is a bipartite graph. It has two types of
nodes: places and transitions. Arcs link only a place to a transition or a transition
to a place. Graphically, transitions are represented by bars or boxes and places
by circles.

The use of elementary Petri nets to model complex problems is limited be-
cause of the size of the model. Thereby, in such a case, it is necessary to use
high-level Petri nets. The size of the elementary Petri net is due to the fact that
tokens cannot be differentiated.

3.2 High-level Petri net

As briefly mentioned below, in elementary Petri nets token cannot be differ-
entiated. However, realistic modelling often needs to discuss the nature and
transformations of tokens. To allow this, high-level Petri net can be labelled by
a first-order language. The tokens become language expressions and transforma-
tions, from one state to another, are described by formulae labelling transitions.
The marking is a multi-set of tokens and transitions firing corresponds to a
multi-sets transformation. In short, high-level Petri nets handle structured to-
kens and are labelled by a first-order language. Several forms of high-level Petri
net can be distinguished. The most common are:

— predicates/transitions Petri nets [Genrich 1987], based on first-order logic,
— coloured Petri nets [Jensen 1992], based on a functional language,
— algebraic Petri nets [Reisig 1991], based on an equational language.

To reduce the size, modeller can also use extensions of Petri net as Numerical
Petri Nets developed by Symons [Symons 1978§].

Ounly the coloured Petri nets are presented here. But before introducing them,
some basic notion must be defined. First-order languages and associated defini-
tion are now presented.

3.2.1 First-order languages

A language definition consists in giving a mechanism of sentence building using
an alphabet of symbols and assigning a sense to these sentences.The term lan-
guage syntaz is used for sentence building and semantic for sense assigning. In
order to define first-order languages intuitively, a current mathematical language
is used.

6 Bon P., Collart-Dutilleul S.: From a Solution Model ...

Then, let us consider a set of symbols of variables, a set of symbols of functions
and a set of symbols of predicates. These sets are assumed to be disjoint from each
others. To each symbol of functions (predicates), a positive integer called arity
is associated. Symbol of constants are symbol of functions with an arity equal
to 0. In a first-order language, expressions are built recursively, from constants
and symbols of variables, with symbols of functions. For instance, in current
mathematical language, 2 * z + f(y) is an expression built from constant 2 and
variables x and y, with function symbol f (arity 1), + and * (arity 2, in unfixed
notation with a priority of x on +).

Likewise, an atom is built from expressions with symbols of predicates. For
example, 2+xx+y > z—3 is an atom built from expressions 2xxz+y and z—3, with
predicate symbol > (arity 2, in unfixed notation). Finally, formula is classically
built from atoms with quantifiers 3 and V and logical connectors as conjunction
A, disjunction V, negation ,.... So, (x =3)VIy((z+y > 2) A (x —y < 3)) is
a formula. An expression is said to be closed if there is no variable inside and
a formula is closed if all of its variables are in a quantifier field. For instance,
previous formula is not closed because z is free (i.e. no quantified by an 3 or a
v).

The interpretation of a first-order language consists in:

— associating, to each constant, a value in the interpretation domain,

— associating, to each symbol of function, a value function in the interpretation
domain,

— associating, to each symbol of predicate, a relation (in other words, a boolean
function).

Then, expressions and formulae are classically interpreted. For instance, on
the interpretation domain of rationals, with the interpretation of + and * as ad-
dition and multiplication, the expression 2x4+5 can be evaluated as 13. Likewise,
with the interpretation of predicates =,< and > as equality and classical order
relations, formula Jz3y((x +y > 2) A (x — y < 3)) is true. Let us note that in-
terpretation depends on the interpretation domain. Formula 3z(2xx — 1 = 0) is
true in the rational domain, but false in the integer domain. After that informal
presentation of first-order languages, some associated notions are more formally
defined.

3.2.2 Notation and terminology
Now, syntax and the interpretation of a first-order language are formally defined.

Definition 1. Let V be a set of variables, {2 a set of symbols of functions, and
II a set of predicates. To each predicates and symbol of functions, a positive
integer called arity is associated.

Bon P., Collart-Dutilleul S.: From a Solution Model ... 7

(i) The couple (§2,II) is called a signature.

(ii) An ezpression (or term) V built on (2 is:

— an arity 0 function (i.e. a constant),
— a variable v from V,

— a construction f(ey,...,e,) where f is a function symbol with arity n
and ey, ..., e, are expressions.

The set of expressions L is called an algebra. An expression without vari-
ables is said to be closed.

(iii) An atom built on (L, IT) is a construction p(es,...,e,) where p is a pred-
icate symbol with arity n and ey, ..., e, are expressions. An atom without
variables is said to be closed.

(iv) A formula is either:

— an atom,

— a construction (F),FAG,FV G,—-F,F = G or F < G where F and
G are formulae,

— a counstruction Jx(F') or Vz(F') where x is a variable and F' a formula
(where there is no sub-formula as 3z(G) or Vz(G))

The set ¥ of formulae is called a first-order language.

(v) In a construction 3z (F") (resp. Va(F')), variable x appearing in F' is said to
be linked by the existential (resp. universal) quantifier. A variable without
any links is said to be free. A formula without free variables is said to be
closed, and a formula without quantifiers is said to be free.

(vi) A theory T is a set of closed formulae.

In the following, except contraindication, letters z,y, z,u, v, w denote vari-
ables, a, b, d values, f, g, h function symbols, p, g predicate symbols, e, ¢ expres-
sions, A, B, C atoms and F, G formulae.

The substitution notion is also often used in the theory of declarative lan-
guage. This notion is also useful to interpret expressions with non-explicitly
quantified variables. Intuitively, a substitution consists in replacing a variable
with an expression. Formally, it is defined as follows:

Definition 2.

(i) A substitution o = [z1/e1, ..., Tn/ey] is an application from the set of vari-
ables V to the set of expressions L as:

8 Bon P., Collart-Dutilleul S.: From a Solution Model ...

—o(x;))=e; fori=1,..,n,
— o(v) = v for all others variables.

(ii) The substitution notion is extended to an endomorphism on the set of
expressions, more formally: o(f(e1,...,en)) = f(o(e1),...,o(en)).

(iii) The composition o1 o o9 of two substitutions is defined by (o7 o 02)(e) =

g1 (0'2(6)).

(iv) The application of the substitution to a free formula is defined as:
— o(pler,...,en)) = ploler),...,o(en))
~ o(-F) = ~o(F)

— o(F op G) = o(F) op o(G) where op is one of these boolean operators
N, V, =, <

(v) A substitution n = [z/a] where a is a constant is called assignation (or
valuation).

(vi) A substitution o = [z/v] where v is a variable is called renaming.

(vii) The application of an assignation n = [z/a] to a quantified formula replaces
all free occurrences of = by a :

= n(Ga(F)) = 3x(F)
— n(Fv(F)) = Jv(n(F)) for each variable v different of z

— same for V.

After these definitions, coloured Petri nets can be defined.

3.2.3 Coloured Petri nets

A coloured Petri net [Jensen 1992] is a classical Petri net with a set of colours
in order to distinguish tokens. The expression power of this type of Petri net
allows us to model real systems. Coloured Petri nets are based on a functional
language, where the typing notion is very important. Then, a type, limited to
a finite set, is associated to each place. This type is called colour of the place.
So, coloured Petri nets are based on a typed first-order language. There is a set
of domains, and symbols of functions are interpreted as functions of values in
these domains. It is important to notice that a coloured Petri net can always be
unfolded into a place/transition Petri net. The formal definition of a coloured
Petri net is given below:

Bon P., Collart-Dutilleul S.: From a Solution Model ... 9
Definition 3. A coloured Petri net is a tuple CPN = (X, P, T, A,N,C,G,E,I)
as
(i) X non-empty and finite set of types, called colours,
(ii) P is a finite set of places,

(iii) T is a finite set of transitions,

)
)
)
(iv) A is a finite set of arcs, as: PNT =PNA=TNA=1,
(v) N is the node function, defined from A to P x T UT x P,
(vi) C is the color function, defined from P to X,

)

(vii) G is the guard function, defined, from P to expressions, as:

Vit e T : [Type(G(t)) = B A Type(Var(G(t))) C £,

(viii) E is an expression of arcs function, defined from A to expressions, as:
Va € A: [Type(E(a)) = C(p(a))ms A Type(Var(E(a))) € X]
where p(a) is a place of N(a),

(ix) I is an initialisation function, defined from P to closed expressions, as:
Vp € P: [Type(I(p)) = C(p)ms]-

The reader can refer to [Jensen 1992] in order to have more details on the
above definition. To define precisely coloured Petri net behaviour, some notions
are mandatory. First, the definition of variables and expression is given:

Definition4. — VvVt € T : Var(t) = {vjv € Var(Gt)) V3a € A : v €
Var(E(a))}.
— V(z1,72) € (PXxTUT x P): E(xy,29) = Ea).
a€A(z1,x2)
Var(t) is called the set of variables of ¢t when F(z1,22) is called the ezpression
of (z1,x2).

Now, the definition of transition link is introduced:
Definition 5. A transition link ¢ is a function b defined on Var(t), as:
(i) Yv € Var(t) : b(v) € Type(v),

(ii) G(t) < b >, where G(t) < b > is predicate denoting the evaluation of the
guard of ¢ by link b.

1() Bon P., Collart-Dutilleul S.: From a Solution Model ...

The set of all transition ¢ links is denoted by B(t).

Complementary notions as token, binding element, marking and step are now
defined:

Definition 6. — A token is a couple (p,c), where p € P and ¢ € C(p), TE
denotes the set of all tokens.

— A binding element is a couple (b,t), where t € T and b € B(t), BE denotes
the set of all binding elements.

— A marking is a multi-set based on T'E. The initial marking M is the marking
obtained by the evaluation of the initialisation expressions:

V(p,c) € TE : Mo(p,c) = (I(p))(c).
M denotes the set of all marking.

— A step is a non-empty finite based on BE. Y denotes the set of all steps.

Now, the step wvalidation, which allows us to describe the behaviour of a
coloured Petri net, can be defined:

Definition 7. A step Y is enabled by a marking M if and only if the following
property is checked:

VpeP: Y E(pt)<M(p).
(t,b)ey
Let Y be an enabled step for marking M. Then:

— if (¢,b) € Y, transition ¢ is enabled for marking M for link b, by extension,
(t,0) is also said to be enabled for M,

— if (t1,01), (t2,b2) € Y and (t1,b1) # (t2,b2), (t1,b1) and (t2, bs) are concur-
rently enabled, and then ¢; and ¢, are also concurrently enabled,

— if |[Y(¢)| > 2, then t is itself concurrently enabled,

— if Y(¢,b) > 2, then (t,b) is itself concurrently enabled.
This notion of step allows us to express the possible simultaneity of transition
firing.

Definition 8. When a step is enabled, it can be fired and it then changes mark-
ing M, into M as:
Vpe P: My(p) = (Mi(p)— > E(pt))+ Y Elt,p).
(t,b)eYy (t,b)eYy

The first sum represents consumed tokens while the second one represents pro-
duced tokens. M5 is said to be directly reachable from M; by the occurrence of
Y and it is formally noted as follows: M;[Y > M.

Bon P., Collart-Dutilleul S.: From a Solution Model ... 1 1

Finally, the notion of firing sequence occurrence, which allows us to define
reachable marking, is defined as follows:

Definition 9. An occurrence of a finite sequence is a sequence of markings and
steps noted:
Ml[Yl > MQ[YQ > Ms.. Mn[Yn > Mn+1

asn € Nand M;[Y; > M, forall i € 1..n. M is said to be the start marking and
M, 41 final marking. Positive integer n is said to be the step number of sequence
occurrence, or also length. In notation, halfway markings can be omitted:

M, [Yl}/é LY, > Mn+1

Definition 10. A marking M’ is reachable from M if and only if there is an
occurrence of a finite sequence with M as start marking and M’ as final marking,
i.e. if and only if for n € N, there is a step sequence as:

M[Y1Y2Yn > M.

M’ is said to be reachable from M in n steps. The set of all reachable markings
from M is denoted [M >.

As mentioned in the beginning of this paragraph, a coloured Petri net can
always be unfold into a place/transition Petri net. The equivalence rules are not
detailed here, the reader can refer to [Jensen 1992] in order to have them.

3.3 Railway illustration for coloured Petri nets

In order to illustrate the different tools presented in this paper, a theoretical
railway example is used as a case study. This example is given by [Genrich 1991].
The case study is described by the general following rules:

cl : Railway network is composed of consecutive elementary parts, called
CdV; with i € [0..6]

¢2 : trains run in the same traffic direction.

Two safety rules are now introduced:

c’l : Two trains cannot be on the same track at the same moment,

c’2 : there must be a free track segment between two trains.

Finally, a particular case of railway network is considered:

c’1 : The railway network is a closed loop of seven tracks, numbered from
0 to 6.

12 Bon P., Collart-Dutilleul S.: From a Solution Model ...

Figure 2: Schematic representation of the case study

Figure 2 gives a schematic representation of the case study described below.
The 6 tracks are represented, on the figure, by C'dV; with ¢ € [0..6].

In [Genrich 1991], the case study is specified with an elementary Petri net.
This Petri net is quite heavy: it is composed of 21 places, 14 transitions and 84
arcs. The use of high-level Petri nets is necessary to reduce the size of the model.
In order to do this, two types of token ta and tb, representing the two types of
train, are introduced. The coloured Petri net of figure 3 models the theoretical
railway example. The initial marking of the Petri net indicates that the track 0
is occupied by a train ta and the track 4 by a train tb (multi-set 1’ta in place
Busy0z and 1’th in Busy4x). That implies that the markings of the tracks 1,2
and 5 are free (multi-set 1’ free in places Freel, Free2 and Freeb).

The Petri net can be reduced if the tracks are not marked by simple tokens. If
the track numbers are taken into account, a consistent simplification of the net is
possible: overall we obtain a Petri net only composed of 2 places and 1 transition
that can be found in figure 4. The marking becomes for one place, numbers
indicating the free tracks, and for the other, couples that indicate that one train
is on an identified track. The passage of a train from one track to the next is
modelled by the transition and the guard gives the condition to respect safety
requirements (c¢’l and ¢’2). The last requirement (c’1) is modelled by markings,
which give tracks numbers, and by the transition guard, ¢ = (j — 1) mod 7 and
k = (j+ 1) mod 7 which model the circuit.

Bon P., Collart-Dutilleul S.: From a Solution Model ...

_ i

i

— !

i

Color Train — with ta | th |
Color CdV — with free |
varx Train !

v Cdv

L't Train Train

|
i
i

Move0_1

vt | re2

Busylx

Arca

Train

Train Move2_3
Arch

Train

Busybx

Moved_5
Train 1'tb Train

Figure 3: Coloured Petri net model of railway case study

r
I Color Train — with ta | tb !
! Color CAV = with 0123 4|56,
! var x : Train :
} vari : CAV i
: varj : CdV }
| var k : CdV l
C e ___ |
1°<1
1'<0,ta> i=(—1) mod7 1'<2
1'<4,th> CdV x Train 1'<5> CdV

j+1) mod 7 —

Moving

@ reota> + 1<ath

Figure 4: Simplified colored Petri net model of the case study

13

14 Bon P., Collart-Dutilleul S.: From a Solution Model ...

4 B method

The B method, which was developed by Jean-Raymond Abrial [Abrial 1996], is
a formal model-oriented method such as Z and VDM . These methods are based
on two complementary models: the static one describes the system entities and
their associated states, and the dynamic model describes allowed changes of
state by actions defined on entities. The dynamic model allows us to describe
properties which have to be checked before and after action. These properties
are expressed by classical logic predicates on entities and states. In a speci-
fication based on models, the system state is described by the set of couples
(predicates,expressions) where the predicate set models the static aspect. The
description of state changes models the dynamic aspect. Models are built with
three characteristic elements:

— pre-condition is defined by the set of states from which the state change
is allowed,

— operation is composed of the list of modifications to couples (predicate,
expression),

— post-condition characterises valid states as ensuing from changes.

These notions are common for formal model-oriented methods. Nevertheless,
in B notation, the notion of substitution replaces the notion of pre and post con-
dition [Abrial 1996]. B also differs because it integrates the concept of refinement
which makes incremental development from the specifications to the code possi-
ble in a single formalism. This formalism is called the abstract machine notation.
Proof obligations are generated at each stage of the B development process in
order to guarantee the validity of the refinement and the abstract machine.

As a result, it is able to manage strong design constraints applied to rail
systems, such as CENELEC standards. Moreover, the B method seems to be an
efficient method in the industrial world for railway critical software development,
such as METEOR ([Behm et al 1999], [DaSilva et al 1992]).

4.1 Abstract machine notation

Modelling of data and their properties is based, in B language, on mathematical
notation, essentially on the set theory. However, in the B set theory, the notion
of typing is introduced. All the elements of a set are the same type. The principal
data structures available are: sets, binary relations between sets, functions from
one set to another and ordered lists of elements of a set. It can be noted that,
in B, properties are expressed by formulae from calculus of first-order predicate
with equality. That means the B language builds their predicates with classical

Bon P., Collart-Dutilleul S.: From a Solution Model ... 15

propositional operators (and (A), or (V) ...), but also with equality operator
and quantified variables (3z.P and Vz.P).

The abstract machine (figure 5) is the basic element of a B development. It
models a system described by a set of data or variables and by the operations as-
sociated that modify their state or their value. An abstract machine is composed
of:

— statements of data:

e parameters,
e variables,
e constants,

— an invariant, which consists in a predicate on the previously declared ele-
ments and gives their types,

— a definition of the initial state,
— operations that define the actions modelling the state changes.

Then, an abstract machine models the behaviour of the specified system.
Afterwards, this model is refined. An abstract machine is composed of differ-
ent clauses representing the data of the specified system. In B, constants and
sets represent unchanging data of the system. Each machine is defined by its
name and can have parameters. The logic properties on these parameters are
specified in the clause CONSTRAINTS. The sets (reps. the constants) are
specified in the clause SETS (resp. CONSTANTS) and their logical proper-
ties in the clause PROPERTIES. The clause VARIABLES gives machine
variables which represent variable elements of the system. As constants, vari-
ables are defined by a conjunction of predicates in clause INVARIANT. This
clause gives the properties that the values of the variables have to satisfy at any
time. Finally, variables are valued in the clause INITTALISATION.

In B language, there is an explicit clause, called DEFINITION, to specify
some abbreviations.

Definition 11. A definition introduces an abbreviation, eventually with param-
eters, for a predicate, an expression or a substitution. A definition can be used
in other clauses of the component. Each use of a definition is replaced by the
corresponding text, where formal parameters take the place of real parameters.
A definition can only be used in the component where it is defined.

Now, the static part of a system can be modelled. The dynamic one is spec-
ified by operations which correspond to actions to be performed by the system.
In the operations, another fundamental notion of B language is used: the notion
of generalised substitution.

16 Bon P., Collart-Dutilleul S.: From a Solution Model ...

4.2 Generalised substitutions

The generalised substitution notation allows us modelling services (actions)
which had to be performed by the system. It is a key notion of the B approach.

Definition 12. A generalised substitution is a predicate transformer, which,
when it is applied to predicates characterising data before a given service activa-
tion, produces the predicates characterising data after the service achievement.

In other words, if S is a substitution and P a predicate, then S[P] is the
predicate obtained applying S to P.

The generalised substitutions are an extension of the elementary substitution
defined as follows:

Definition 13. if = is a variable and e is an expression, then the elementary
substitution x := e, applied to a predicate P, transforms P in a predicate P’,
obtained by substituting e to all free occurrences of x in P.

The reader can find all the substitutions, used in the B language, and their
description in [Abrial 1996] and [Lano 1996].

4.3 Refinement and implementation

As mentioned before, the B method uses the concept of refinement which pro-
vides incremental development from the specifications to the code in a single
formalism. The refinement process is the set of successive transformations of the
initial model. These transformations are made in order to put in concrete form
the manipulated structures and solve indeterminism in order to obtain a soft-
ware written in a common programming language. There can be several levels
of refinement and the last one is called implementation.

Figure 5 gives a view of a refinement N from an abstract M and the differ-
ences between the two components.

Finally, the B method can be processed by using tools! which allow us to
generate automatically the proof obligations for each abstract machine. At the
last refinement, called the implementation, we obtain a safe software.

! two software platforms are available and give a set of automatic tools in order to
develop real systems:

— the Atelier B, http://www.atelierb.eu/
— the B-Toolkit, http://www.b-core.com/btoolkit.html

Bon P., Collart-Dutilleul S.: From a Solution Model ... 17
MACHINE M /(p) REFINEMENT N
CONSTRAINTS REFINES
C M
SETS SETS
St St1
CONSTANTS %ONSTANTS
k 1
PROPERTIES %ROPERTIES
B 1
VARIABLES VARIABLES
v w
]ZDDEFINITIONS %]?FINITION
INVARIANT IJNVARIANT
I
INITIALISATION INITIALISATION
T T1
OPERATIONS OPERATIONS
y <-op(x) _= y <-op(x) =
PRE P PRE P1
THEN THEN
S S1
END END

Figure 5: "Generic" abstract machine and its refinement

5 Transformation by construction

Now, a transformation algorithm is applied to the Petri net model in order to
translate it into a B abstract machine. The proposed approach begins by build-
ing the abstract machine corresponding to the considered Petri net model. The
second step adds some complementary information ensuing from the structure.
Finally, the behavioural properties of the Petri net model are introduced in the
B machine [Bon 2000].

5.1 Multi-set specification

As high-level Petri nets marking corresponds to a multi-set, a preliminary task
is dedicated to the specification of multi-sets. This part does not define all the
properties associated with multi-set. The reader can refer to [Bon 2000] to have
more information.

In B, for typing reasons, it is not possible to define an abstract machine
which takes into account all types of multi-sets. So, multi-sets and their associ-
ated properties and operations are specified with parametrised definitions. These
definitions have to be included as necessary. Figure 6 gives the abstract machine,
only composed of B definitions, specifying multi-sets.

18 Bon P., Collart-Dutilleul S.: From a Solution Model ...

MACHINE Multiset
DEFINITION
) == ss <> NAT;
Ms Empty(ss) == {elt|elt : ss x {0}}
Ms_In(elt,ms,ss) == 3n.(n € NAT1 A (elt — n) € ms)
Ms_Subset(msl,ms2,ss) == Velt.(Ms_In(elt,msl, ss)
= msl(elt) > ms2(elt))

Ms Add(msl,ms2,ss) == Aee.(ee € ss|msl(ee) + ms2(ee)

Ms Less(msl,ms2,ss) == Xee.(ee € ss|msl(ee) —ms2(ee)
END

Figure 6: Abstract specification of multi-sets and their associated properties and oper-
ations

Then the structure and properties to be fulfilled by the Petri nets component
are presented.

5.2 Systematic transformation from a Petri net into an abstract B
machine

First, the translation of the structural aspects of the Petri net model is described.
A state variable correspond to each place of the Petri net.

Then, the translation of a Petri net transition into a B operation is imple-
mented. This transformation takes into account the fact that the impact of an
operation on the state variable is the same as the corresponding transition firing.

5.2.1 Petri net structure transformation

A machine describes the structure of the Petri net modelling the considered
system. It seems to be natural to translate the marking of each place by a state
variable of the B abstract machine. As the marking is a multi-set of tokens and a
token is a t-uple composed of s elements which are the colours of this place. For
each place p a state variable State p is produced. This variable is defined as a
multi-set based on the color ColorF _p associated to the place p. Consequently
for each place p the following scheme is introduced:

VARIABLES

State _p

INVARIANT

State _p € MS(ColorF _p)

As there are two different places on the considered railway example, it cor-
responds to:

Bon P., Collart-Dutilleul S.: From a Solution Model ... 19

VARIABLES
State Busy,
State Free
INVARIANT
State_Busy € MS(ColorF _Busy)
A State_Free € MS(ColorF _Free)

It can be noticed that, as the first part of translation shows, the transforma-
tion consists of a simple syntaxical transformation from Petri net labels into B
language. From the structural definition of a coloured Petri net, a transformation

rule is applied. The previous part correspond to:
(i) X' is a non-empty finite set of types, called colors
(ii) P is a finite set of places
(iii) 7T is a finite set of transitions
(iv) Ais a finite set of arcs, as: PNT=PNA=TNA=1,
(v) N the node function defined from A to Px T UT x P
(vi) C is the color function defined from P to X
(vil) G is the guard function defined from P to expressions as:
YVt e T : [Type(G(t)) =B A Type(Var(G(t))) C X,
(viii) F is an expression of arcs function defined from A to expressions as:
Va € A [Type(E(a)) = C(p(a))ass A Type(Var(E(a)) € £
(ix) I an initialisation function defined from P to closed expressions as:
Vp € P : [Type(I(p)) = C(p)ms].

To each color from X, a type of the abstract machine is associated. In the case
study, the set of trains is enumerated and tracks are defined with an abstraction

from naturals:

MACHINE RdPtrain
INCLUDES Multiset

SETS

Trains = {ta,tb}
CONSTANTS
cdv

PROPERTIES CdV = {elt|elt € NAT Aelt >0 Aelt < 6}

2() Bon P., Collart-Dutilleul S.: From a Solution Model ...

Sets P,T and A and function N do not explicitly appear in the abstract
machine. In fact, the aim of this transformation is to capture the behaviour
of the model and not the structure. In order to simplify the translation, the
structure is not translated.

Functions C, G and FE are specified by means of B definitions and, finally,
the function I is specified in the INITIALISATION clause.

5.2.2 Behaviour transformation

The aim of this translation is essentially to capture the behaviour of the system.
Before specifying the behaviour, some information on transition variables has
to be introduced. The set of variables associated to a transition is composed by
variables appearing in the transition guard and variables used by expression of
arcs linked to the transition:

VieT:Var(t) = {vlve Var(G(t))VIac A:v e Var(E(a))}.

The list of variables is translated into a list of identifiers. These variables are
typed by means of a definition with a typifying predicate. To each transition, a
predicate Enabled t denoting the transition ¢ enabling in the current state is
specified. In the case study, there is only one transition with two input arcs:

'DEFINITIONS

Enabled_Moving == IVar_Moving.(
Type Var_Moving A Guard _Moving
AN Ms_Subset(ArcExpr Free Moving, State_ Free,
Color_Free)
AN Ms_Subset(ArcExzpr Busy Moving, State _Busy,
Color _Busy))

When transition enabling conditions are specified, the operation allowing the
Petri net evolution can be specified. As mentioned in paragraph 3.2.3, the token
consumption (resp. production) is equivalent to a subtraction (resp. addition) of
multi-sets. So, to each transition, an operation describing the marking evolution
during the transition firing is specified. Finally, figure 7 gives the translation of
the coloured Petri net model of the case study.

In this section the fundamental theory on which the translation methodology
is based is presented. This translation is illustrated on an elementary railway
example, but the proofs of the transformation are not presented. However, the
mathematical aspects of the proof are developed in [Bon 2000].

In this contribution, the requirement engineering point of view is rather de-
veloped. Considering this last point of view, the most interesting contribution is
the possibility of transforming an invariant I to be verified by a Petri net into a
B abstract machine invariant. The use of automatic proof tools associated with

Bon P., Collart-Dutilleul S.: From a Solution Model ... 21

MACHINE RdPtrain
INCLUDES Multiset
SETS Trains = {ta,tb}
CONSTANTS CdV

PROPERTIES CdV = {elt|elt € NAT Nelt > 0N elt <6}
DEFINITIONS
Var_Moving == i,j,k,z;
Type_Var_Moving == 1€ CdV Nje CdV Nk e CdV A x € Trains;
Guard_Moving == i=((j —1)mod7) A (kk = (jj +1) mod 7);
ArcExp_Busy_Moving == Ms_Empty(ColorF_Busy) < {(jj — xz) — 1};
ArcExp_Free_Moving == Ms_Empty(ColorF_Free) < {kk— 1};
ArcEzp_Moving_Busy == Ms_Empty(ColorF_Busy) <+ {(kk — zz)+— 1};
ArcExp_Moving_Free == Ms_Empty(ColorF_Free) < {ii— 1}
Var_Moving == 1i,j,k,z;
Type_Var_Moving == i€ CdV Nje CdV ANke CdV Az € Trains;
Enabled_Moving == 3 Var_Moving.(Type_Var_Moving A Guard_Moving

VARIABLES

State_Busy,State_Free

INVARIANT

State_Busy € MS(ColorF_Busy) A State_Free € MS(ColorF_Free)
INITIALISATION

OPERATIONS

Op_Moving =

SELECT FEnabled_Moving
THEN ANY Var_Moving
WHERE

A Ms_Subset(ArcExpr_Free_Moving, State_Free, ColorF_Free)
A Type_Var_Moving N Guard_Moving
THEN

END
END
END

A Ms_Subset(ArcEzpr_Free_Moving, State_Free, Color_Free)
A Ms_Subset(ArcEzpr_Busy_Moving, State_Busy, Color_Busy))

State_Busy = Ms_Empty(ColorF_Busy) < {(0+ ta) — 1,(4— tb) — 1}
State_Free := Ms_Empty(ColorF_Free) < {1—1,2+—1,5+— 1}

Ms_Subset(ArcExpr_Busy_Moving, State_Busy, ColorF _Busy)

State_Busy := Ms_Add(Ms_Less(State_Busy, ArcExpr_Busy_Moving,
ColorF_Busy), ArcExpr_Moving_Busy, ColorF_Busy)

State_Free := Ms_Add(Ms_Less(State_Free, ArcExpr_Free_Moving,
ColorF _Free), ArcExpr_Moving_Free, ColorF_Free)

Figure 7: Abstract machine corresponding to the figure 4

the B framework may be of efficient assistance in this this difficult task. Focusing
on the example described in this paper, there is a safety requirement forbidding
that a train is on a track directly adjacent to an occupied track. This last prop-
erty is difficult to verify directly on the Petri net model. The B expression of
this requirement is as follows:

22 Bon P., Collart-Dutilleul S.: From a Solution Model ...

Y(i,7). (i € CdV N j e CAVA
Ms_In((i — ta), State_Busy, Color _Busy)A
Ms_In((j — tb), State_ Busy, Color _Busy)
= (j—4)mod7>1A(j—14) mod7<6)

This invariant takes into account that the railway example is circular and
composed of 7 tracks. The proof of the above invariant, which can be provided
by the B tools, allow us to claim the correctness of the Petri net model with
regards to the considered safety requirement. B tools have an associated proving
tool based on Hoare logic. This tool will generate proof obligations ensuing from
the invariant. In some case, the tool has to be assisted by human expert in order
to provide an addicted mathematical knowledge. Anyway, B tool experts use to
formulate invariants in order to help the proving tool to succed.

6 Conclusion

Motivations of a mixed approach based on the use of different modelling tools
in the context of safety requirements engineering is presented in the first part of
this paper. This discussion put emphasis on the critical task which tackles the
steps to perform from the requirements analysis towards a valid implementation
on a real system. Actually there is a switching point where implementation
considerations are introduced. Precisely, at this stage of the design process, the
paper focuses on model transformation. This task may assist the designer on the
way from analysis to implementation. Considering safety requirements in guided
transports, transformation from high-level Petri nets into B abstract machines
is considered. This is a way of keeping the same requirements, while switching
points of views. Abstract B machines are a valid input of the analysis phase into
the B process implementation synthesis.

Based on a simple example of section mutual exclusion railway problem, the
high-level Petri net model powerfulness is illustrated. Moreover, the scalability
and conciseness of the produced model are explained. Fundamental definitions
of both Petri nets and B abstract machines are presented in such a way that
a systematic translation can be introduced. This translation is presented and
illustrated on the same example.

Now, starting from the example, integrating timetable constraints into the
approach will provide a problem. From the point of view of the global engineering
process (figure 1), defining an implementation parameter at the model analysis
step is not correct. It just happens that high-level Petri nets use to handle finite
domains. This does not correspond to the infinite number of values which can
be assigned to a continuous variable belonging to an interval.

In the case of time constraints, the scientific literature provides some propo-
sitions introducing some interesting prospects [Bender et al 2008].

Bon P., Collart-Dutilleul S.: From a Solution Model ... 23

Moreover, the literature contains behavioural analysis results towards gen-
eral continuous parameters [Dhouibi et al 2008]. The bridge to be built from
the analysis process towards a valid implementation process does not only con-
cern the time parameter. Obviously, informal specifications contain requirements
concerning time, positions, dimensions, costs, speed, etc. They all correspond to
values to be exactly defined at the implementation phase. From a theoretical
point of view, dealing with these kind of constraints, the path from specification
to implementation seems to exist. However, further research has to be conducted
considering more practical aspects.

References

[Abrial 1996] Abrial, J. R.: "The B-Book: Assigning Programs to Meanings", Cam-
bridge University Press, 1996.

[Behm et al 1999] Behm P., Benoit P., Faivre A., Meynadier J. M.: "METEOR: A
successful application of B in a large project", in Proceedings of FM’99: World
Congress on Formal Methods, pp 369-387, 1999.

[Bender et al 2008] Bender D., Combemale B, Crégut X., Farines J. M., Vernadat
F.: "Ladder Metamodeling & PLC Program Validation through Time Petri Nets",
in Fourth European Conference on Model Driven Architecture - Foundations and
Applications (ECMDA-FA), Lecture Notes in Computer Science (LNCS), volume
5095, pages 121-136, Springer-Verlag, 2008.

[Bon 2000] Bon P.: "Du cahier des charges aux spécifications formelles : une méthode
basée sur les réseaux de Petri de haut niveau", Thése de doctorat, Université des
Sciences et Techniques de Lille, 2000. In French

[Collart Dutilleul et al.06] Collart Dutilleul S., Defossez F., Bon P.: "Safety require-
ments and p-time Petri nets: a level crossing case study", in IMACS multiconference
on computational engineering in systems applications (CESA), pages 1118-1123,
Bejin, Chine, 2006.

[DaSilva et al 1992] DaSilva C., Dehbonei B., Mejia F.: "Formal specification in the
development of industrial applications: The subway speed control system", in
FORTE’92 ,Proceedings of the IFIP TC6/WG6.1 Fifth International Conference on
Formal Description Techniques for Distributed Systems and Communication Pro-
tocols, pages 199-213, 1992.

[Declerck and Guezzi 2009] DECLERCK P., GUEZZI A.: "Trajectory Tracking Con-
trol of a Timed Event Graph with Specifications Defined by a P-time Event Graph",
in Positive Systems: Theory and Applications (POSTA 09), Lecture Notes in Com-
puter Science (LNCS), volume 389, Springer-Verlag, 2009.

[Defossez et al 2010] Defossez, F., Collart Dutilleul, S., Bon, P.: "A formal model of
requirements", in Open Transportation Journal, 2010, to be published.

[Dhouibi et al 2008] Dhouibi H., Collart Dutilleul S., Nabli L., Craye E.: "Using Inter-
val Constrained Petri Nets for Reactive Control Design: A tobacco manufacturing
application", in the International Journal for Manufacturing Science & Production,
volume 9, number 3-4, pages 217-229, 2008.

[Genrich 1987] Genrich, H. J.: "Predicate/Transition Nets", in Petri Nets: Central
Models and Their Properties, Advances in Petri Nets 1986 Part I, Lecture Notes on
Computer Science, volume 254, pages 208-247, Springer-Verlag, 1987.

[Genrich 1991] Genrich, H. J.: chapter "Predicate / Transition Nets", in High-level
Petri Nets, volume 1, pages 3—43, Springer-Verlag, 1991.

[Ghezzi et al 1994 Ghezzi C., Morasca S., Pezzé M.:"Validating timing requirements
for time basic net specifications", Journal of Systems and Software, volume 27,
number 2, pages 97-117, 1994.

24 Bon P., Collart-Dutilleul S.: From a Solution Model ...

[Jensen 1992] Jensen, K.: "Coloured Petri Nets - Basic Concepts, Analysis Methods
and Practical Use, Vol. 1", Springer-Verlag, 1992, 234p.

[Jensen and Rozenberg 1991] Jensen, K., Rozenberg, R.:"High-level Petri nets",
Springer- Verlag, 1991.

[Lano 1996] Lano, K: "The B Language and Method : A guide to Practical Formal
Development", Springer Verlag London Ltd., 1996.

[Murata 1989] Murata T.: "Petri Nets: Properties, Analysis and Applications", Pro-
ceedings of the IEEE vol. 77, N°4, pages 541-574, 1989.

[Petri 1962] Petri, C. A.: "Kommunikation mit Automaten", PhD Thesis, 1962, Kom-
munikation mit Automaten (in German).

[Philippi06] Philippi S.: "Automatic code generation from highlevel Petri nets for
model driven systems engineering", in Journal of Systems and Software, volume
79, number 10, pp. 1444-1455, 2006.

[Reisig 1991] Reisig, W.: chapter "Petri Nets and Algebraic Specification", in High-
level Petri Nets, volume 1, pages 137-170, Springer-Verlag, 1991.

[Sifakis 1977] Sifakis, J.: "Petri nets for performance evaluation", Measuring, Model-
ing, and Evaluating Computer Systems (Proceedings of the 3rd Symposium, IFIP
Working Group 7.3), pages 75-93, 1977.

[Symons 1978] Symons, F.J.W.: "Modelling and analysis of communication protocols
using Numerical Petri Nets", PhD Thesis, Dep. Elec. Eng. Sci, Univ Essex, Telecom-
mun. Syst. Group Rep. 152, May 1978.

