
From a Solution Model to a B Model for Veri�
ation of

Safety Properties

Philippe Bon

(Univ Lille Nord de Fran
e, 59000 Lille, Fran
e

IFSTTAR, ESTAS

philippe.bon�ifsttar.fr)

Simon Collart-Dutilleul

(Univ Lille Nord de Fran
e,F-59000 Lille, Fran
e

IFSTTAR, ESTAS

simon.
ollart-dutilleul�ifsttar.fr)

Abstra
t: In the
ontext of safety requirement engineering, model transformation is

a task of interest. Indeed, it allows us to keep all the requirements while swit
hing

from one point of view to another. The presented work assumes that a valid solution

has been found and proposes an approa
h in order to build a valid implementation.

As some �ne dynami
 properties are integrated into the spe
i�
ation, high-level Petri

nets are used to spe
ify and verify the solution. Then,
onsidering an industrial railway

ontext, the transformation of the Petri net model in order to provide an input to a

B pro
ess is
onsidered. This last
onsideration leads to a proposition of a systemati

dire
t transformation of the Petri net model into abstra
t B ma
hines. The approa
h

is illustrated by a theoreti
al railway example. The limitations of this approa
h are

dis
ussed at the end of the paper and some prospe
ts are detailed.

Key Words: Petri nets, B formal method, modelling languages translation, safety

riti
al system, railway transport

Category: J.6, J.7

1 Introdu
tion

The aim of this paper is to des
ribe the work to be performed when a �ne

behavioural spe
i�
ation has to be assessed by an expert. The methodology is

presented, integrating the usual
onstraints of the railway systems, whi
h will

serve as an instan
e of industrial
ontext. Let us point out that in this industrial

ontext, the
ode generated by "Atelier B" is
onsidered safe when the B model

is proved to be safe. For this reason, the safety proof is restri
ted to providing a

B model able to be assessed.

Petri nets have both the power of mathemati
s and the expli
it graphi
al rep-

resentation of
riti
al me
hanisms, su
h as parallelisms, syn
hronizations,
hoi
es

and mutual ex
lusions. The rigorous underlying mathemati
al model is useful

for providing formal proofs of some needed properties. Methodologies based on

the UML modelling usually fail to provide formal proofs, be
ause UML is only

Journal of Universal Computer Science, vol. 19, no. 1 (2013), 2-24
submitted: 18/10/10, accepted: 28/12/12, appeared: 1/1/13  J.UCS

a semi-formal language. Let us point out two other interesting
hara
teristi
s of

Petri nets.

The �rst one is that it gives, in
ontrast to state
harts, an expli
it represen-

tation for syn
hronization. This is really an advantage when the use of a resour
e

in a mutual ex
lusion stru
ture has safety
onsequen
es. The se
ond one is that

Petri nets are able to provide dynami
 spe
i�
ations su
h as dire
t
omputa-

tion of minimum
y
le durations and fun
tioning margins [Sifakis 1977℄. These

last results are more di�
ult to a
hieve using the B method [Abrial 1996℄ for

example.

Nevertheless, most of the requirements are di�
ult to express and to assess

using formal methods. In some industrial areas, su
h as railway systems, the use

of human expertise
annot be avoided [Defossez et al 2010℄. A graphi
al model is

really an advantage for an industrial expert who may not be familiar with math-

emati
al formalisms. Moreover, modelling power is needed in order to provide a

omplex, but
on
ise, model whi
h will allow the expression of the know-how of

the expert. Considering this point of view, high-level Petri nets provide a very

strong modelling power, whereas they
ontain all the mathemati
al properties

of ordinary Petri nets [Jensen and Rozenberg 1991℄.

This leads to the following problem. When the model has been validated

by an expert, using some formal proofs or not, how
an it be translated into a

model whi
h
an be veri�ed with respe
t to the spe
i�
ations and automati
ally

implemented? More pre
isely, the translation has to be proved in su
h a way

that the expert assessment is preserved. In the railway
ontext the B method

is a formal method whi
h is a

epted as a good formalism for assessment. The

B method
an be pro
essed until an exe
utable
ode is produ
ed. Consequently,

the problem to be solved is the translation of a high-level Petri net language into

B formalism.

The �rst se
tion presents the high-level Petri nets abbreviation. The se
ond

part of this work deals with the B method. The third se
tion is devoted to the

main
ontribution of this paper. It
orresponds to a building methodology of

translation from high-level Petri nets to B abstra
t ma
hines. The last se
tion

proposes some further ideas for resear
h before
on
luding.

2 Requirement engineering motivations

The aim of this se
tion is to provide an overview of the global approa
h (�gure 1).

It started with the eli
itation phase whi
h
orresponds to the phase where all

requirements are identi�ed in the informal spe
i�
ation.

Then, the requirements are modelled in order to be analysed. During the re-

quirement analysis, Petri net may be used in order to build a formal behavioural

analysis. The model of the requirements may be used to perform the synthesis

of a valid
ontrol [Collart Dutilleul et al.06℄, [De
ler
k and Guezzi 2009℄.

3Bon P., Collart-Dutilleul S.: From a Solution Model ...

Figure 1: Diagram of the requirement engineering approa
h

Another way of using the requirement model is to
he
k systemati
ally the

orre
tness of a would-be solution. In this
ase, a formal tool may be used to

make a
omparison between the behaviour of the would-be solution model and

the requirement model [Defossez et al 2010℄.

However, at the end of the analysis phase, the design pro
ess is expe
ted to

deal with the spe
i�
ation of a valid solution.

Before the exe
ution of the implementation task, a fun
tional validity by an

expert of the domain is interesting. In this
ase, a
ompa
t readable graphi
al

model is useful. High-level Petri nets have both the quality of formal modelling

and language power. When the solution validated by the expert is expressed

with high-level Petri nets, as in [Philippi06℄, then the problem of translation of

this model into an implementation one has to be fa
ed.

This is pre
isely the subje
t of this paper: the problem is to provide a valid

input into the pro
ess of implementation solution building. As the e�
ien
y of

the B pro
ess for produ
ing an implantation is well-known, the translation of

high-level Petri net into abstra
t B ma
hines is really an interesting
hallenge.

3 Petri Net model

Petri nets were developed by C. A. Petri [Petri 1962℄ in order to model
on
epts

of asyn
hronous and
on
urrent a
tions. Petri net theory allows modeller to

spe
ify dynami
 behaviour of a system but also to understand and assess it. In

this se
tion, we start to present the basi
 theory and then we present high-level

Petri nets, and more pre
isely,
oloured Petri Net.

4 Bon P., Collart-Dutilleul S.: From a Solution Model ...

3.1 Pla
e/transition Petri net

Petri nets are used in order to model the behaviour of dis
rete dynami
 systems

[Murata 1989℄. A Petri net is a parti
ular
lass of dire
ted graphs with an initial

state
alled initial marking. A Petri net is a bipartite graph. It has two types of

nodes: pla
es and transitions. Ar
s link only a pla
e to a transition or a transition

to a pla
e. Graphi
ally, transitions are represented by bars or boxes and pla
es

by
ir
les.

The use of elementary Petri nets to model
omplex problems is limited be-

ause of the size of the model. Thereby, in su
h a
ase, it is ne
essary to use

high-level Petri nets. The size of the elementary Petri net is due to the fa
t that

tokens
annot be di�erentiated.

3.2 High-level Petri net

As brie�y mentioned below, in elementary Petri nets token
annot be di�er-

entiated. However, realisti
 modelling often needs to dis
uss the nature and

transformations of tokens. To allow this, high-level Petri net
an be labelled by

a �rst-order language. The tokens be
ome language expressions and transforma-

tions, from one state to another, are des
ribed by formulae labelling transitions.

The marking is a multi-set of tokens and transitions �ring
orresponds to a

multi-sets transformation. In short, high-level Petri nets handle stru
tured to-

kens and are labelled by a �rst-order language. Several forms of high-level Petri

net
an be distinguished. The most
ommon are:

� predi
ates/transitions Petri nets [Genri
h 1987℄, based on �rst-order logi
,

�
oloured Petri nets [Jensen 1992℄, based on a fun
tional language,

� algebrai
 Petri nets [Reisig 1991℄, based on an equational language.

To redu
e the size, modeller
an also use extensions of Petri net as Numeri
al

Petri Nets developed by Symons [Symons 1978℄.

Only the
oloured Petri nets are presented here. But before introdu
ing them,

some basi
 notion must be de�ned. First-order languages and asso
iated de�ni-

tion are now presented.

3.2.1 First-order languages

A language de�nition
onsists in giving a me
hanism of senten
e building using

an alphabet of symbols and assigning a sense to these senten
es.The term lan-

guage syntax is used for senten
e building and semanti
 for sense assigning. In

order to de�ne �rst-order languages intuitively, a
urrent mathemati
al language

is used.

5Bon P., Collart-Dutilleul S.: From a Solution Model ...

Then, let us
onsider a set of symbols of variables, a set of symbols of fun
tions

and a set of symbols of predi
ates. These sets are assumed to be disjoint from ea
h

others. To ea
h symbol of fun
tions (predi
ates), a positive integer
alled arity

is asso
iated. Symbol of
onstants are symbol of fun
tions with an arity equal

to 0. In a �rst-order language, expressions are built re
ursively, from
onstants

and symbols of variables, with symbols of fun
tions. For instan
e, in
urrent

mathemati
al language, 2 ∗ x+ f(y) is an expression built from
onstant 2 and

variables x and y, with fun
tion symbol f (arity 1), + and ∗ (arity 2, in un�xed

notation with a priority of ∗ on +).

Likewise, an atom is built from expressions with symbols of predi
ates. For

example, 2∗x+y > z−3 is an atom built from expressions 2∗x+y and z−3, with

predi
ate symbol > (arity 2, in un�xed notation). Finally, formula is
lassi
ally

built from atoms with quanti�ers ∃ and ∀ and logi
al
onne
tors as
onjun
tion

∧, disjun
tion ∨, negation ,. . . . So, (x = 3) ∨ ∃y((x + y > 2) ∧ (x − y < 3)) is

a formula. An expression is said to be
losed if there is no variable inside and

a formula is
losed if all of its variables are in a quanti�er �eld. For instan
e,

previous formula is not
losed be
ause x is free (i.e. no quanti�ed by an ∃ or a

∀).

The interpretation of a �rst-order language
onsists in:

� asso
iating, to ea
h
onstant, a value in the interpretation domain,

� asso
iating, to ea
h symbol of fun
tion, a value fun
tion in the interpretation

domain,

� asso
iating, to ea
h symbol of predi
ate, a relation (in other words, a boolean

fun
tion).

Then, expressions and formulae are
lassi
ally interpreted. For instan
e, on

the interpretation domain of rationals, with the interpretation of + and ∗ as ad-

dition and multipli
ation, the expression 2∗4+5
an be evaluated as 13. Likewise,

with the interpretation of predi
ates =,< and > as equality and
lassi
al order

relations, formula ∃x∃y((x + y > 2) ∧ (x − y < 3)) is true. Let us note that in-

terpretation depends on the interpretation domain. Formula ∃x(2 ∗ x− 1 = 0) is

true in the rational domain, but false in the integer domain. After that informal

presentation of �rst-order languages, some asso
iated notions are more formally

de�ned.

3.2.2 Notation and terminology

Now, syntax and the interpretation of a �rst-order language are formally de�ned.

De�nition 1. Let V be a set of variables, Ω a set of symbols of fun
tions, and

Π a set of predi
ates. To ea
h predi
ates and symbol of fun
tions, a positive

integer
alled arity is asso
iated.

6 Bon P., Collart-Dutilleul S.: From a Solution Model ...

(i) The
ouple (Ω,Π) is
alled a signature.

(ii) An expression (or term) V built on Ω is:

� an arity 0 fun
tion (i.e. a
onstant),

� a variable v from V ,

� a
onstru
tion f(e1, ..., en) where f is a fun
tion symbol with arity n

and e1, ..., en are expressions.

The set of expressions L is
alled an algebra. An expression without vari-

ables is said to be
losed.

(iii) An atom built on (L,Π) is a
onstru
tion p(e1, ..., en) where p is a pred-

i
ate symbol with arity n and e1, ..., en are expressions. An atom without

variables is said to be
losed.

(iv) A formula is either:

� an atom,

� a
onstru
tion (F), F ∧ G,F ∨ G,¬F, F ⇒ G or F ⇔ G where F and

G are formulae,

� a
onstru
tion ∃x(F) or ∀x(F) where x is a variable and F a formula

(where there is no sub-formula as ∃x(G) or ∀x(G))

The set Ψ of formulae is
alled a �rst-order language.

(v) In a
onstru
tion ∃x(F) (resp. ∀x(F)), variable x appearing in F is said to

be linked by the existential (resp. universal) quanti�er. A variable without

any links is said to be free. A formula without free variables is said to be

losed, and a formula without quanti�ers is said to be free.

(vi) A theory T is a set of
losed formulae.

In the following, ex
ept
ontraindi
ation, letters x, y, z, u, v, w denote vari-

ables, a, b, d values, f, g, h fun
tion symbols, p, q predi
ate symbols, e, c expres-

sions, A,B,C atoms and F,G formulae.

The substitution notion is also often used in the theory of de
larative lan-

guage. This notion is also useful to interpret expressions with non-expli
itly

quanti�ed variables. Intuitively, a substitution
onsists in repla
ing a variable

with an expression. Formally, it is de�ned as follows:

De�nition 2.

(i) A substitution σ = [x1/e1, ..., xn/en] is an appli
ation from the set of vari-

ables V to the set of expressions L as:

7Bon P., Collart-Dutilleul S.: From a Solution Model ...

� σ(xi) = ei for i = 1, ..., n,

� σ(v) = v for all others variables.

(ii) The substitution notion is extended to an endomorphism on the set of

expressions, more formally: σ(f(e1, ..., en)) = f(σ(e1), ..., σ(en)).

(iii) The
omposition σ1 ◦ σ2 of two substitutions is de�ned by (σ1 ◦ σ2)(e) =

σ1(σ2(e)).

(iv) The appli
ation of the substitution to a free formula is de�ned as:

� σ(p(e1, ..., en)) = p(σ(e1), ..., σ(en))

� σ(¬F) = ¬σ(F)

� σ(F op G) = σ(F) op σ(G) where op is one of these boolean operators

∧, ∨, ⇒, ⇔

(v) A substitution η = [x/a] where a is a
onstant is
alled assignation (or

valuation).

(vi) A substitution α = [x/v] where v is a variable is
alled renaming.

(vii) The appli
ation of an assignation η = [x/a] to a quanti�ed formula repla
es

all free o

urren
es of x by a :

� η(∃x(F)) = ∃x(F)

� η(∃v(F)) = ∃v(η(F)) for ea
h variable v di�erent of x

� same for ∀.

After these de�nitions,
oloured Petri nets
an be de�ned.

3.2.3 Coloured Petri nets

A
oloured Petri net [Jensen 1992℄ is a
lassi
al Petri net with a set of
olours

in order to distinguish tokens. The expression power of this type of Petri net

allows us to model real systems. Coloured Petri nets are based on a fun
tional

language, where the typing notion is very important. Then, a type, limited to

a �nite set, is asso
iated to ea
h pla
e. This type is
alled
olour of the pla
e.

So,
oloured Petri nets are based on a typed �rst-order language. There is a set

of domains, and symbols of fun
tions are interpreted as fun
tions of values in

these domains. It is important to noti
e that a
oloured Petri net
an always be

unfolded into a pla
e/transition Petri net. The formal de�nition of a
oloured

Petri net is given below:

8 Bon P., Collart-Dutilleul S.: From a Solution Model ...

De�nition 3. A
oloured Petri net is a tuple CPN = (Σ,P, T,A,N,C,G,E, I)

as

(i) Σ non-empty and �nite set of types,
alled
olours,

(ii) P is a �nite set of pla
es,

(iii) T is a �nite set of transitions,

(iv) A is a �nite set of ar
s, as: P ∩ T = P ∩ A = T ∩ A = ∅,

(v) N is the node fun
tion, de�ned from A to P × T ∪ T × P ,

(vi) C is the
olor fun
tion, de�ned from P to Σ,

(vii) G is the guard fun
tion, de�ned, from P to expressions, as:

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],

(viii) E is an expression of ar
s fun
tion, de�ned from A to expressions, as:

∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

where p(a) is a pla
e of N(a),

(ix) I is an initialisation fun
tion, de�ned from P to
losed expressions, as:

∀p ∈ P : [Type(I(p)) = C(p)MS].

The reader
an refer to [Jensen 1992℄ in order to have more details on the

above de�nition. To de�ne pre
isely
oloured Petri net behaviour, some notions

are mandatory. First, the de�nition of variables and expression is given:

De�nition 4. � ∀t ∈ T : V ar(t) = {v|v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈

V ar(E(a))}.

� ∀(x1, x2) ∈ (P × T ∪ T × P) : E(x1, x2) =
∑

a∈A(x1,x2)

E(a).

V ar(t) is
alled the set of variables of t when E(x1, x2) is
alled the expression

of (x1, x2).

Now, the de�nition of transition link is introdu
ed:

De�nition 5. A transition link t is a fun
tion b de�ned on V ar(t), as:

(i) ∀v ∈ V ar(t) : b(v) ∈ Type(v),

(ii) G(t) < b >, where G(t) < b > is predi
ate denoting the evaluation of the

guard of t by link b.

9Bon P., Collart-Dutilleul S.: From a Solution Model ...

The set of all transition t links is denoted by B(t).

Complementary notions as token, binding element, marking and step are now

de�ned:

De�nition 6. � A token is a
ouple (p, c), where p ∈ P and c ∈ C(p), TE

denotes the set of all tokens.

� A binding element is a
ouple (b, t), where t ∈ T and b ∈ B(t), BE denotes

the set of all binding elements.

� A marking is a multi-set based on TE. The initial markingM0 is the marking

obtained by the evaluation of the initialisation expressions:

∀(p, c) ∈ TE : M0(p, c) = (I(p))(c).

M denotes the set of all marking.

� A step is a non-empty �nite based on BE. Y denotes the set of all steps.

Now, the step validation, whi
h allows us to des
ribe the behaviour of a

oloured Petri net,
an be de�ned:

De�nition 7. A step Y is enabled by a marking M if and only if the following

property is
he
ked:

∀p ∈ P :
∑

(t,b)∈Y

E(p, t) < b >6 M(p).

Let Y be an enabled step for marking M . Then:

� if (t, b) ∈ Y , transition t is enabled for marking M for link b, by extension,

(t, b) is also said to be enabled for M ,

� if (t1, b1), (t2, b2) ∈ Y and (t1, b1) 6= (t2, b2), (t1, b1) and (t2, b2) are
on
ur-

rently enabled, and then t1 and t2 are also
on
urrently enabled,

� if |Y (t)| > 2, then t is itself
on
urrently enabled,

� if Y (t, b) > 2, then (t, b) is itself
on
urrently enabled.

This notion of step allows us to express the possible simultaneity of transition

�ring.

De�nition 8. When a step is enabled, it
an be �red and it then
hanges mark-

ing M1 into M2 as:

∀p ∈ P : M2(p) = (M1(p)−
∑

(t,b)∈Y

E(p, t) < b >) +
∑

(t,b)∈Y

E(t, p) < b >.

The �rst sum represents
onsumed tokens while the se
ond one represents pro-

du
ed tokens. M2 is said to be dire
tly rea
hable from M1 by the o

urren
e of

Y and it is formally noted as follows: M1[Y > M2.

10 Bon P., Collart-Dutilleul S.: From a Solution Model ...

Finally, the notion of �ring sequen
e o

urren
e, whi
h allows us to de�ne

rea
hable marking, is de�ned as follows:

De�nition 9. An o

urren
e of a �nite sequen
e is a sequen
e of markings and

steps noted:

M1[Y1 > M2[Y2 > M3 . . .Mn[Yn > Mn+1

as n ∈ N andMi[Yi > Mi+1 for all i ∈ 1..n.M1 is said to be the start marking and

Mn+1 �nal marking. Positive integer n is said to be the step number of sequen
e

o

urren
e, or also length. In notation, halfway markings
an be omitted:

M1[Y1Y2 . . . Yn > Mn+1

De�nition 10. A marking M ′
is rea
hable from M if and only if there is an

o

urren
e of a �nite sequen
e with M as start marking and M ′
as �nal marking,

i.e. if and only if for n ∈ N, there is a step sequen
e as:

M [Y1Y2 . . . Yn > M ′.

M ′
is said to be rea
hable from M in n steps. The set of all rea
hable markings

from M is denoted [M >.

As mentioned in the beginning of this paragraph, a
oloured Petri net
an

always be unfold into a pla
e/transition Petri net. The equivalen
e rules are not

detailed here, the reader
an refer to [Jensen 1992℄ in order to have them.

3.3 Railway illustration for
oloured Petri nets

In order to illustrate the di�erent tools presented in this paper, a theoreti
al

railway example is used as a
ase study. This example is given by [Genri
h 1991℄.

The
ase study is des
ribed by the general following rules:

1 : Railway network is
omposed of
onse
utive elementary parts,
alled

CdVi with i ∈ [0..6]

2 : trains run in the same tra�
 dire
tion.

Two safety rules are now introdu
ed:

'1 : Two trains
annot be on the same tra
k at the same moment,

'2 : there must be a free tra
k segment between two trains.

Finally, a parti
ular
ase of railway network is
onsidered:

�1 : The railway network is a
losed loop of seven tra
ks, numbered from

0 to 6.

11Bon P., Collart-Dutilleul S.: From a Solution Model ...

Figure 2: S
hemati
 representation of the
ase study

Figure 2 gives a s
hemati
 representation of the
ase study des
ribed below.

The 6 tra
ks are represented, on the �gure, by CdVi with i ∈ [0..6].

In [Genri
h 1991℄, the
ase study is spe
i�ed with an elementary Petri net.

This Petri net is quite heavy: it is
omposed of 21 pla
es, 14 transitions and 84

ar
s. The use of high-level Petri nets is ne
essary to redu
e the size of the model.

In order to do this, two types of token ta and tb, representing the two types of

train, are introdu
ed. The
oloured Petri net of �gure 3 models the theoreti
al

railway example. The initial marking of the Petri net indi
ates that the tra
k 0

is o

upied by a train ta and the tra
k 4 by a train tb (multi-set 1′ta in pla
e

Busy0x and 1′tb in Busy4x). That implies that the markings of the tra
ks 1, 2

and 5 are free (multi-set 1′free in pla
es Free1, Free2 and Free5).

The Petri net
an be redu
ed if the tra
ks are not marked by simple tokens. If

the tra
k numbers are taken into a

ount, a
onsistent simpli�
ation of the net is

possible: overall we obtain a Petri net only
omposed of 2 pla
es and 1 transition

that
an be found in �gure 4. The marking be
omes for one pla
e, numbers

indi
ating the free tra
ks, and for the other,
ouples that indi
ate that one train

is on an identi�ed tra
k. The passage of a train from one tra
k to the next is

modelled by the transition and the guard gives the
ondition to respe
t safety

requirements (
'1 and
'2). The last requirement (
�1) is modelled by markings,

whi
h give tra
ks numbers, and by the transition guard, i = (j − 1) mod 7 and

k = (j + 1) mod 7 whi
h model the
ir
uit.

12 Bon P., Collart-Dutilleul S.: From a Solution Model ...

1`ta Train

Busy0x

1 1`ta

Train

Busy1x

Train

Busy2x

Train

Busy3x

1`tb Train

Busy4x

1 1`tb

Train

Busy5x

Train

Busy6x

Move0_1

Move1_2

Move2_3

Move3_4

Move4_5

Move5_6

Move6_0

Ar
1 Ar
2

Ar
3

Ar
4

Ar
5

Ar
6

Ar
7

Ar
8

Ar
9Ar
10

Ar
11

Ar
12

Ar
13

Ar
14

CdV

Free0

1`free

CdV

Free1

1 1`free

1`free

CdV

Free2

1 1`free

CdV

Free3

CdV

Free4

1`free

CdV

Free5

1 1`free

CdVFree6

Ar
15

Ar
16

Ar
17

Ar
18

Ar
19

Ar
20

Ar
21Ar
22

Ar
23

Ar
24

Ar
25

Ar
26

Ar
27

Ar
28

y

x

Color Train = with ta | tb

Color CdV = with free

var x : Train

var y : CdV

Figure 3: Coloured Petri net model of railway
ase study

1`<0,ta>

1`<4,tb> CdV × Train

Busy

2 1`<0,ta> + 1`<4,tb>

1`<1>

1`<2>

1`<5> CdV

Free

3 1`<1> + 1`<2> + 1`<5>

Moving

i = (j − 1) mod 7

k = (j + 1) mod 7

(j,x)

(k,x)

k

i

Color Train = with ta | tb

Color CdV = with 0 | 1 | 2 | 3 | 4 | 5 | 6

var x : Train

var i : CdV

var j : CdV

var k : CdV

Figure 4: Simpli�ed
olored Petri net model of the
ase study

13Bon P., Collart-Dutilleul S.: From a Solution Model ...

4 B method

The B method, whi
h was developed by Jean-Raymond Abrial [Abrial 1996℄, is

a formal model-oriented method su
h as Z and V DM . These methods are based

on two
omplementary models: the stati
 one des
ribes the system entities and

their asso
iated states, and the dynami
 model des
ribes allowed
hanges of

state by a
tions de�ned on entities. The dynami
 model allows us to des
ribe

properties whi
h have to be
he
ked before and after a
tion. These properties

are expressed by
lassi
al logi
 predi
ates on entities and states. In a spe
i-

�
ation based on models, the system state is des
ribed by the set of
ouples

(predi
ates,expressions) where the predi
ate set models the stati
 aspe
t. The

des
ription of state
hanges models the dynami
 aspe
t. Models are built with

three
hara
teristi
 elements:

� pre-
ondition is de�ned by the set of states from whi
h the state
hange

is allowed,

� operation is
omposed of the list of modi�
ations to
ouples (predi
ate,

expression),

� post-
ondition
hara
terises valid states as ensuing from
hanges.

These notions are
ommon for formal model-oriented methods. Nevertheless,

in B notation, the notion of substitution repla
es the notion of pre and post
on-

dition [Abrial 1996℄. B also di�ers be
ause it integrates the
on
ept of re�nement

whi
h makes in
remental development from the spe
i�
ations to the
ode possi-

ble in a single formalism. This formalism is
alled the abstra
t ma
hine notation.

Proof obligations are generated at ea
h stage of the B development pro
ess in

order to guarantee the validity of the re�nement and the abstra
t ma
hine.

As a result, it is able to manage strong design
onstraints applied to rail

systems, su
h as CENELEC standards. Moreover, the B method seems to be an

e�
ient method in the industrial world for railway
riti
al software development,

su
h as METEOR ([Behm et al 1999℄, [DaSilva et al 1992℄).

4.1 Abstra
t ma
hine notation

Modelling of data and their properties is based, in B language, on mathemati
al

notation, essentially on the set theory. However, in the B set theory, the notion

of typing is introdu
ed. All the elements of a set are the same type. The prin
ipal

data stru
tures available are: sets, binary relations between sets, fun
tions from

one set to another and ordered lists of elements of a set. It
an be noted that,

in B, properties are expressed by formulae from
al
ulus of �rst-order predi
ate

with equality. That means the B language builds their predi
ates with
lassi
al

14 Bon P., Collart-Dutilleul S.: From a Solution Model ...

propositional operators (and (∧), or (∨) . . .), but also with equality operator

and quanti�ed variables (∃x.P and ∀x.P).

The abstra
t ma
hine (�gure 5) is the basi
 element of a B development. It

models a system des
ribed by a set of data or variables and by the operations as-

so
iated that modify their state or their value. An abstra
t ma
hine is
omposed

of:

� statements of data:

• parameters,

• variables,

•
onstants,

� an invariant, whi
h
onsists in a predi
ate on the previously de
lared ele-

ments and gives their types,

� a de�nition of the initial state,

� operations that de�ne the a
tions modelling the state
hanges.

Then, an abstra
t ma
hine models the behaviour of the spe
i�ed system.

Afterwards, this model is re�ned. An abstra
t ma
hine is
omposed of di�er-

ent
lauses representing the data of the spe
i�ed system. In B,
onstants and

sets represent un
hanging data of the system. Ea
h ma
hine is de�ned by its

name and
an have parameters. The logi
 properties on these parameters are

spe
i�ed in the
lause CONSTRAINTS. The sets (reps. the
onstants) are

spe
i�ed in the
lause SETS (resp. CONSTANTS) and their logi
al proper-

ties in the
lause PROPERTIES. The
lause VARIABLES gives ma
hine

variables whi
h represent variable elements of the system. As
onstants, vari-

ables are de�ned by a
onjun
tion of predi
ates in
lause INVARIANT. This

lause gives the properties that the values of the variables have to satisfy at any

time. Finally, variables are valued in the
lause INITIALISATION.

In B language, there is an expli
it
lause,
alled DEFINITION, to spe
ify

some abbreviations.

De�nition 11. A de�nition introdu
es an abbreviation, eventually with param-

eters, for a predi
ate, an expression or a substitution. A de�nition
an be used

in other
lauses of the
omponent. Ea
h use of a de�nition is repla
ed by the

orresponding text, where formal parameters take the pla
e of real parameters.

A de�nition
an only be used in the
omponent where it is de�ned.

Now, the stati
 part of a system
an be modelled. The dynami
 one is spe
-

i�ed by operations whi
h
orrespond to a
tions to be performed by the system.

In the operations, another fundamental notion of B language is used: the notion

of generalised substitution.

15Bon P., Collart-Dutilleul S.: From a Solution Model ...

4.2 Generalised substitutions

The generalised substitution notation allows us modelling servi
es (a
tions)

whi
h had to be performed by the system. It is a key notion of the B approa
h.

De�nition 12. A generalised substitution is a predi
ate transformer, whi
h,

when it is applied to predi
ates
hara
terising data before a given servi
e a
tiva-

tion, produ
es the predi
ates
hara
terising data after the servi
e a
hievement.

In other words, if S is a substitution and P a predi
ate, then S[P] is the

predi
ate obtained applying S to P .

The generalised substitutions are an extension of the elementary substitution

de�ned as follows:

De�nition 13. if x is a variable and e is an expression, then the elementary

substitution x := e, applied to a predi
ate P , transforms P in a predi
ate P ′
,

obtained by substituting e to all free o

urren
es of x in P .

The reader
an �nd all the substitutions, used in the B language, and their

des
ription in [Abrial 1996℄ and [Lano 1996℄.

4.3 Re�nement and implementation

As mentioned before, the B method uses the
on
ept of re�nement whi
h pro-

vides in
remental development from the spe
i�
ations to the
ode in a single

formalism. The re�nement pro
ess is the set of su

essive transformations of the

initial model. These transformations are made in order to put in
on
rete form

the manipulated stru
tures and solve indeterminism in order to obtain a soft-

ware written in a
ommon programming language. There
an be several levels

of re�nement and the last one is
alled implementation.

Figure 5 gives a view of a re�nement N from an abstra
t M and the di�er-

en
es between the two
omponents.

Finally, the B method
an be pro
essed by using tools

1

whi
h allow us to

generate automati
ally the proof obligations for ea
h abstra
t ma
hine. At the

last re�nement,
alled the implementation, we obtain a safe software.

1
two software platforms are available and give a set of automati
 tools in order to

develop real systems:

� the Atelier B, http://www.atelierb.eu/

� the B-Toolkit, http://www.b-
ore.
om/btoolkit.html

16 Bon P., Collart-Dutilleul S.: From a Solution Model ...

MACHINE M(p)
CONSTRAINTS

C
SETS

St
CONSTANTS

k
PROPERTIES

B
VARIABLES

v
DEFINITIONS

D
INVARIANT

I
INITIALISATION

T
OPERATIONS

y <� op(x) =

PRE P
THEN

S
END

. . .

END

REFINEMENT N
REFINES

M
SETS

St1
CONSTANTS

k1
PROPERTIES

B1
VARIABLES

w
DEFINITION

D1
INVARIANT

J
INITIALISATION

T1
OPERATIONS

y <� op(x) =

PRE P1
THEN

S1
END

. . .

END

Figure 5: "Generi
" abstra
t ma
hine and its re�nement

5 Transformation by
onstru
tion

Now, a transformation algorithm is applied to the Petri net model in order to

translate it into a B abstra
t ma
hine. The proposed approa
h begins by build-

ing the abstra
t ma
hine
orresponding to the
onsidered Petri net model. The

se
ond step adds some
omplementary information ensuing from the stru
ture.

Finally, the behavioural properties of the Petri net model are introdu
ed in the

B ma
hine [Bon 2000℄.

5.1 Multi-set spe
i�
ation

As high-level Petri nets marking
orresponds to a multi-set, a preliminary task

is dedi
ated to the spe
i�
ation of multi-sets. This part does not de�ne all the

properties asso
iated with multi-set. The reader
an refer to [Bon 2000℄ to have

more information.

In B, for typing reasons, it is not possible to de�ne an abstra
t ma
hine

whi
h takes into a

ount all types of multi-sets. So, multi-sets and their asso
i-

ated properties and operations are spe
i�ed with parametrised de�nitions. These

de�nitions have to be in
luded as ne
essary. Figure 6 gives the abstra
t ma
hine,

only
omposed of B de�nitions, spe
ifying multi-sets.

17Bon P., Collart-Dutilleul S.: From a Solution Model ...

MACHINE Multiset
DEFINITION

Ms(ss) == ss ↔ NAT ;
Ms_Empty(ss) == {elt|elt : ss× {0}}

Ms_In(elt,ms, ss) == ∃n.(n ∈ NAT1 ∧ (elt 7→ n) ∈ ms)
Ms_Subset(ms1,ms2, ss) == ∀elt.(Ms_In(elt,ms1, ss)

⇒ ms1(elt) > ms2(elt))
Ms_Add(ms1,ms2, ss) == λee.(ee ∈ ss|ms1(ee) +ms2(ee)
Ms_Less(ms1,ms2, ss) == λee.(ee ∈ ss|ms1(ee)−ms2(ee)

END

Figure 6: Abstra
t spe
i�
ation of multi-sets and their asso
iated properties and oper-

ations

Then the stru
ture and properties to be ful�lled by the Petri nets
omponent

are presented.

5.2 Systemati
 transformation from a Petri net into an abstra
t B

ma
hine

First, the translation of the stru
tural aspe
ts of the Petri net model is des
ribed.

A state variable
orrespond to ea
h pla
e of the Petri net.

Then, the translation of a Petri net transition into a B operation is imple-

mented. This transformation takes into a

ount the fa
t that the impa
t of an

operation on the state variable is the same as the
orresponding transition �ring.

5.2.1 Petri net stru
ture transformation

A ma
hine des
ribes the stru
ture of the Petri net modelling the
onsidered

system. It seems to be natural to translate the marking of ea
h pla
e by a state

variable of the B abstra
t ma
hine. As the marking is a multi-set of tokens and a

token is a t-uple
omposed of s elements whi
h are the
olours of this pla
e. For

ea
h pla
e p a state variable State_p is produ
ed. This variable is de�ned as a

multi-set based on the
olor ColorF_p asso
iated to the pla
e p. Consequently

for ea
h pla
e p the following s
heme is introdu
ed:

VARIABLES

State_p

INVARIANT

State_p ∈ MS(ColorF_p)

As there are two di�erent pla
es on the
onsidered railway example, it
or-

responds to:

18 Bon P., Collart-Dutilleul S.: From a Solution Model ...

VARIABLES

State_Busy,

State_Free

INVARIANT

State_Busy ∈ MS(ColorF_Busy)

∧ State_Free ∈ MS(ColorF_Free)

It
an be noti
ed that, as the �rst part of translation shows, the transforma-

tion
onsists of a simple syntaxi
al transformation from Petri net labels into B

language. From the stru
tural de�nition of a
oloured Petri net, a transformation

rule is applied. The previous part
orrespond to:

(i) Σ is a non-empty �nite set of types,
alled
olors

(ii) P is a �nite set of pla
es

(iii) T is a �nite set of transitions

(iv) A is a �nite set of ar
s, as: P ∩ T = P ∩ A = T ∩ A = ∅,

(v) N the node fun
tion de�ned from A to P × T ∪ T × P

(vi) C is the
olor fun
tion de�ned from P to Σ

(vii) G is the guard fun
tion de�ned from P to expressions as:

∀t ∈ T : [Type(G(t)) = B ∧ Type(V ar(G(t))) ⊆ Σ],

(viii) E is an expression of ar
s fun
tion de�ned from A to expressions as:

∀a ∈ A : [Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ]

(ix) I an initialisation fun
tion de�ned from P to
losed expressions as:

∀p ∈ P : [Type(I(p)) = C(p)MS].

To ea
h
olor from Σ, a type of the abstra
t ma
hine is asso
iated. In the
ase

study, the set of trains is enumerated and tra
ks are de�ned with an abstra
tion

from naturals:

MACHINE RdPtrain

INCLUDES Multiset

SETS

Trains = {ta, tb}

CONSTANTS

CdV

PROPERTIES CdV = {elt|elt ∈ NAT ∧ elt > 0 ∧ elt 6 6}

. . .

19Bon P., Collart-Dutilleul S.: From a Solution Model ...

Sets P ,T and A and fun
tion N do not expli
itly appear in the abstra
t

ma
hine. In fa
t, the aim of this transformation is to
apture the behaviour

of the model and not the stru
ture. In order to simplify the translation, the

stru
ture is not translated.

Fun
tions C, G and E are spe
i�ed by means of B de�nitions and, �nally,

the fun
tion I is spe
i�ed in the INITIALISATION
lause.

5.2.2 Behaviour transformation

The aim of this translation is essentially to
apture the behaviour of the system.

Before spe
ifying the behaviour, some information on transition variables has

to be introdu
ed. The set of variables asso
iated to a transition is
omposed by

variables appearing in the transition guard and variables used by expression of

ar
s linked to the transition:

∀t ∈ T : V ar(t) = {v|v ∈ V ar(G(t)) ∨ ∃a ∈ A : v ∈ V ar(E(a))}.

The list of variables is translated into a list of identi�ers. These variables are

typed by means of a de�nition with a typifying predi
ate. To ea
h transition, a

predi
ate Enabled_t denoting the transition t enabling in the
urrent state is

spe
i�ed. In the
ase study, there is only one transition with two input ar
s:

. . .

DEFINITIONS

. . .

Enabled_Moving == ∃V ar_Moving.(
Type_V ar_Moving ∧ Guard_Moving

∧ Ms_Subset(ArcExpr_Free_Moving, State_Free,
Color_Free)

∧ Ms_Subset(ArcExpr_Busy_Moving, State_Busy,
Color_Busy))

. . .

When transition enabling
onditions are spe
i�ed, the operation allowing the

Petri net evolution
an be spe
i�ed. As mentioned in paragraph 3.2.3, the token

onsumption (resp. produ
tion) is equivalent to a subtra
tion (resp. addition) of

multi-sets. So, to ea
h transition, an operation des
ribing the marking evolution

during the transition �ring is spe
i�ed. Finally, �gure 7 gives the translation of

the
oloured Petri net model of the
ase study.

In this se
tion the fundamental theory on whi
h the translation methodology

is based is presented. This translation is illustrated on an elementary railway

example, but the proofs of the transformation are not presented. However, the

mathemati
al aspe
ts of the proof are developed in [Bon 2000℄.

In this
ontribution, the requirement engineering point of view is rather de-

veloped. Considering this last point of view, the most interesting
ontribution is

the possibility of transforming an invariant I to be veri�ed by a Petri net into a

B abstra
t ma
hine invariant. The use of automati
 proof tools asso
iated with

20 Bon P., Collart-Dutilleul S.: From a Solution Model ...

MACHINE RdPtrain

INCLUDES Multiset

SETS Trains = {ta, tb}
CONSTANTS CdV

PROPERTIES CdV = {elt | elt ∈ NAT ∧ elt > 0 ∧ elt 6 6}
DEFINITIONS

Var Moving == i , j , k , x ;

Type Var Moving == i ∈ CdV ∧ j ∈ CdV ∧ k ∈ CdV ∧ x ∈ Trains ;

Guard Moving == i = ((j − 1) mod 7) ∧ (kk = (jj + 1) mod 7) ;

ArcExp Busy Moving == Ms Empty(ColorF Busy) <+ {(jj 7→ xx) 7→ 1} ;

ArcExp Free Moving == Ms Empty(ColorF Free) <+ {kk 7→ 1} ;

ArcExp Moving Busy == Ms Empty(ColorF Busy) <+ {(kk 7→ xx) 7→ 1} ;

ArcExp Moving Free == Ms Empty(ColorF Free) <+ {ii 7→ 1}
Var Moving == i , j , k , x ;

Type Var Moving == i ∈ CdV ∧ j ∈ CdV ∧ k ∈ CdV ∧ x ∈ Trains ;

Enabled Moving == ∃Var Moving.(Type Var Moving ∧ Guard Moving

∧ Ms Subset(ArcExpr Free Moving,State Free,Color Free)
∧ Ms Subset(ArcExpr Busy Moving,State Busy,Color Busy))

VARIABLES

State Busy,State Free

INVARIANT

State Busy ∈ MS (ColorF Busy) ∧ State Free ∈ MS (ColorF Free)
INITIALISATION

State Busy := Ms Empty(ColorF Busy) <+ {(0 7→ ta) 7→ 1, (4 7→ tb) 7→ 1}
|| State Free := Ms Empty(ColorF Free) <+ {1 7→ 1, 2 7→ 1, 5 7→ 1}
OPERATIONS

Op Moving =
SELECT Enabled Moving

THEN ANY Var Moving

WHERE

Ms Subset(ArcExpr Busy Moving,State Busy,ColorF Busy)
∧ Ms Subset(ArcExpr Free Moving,State Free,ColorF Free)
∧ Type Var Moving ∧ Guard Moving

THEN

State Busy := Ms Add(Ms Less(State Busy,ArcExpr Busy Moving,

ColorF Busy),ArcExpr Moving Busy,ColorF Busy)
|| State Free := Ms Add(Ms Less(State Free,ArcExpr Free Moving,

ColorF Free),ArcExpr Moving Free,ColorF Free)
END

END

END

Figure 7: Abstra
t ma
hine
orresponding to the �gure 4

the B framework may be of e�
ient assistan
e in this this di�
ult task. Fo
using

on the example des
ribed in this paper, there is a safety requirement forbidding

that a train is on a tra
k dire
tly adja
ent to an o

upied tra
k. This last prop-

erty is di�
ult to verify dire
tly on the Petri net model. The B expression of

this requirement is as follows:

21Bon P., Collart-Dutilleul S.: From a Solution Model ...

∀(i, j). (i ∈ CdV ∧ j ∈ CdV ∧

Ms_In((i 7→ ta), State_Busy, Color_Busy)∧

Ms_In((j 7→ tb), State_Busy, Color_Busy)

⇒ (j − i) mod 7 > 1 ∧ (j − i) mod 7 < 6)

This invariant takes into a

ount that the railway example is
ir
ular and

omposed of 7 tra
ks. The proof of the above invariant, whi
h
an be provided

by the B tools, allow us to
laim the
orre
tness of the Petri net model with

regards to the
onsidered safety requirement. B tools have an asso
iated proving

tool based on Hoare logi
. This tool will generate proof obligations ensuing from

the invariant. In some
ase, the tool has to be assisted by human expert in order

to provide an addi
ted mathemati
al knowledge. Anyway, B tool experts use to

formulate invariants in order to help the proving tool to su

ed.

6 Con
lusion

Motivations of a mixed approa
h based on the use of di�erent modelling tools

in the
ontext of safety requirements engineering is presented in the �rst part of

this paper. This dis
ussion put emphasis on the
riti
al task whi
h ta
kles the

steps to perform from the requirements analysis towards a valid implementation

on a real system. A
tually there is a swit
hing point where implementation

onsiderations are introdu
ed. Pre
isely, at this stage of the design pro
ess, the

paper fo
uses on model transformation. This task may assist the designer on the

way from analysis to implementation. Considering safety requirements in guided

transports, transformation from high-level Petri nets into B abstra
t ma
hines

is
onsidered. This is a way of keeping the same requirements, while swit
hing

points of views. Abstra
t B ma
hines are a valid input of the analysis phase into

the B pro
ess implementation synthesis.

Based on a simple example of se
tion mutual ex
lusion railway problem, the

high-level Petri net model powerfulness is illustrated. Moreover, the s
alability

and
on
iseness of the produ
ed model are explained. Fundamental de�nitions

of both Petri nets and B abstra
t ma
hines are presented in su
h a way that

a systemati
 translation
an be introdu
ed. This translation is presented and

illustrated on the same example.

Now, starting from the example, integrating timetable
onstraints into the

approa
h will provide a problem. From the point of view of the global engineering

pro
ess (�gure 1), de�ning an implementation parameter at the model analysis

step is not
orre
t. It just happens that high-level Petri nets use to handle �nite

domains. This does not
orrespond to the in�nite number of values whi
h
an

be assigned to a
ontinuous variable belonging to an interval.

In the
ase of time
onstraints, the s
ienti�
 literature provides some propo-

sitions introdu
ing some interesting prospe
ts [Bender et al 2008℄.

22 Bon P., Collart-Dutilleul S.: From a Solution Model ...

Moreover, the literature
ontains behavioural analysis results towards gen-

eral
ontinuous parameters [Dhouibi et al 2008℄. The bridge to be built from

the analysis pro
ess towards a valid implementation pro
ess does not only
on-

ern the time parameter. Obviously, informal spe
i�
ations
ontain requirements

on
erning time, positions, dimensions,
osts, speed, et
. They all
orrespond to

values to be exa
tly de�ned at the implementation phase. From a theoreti
al

point of view, dealing with these kind of
onstraints, the path from spe
i�
ation

to implementation seems to exist. However, further resear
h has to be
ondu
ted

onsidering more pra
ti
al aspe
ts.

Referen
es

[Abrial 1996℄ Abrial, J. R.: "The B-Book: Assigning Programs to Meanings", Cam-

bridge University Press, 1996.

[Behm et al 1999℄ Behm P., Benoit P., Faivre A., Meynadier J. M.: "METEOR: A

su

essful appli
ation of B in a large proje
t", in Pro
eedings of FM'99: World

Congress on Formal Methods, pp 369�387, 1999.

[Bender et al 2008℄ Bender D., Combemale B, Crégut X., Farines J. M., Vernadat

F.: "Ladder Metamodeling & PLC Program Validation through Time Petri Nets",

in Fourth European Conferen
e on Model Driven Ar
hite
ture - Foundations and

Appli
ations (ECMDA-FA), Le
ture Notes in Computer S
ien
e (LNCS), volume

5095, pages 121�136, Springer-Verlag, 2008.

[Bon 2000℄ Bon P.: "Du
ahier des
harges aux spé
i�
ations formelles : une méthode

basée sur les réseaux de Petri de haut niveau", Thèse de do
torat, Université des

S
ien
es et Te
hniques de Lille, 2000. In Fren
h

[Collart Dutilleul et al.06℄ Collart Dutilleul S., Defossez F., Bon P.: "Safety require-

ments and p-time Petri nets: a level
rossing
ase study", in IMACS multi
onferen
e

on
omputational engineering in systems appli
ations (CESA), pages 1118�1123,

Bejin, Chine, 2006.

[DaSilva et al 1992℄ DaSilva C., Dehbonei B., Mejia F.: "Formal spe
i�
ation in the

development of industrial appli
ations: The subway speed
ontrol system", in

FORTE'92 ,Pro
eedings of the IFIP TC6/WG6.1 Fifth International Conferen
e on

Formal Des
ription Te
hniques for Distributed Systems and Communi
ation Pro-

to
ols, pages 199�213, 1992.

[De
ler
k and Guezzi 2009℄ DECLERCK P., GUEZZI A.: "Traje
tory Tra
king Con-

trol of a Timed Event Graph with Spe
i�
ations De�ned by a P-time Event Graph",

in Positive Systems: Theory and Appli
ations (POSTA 09), Le
ture Notes in Com-

puter S
ien
e (LNCS), volume 389, Springer-Verlag, 2009.

[Defossez et al 2010℄ Defossez, F., Collart Dutilleul, S., Bon, P.: "A formal model of

requirements", in Open Transportation Journal, 2010, to be published.

[Dhouibi et al 2008℄ Dhouibi H., Collart Dutilleul S., Nabli L., Craye E.: "Using Inter-

val Constrained Petri Nets for Rea
tive Control Design: A toba

o manufa
turing

appli
ation", in the International Journal for Manufa
turing S
ien
e & Produ
tion,

volume 9, number 3-4, pages 217�229, 2008.

[Genri
h 1987℄ Genri
h, H. J.: "Predi
ate/Transition Nets", in Petri Nets: Central

Models and Their Properties, Advan
es in Petri Nets 1986 Part I, Le
ture Notes on

Computer S
ien
e, volume 254, pages 208�247, Springer-Verlag, 1987.

[Genri
h 1991℄ Genri
h, H. J.:
hapter "Predi
ate / Transition Nets", in High-level

Petri Nets, volume 1, pages 3�43, Springer-Verlag, 1991.

[Ghezzi et al 1994℄ Ghezzi C., Moras
a S., Pezzè M.:"Validating timing requirements

for time basi
 net spe
i�
ations", Journal of Systems and Software, volume 27,

number 2, pages 97�117, 1994.

23Bon P., Collart-Dutilleul S.: From a Solution Model ...

[Jensen 1992℄ Jensen, K.: "Coloured Petri Nets - Basi
 Con
epts, Analysis Methods

and Pra
ti
al Use, Vol. 1", Springer-Verlag, 1992, 234p.

[Jensen and Rozenberg 1991℄ Jensen, K., Rozenberg, R.:"High-level Petri nets",

Springer-Verlag, 1991.

[Lano 1996℄ Lano, K: "The B Language and Method : A guide to Pra
ti
al Formal

Development", Springer Verlag London Ltd., 1996.

[Murata 1989℄ Murata T.: "Petri Nets: Properties, Analysis and Appli
ations", Pro-

eedings of the IEEE vol. 77, N°4, pages 541�574, 1989.

[Petri 1962℄ Petri, C. A.: "Kommunikation mit Automaten", PhD Thesis, 1962, Kom-

munikation mit Automaten (in German).

[Philippi06℄ Philippi S.: "Automati

ode generation from highlevel Petri nets for

model driven systems engineering", in Journal of Systems and Software, volume

79, number 10, pp. 1444�1455, 2006.

[Reisig 1991℄ Reisig, W.:
hapter "Petri Nets and Algebrai
 Spe
i�
ation", in High-

level Petri Nets, volume 1, pages 137-170, Springer-Verlag, 1991.

[Sifakis 1977℄ Sifakis, J.: "Petri nets for performan
e evaluation", Measuring, Model-

ing, and Evaluating Computer Systems (Pro
eedings of the 3rd Symposium, IFIP

Working Group 7.3), pages 75�93, 1977.

[Symons 1978℄ Symons, F.J.W.: "Modelling and analysis of
ommuni
ation proto
ols

using Numeri
al Petri Nets", PhD Thesis, Dep. Ele
. Eng. S
i, Univ Essex, Tele
om-

mun. Syst. Group Rep. 152, May 1978.

24 Bon P., Collart-Dutilleul S.: From a Solution Model ...

