
Systematic Evaluation of Software Product Line

Architectures

Edson A. Oliveira Junior and Itana M. S. Gimenes

(State University of Maringá, DIN-UEM, Maringá-PR, Brazil

{edson,itana}@din.uem.br)

José C. Maldonado and Paulo C. Masiero

(University of São Paulo, ICMC-USP, São Carlos-SP, Brazil

{jcmaldon,masiero}@icmc.usp.br)

Leonor Barroca

(The Open University, Milton Keynes, United Kingdom

l.barroca@open.ac.uk)

Abstract: The architecture of a software product line is one of its most important
artifacts as it represents an abstraction of the products that can be generated. It is cru-
cial to evaluate the quality attributes of a product line architecture in order to: increase
the productivity of the product line process and the quality of the products; provide a
means to understand the potential behavior of the products and, consequently, decrease
their time to market; and, improve the handling of the product line variability. The
evaluation of product line architecture can serve as a basis to analyze the managerial
and economical values of a product line for software managers and architects. Most of
the current research on the evaluation of product line architecture does not take into
account metrics directly obtained from UML models and their variabilities; the met-
rics used instead are difficult to be applied in general and to be used for quantitative
analysis. This paper presents a Systematic Evaluation Method for UML-based Soft-
ware Product Line Architecture, the SystEM-PLA. SystEM-PLA differs from current
research as it provides stakeholders with a means to: (i) estimate and analyze potential
products; (ii) use predefined basic UML-based metrics to compose quality attribute
metrics; (iii) perform feasibility and trade-off analysis of a product line architecture
with respect to its quality attributes; and, (iv) make the evaluation of product line
architecture more flexible. An example using the SEI’s Arcade Game Maker (AGM)
product line is presented as a proof of concept, illustrating SystEM-PLA activities.
Metrics for complexity and extensibility quality attributes are defined and used to
perform a trade-off analysis.

Key Words: Quality attributes, metrics, product line architecture evaluation, trade-
off analysis, UML, variability

Category: D.2 (Software Engineering), D.2.11 (Software Architectures)

1 Introduction

A Software Product Line (PL) [Pohl et al. 05, Linden et al. 07] represents a set

of systems sharing common features that satisfy the needs of a particular market

or mission segment. This set of systems is also called a product family. The

family’s members are specific products developed in a systematic way from the

Journal of Universal Computer Science, vol. 19, no. 1 (2013), 25-52
submitted: 1/1/12, accepted: 28/12/12, appeared: 1/1/13  J.UCS

PL core assets. The core assets have a set of common features as well as a

set of variable parts, which represent later design decisions [Pohl et al. 05]. The

composition and the configuration of such assets yield specific products.

The PL architecture (PLA) plays a central role to successfully generate spe-

cific products taking into account the development and evolution of a PL. It

abstractly represents the architecture of all potential PL products from a spe-

cific domain. The PLA addresses the PL design decisions by means of their

similarities, as well as their variabilities [Taylor et al. 09]. Organizations should

continuously evaluate the quality of their products by managing their PL evo-

lution and variabilities. Thus, the PLA evaluation should be taken into con-

sideration as one of the most important activities throughout a PL life cycle

[Linden et al. 07].

Architecture evaluation is an important activity of software design. Informal

evaluations, based on use case scenarios, for instance, are widely performed. How-

ever, most of the time they do not generate accurate results [Linden et al. 07].

Although there are more rigorous and consolidated evaluation methods in the

literature, such as Architecture Tradeoff Analysis Method (ATAM) and Software

Architecture Analysis Method (SAAM) [Clements et al. 02], the evaluation of a

PLA [Pohl et al. 05, Linden et al. 07] requires particular attention due to vari-

ability issues. Such an evaluation should take into account issues such as: the

relevant quality attributes of a PLA; the time when the PLA is evaluated; and the

techniques and metrics used to evaluate the PLA [Etxeberria and Sagardui 08].

The evaluation of a quality attribute-based PLA can be used as a parameter

for evaluating a PL in general [Etxeberria and Sagardui 08]. By trading-off the

PLA quality attributes it is possible for PL managers and architects to prioritize

which quality attribute must be taken into consideration during PLA evolutions.

This occurs because the PLA quality attributes take into account variabilities,

which can be used as a parameter to the quality evaluation of an overall PL. The

evaluation of a PLA also requires a set of basic and quality attribute metrics

that can provide evidence of the PL quality, thus serving as the basis to analyze

the managerial and economical values of a PL [Böckle et al. 04].

This paper presents SystEM-PLA, a Systematic Evaluation Method for

UML-based PLA. SystEM-PLA allows both PLA quality attribute and struc-

tural evaluations based on, respectively, scenarios and metrics. SystEM-PLA

provides a means to perform quantitative and qualitative analysis. The main

contributions of this paper are: (i) provide product line architects with a means

to evaluate an architeture based on metrics and trade-off analysis to prioritize

quality attributes; (ii) allow product line managers to analyze a product line by

means of its produced products and, therefore, take such an analysis as a tool for

return on investment and product line evolution; and (iii) establish a practical

method to perform quantitative and qualitative analysis of product line archite-

26 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

tures, by combining best practices of consolidated techniques, such as, ATAM

and GQM and incorporating product line variability issues partially tackled by

EATAM and HoPLSAA.

This paper is organized as follows: Section 2 analyzes related work; Section 3

introduces SystEM-PLA; and, Section 4 presents the conclusion and directions

for future work.

2 Related Work

SystEM-PLA differs from current approaches in the literature, in that it pro-

vides a means to: (i) estimate and analyze, quantitatively and qualitatively, the

potential PL products that can be generated from a PLA based on its models

and variabilities by correlating quality attributes to variabilities and defining

variability-based scenarios to support trade-off analysis; (ii) allow stakeholders

to instantiate an evaluation meta-process based on guidelines in order to prop-

erly guide the execution of PLA evaluations; (iii) allow the use of predefined

basic metrics and the composition of new metrics for PLA quality attributes;

(iv) apply statistics and combinatorics in order to analyze the feasibility of a

PLA with respect to its quality attributes for a certain domain; and (v) make

PLA evaluations more flexible in order to apply them to different contexts.

[Barbacci et al. 10], [Etxeberria and Sagardui 08] and [Gannod and Lutz 00]

as well as [Dolan et al. 00] and [Riva and Rosso 03] propose approaches for eval-

uating PLA quality attributes. [Gannod and Lutz 00] propose an evaluation

process in which the relationship between quality attributes and variabilities

is described at the ADL level. [Riva and Rosso 03] relate scenarios to qual-

ity attributes to identify architectural problems, such as, architecture evolu-

tion and reconstruction, however they do not take into account variabilities.

[Dolan et al. 00] analyze quality attributes based on the SAAM method to en-

able comparison of competing PLA solutions. [Barbacci et al. 10] do not take

into consideration variabilities to evaluate a PLA based on its quality attributes.

SystEM-PLA does not use an ADL to correlate quality attributes and variabil-

ities as there is no standardization among existing ADLs. SystEM-PLA aims

to evaluate only one PLA solution at once by trading-off its quality attributes,

in contrast to [Dolan et al. 00] approach. It uses variability-based scenarios to

identify and analyze architectural problems, such as, variabilities in components

that are not accurately identified and represented. Therefore, it takes advan-

tage of such scenarios to support the definition of basic and quality attribute

metrics to improve quantitative and qualitative analysis over the collected data.

[Etxeberria and Sagardui 08] propose a feature model extension to evaluate the

quality of a PLA based on its quality attributes. Such a work is limited to only

qualitative analysis by not taking into consideration metrics to quantitatively

measure PLA models and quality attributes.

27Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

PLA structural evaluation has been done by: [Hoek et al. 03], [Rahman 04],

and [Kim et al. 08]. [Hoek et al. 03] present a set of metrics to evaluate a PLA

with regard to its structural soundness quality attribute. [Rahman 04] proposes

a set of metrics to evaluate the component structure of a PLA based on quality

attributes. Both works propose metrics to support the evaluation of a PLA.

However, they do not take into consideration PLA variabilities represented in

PLA models to support quantitative analysis and improve qualitative analysis

as it done in SystEM-PLA. This means that their work does not allow the

analysis of PLA behavior based on variabilities which is interesting to analyze

the PLA return on investment. [Kim et al. 08] present experiences with respect

to PLA evaluation for the consumer electronics domain, based on the static

implementation of product architectures and PLA variabilities, as well as the

representation of quality attributes by using the Product Line Use Case (PLUC)

tag.

Most of the work cited rely on the application or adoption of PLA evaluation

techniques mainly focused on approaches that are able to draw qualitative anal-

ysis; an exception are the metric-related approaches. SystEM-PLA uses both

qualitative and quantitative analysis.

Non-standard representation techniques [Kim et al. 08, Gannod and Lutz 00]

are used in several approaches to state variabilities, scenarios and quality at-

tributes; this makes it difficult to apply to PLs modeled in standard languages

such as UML. SystEM-PLA instead is to be used with PLs modeled with UML.

3 The SystEM-PLA Method

SystEM-PLA aims to evaluate a PLA taking into account the variabilities rep-

resented in its models. It inherits most of its principles from ATAM, Holis-

tic Method for Product Line Architecture Assessment (HoPLSAA), Extended

ATAM (EATAM), and Goal-Question-Metric (GQM). Such techniques do not

need any modification as they only serve as a basis to guide the SystEM-PLA

planning phase proposition (Figure 1).

ATAM [Clements et al. 02] was chosen as it provides SystEM-PLA with

guidelines to identify and define business drivers as well as performing trade-

off of quality attributes. The Software Architecture Analysis Method (SAAM)

[Clements et al. 02] is not encompassed by SystEM-PLA as such a method is

only focused on modifiability with extensions to testing and non-functional as-

pects. In addition, only ATAM can be exploited in order to incorporate vari-

ability analysis as the EATAM approach proposes. HoPLSAA [Olumofin 07]

combined with EATAM [Kim et al. 08] provides directions on how to define

quality attributes taking into consideration PL variabilities and how to analyze

qualitatively variation points to perform PLA evaluations. EATAM provides

28 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

SystEM-PLA with variability scenarios for the support of trade-off analysis.

GQM [Basili and Rombach 88] supports SystEM-PLA with questions, based on

the PLA business drivers, for defining and collecting PLA quality attributes

metrics. It also contributes to improve the PL metrics identification for an ap-

propriated trade-off analysis. This approach provides a means to rationale the

metrics defined for PL architecture evaluations based on the business goals of a

PL, defined by the ATAM/EATAM approaches combination. Such metrics serve

as input to data analysis. PLA quality attributes are analyzed to validate both

the business drivers defined for a PLA and accuracy of modeled variabilities for

a certain domain. In addition, SystEM-PLA can be used in a “what-if” basis to

analyze design alternatives, by providing support to make decisions and analyze

trade-offs that affect the PL products to be developed.

SystEM-PLA is considered as part of the PL development activities. It has

three distinct phases as shown in Figure 1 - Planning, Data Collection, and

Data Analysis and Reporting - which are supported by specific guidelines

(Section 3.2). These phases are described as follows:

�����

����	
���
�	���
��

��	
�����������
��	
�
�

�
�� �����

������

	
��
��
�
�

�
�������

�

���

	
�������
������������	�

�����

������
����	���

������	
�������

�
��

������

	
�

��
�
�

�����

Figure 1: The SystEM-PLA Phases.

– The Planning Phase is concerned with instantiating the Evaluation Meta-

Process (EMP) (Section 3.1). It has as inputs the feature model of the PL,

as well as the PL models specified in UML including, at least, the class and

component models of the PLA.

– The Data Collection Phase consists of conducting a PLA evaluation by

generating PLA configurations. The basic metric suite (Section 3.3) and

metrics defined for quality attributes are applied to these configurations to

collect data. It has as input the defined EMP’s artifacts (Section 3.1) for a

PLA evaluation, and as outputs the generated PLA configurations and the

data collected from metrics.

29Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

– The Data Analysis and Reporting Phase interprets in a qualitative and/

or quantitative basis in order to perform trade-off analysis and provide em-

pirical evidences with regard to the PLA as well as prioritizing evaluated

quality attributes.

3.1 The Evaluation Meta-Process (EMP)

EMP aims to define artifacts that will allow the execution of a PLA evaluation

and the selection of the PLA quality attribute(s) to be evaluated; the defini-

tion of the managerial and technical questions to be answered with respect to

the selected quality attributes; the definition of the quality attribute metrics to

support the data collection and data analysis phases. The meta-process takes as

input the logical view of a PLA, the PL feature model (FM) and its UML models.

Figure 2 presents a UML activity diagram, which represents the EMP’s activities

(rounded rectangles) and their inputs and outputs (squared rectangles).

The following items present a brief description of each EMP’s activity, which

are performed based on the planning guidelines (Section 3.2.1):

Business Drivers Definition takes as input the PL Models and the PLA

Quality Attributes, and defines the Business Drivers that a PLA should

reach to develop its products. The defined business drivers support the defini-

tion of scenarios and managerial and technical questions. Although the business

drivers definition activity is based on the ATAM method [Clements et al. 02],

it is concerned with the PLA business drivers rather than the single product’s

architecture business drivers. It, therefore, requires using the modeled PL vari-

abilities.

Scenarios Definition takes as input the Business Drivers, Feature Model,

and PLA Quality Attributes. It generates the Defined Scenarios for each

PLA quality attribute to support its selection activity.

Scenarios Ranking takes as input the Defined Scenarios in order to

rank them based on PLA factors (Section 3.2.1). It generates as output Ranked

Scenarios.

Scenario-based Quality Attributes Selection takes as input the Ranked

Scenarios and selects which quality attributes will be evaluated for a certain

PLA. Its output is a set of Selected Quality Attributes, which is a subset

of the Quality Attributes set.

Managerial and Technical Questions Definition takes as input the

Business Drivers, Feature Model, and Selected Quality Attributes. It

defines the Managerial and Technical Questions that will be answered by

defining metrics to support the data collection and analysis. Such questions are

defined with regard to the PLA business drivers, and they take into account the

roles involved in the PL process as in [Chastek and Ferguson 06].

30 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Ranked Scenarios (RS)

Scenarios Ranking

Scenarios Definition

Quality Attributes (QA)PL Models (PLM)

Business Drivers Definition

Start

ad: The E aluation Meta-Pro e

End

Quality Attributes Metrics (QAM)

Managerial and Technical Questions Definition

Managerial and Technical Questions (MTQ)

Metrics Definition

Selected Quality Attributes (SQA)

Scenario-based Quality Attributes Selection

Business Drivers (BD)

Defined Scenarios (DS)

Feature Model (FM)

Figure 2: The Evaluation Meta-Process (EMP).

Metrics Definition: takes as input the PL Models, Selected Quality

Attributes and the Managerial and Technical Questions. It defines Quality

Attributes Metrics to answer such questions and to support data collection

and quantitative analysis in PLA evaluations.

31Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Arcade Game Maker (AGM)

services rules configuration

BowlingBrickles Pongplay pause save movement collision

action

Legend:

Mandatory Feature

Optional Feature

Alternative Feature

Figure 3: The Arcade Game Maker Feature Model.

3.2 SystEM-PLA Evaluation Guidelines

This section presents excerpts of the evaluation guidelines, which SystEM-PLA

users must follow in order to properly perform PLA evaluations in a systematic

way. Such guidelines are illustrated with the Arcade Game Maker (AGM) PL

[SEI 10]. The AGM PL was created by the Software Engineering Institute (SEI)

to support learning and experimenting based on PL concepts. It has a com-

plete set of documents and UML models, as well as a set of tested classes and

source code for three different games: Pong, Bowling, and Brickles. For the illus-

tration purpose we only take into account complexity and extensibility quality

attributes. However, the user can come up with additional quality attributes.

The essential AGM models are: the feature model, the use case model, the

class model, and the component model. The feature model, presented in Fig-

ure 3, is concerned with four top-level features for AGM products, which are:

services, rules, configuration, and action. The other models were adapted

from the original SEI’s models to represent variabilities by applying a set of

stereotypes defined by the SMarty (Systematic Management of Variability in

UML-based Software Product Lines) approach [Oliveira Junior et al. 10]. Basi-

cally, variation points are tagged with ≪variationPoint≫, and variants are

tagged with one of the following: ≪mandatory≫, the variant appears in ev-

ery PL product; ≪alternative OR≫, one or more variants must be selected;

≪alternative XOR≫, one variant must be selected; and ≪optional≫, a vari-

ant might be or not present in a PL product.

Use cases can be traced from the AGM features. The AGM use case model

(Figure 4) has a mandatory variation point Play Selected Game. It has three

inclusive variants, which are: Play Brickles, Play Pong, and Play Bowling.

The AGM use case model also has two optional use cases Check Previous Best

32 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Score and Save Score with respective variabilities. The selection of the former

use case forces the selection of the latter due to the ≪requires≫ constraint.

The other use cases and the actors are mandatory variants.

<<variability>>

name = "play game"

minSelection = 1

maxSelection = 3

bindingTime = DESIGN_TIME

allowsAddingVar = true

variants = {Play Brickels,

 Play Pong, Play Bowling}

<<variability>>

name = "save score"

minSelection = 0

maxSelection = 1

bindingTime =

 DESIGN_TIME

allowsAddingVar = true

variants = {Save Score}

<<variability>>

name = "check score"

minSelection = 0

maxSelection = 1

bindingTime = DESIGN_TIME

allowsAddingVar = true

variants = {Check Previous

Best Score}

<< mandatory >>

Animation Loop

<< mandatory >>

Initialization

<< mandatory >>

Install Game

<< mandatory >>

Uninstall Game

<< optional >>

Check Previous Best Score

<< alternative_OR >>

Play Bowling

<< alternative_OR >>

Play Pong<< alternative_OR >>

Play Brickles

<< mandatory , variationPoint >>

Play Selected Game

Extension Points

initialization_ext_point:

animation_ext_point:

<< mandatory >>

Exit Game

<< optional >>

Save Score

<< mandatory >>

Save Game
<< mandatory >>

GameInstaller

<< mandatory >>

GamePlayer

ud: AGM - Use Case Model

<< include >>

<< include >>

<< include >>
<< include >>

<< include >>

<< include >>

<< extend >> << extend >> << extend >>

<< requires >>

Figure 4: Arcade Game Maker Use Case Model and its Variabilities.

The AGM class model (Figure 5a) is traced from the realization of the AGM

use cases. It has a mandatory variation point, the abstract class GameSprite,

which has the alternative variants MovableSprite and StationarySprite. The

former variant is also a variation point, which has the alternative variants Puck

and Paddle. The AGM core asset class model also has two optional variants:

Wall and SpritePair. The other classes are mandatory variants of the AGM

core asset class model.

As the AGM core asset classes have explicit variabilities and they form the

basis of the component Game in the AGM component model (Figure 5b),

such a component is stereotyped as ≪variable≫. The other components of

33Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

(a) Component Internal View.

(b) Architecture Logical View.

Figure 5: Arcade Game Maker Structural Views.

the model are non-variable components, with no variability-concern stereotype

indication.

34 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

3.2.1 Planning Guidelines

The following planning guidelines must be taken to perform each EMP activity

(Section 3.1):

1. Define business drivers (if it has not been done): the user must define

properly PLA business drivers by following his/her own strategy or based

on the ATAM business driver definition as described by [Clements et al. 02]

taking as inputs the PL models and the PL quality attributes (see Figure

2). For our AGM example, we defined the following business drivers based

on [Olumofin 07] and [Kim et al. 08] experiences:

– BD.1 - keep game complexity degree lower than 0.7 (70%),

compared to the overall PLA complexity, for at least 50% of

produced products: uphold low maintainability and low cost rates by

focusing on complexity. Complexity degrees can provide an indicator of

how difficult is to maintain the products derived from a PLA. Thus, the

harder is to maintain a product, the higher is its cost.

– BD.2 - keep game extensibility degree higher than 0.75 (75%),

compared to the overall PLA extensibility, for at least 50% of

produced products: maintain high reuse rate by focusing on extensi-

bility. Extensibility factors can provide an indicator of how reusable is a

product in terms of its components. The more extensible is a component,

the higher is its reusability rate.

2. Define scenarios for the quality attributes: the user must define sce-

narios for each PLA quality attribute by following his/her own strategy or

the ATAM scenarios definition activity as described by [Barbacci et al. 10]

and [Clements et al. 02]. Such scenarios definition must take into account the

feature model, defined business drivers, and PLA quality attributes. Each de-

fined scenario must explicitly indicate the selected quality attribute it affects

and the scenarios description. In addition, the scenarios must be represented

in a utility tree to facilitate their prioritizing and presentation, respectively,

the related top-level features, and sub-features. Features support the scenar-

ios specification by linking a business driver to one or more scenarios. For

instance, the AGM top-level features services, rules, and actions are related

to the scenarios of the business driver BD.1. Table 1 and Table 2 present the

utility trees for the complexity and extensibility defined scenarios.

3. Rank scenarios: the user must rank, as High (H), Medium (M), or Low (L),

each defined scenario by taking into account the following concern attributes:

its overall importance for the PLA and its business drivers; the generality

of the scenario with respect to the PLA. It is ranked as mandatory (High),

35Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 1: AGM Defined Scenarios for Complexity.

AGM - Quality Attribute Utility Tree

Quality Attribute Complexity

Related Feature(s) services, rules, actions

Related Business Driver(s)
BD.1: keep game complexity degree lower than 0.7 (70%), compared to the overall

PLA complexity, for at least 50% of produced products

Sc.1
Variation points and/or variants are added, modified, or removed maintaining

the BD.1 true.

Sc.2 50% of variabilities are removed maintaining the BD.1 true. Scenario(s)

Sc.3
One-game environments have complexity values at most 0.65 (65%)

compared to the overall AGM PLA complexity.

Table 2: AGM Defined Scenarios for Extensibility.

AGM - Quality Attribute Utility Tree

Quality Attribute Extensibility

Related Feature(s) services, rules, actions

Related Business Driver(s)
BD.2: keep game extensibility degree higher than 0.75 (75%), compared to the

overall PLA extensibility, for at least 50% of produced products

Sc.4
Variation points and/or variants are added, modified, or removed

maintaining the BD.2 true.

Sc.5 50% of variabilities are removed maintaining the BD.2 true. Scenario(s)

Sc.6
Two-game environments have extensibility values at least 0.8 (80%)

compared to the overall AGM PLA extensibility.

alternative (Medium), and optional (Low) as in [Olumofin 07]; its cost/risk,

i.e., the effort involved in providing proper responses to the scenarios, as well

as its perceived risk; and the number of variability, encompassed by a

scenario.

Table 3 presents the complexity and extensibility quality attribute scenario

ranking for our AGM illustration.

4. Select quality attributes based on ranked scenarios: as the scenarios

are ranked, the user must select the quality attributes by defining a strat-

egy. A widely known used strategy is the voting system as in the ATAM

method [Barbacci et al. 10], [Clements et al. 02]. However, the user can de-

fine his/her own way to select the quality attributes to be evaluated, as long

as the definition avoids quality attribute conflicts [Barbacci et al. 10] that

might impair the evaluation results. For the AGM example, we selected the

scenarios based on the following analysis:

– scenarios Sc.1, Sc.4 and Sc.5 have high number of variability and overall

36 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 3: AGM Complexity and Extensibility Scenarios Ranking.

Business Drivers BD.1 BD.2

Quality Attributes Complexity Extensibility

Scenarios Sc.1 Sc.2 Sc.3 Sc.4 Sc.5 Sc.6

H X X X X X

M X
Overall

Importance
L

H X X

M X X Generality

L X X

H X X

M X XCost/Risk

L X X

H X X X X X

M X

S
ce

n
a

ri
o
s

R
a

n
k

in
g

Number of

Variability
L

importance to the PLA. In addition, such scenarios are mandatory to

the AGM PLA with medium cost/risk;

– scenario Sc.6 also has the same ranking for amount of variability and

overall importance, as well as a low cost/risk and it is optional;

– scenario Sc.2 has a high amount of variability and cost/risk to the AGM

PLA. In addition, it has a medium importance to the PLA and it is

alternative; and

– scenario Sc.3 is alternative and it has high importance to the AGM PLA.

It also has a low cost/risk and amount of variabilities.

Thus, scenarios Sc.1, Sc.4 and Sc.5 (Table 4) are the most important for

the AGM PL. Sc.1 is related to the business driver BD.1, whereas Sc.4

and Sc.5 are related to the business driver BD.2. Therefore, complexity and

extensibility quality attributes were selected. In a more complex example

involving a larger set of quality attributes, the selected attributes are usually

a subset of the initial set.

5. Define managerial and technical questions: the user must use the busi-

ness drivers, feature model, and selected quality attributes to define the ques-

tions. Although one can use particular methods, we recommend the use of

the GQM method, due to its maturity and consolidation. In SystEM-PLA,

business drivers, quality attributes and features might represent the GQM

goals and they are used to define the GQM questions. Such questions must

37Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 4: AGM Quality Attributes Selection.

Business Driver Quality Attribute Scenario # Selection Order

BD.1

BD.2

BD.2

Complexity

Extensibility

Extensibility

Sc.1

Sc.4

Sc.5

1
st

2
nd

3
rd

BD.2 Extensibility Sc.6 4
th

BD.1 Complexity Sc.2 5
th

BD.1 Complexity Sc.3 6
th

indicate which business driver, quality attribute and/or feature they are re-

lated to. In addition, each question must have a unique identification, as well

as a set of related GQM metrics. Thus, Table 5 presents the managerial and

technical questions defined for the business drivers of the AGM PLA.

Table 5: AGM Managerial and Technical Questions for the PLA Business

Drivers.

����������	�
�	���

��
��	����

������������
���
����

����������

����� ���	�
��	���
������
	�������
�����
�	����
��
����
������������

����� ���	�
��	���
������
	����������
�	
�����
�	�
�����
�	����
��
����
������������

����� ���	�
��	���
������
	����������
��
�
	��
�����
�	����
��
����
������������

����� ���	�
��	���
������
	����������
�����
�������	�
�����������

�� �!������
	��

"�#�
�������
���$�

���%� ���	�
��	���
������
	�������&�'����������
	��
������������

���(� ���	�
��	�����	���
�
�
	�������
�����
�	����
��
����
������������

���)� ���	�
��	�����	���
�
�
	����������
�	
�����
�	�
�����
�	����
��
����
������������

���*� ���	�
��	�����	���
�
�
	����������
��
�
	��
�����
�	����
��
����
������������

���+� ���	�
��	�����	���
�
�
	����������
�����
�������	�
����
�������	��������

,
-��.�	���
�
�
	��

"�#�
�������
���$�

����� ���	�
��	�����	���
�
�
	�������&�'����������
	��
������������

6. Define the quality attribute metrics: the user must take into consid-

eration the selected quality attributes and the questions stated to define

metrics for quality attributes. Such metrics answer the questions with re-

gard to each selected PLA quality attribute. The basic metric suite (Section

3.3) might be used to compose the new metrics. Each metric must indicate

which quality attribute it is related to, and the question it answers. For the

AGM example, we defined twelve metrics, six to measure complexity and

six to measure extensibility, showed in more details in Sections 3.4 and 3.5.

Table 6 summarizes the defined metrics and their brief descriptions.

Complexity metrics from Table 6 were defined based on the Weighted Meth-

ods per Class (WMC) metric, which is the sum of the McCabe’s Cyclometic

38 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 6: AGM Metrics for Complexity and Extensibility Quality Attributes.

Metric
Quality

Attribute
Question

Name Description

CompInterface
Value of the Weighted Methods per Class (WMC) complexity metric for an

interface. It is always 0.0 as interfaces do not have concrete methods. Q.01

CompClass
Value of the Weighted Methods per Class (WMC) complexity metric for a

class.

Q.02 CompVarPointClass

Sum of the CompClass or CompInterface value of all its associated

variants plus the CompClass or CompInterface value of the variation

point.

Q.03 CompVariabilityClass
Sum of CompVarPointClass associated with all variabilities in class

models.

Q.04 CompVarComponent
Sum of the CompVariabilityClass value for all the variabilities associated

with classes that form a component.

Complexity

Q.05 CompPLA Sum of the CompVarComponent value for all the components of a PLA.

ExtensInterface
Number of abstract methods divided by the number of methods of an
interface, i.e., it is always 1.0.

Q.06

ExtensClass
Number of abstract methods divided by the number of methods

(concrete plus abstract) of a class.

Q.07 ExtensVarPointClass

Value of the ExtensClass or ExtensInterface of an abstract class or

interface multiplied by the number of its subclasses or implementation

classes.

Q.08 ExtensVariabilityClass
Sum of ExtensVarPointClass associated with all variabilities in class

models.

Q.09 ExtensVarComponent
Sum of the ExtensVariabilityClass value for all the variabilities associated
with classes that form a component.

Extensibility

Q.10 ExtensPLA
Sum of the ExtensVarComponent value for all the components in class

models of a PLA.

Complexity (CC) (see Section 3.4).

To ensure the effectiveness of the defined metrics, the user must empirically

validate them by means of an experimental study. Taking into account the com-

plexity and extensibility metrics proposed in the AGM example, we validated

them as an experiment [Oliveira Junior et al. 10] carried out including six sub-

jects who had to generate configurations for the AGM PL to which the complex-

ity and extensibility metrics were applied, collected, analyzed, and validated.

Figure 6 shows the GQM model for the AGM example resultant from the

planning guidelines.

As we mentioned in Section 3.1, the post conditions of the planning phase

are the instantiation of EMP and the definition of the main artifacts for PLA

evaluations, including quality attribute metrics. Sections 3.4 and 3.5 present the

formal definitions of the defined metrics for the AGM example. These metrics

use some of SystEM-PLA’s basic metrics in their definitions (Section 3.3).

3.2.2 Data Collection Guidelines

A PLA configuration, or product configuration, is an instance of the PLA, which

represents a single-product architecture with most of the PLA variabilities re-

solved. Thus, the user can perform trade-off analyses of the PLA with respect

to its products and its quality attributes.

The following items present the data collection guidelines:

39Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Arcade Game Maker

BD.1:

Complexity

BD.2:

Extensibility

Q.01 Q.02 Q.03 Q.04 Q.05 Q.06 Q.07 Q.08 Q.09 Q.10

CompClass

CompVarPointClass

CompVariabilityClass

CompVarComponent

CompPLA ExtensInterface

ExtensClass

ExtensVarPointClass

ExtensVariabilityClass

ExtensVarComponent

ExtensPLA

M
e

tr
ic

Q
u

e
s

ti
o

n

G
o

a
l

CompInterface

Figure 6: AGM Goal-Question-Metric Model.

1. Create PLA configurations: it can be done manually or automatically.

The former is more complex and demands a set of people to carry it out as it

requires much more attention on checking whether the created configurations

are valid. The later is more reliable since one uses tools to generate valid

configurations. We are currently generating our configurations manually as

we are developing an experimental environment for PL evaluation in which

such a generator is been built in order to make the generation step more

reliable.

2. Collect data by applying the defined quality attribute metrics: it

is done by calculating the quality attribute metrics applied to the created

configurations of the PLA. This can be done manually or automated. As we

are concerned about UML-based PLA, we recommend the use of an auto-

mated tool, such as [SDMetrics 10]. This kind of tool provides some features

to define customized metrics and calculate them from UML modeling tools

exported as XMI files. For the AGM example, we applied the metrics for

complexity and extensibility to the AGM configurations created. Table 7

presents the observed values of the metrics CompPLA and ExtensPLA for

each AGM configuration.

We carried out a study to empirically validate the metrics for complexity

and extensibility quality attributes [Oliveira Junior et al. 10] presented in Sec-

tions 3.4 and 3.5. In this study, six participants manually created five valid and

different AGM configurations by filling out a PLA template to resolve the AGM

variabilities.

40 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 7: Observed Values of Complexity and Extensibility Metrics for AGM

Configurations.
Configuration # CompPLA ExtensPLA

1 0.51 0.61

2 0.56 0.61

3 0.51 0.81

4 0.83 0.80

5 0.91 1.00

6 0.50 0.61

7 0.47 0.61

8 0.53 0.61

9 0.67 0.80

10 0.90 1.00

Configuration # CompPLA ExtensPLA

11 0.53 0.61

12 0.97 1.00

13 0.48 0.61

14 0.69 0.61

15 0.74 0.80

16 0.98 1.00

17 0.77 0.80

18 0.82 0.80

19 0.52 0.61

20 0.82 0.80

Configuration # CompPLA ExtensPLA

21 0.49 0.61

22 1.00 1.00

23 0.52 0.61

24 0.42 0.61

25 0.62 0.80

26 0.47 0.61

27 0.53 0.61

28 0.70 0.80

29 0.40 0.61

30 0.78 0.80

3.2.3 Data Analysis and Reporting Guidelines

The data analysis is performed based on the artifacts produced by the previous

SystEM-PLA phases.

Some of these artifacts lead to a quantitative analysis, such as: How many

products are at most 15% less complex than the PLA itself? What is the im-

pact, in terms of the extensibility degree, to the overall PLA by replacing some

variation point abstract class with an interface? Some artifacts lead the user to a

qualitative analysis, such as: Are the defined business drivers appropriated to

the quality attributes of a PLA? If no, should we re-state some of these business

drivers? Based on the observed values of the defined quality attribute metrics,

can we say that the quality attribute “A” must be prioritized over the quality

attribute “B” during the PL products development?

The following items present the data analysis and reporting guidelines:

1. Plot the data in one or more graphical representations: one can use

different techniques to represent graphically the collected data from the pre-

vious phase. Such techniques might be: descriptive statistics and frequency

distribution graph, which are important to statistical analysis; bar and pie

charts as they provide information with regard to certain observed values

over the whole measurement; and dispersion diagram, which is useful to

compare the behavior of two different sets of measures plotted in the same

graph. For the AGM example, the collected data was plotted in box plots,

Figures 7a and 7b, and in a dispersion histogram, Figure 8.

2. Analyze the descriptive statistics of the data: it must be done based

on some important statistical information with respect to the collected data,

which are: the number of observed (measured) elements (N); the mean; stan-

dard deviation (StdDv), which shows how much variation there is from the

mean; and median, which is the central numeric value separating the higher

half of the observed set of values from the lower half. Thus, for the AGM

example, we can observe that:

41Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Box Plot of CompPLA

AGM Experiment 2v*30c

 Median = 0.5895
 25%-75%

= (0.505, 0.821)
 Non-Outlier Range
= (0.4, 1)

 Outliers
 Extremes0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
o

m
p

P
L

A

(a) Boxplot for CompPLA.
Box Plot of ExtensPLA

AGM Experiment 2v*30c

 Median = 0.706
 25%-75%

= (0.608, 0.804)
 Non-Outlier Range
= (0.608, 1)

 Outliers
 Extremes0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E
x
te

n
s
P

L
A

(b) Boxplot for ExtensPLA.

Figure 7: Collected Data Boxplots.

– Analysis #1: in Figure 7a for the CompPLA metric, the median value

is 0.5895. This means that:

• 15 (50%) configurations have CompPLA values less or equal to 0.5895;

• 15 (50%) configurations have CompPLA value greater than 0.5895.

– Analysis #2: in Figure 7b for the ExtensPLA metric, the median value

is 0.706. This means that:

• 15 (50%) configurations have ExtensPLA value less or equal to 0.706;

• 15 (50%) configurations have ExtensPLA value greater than 0.706.

3. Identify how many scenarios satisfy the selected quality attributes:

based on the analysis performed over the descriptive statistics of the collected

data, one can identify which scenarios previously stated satisfy the selected

PLA quality attributes. This is essential to verify if either the scenarios are

appropriated to the quality attributes or re-state them. We recommend that

42 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

0.50

0.62
0.67

0.81

0.80
0.80

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

0 3 6 9 12 15 18 21 24 27 30

PLA Configurations

O
b

s
e
rv

e
d

 V
a
lu

e
s

CompPLA ExtensPLA

Figure 8: Dispersion Histogram of CompPLA and ExtensPLA Observed Val-

ues for the AGM Configurations.

at least 50% of the scenarios must satisfy the respective selected quality

attributes. Otherwise, the scenarios do not provide a means to a reliable

trade-off analysis. In the AGM example, the creation of the products only

exercises scenarios Sc.1, for complexity, and Sc.4 and Sc.5, for extensibility.

Thus, we can state that:

– based on Analysis #1, scenario Sc.1 (Table 1) is satisfied for the com-

plexity quality attribute. During the creation of the AGM configurations,

variation points and variants were modified or removed according to the

sort of product created. Thus, scenario Sc.1 maintains the BD.1 true as

18 out of 30 configurations (60%) have CompPLA value less than 0.70

(see Table 7) as stated in such a scenario: “keep game complexity degree

lower than 0.7 (70%), compared to the overall PLA complexity, for at

least 50% of produced products”;

– based on Analysis #2, scenarios Sc.4 and Sc.5 (Table 2) are satisfied

for the extensibility quality attribute. Scenarios Sc.4 and Sc.5 maintain

BD.2 true as 15 out of 30 configurations (50%) have ExtensPLA value

greater than 0.75 (see Table 7) as stated in such scenarios: “keep game

extensibility degree higher than 0.75 (75%), compared to the overall PLA

43Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

extensibility, for at least 50% of produced products”.

4. Identify which selected quality attributes satisfy the PLA: taking

into account the percentage of scenarios that satisfy a quality attribute,

we can determine which selected quality attributes satisfy the overall PLA.

For the AGM example, both complexity and extensibility quality attributes

satisfy the AGM PLA as 100% of their scenarios is satisfied.

5. Perform a trade-off analysis: it is done by taking into consideration the

selected quality attributes that satisfy the overall PLA to decide which one(s)

must be prioritized for the AGM products development and evolution. For

the AGM example, this analysis was made by plotting the observed values

of both CompPLA and ExtensPLA in a dispersion histogram (Figure 8). We

can observe in this figure that the most interesting products are those which

have values of CompPLA < 0.7 and ExtensPLA > 0.75. Thus, three main

products become interesting for the AGM PL: the first one with Comp-

PLA=0.50, and ExtensPLA=0.81; the second one with CompPLA=0.67,

and ExtensPLA=0.80; and the third one with CompPLA=0.62, and Exten-

sPLA=0.80. Note that the ExtensPLA value for the three products is practi-

cally the same (0.80), which might be an indicator that for similar products

we must prioritize complexity rather than extensibility. Another indicator

might be the fact that 60% of the AGM products satisfy the complexity

scenario Sc.1, whereas 50% of the AGM products satisfy the extensibility

scenarios Sc.4 and Sc.5. The shaded region with values ranging from 0.7 to

0.75 contains unattractive products for the AGM PL as they do not conform

to low complexity and high extensibility business drivers defined to the AGM

PLA. We can conclude based on the two indicators that, for the AGM PLA,

complexity must be more prioritized than extensibility. In case of none of

the products become interesting for a PL, it must be analyzed which metrics

values are out of the established range. Thus, it can be an indicator that

the quality attributes related to such metrics should be prioritized or the

business drivers re-stated.

6. Write an evaluation final report: to document all of the evaluation activ-

ities, as well as produced artifacts, strategies, collected data, and generated

graphs and tables, we recommend the writing of an ATAM styled report

[Clements et al. 02], as it is a well-known standard in the software architec-

ture evaluation community. In addition, all the assets produced during the

evaluation must be stored in order to allow the evaluation to be replicated

in advance.

44 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

3.3 The Basic Metric Suite

SystEM-PLA provides a UML-based metric suite for measuring PL models

[Oliveira Junior et al. 08]. The suite is defined based on the following PL models:

actors, use cases, interfaces, classes, components, and diagrams.

The basic metric suite is composed of 98 metrics and can be used to compose

new metrics for PLA quality attributes. An example of how to compose new met-

rics for the complexity quality attribute is presented in [Oliveira Junior et al. 08].

Although SystEM-PLA is focused on class and component models to evaluate

a PLA, it also provides basic metrics for use cases and actors as we plan to

expand our method to encompass high-level and behavioral models, as well as

keep tracking of variabilities.

Each metric name is composed of five parts separated by an underline char-

acter (“ ”). The first part is the acronym for the UML model that is being

measured. The second part is the acronym of the UML model, used by the

first part in its measurement. The third part is the acronym of the metric type.

The fourth part is the acronym of the variability element. The fifth part is

the acronym of the measure type. For instance, the metric UCS UCS BAS OPT ISA

indicates whether a use case (UCS) is an (ISA) optional variant (OPT), and

the metric CLS ITF BAS INC NUM measures the number (NUM) of alternative

inclusive (INC) interfaces (ITF) associated with a class (CLS).

Tables 8 and 9 show the basic metrics for class and component models,

diagrams, and overall PL. The basic metrics for actors and use cases are out

of the scope of this paper.

3.4 Complexity Metrics

The analysis of PLA complexity, in this paper, has as a basis the [McCabe 76]

Cyclomatic Complexity (CC) and Weighted Methods per Class (WMC) metrics.

The CC is the measure of linearly independent paths of a source code, and the

WMC is the sum of the CC of all methods for a class.

SystEM-PLA takes into account the variabilities modeled in class and com-

ponent models, and the reasoning about main variabilities issues (Section 3.2)

for PLA evaluation. Therefore, there were proposed five metrics for PLA com-

plexity, which are: CompClass, CompVarPointClass, CompVariabilityClass,

CompVarComponent, and CompPLA. The following items present their formal def-

initions.

CompClass: is the WMC value for a given class. Interfaces always have

zero (0) for the WMC value. It is defined as follows:

CompClass =

{

0 for interfaces

WMC for classes

45Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 8: SystEM-PLA Basic Metrics for Class Models.

����� ����	
���
�� ����	
����
�	��	���

��� ���������	
������
	� �
���������������������
����
��

��� ���������	
������
	� �
������������
�������
���������
��

��� ���������	
�� ���
	� �
������������
�������!���������
��

�"� ���������	
�#����
	� �
������������
������
��������
��

�$� ���������	
�%�&��
	� �
�������������'�
(����)������
��

�*� ���������	
������+%� ,�)�����������
���������
�������
��
��������

�-� ���������	
�� ���+%� ,�)�����������!���������
�������
��
��������

�.� ���������	
�#����+%� ,�)����������
��������
�������
��
��������

�/� ���������	
�%�&��+%� ,�)�����'�
(����)������
�������
��
��������

��� ���������	
������+%� ,�)�������������
�������
��
��������

��� �����0
��	
������+%� ,�)�����������
����������������
��
��������

��� �����0
��	
�� ���+%� ,�)�����������!����������������
��
��������

��� �����0
��	
�#����+%� ,�)����������
���������������
��
��������

�"� �����0
��	
�%�&��+%� ,�)�����'�
(����)�������������
��
��������

�$� �����0
��	
������+%� ,�)�������������
��������������
��
��������

�*� �0
��0
��	
������
	� �������������������
����
��

�-� �0
��0
��	
������
	� ����������
�������
���������
��

�.� �0
��0
��	
�� ���
	� ����������
�������!���������
��

�/� �0
��0
��	
�#����
	� ����������
������
��������
��

��� �0
��0
��	
�%�&��
	� �����������'�
(����)������
��

��� �0
��0
��	
������+%� ,�)�����������
���������
��������������

��� �0
��0
��	
�� ���+%� ,�)�����������!���������
��������������

��� �0
��0
��	
�#����+%� ,�)����������
��������
��������������

�"� �0
��0
��	
�%�&��+%� ,�)�����'�
(����)������
��������������

�$� �0
��0
��	
������+%� ,�)�������������
��������������

�*� �0
������	
������+%� ,�)�����������
�����
��������������������

�-� �0
������	
�� ���+%� ,�)�����������!�����
��������������������

�.� �0
������	
�#����+%� ,�)����������
����
��������������������

�/� �0
������	
�%�&��+%� ,�)�����'�
(����)��
��������������������

��� �0
������	
������+%� ,�)�������������
���
��������������������

CompVarPointClass: is the CompClass value for a given class that is a

variation point, plus the sum of the CompClass values of its variants. It is defined

as follows:

CompVarPointClass = CompClassi +

nV ariants
∑

j=1

CompClassj , where:

i is a variation point class

nVariants = CLS CLS BAS INC NUM + CLS CLS BAS EXC NUM +

CLS CLS BAS OPT NUM

CompVariabilityClass: is the sum of the CompVarPointClass values of all

variation points with which a variability is associated. It is defined as follows:

46 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Table 9: SystEM-PLA Basic Metrics for Component, Diagrams, and Overall PL.

����� ����	
���
�� ����	
����
�	��	���

��� ���������	
�����
	
� ������������������������

��� ������
��	
��������� ��� ��!������"�#���������$#�������!���$���������

�%� &'��	����	
������(�� ����#���� ��������$����������)���$����*��+����

�,� &'��	����	
�-����(�� ����#��#� ���$# ��$����������)���$����*��+����

�.� &'��	����	
�/0���(�� ����#��#� ��1$# ��$����������)���$����*��+����

�2� &'��	����	
�(����(�� ����#��������#��$����������)���$����*��+����

�3� &'��	����	
���&��(�� ����#����*�������$����������)���$����*��+����

�4� &'��	����	
������(�� ����#���� ��������$����������)���$����*��+����

�5� &'����
��	
������(�� ����#���� �������)���$����������)���$����*��+����

��� &'����
��	
�-����(�� ����#��#� ���$# �)���$����������)���$����*��+����

��� &'����
��	
�/0���(�� ����#��#� ��1$# �)���$����������)���$����*��+����

��� &'����
��	
�(����(�� ����#��������#�)���$����������)���$����*��+����

�%� &'����
��	
���&��(�� ����#����*������)���$����������)���$����*��+����

�,� &'����
��	
������(�� ����#���� �������)���$����������)���$����*��+����

�.� &'��-�6��	
������(�� ����#���� ������������!�$��������$#����*��+����

�2� &'��-�6��	
�-����(�� ����#��#� ���$# ������!�$��������$#����*��+����

�3� &'��-�6��	
�/0���(�� ����#��#� ��1$# ������!�$��������$#����*��+����

�4� &'��-�6��	
�(����(�� ����#��������#������!�$��������$#����*��+����

�5� &'��-�6��	
���&��(�� ����#����*�����������!�$��������$#����*��+����

��� &'��-�6��	
������(�� ����#���� ������������!�$��������$#����*��+����

��� &'����
��	
������(�� ����#���� �������$#�����������$#����*��+����

��� &'����
��	
�-����(�� ����#��#� ���$# �$#�����������$#����*��+����

�%� &'����
��	
�/0���(�� ����#��#� ��1$# �$#�����������$#����*��+����

�,� &'����
��	
�(����(�� ����#��������#�$#�����������$#����*��+����

�.� &'����
��	
���&��(�� ����#����*������$#�����������$#����*��+����

�2� &'����
��	
������(�� ����#���� �������$#�����������$#����*��+����

�3� &'�������	
������(�� ����#������"�#�����������$���������*��+����

�4� �&��	����	
������(�� ����#���� ��������$������!������*)$��#����

�5� �&����
��	
������(�� ����#���� �������)���$������!������*)$��#����

%�� �&��-�6��	
������(�� ����#���� ������������!�$����!������*)$��#����

%�� �&����
��	
������(�� ����#���� �������$#�������!������*)$��#����

%�� �&���&���	
������(�� ����#���� ���������!������*)$��#����

%%� �&��	����	
������(�� ����#������"�#����������$������!������*)$��#����

%,� �&����
��	
������(�� ����#������"�#���������)���$������!������*)$��#����

%.� �&��-�6��	
������(�� ����#������"�#��������������!�$����!������*)$��#����

%2� �&����
��	
������(�� ����#������"�#���������$#�������!������*)$��#����

%3� �&���&���	
������(�� ����#������"�#�������!������*)$��#����

%4� �&�������	
������(�� ����#������"#��$�����������!������*)$��#����

CompVariabilityClass =

nAssV P
∑

i=1

CompV arPointClassi , where:

nAssVP = DGM ITF BAS VPT TOT + DGM CLS BAS VPT TOT

CompVarComponent : is the sum of the CompVariabilityClass values of

all variabilities in classes of a given component. It is defined as follows:

CompVarComponent =

CPT CLS BAS V BT NUM
∑

i=1

CompV ariabilityClassi

47Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

CompPLA: is the sum of the CompVarComponent values of all variable

components of a PLA. It is defined as follows:

CompPLA =

MDL CPT BAS V TN TOT
∑

i=1

CompV arComponenti

3.5 Extensibility Metrics

Extensibility is a quality property in which simple changes to the design of a

software artifact require a proportionally simple effort to modify its structure

and source-code [Batory et al. 02]. Extensibility provides a means to add new

functionalities to the designed software by exploiting its structure in terms of

reuse. The PL approach makes extensibility possible by providing anticipated

variability management.

One of the most important concepts with relation to object-oriented systems

is generalization. It allows systems specialization in terms of their concrete

classes implementation [Batory et al. 02, Nystrom et al. 04]. However, general-

ization affects the overall system structure. It usually requires the addition of

more specialized classes to such a structure making systems domain-specific.

In order to avoid systems structure issues, with respect to generalization, we

can exploit the abstract classes concept [Sane and Birchenough 99, Woolf 97].

An abstract class has a standard behavior, represented by a set of concrete

methods. It can also be composed of abstract methods, which must be imple-

mented by its first-level concrete subclasses. Abstract classes represent systems

extension points by providing a means to extend the systems functionalities. Fur-

thermore, they promote the program to interface concept [Nystrom et al. 04]

which aims at developing abstract classes, and at making systems programming

reliant on abstract rather than on concrete types. It also increases the number

of extension points of a system and its extensibility, and it decreases the sys-

tem structural impact. Such a concept is used as a basis to develop application

frameworks [Sane and Birchenough 99].

Therefore, extensibility metrics take into account the following class relation-

ships [OMG 10]: generalization (inheritance), in which the general classifiers

(superclasses) are the variation points and the specific classifiers (subclasses) are

the variants; interface realization, in which the suppliers (specifications) are

variation points and the implementations (clients) are the variants; aggrega-

tion association, in which the typed instances with hollow diamonds (shared

association representation) are the variation points and the associated typed

instances are the variants; and composite aggregation, in which the typed

instances with filled in diamonds (composite association representation) are the

variation points and the associated typed instances are the variants.

48 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

Based on such relationships, the following items present SystEM-PLA exten-

sibility metrics:

ExtensClassLevel : is the class extensibility level. It provides the percentage

of abstract methods with relation to the total methods (abstract plus concrete)

of a class. It is defined as follows:

ExtensClassLevel = CLS CLS EXT ABM NUM

CLS CLS EXT MTD NUM+CLS CLS EXT ABM NUM

ExtensInterfaceLevel : is the interface extensibility level, which has always

the value 1.0 as it is 100% composed of abstract methods. It is defined as follows:

ExtensInterfaceLevel = ITF ITF EXT MTD NUM
ITF ITF EXT MTD NUM

= 1.0

ExtensVarPointClassLevel : is the ExtensClassLevel value of the variation

point class multiplied by the number of its variants. It is defined as follows:

ExtensV arPointClassLevel =
{

ExtensInterfaceLevel ∗ nV arI
ExtensClassLevel ∗ nV arC

where:

nVarI = ITF ITF BAS INC NUM + ITF ITF BAS EXC NUM +

ITF ITF BAS OPT NUM

nVarC = CLS CLS BAS INC NUM + CLS CLS BAS EXC NUM +

CLS CLS BAS OPT NUM

ExtensVariabilityClassLevel : is the sum of the ExtensVarPointClassLevel

values of all variation points with which a variability is associated. It is defined

as follows:

ExtensVariabilityClassLevel =

nAssV P
∑

i=1

ExtensV arPointClassLeveli

where:

nAssVP = DGM ITF BAS VPT TOT + DGM CLS BAS VPT TOT

ExtensVarComponentLevel : is the sum of the ExtensVariabilityClassLevel

values of all variabilities in classes of a given component. It is defined as follows:

ExtensVarComponentLevel =
CPT CLS BAS V BT NUM

∑

i=1

ExtensV ariabilityClassLeveli

ExtensPLA: is the sum of the ExtensVarComponentLevel values of all vari-

able components of a PLA. It is defined as follows:

49Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

ExtensPLA =

MDL CPT BAS V TN TOT
∑

i=1

ExtensV arComponentLeveli

4 Conclusion and Future Work

This paper presents SystEM-PLA, a systematic method to evaluate UML-based

PLAs taking into account the PL variabilities, represented in UML models, which

is domain-independent. SystEM-PLA encompasses a set of guidelines and basic

UML metrics, which aim to provide directions to evaluators on how to plan,

conduct, interpret results, and document PLA evaluations based on metrics for

quality attributes. SystEM-PLA also provides a means to make PLA evaluations

flexible by instantiating the evaluation meta-process. This allows the evaluator to

define his/her own specific quality attributes, metrics, and techniques to define

the EMP’s essential artifacts for PLA evaluations. We used the SEI’s Arcade

Game Maker PL as proof of concept and illustrate how to follow SystEM-PLA

guidelines to perform PLA evaluations.

While most of the current literature is mainly focused on specific PL and

PLA evaluation approaches, our method is defined towards a flexible and general

PLA evaluation approach allowing both quantitative and qualitative analysis

of PLA quality attributes. Our method provides a means to perform trade-off

analysis, as well as empirical analysis of collected data. In addition, SystEM-

PLA can be used as a “what-if” way to analyze design alternatives by providing

a means to make decisions and to analyze trade-offs that affect the products

to be generated. SystEM-PLA also supports the planning, conducting, result

analysis, and replication of experiments based on the collected data from PLA

evaluations.

Current literature claims the need of PLA evaluation approaches; these would

allow PL architects to analyze empirically the potential of a PLA, and would

allow PL managers to analyze the aggregated managerial and economical values

of a PL throughout its products. We showed that performing empirical feasibility

analysis is essential to demonstrate the practical usefulness of a new method.

SystEM-PLA’s feasibility was empirically analyzed by having three professionals

applying it in a large company. Although we have used a small PL to conduct

our experiment, we had evidence that SystEM-PLA is feasible in industry and

it can serve as a basis to analyze quantitatively and qualitatively a PLA based

on its UML models and variabilities.

Based on current results, some directions for future work and contributions

are suggested: (i) UML-based metrics for self-adaptive software towards sup-

porting the definition of portability and/or scalability metrics; (ii) metrics for

portability and scalability quality attributes in order to improve our AGM ex-

ample as a proof of concept; (iii) the extension of stereotypes and tagged values

50 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

[Oliveira Junior et al. 10] to encompass variability in UML interaction diagrams;

(iv) an automated tool to support the realization of SystEM-PLA activities, as

well as plan and execute formal experiments. In addition, changes on various

issues can be made to improve the experiments with SystEM-PLA, including:

(i) increase the derived PLA configurations sample size, which is important to

stay closer to real projects and to improve and generalize the results; (ii) con-

duct experiments in a more controlled environment; (iii) deal with real data from

larger PLs; and (iv) recruit more industrial-environment well-qualified subjects

from the Software Engineering and Information Systems areas.

Acknowledgments

The authors would like to thank CAPES-Brazil for funding Edson’s visiting

scholar term at the University of Waterloo, Ontario, Canada.

References

[Barbacci et al. 10] Barbacci, M. R., Clements, P. Lattanze, A. Northrop, L. Wood,
W.: Using the Architecture Tradeoff Analysis Method (ATAM) to Evaluate the Soft-
ware Architecture for a Product Line of Avionic Systems: a Case Study. Technical
Report CMU/SEI-2003-TN-012, Software Engineering Institute (SEI) (2010)

[Basili and Rombach 88] Basili, V. R., Rombach, H. D.: The TAME Project: Towards
Improvement-Oriented Software Environments, IEEE Transactions on Software En-
gineering, pp. 758-773. (1988)

[Batory et al. 02] Batory, D., Johnson, C., MacDonald, B., Heeder, D.: Achieving Ex-
tensibility Through Product-Lines and Domain-Specific Languages: a Case Study,
ACM Transactions on Software Engineering Methodologies, pp. 191-214. (2002)

[Böckle et al. 04] Böckle, G., Clements, P., McGregor, J. D., Muthig, D., Schmid, k.:
Calculating ROI for Software Product Lines, IEEE Software, pp. 23–31. (2004)

[Chastek and Ferguson 06] Chastek, G., Ferguson, R.: Toward Measures for Software
Architectures. Technical Note CMU/SEI-2006-TN-013, Software Engineering Insti-
tute (SEI) (2006)

[Clements et al. 02] Clements, P., Kazman, R., Klein, M.: Evaluating Software Archi-
tectures: Methods and Case Studies. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (2002)

[Dolan et al. 00] Dolan. T., Weterings. R., Wortmann, J. C.: Stakeholder-Centric As-
sessment of Product Family Architecture. In: Proceedings of the International Work-
shop on Software Architectures for Product Families, pp. 225-245. (2000)

[Etxeberria and Sagardui 08] Etxeberria, L., Sagardui, G.: Variability Driven Quality
Evaluation in Software Product Lines. In: Proceedings of the Software Product Line
Conference, pp. 243-252. (2008)

[Gannod and Lutz 00] Gannod, G. C., Lutz, R. R.: An Approach to Architectural
Analysis of Product Lines. In: Proceedings of the International Conference on Soft-
ware Engineering, pp. 548-557. (2000)

[Hoek et al. 03] Hoek, A., Dincel, E., Medvidovic, N.: Using Service Utilization Met-
rics to Assess the Structure of Product Line Architectures. In: Proceedings of the
International Symposium on Software Metrics. IEEE Computer Society, pp. 298-308
(2003)

51Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

[Kim et al. 08] Kim, T., Ko, I. Y., Kang, S. W., Lee, D. H.: Extending ATAM to Assess
Product Line Architecture. In: Proceedings of the IEEE International Conference
on Computer and Information Technology, pp. 790-797. (2008)

[Linden et al. 07] Linden, F. J. van der, Schmid, K., Rommes, E.: Software Product
Lines in Action: The Best Industrial Practice in Product Line Engineering. Springer-
Verlag, New York (2007)

[McCabe 76] McCabe, T. J.: A Complexity Measure. IEEE Transactions on Software
Engineering, pp. 308–320. (1976)

[Nystrom et al. 04] Nystrom, N., Chong, S., Myers, A. C.: Scalable Extensibility via
Nested Inheritance. In: Proceedings of the Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, pp. 99-115.
(2004)

[Oliveira Junior et al. 10] Oliveira Junior, E. A., Gimenes, I. M. S., Maldonado, J. C.:
Empirical Validation of Complexity and Extensibility Metrics for Software Product
Line Architectures. In: Proceedings of the Fourth Brazilian Symposium on Software
Components, Architectures, and Reuse, pp. 31-40. (2010)

[Oliveira Junior et al. 10] Oliveira Junior, E. A., Gimenes, I. M. S., Maldonado, J.
C.: Systematic Management of Variability in UML-based Software Product Lines,
Journal of Universal Computer Science (J.UCS), pp. 2374-2393. (2010)

[Oliveira Junior et al. 08] Oliveira Junior, E. A., Gimenes, I. M. S., Maldonado, J.
C.: A Metric Suite to Support Software Product Line Architecture Evaluation. In:
Proceedings of the Conferencia Latinoamericana de Informática, pp. 489-498. (2008)

[Olumofin 07] Olumofin, F.: A Holistic Method for Assessing Software Product Line
Architectures. VDM Verlag, Saarbrücken, Germany (2007)

[OMG 10] OMG - Unified Modeling Language (UML) v.2.2, http://www.omg.org/
spec/UML/2.2

[Rahman 04] Rahman, A.: Metrics for the Structural Assessment of Product Line Ar-
chitecture. Master Dissertation, School of Engineering - Blekinge Institute of Tech-
nology, Sweden (2004)

[Riva and Rosso 03] Riva, C., Rosso, C.: Experiences with Software Product Family
Evolution. In: Proceedings of the International Workshop on Principles of Software
Evolution, pp. 161-170. (2003)

[Pohl et al. 05] Pohl, K., Böckle, G., Linden, F. J. van der: Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, New York
(2005)

[Sane and Birchenough 99] Sane, A., Birchenough, A.: First Class Extensibility for
UML - Packaging of Profiles, Stereotypes, Patterns. In: Proceedings of the Interna-
tional Conference on the Unified Modeling Language, pp. 265-277. (1999)

[SDMetrics 10] SDMetrics: The UML Design Quality Metrics Tool, http://www.
sdmetrics.com (2010)

[SEI-HOF 10] SEI - Hall of Fame, http://splc.net/fame.html
[SEI 10] SEI - A Framework for Software Product Line Practice, http://www.sei.

cmu.edu/productlines/frame report/index.html
[SEI 10] SEI - Arcade Game Maker Pedagogical Product Line, http://www.sei.cmu.

edu/productlines/ppl
[Taylor et al. 09] Taylor, R. N., Medvidovic, N., Dashofy, E. M.: Software Architecture:

Foundations, Theory, and Practice. John Wiley & Sons, USA (2009)
[Woolf 97] Woolf, B.: The Abstract Class Pattern. In: Proceedings of the Pattern Lan-

guages of Programming Conference, pp. 1-8. (1997)

52 Oliveira Junior E.A., Gimenes I.M.S., Maldonado J.C., Masiero P.C., Barroca L. ...

