
Deriving System Behavior from UML State Machine
Diagram: Applied to Missile Project

Hyun-Seok Min
(Korea University, Seoul, Korea

hsmin@formal.korea.ac.kr)

Sang-Mun Chung
(Agency for Defense Development, Daejeon, Korea

smchung@add.re.kr)

Jin-Young Choi
(Korea University, Seoul, Korea

choi@formal.korea.ac.kr)

Abstract: Traditionally, System Analysis and Software Design are treated as separate
processes. Software Design is based on System Analysis but they have little direct relationship
to each other. UML (Unified Modeling Language) is widely accepted by industry as the de
facto standard for System Analysis and Software Design. The primary tool for System Analysis
is the Use Case Diagram and its Scenarios, while the primary tools for Software Design are the
Class Diagram and Sequence Diagram. State Machine Diagram is also very useful for
behavioral modeling. Our aim is to derive system behavior from software design, so that
separate processes can work together. This paper suggests how to make a system-wide State
Machine Diagram by gathering State Machine Diagrams in the system using predefined
Stereotypes and Synchronization/Externalization. The resulting system-wide State Machine
Diagram can be used for various things, such as automatic test case generation for the system,
deadlock detection, and Use Case scenario consistency checking. The proposed method is
applied to the Missile project of ADD (Agency for Defense Development) in South Korea. The
result is very promising. It is expected to be applied to more projects.

Keywords: System, UML, State Machine Diagram, Test, Deadlock, Consistency
Category: D.2.4, D.2.5, F.3.1, F.3.2, I.6.4

1 Introduction

UML is accepted as a de-facto standard modeling language for software design. UML
2.2 (the current version at the time of writing this paper) has 14 diagrams; each
diagram shows a specific aspect of the desired system. Some of the diagrams (such as
Class Diagram, Object Diagram, Package Diagram) show the static aspect of the
system, while some diagrams (State Machine Diagram, Activity Diagram) describe
dynamic aspects of the system. Other diagrams show interactions between various
elements in the system (Sequence Diagram, Communication Diagram, Interaction
Overview Diagram, and Use Case Diagram)

State Machine Diagram, which is popular for describing the behavior of the class,
is a formally defined diagram. If a State Machine Diagram is used in design, source

Journal of Universal Computer Science, vol. 19, no. 1 (2013), 53-77
submitted: 6/8/10, accepted: 28/12/12, appeared: 1/1/13 © J.UCS

codes can be generated from it. However, the State Machine Diagram needs to be
used as a behavior of one class to enable the generation of source codes. Popular
CASE (Computer Aided Software Engineering) tools use this approach to generate
source codes from State Machine Diagram.

Therefore, if system-wide behavior is needed, a system-wide State Machine
Diagram needs to be made separately. This may cause inconsistency with the
individual State Machine Diagrams. If we want to perform integration testing or
system testing, we need to make test cases manually, or to make a system-wide State
Machine Diagram first and then generate test cases from it. A system behavior check,
such as deadlock/livelock and/or property checking, is more important than ever, with
increasing prevalence of multi-threaded programs. Since the design used for source
code generation is usually for one class, it is hard to predict overall system behavior
with individual design. These imply system-wide behavior is needed and this
behavior may not conflict with each State Machine Diagram of classes.

2 Related Research

Hartmann et al. [Hartmann 00] proposed an approach to combine more than one State
Machine Diagram, making a system behavior State Machine Diagram. The goal was
to generate test cases for the system that is composed of several components. The
components are COM/DCOM/CORBA components. They run independently and
communicate with each other. Each component has a State Machine Diagram as a
behavioral model. State Machine Diagrams communicate to others via events. Event
communication is well explained in CSP (Communication Sequence Process) [Hoare
87] and [Hartmann 00] uses a similar concept and notation. The global State Machine
Diagram is composed incrementally and reachability is computed to remove
unnecessary states. Test cases are generated and executed after the global State
Machine Diagram is composed. In this work, two system-wide State Machine
Diagrams are merged into a global State Machine Diagram. (It is basically a graphical
CSP using the same syntax.) Developers need to make system-wide State Machine
Diagrams manually first and then merge them to use this approach. While using a
State Machine Diagram itself to make a system behavior is uncommon, using Model
Checkers to check the system behavior with State Machine Diagram has been
popular. Kaveh and Emmerich have used State Machine Diagram for deadlock
detection [Kaveh 01]. This work has <<synchronous>> Stereotype in State Machine
Diagram transition and translates the diagram into FSP (Finite State Processes) for
analysis. Mikk and Lakhnech, et al. [Mikk 98] and Lilius and Paltor [Lilius 99] use
PROMELA/SPIN for the analysis. vUML [Lilius 99] uses UML Stereotype for design
and automatically generates the PROMELA specification from UML design.
Conceptually, the approach taken in this paper is similar to the one in these papers.
However, the biggest difference is that our approach explicitly uses the external
stimuli concept. Thus, it is more flexible in the system behavior selection. In addition,
only State Machine Diagrams are used in this paper compared to the translation to
other language, such as PROMELA/SPIN.

One of the reasons of making a system State Machine Diagram is to
automatically generate test cases for the system. There is much research on generating
test cases from a State Machine Diagram ([Kim 99], [Offutt 99], [Kansomkeat 03]).

54 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Kim et al. [Kim 99] proposed the strategy introducing Extended Finite State Machines
(EFSMs) by removing concurrent states and state hierarchy to generate test cases.
Briand et al. [Briand 03] used OCL as an input condition in the State Machine
Diagram. Gnesi et al. [Gnesi 04] shows theoretical background to generate test cases
from State Machine Diagram. Prior to UML 2.0, the Activity Diagram was very
similar to the State Machine Diagram. [Wang 04] proposes using an Activity Diagram
to generate test cases. However, they are not system-level approaches but class-level
approaches.

Some research considers system-level test case generation. The majority of work
uses Use Case and its scenarios. The Use Case Diagram is ideal for system test case
generation, since the Use Case Diagram shows interactions between the Actor and the
System. Normally, the Use Case Diagram is accompanied by a textual description or
other diagrams, such as Sequence Diagram, Activity Diagram, and State Machine
Diagram, which is termed a scenario. Briand and Labiche [Briand 01] proposed an
approach using the Use Case Diagram and its accompanying Activity Diagram to
generate system-level test cases. In this work, the Activity Diagram is used as a
hybrid of the Sequence Diagram (showing message interaction between instances)
and State Machine Diagram (having many alternative paths). Combining two or more
diagrams to generate system-level test cases is a common approach. Nebut et al.
[Nebut 06] used the Use Case Diagram and its accompanying Sequence Diagram to
generate test cases. One approach taken in this work is the use of the pre/post-
conditions of Use Cases to automatically generate input data and test oracle. Froehlich
and J. Link [Frohlich 00] proposed a method to make a State Machine Diagram from
Use Case Diagrams and generate test cases. In this work, each Use Case is converted
to a State Machine Diagram and then an AI planning algorithm is used to generate test
cases. There are works based on interaction diagrams (Sequence Diagram,
Communication Diagram) rather than Use Case Diagram. However, using an
interaction diagram does not differ much from using a Use Case Diagram and its
scenarios. Wu et al. [Wu 03] uses the Collaboration Diagram, Sequence Diagram and
State Machine Diagram for Integration Testing. Javed et al. [Javed 07], Andrews et al.
[Andrews 02], Heckel and Lohmann [Heckel 03], Pilskalns et al. [Pilskalns 03] used
Sequence Diagrams and others for system-testing. Abdurazik and Offutt [Abdurazik
00] used the Collaboration Diagram for static checking and test generation. The
limitation of this work is manual creation of interaction diagrams. The developers
must supply the Sequence Diagram, Activity Diagram or State Machine Diagram to
generate test cases.

The consistency issue is inherent in UML. Rasch and Wehrheim [Rasch 03]
discuss consistency between Class Diagram and State Machine Diagram. Tsiolakis
[Tsiolakis 00] discusses consistency between Class Diagram and Sequence Diagram.
Gallardo et al. [Gallardo 02] discuss Sequence Diagram and State Machine Diagram,
which is also discussed in this paper. However, Gallardo et al. [Gallardo 02] use a
system-wide State Machine Diagram with a System behavior Sequence Diagram. The
main difference from our approach is that we make a system-wide State Machine
Diagram from the existing State Machine Diagram of each class and then check the
consistency to it. Engels et al. [Engels 02] discuss consistency at the Meta-model
level.

55Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

3 GNC (Guidance aNd Control) Missile Project

The GNC Missile Project is an on-going project in ADD (Agency for Defense
Development) in South Korea. New project using Model-Driven technology is
started. The first part of the project applies modeling technology to the existing source
code structures, to find out where inefficiency lies and how to improve the existing
structures. As of writing this paper, the first part has completed and the second part
has started. The second part of the project is to generate source code directly from the
improved design and to build the application with them and compare performance
with that of the existing application.

The original project lacks proper documentation. Non-standard, non-UML
drawings were used in the report documents and there were many confirmations that
they were hard to understand. As a result, UML diagrams, which describe the current
application, were made. After that, we applied our methodology of deriving system
behavior and used it for the system analysis.

3.1 The Structure of GNC_SW project

GNC_SW is the program embedded in the Missile. The Missile has a simple aim. It
must fly to the destination and explode where directed. We have identified the Missile
Project Use Cases. There are 3 Use Cases and 10 Actors at the highest level. In the
following Use Case Diagram, one of the Use Cases is shown. 8 Actors are associated
with this Use Case but only 5 Actors are shown for later discussion.

Figure 1: Use Case Diagram of GNC project

The “Destroy the target” Use Case has a primary scenario in the Sequence
Diagram (Figure 2). The Ground Control sends evGccCmd – evGccEOC – evFire –
evMissileAwayReady – evMissileAway in the sequence and the Missile starts flying.
Whether the Missile is waiting to be fired or flying, it constantly checks the sensor

56 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

input and reports its status to the Ground Control. It is shown as a loop in the
Sequence Diagram.

Figure 2: Use Case Scenario as a Sequence Diagram

The GNC_SW application is composed of several Tasks run in VxWorks RTOS
(Real Time Operating System). The Main Task spawns GCCTask (Ground Control
Communication Task), GNCTask (Guidance aNd Control Task), MIMTask (Missile-
bus Interface Manager Task) and others. Most Tasks work in two ways. First, they
receive a periodical event from AlarmCtrl. With this periodical event, Tasks check
inputs and do other chores they need to. Some tasks report status to other tasks or to
the Ground Control Center. Second, they react to specific events, such as ones in
Figure 2, to perform their operations.

Tasks were identified as Active Classes in the UML Class Diagram. AlarmCtrl is
the class that handles ISR (Interrupt Service Routine). There are more Tasks (thus
Active Classes) in the program but we will show some of them only, because others
are simplistic tasks only doing periodic jobs.

AlarmCtrl gets system clock every 100 micro-sec and sends the event to the
appropriate tasks. The conceptual working of AlarmCtrl can be described in Figure 4.

57Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Figure 3: GNC Class Diagram

Figure 4: AlarmCtrl State Machine Diagram

GCCTask, GNCTask, MIMTask also have their own State Machine Diagram,
shown in Figure 5. We have identified more classes that receive events from the
aforementioned classes. We carefully categorized the classes to ones that have state-
based behavior and others that are better to be portrayed in an Activity Diagram,
because they are more like an algorithm. Only high level Tasks were used in the
analysis we did.

58 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Figure 5: State Machine Diagrams of GCCTask, GNCTask, MIMTask

59Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

4 Deriving System-wide State Machine Diagram

We focus on the Behavior Diagram in this paper. State Machine Diagram and
Activity Diagram are such diagrams but in UML 2.x Activity Diagram is geared to
describe the flow of activities. In this paper, only the State Machine Diagram will be
used to describe the behavior of the class and the system.

 State Machine Diagram and its Definition
Definition: A State Machine Diagram is a tuple SC = (S, T, s0, t0, F), where
S = { s1, s2, •••, sm } is a finite set of states;
T = { t1, t2, •••, tn } is a finite set of transitions;
s0 is the initial state;
t0 is the initial transition to s0;
F = { f1, f2, •••, fn } is a finite set of final states.

The Missile project GNC_SW will be used throughout to explain how the
system-wide State Machine Diagram can be made automatically. Each class shall
have one instance during run-time. Note that if we use a state hierarchy using a nested
state or concurrent /orthogonal states, we could make the State Machine Diagrams
simpler with fewer transitions. However, to proceed further, nested states and
concurrent/orthogonal states need to be flattened first. (“Flattened” means that the
State Machine Diagram has no nested states or concurrent/orthogonal states.) In this
paper, already flattened State Machine Diagrams are used, since we are building a
system-wide State Machine Diagram using the all the State Machine Diagrams in the
program. Essentially, it is similar to the Model-Checking concept, so a flattened State
Machine Diagram is needed to make a computation tree. Kim et al. [Kim 99] show
how nested states and concurrent/orthogonal states can be removed. This results in a
simple flattened State Machine Diagram.

Also note there are Stereotypes <<ExtStimuli>> and <<ExtOut>> in some of the
transitions. These stereotypes will be used in the “Externalizing State Machine
Diagram” step.

4.1 Merging State Machine Diagrams

The System State Machine Diagram is composed by merging State Machine
Diagrams in the program. Merging is basically the cross product of states in the State
Machine Diagram. Merging State Machine Diagrams can be defined in the following.

 Definition: Let SC1 = { S1, T1, s01, t01, F1 } and SC2 = { S2, T2, s02, t02, F2} be
two State Machine Diagrams; the cross product of two State Machine

Diagrams is defined as SCr = SC1 ⓧ SC2
SCr = { Sr, Tr, s0, t0, Fr }, where
Sr = S1 x S2 = { (s11, s21), (s11, s22), (s11, s23), … (s11, s2m), (s11, s21), … (s1n, s2m) }
is a finite set of the cross product of states in two State Machine Diagrams.

Tr = T1 ∪ T2
s0 = (s01, s02)
t0 = transition to s0. Initial transitions t01 and t02 are removed

60 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Fr = (F01, F02)

ⓧ has the following properties.
Rule 1) Commutative Law

sc1 ⓧ sc2 = sc2 ⓧ sc1
Rule 2) Associative Law

(sc1 ⓧ sc2) ⓧ sc3 = sc1 ⓧ (sc2 ⓧ sc3)

Merging State Machine Diagrams is simple. The final product is essentially
identical to the EFSM (Extended Finite State Machine) with all concurrent states
removed [Kim 99]. In our case study, four State Machine Diagrams have 3, 5, 7, and
2 states each; the resultant State Machine Diagram will have 3 x 5 x 7 x 2 = 210 states
and 972 transitions. Merging State Machine Diagrams can be done automatically. A
simpler example using a hypothetical system is explained in Min et al [Min 09a].
Since the merged State Machine Diagram is quite complex to look at, it will not be
shown here. The merged State Machine Diagram is complex, yet its inclusion of
invalid transitions causes a failure to explain the system adequately. The invalid
transitions are those that are never executed to go through.

4.2 Synchronization and Externalization

The synchronization concept is well explained in CSP (Communicating Sequence
Process) [Hoare 87] and used in formal method tools, such as the SPIN via channel.
The example in [Hartmann 00] uses synchronization as well. In one of the transitions
of the State Machine Diagram of class AlarmCtrl, action ‘!evIdGcc@m_gcc’ is
shown. This means that event/signal evIdGcc will be sent to m_gcc object. In class
GCCTask’s State Machine Diagram, evIdGcc works as a trigger in transition. This is
where synchronization comes into play. If the System Clock sends the timeout event
to class AlarmCtrl’s instance, it will trigger evIdGcc to class GCCTask’s instance. If
the merged State Machine Diagram has these transitions in sequence, synchronization
takes place and two transitions can be reduced to one transition. This is explained in
Figure 6. (However, this does not mean that the intermediate state can be removed
safely. Due to other transitions going out or coming in to that state, the state needs to
remain, unless there is no other incoming/outgoing transition.) Also note that the
surviving transition has all the actions (except Sending Event section) of the removed
transitions. As was stated, the synchronization can be said to sort out the valid internal
transitions and eventually remove the valid transitions.

Synchronization removes some of the synchronized transitions but no state that
has other transitions. It is even possible that no transition is removed, if the state has
other transitions with the synchronized transition. In this case, only the first
transition’s destination is changed. If synchronization is applied to the case study
above, the State Machine Diagram is reduced internally with the same number of
states (210) and reduced number of transitions (288). The synchronized State
Machine Diagram is not shown here either due to its complexity. A simpler example
and its synchronized State Machine Diagram can be found in Min et al [Min 09a].
Formal definition of Synchronization is as follows.

61Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Figure 6: Synchronization

 Definition: Let Transition t = { Ssrc, Star, trigger, guard, action }
Let f is a function synchronizing a State Machine Diagram:
f(SC) = SCsyn, where SCsyn = { S, T´, s0, t0, F }
When there are two transitions
t1 = { Ssrc1, Star1, trigger1, guard1, action1 } and t2 = { Ssrc2, Star2, trigger2,
guard2, action2 },

if Star1 = Ssrc2, and action1 ⊃ trigger2, t1 and t2 becomes

t3 = { Ssrc1, Star2, trigger1, guard, action2 } where guard = guard1∪ guard2

The Synchronized State Machine Diagram is not a suitable model to describe
system behavior yet. The synchronized State Machine Diagram is still too complex.
This is because there are numerous invalid transitions in the State Machine Diagram.
The valid internal transitions are checked and removed. However, there remain many
internal – and invalid - transitions. It is the designer’s job to determine whether a
transition is internal or external. The Stereotype <<ExtStimuli>> is used to mark that
the transition is external. The Stereotype <<ExtStimuli>> is added by the designer of
the software while it is being developed. A small embedded system is probably the
best to explain what <<ExtStimuli>> is. If a small system has few buttons, clicking
those buttons can be mapped to each event directly. Even though there are many
transitions in the system, the number of the transitions that the user directly causes is
rather small compared to all the transitions in the system. The designer can add
<<ExtStimuli>> Stereotype to those transitions. Transitions without <<ExtStimuli>>
can be considered internal transitions which the user cannot see externally. Also the
Stereotype <<ExtOut>> can be used to set the external action the tester can check.
The rules to externalize the State Machine Diagram with Stereotypes are listed, as
follows.

Rule 1) If there is no transition with <<ExtStimuli>>/<<ExtOut>>, the State Machine
Diagram may be completely ignored.
Rule 2) If a certain state does not have the <<ExtStimuli>>/<<ExtOut>> transition
(either Incoming or Outgoing), it can be removed.
Rule 3) Transition(s) without <<ExtStimuli>>/<<ExtOut>> can be removed.

62 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

 Definition: Let SC = { S, Tnonext, Text, s0, t0, F }, where Text is Transition
with <<Ext>> Stereotype

Let f be a function externalizing a State Machine Diagram:
f(SC) = SCext, where SCext = { S´, Text´, s0, t0, F´ }

S ⊃ S´

Text ⊃ Text´

F ⊃ F´

Together with merging operator ⓧ, f has the following properties.

f(SC1 ⓧ SC2 ⓧ SC3) = f(f(SC1 ⓧ SC2) ⓧ SC3)

f(SC1 ⓧ SC2 ⓧ SC3 ⓧ SC4) = f(f(SC1′ ⓧ SC2′) ⓧ f(SC3′ ⓧ SC4′))

The above properties are very useful for scalability. When a system is big,
merging all the State Machine Diagrams leads to a very big State Machine Diagram.
The usual strategy taken for scalability is “Divide and Conquer”. The system is
divided by several sub-systems and designed, developed, tested in sub-systems. The
same approach can be applied here. The merged State Machine Diagram could be
very big, depending on the size of the system. However, the system can be divided to
manageable sized sub-systems. The behavior of the sub-system is independently
developed and tested by the proposed method. Then, sub-system State Machine
Diagrams can be merged into a system-wide State Machine Diagram and can be
tested.

With those rules applied, the resultant State Machine Diagram has 210 states and
72 transitions. The number of states is the same, but now we have removed a great
number of transitions. The externalized State Machine Diagram is still very complex.
We have removed the internal transitions so the remaining transitions are all external.
However, if we look carefully, there are states that cannot be reached from the default
state. In Figure 7, the state at the bottom is one that cannot be reached from the
default state. (Figure 7 is a small part of the whole diagram.). Apparently these non-
reachable states may be removed safely. We can apply an optional reachability test to
each state to reduce more states. This test checks whether the state can be reached
from the default state. The final State Machine Diagram with reachability test is
shown in Figure 8. The reachability test pseudo-algorithm is shown in Listing 1.

This final State Machine Diagram has only 27 states compared to the original 210
states and 72 transitions compared to the original 972 transitions. There is one more
externalization to consider. In the State Machine Diagram of GCCTask (Figure 5),
two transitions have <<ExtOut>> Stereotype in process() and deleteAlarm() action.
During externalizing the State Machine Diagram, actions without <<ExtOut>> are
removed and only actions with <<ExtOut>> remain, as shown in Figure 8. The
Stereotype <<ExtOut>> means that it is the action the user can check from the system.
That is, this is the return value we can check in the system. The user can decide
pass/fail with an <<ExtOut>> action.

This State Machine Diagram in effect shows the black-box behavior of the system.
All the events are from the external environment; i.e. the user, and all the actions are
ones the user can check. The externalized State Machine Diagram is a reduced form

63Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

of the original State Machine Diagram. Externalization is sound, because it uses the
original path without modification. Externalization is composed of two steps.

 Externalization – Transition without <<ExtStimuli>> Stereotype is removed.
<<ExtOut>> Stereotype is used to determine whether to remove the action.

 Reachability Test – States that are not reachable from the default state are
removed.

Figure 7: Samples of unreachable states from the default state

Figure 8: Externalized State Machine with RT (partial)

64 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Listing 1: Pseudo-Algorithm of Reachability Test

boolean CheckReachable(State targetState,
State startState) {

// First, check if this is default state
IF targetState is startState
return true;

 END IF
TransitionList listOutgoing =

startState.GetTransitionsFromState();
FOR EACH Transition tran of listOutgoing
m_listPath.push_back(tran);
State nextState = tran.GetToState();
// already went through
IF m_listPat has nextState
CONTINUE;

END IF
m_listPath.push_back(nextState);
IF nextState is targetState
return true;

ELSE
IF CheckReachable(targetState, nextState))
return true;

END IF
 END IF
END FOR EACH
return false; // no outgoing state

}
<<Ext>> Stereotype plays an important role. Since some transitions are external

ones in the sub-system context but internal ones in system-wide context
<<ExtStimuli>> is a relative term. The GNC Missile case study can be used to build a
system State Machine Diagram incrementally. If the GCCTask is needed to test only,
not other tasks, AlarmCtrl and GCCTask can be used to form a new sub-system State
Machine Diagram. In this case, only relevant transitions have <<ExtStimuli>>
Stereotype. All the transitions related with GNCTask, MIMTask, which had
<<ExtStimuli>> Stereotype, now have no Stereotype. GNCTask, and MIMTask can
be made as a sub-system also and sub-systems can be merged to make a system.

5 Using System State Machine Diagram

5.1 Generating Test Cases

The first thing we can do with the system-wide State Machine Diagram is to generate
test cases for the system. Generating test cases from a State Machine Diagram is
thoroughly studied in the academic area and already utilized in some commercial
tools, such as IBM Rational Rhapsody ATG (Automatic Test Generator) and
Statemate ATG. Basically, the approach consists of establishing a DAG (Directed

65Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Acyclic Graph) from the State Machine Diagram and using a Forward/Backward
search for all the paths

Kim et al [Kim 99] suggested three coverage criteria for State Machine Diagram
test cases: Path coverage, State coverage, Transition coverage. Path coverage means
all possible paths in the State Machine Diagram. These can easily be infinite in real
systems. State coverage means that test cases cover each state at least once and
Transition coverage means that test cases cover each transition at least once.
Transition coverage includes State coverage. In this paper, new coverage is proposed.

Proposed coverage: ANR (All transition, No-revisit, Re-startable) coverage
 Covers all transition
 Covered transition is not visited twice (loop is covered only once)

All paths start from the default state and end in the default state or final state

Many system-wide test generation research papers use more than one diagram. In
such cases, interaction diagrams (Sequence Diagram, Communication Diagram) are
often used. Those diagrams are already kinds of test cases and are usually used to
confine generated test cases, because automatic generation of test cases often yields
too many test cases. “All path coverage” is ideal for the coverage but the number of
test cases for that coverage is usually infinite. Thus “All path coverage” is impractical.
Even other coverage criteria often yield too many test cases, so modified coverage
from “All transition coverage” is suggested. It is vital that all transitions and all states
are covered during the test. However, to reduce the number of test cases, ANR does
not revisit the transition that is covered already. All test cases should start from the
default state of State Machine Diagram and end in the default state or one of the final
states to be able to do this. This way, another test case can start after the completed
test case. In the case of the final state as an end state, the system restarts and executes
the next test case.

The algorithm used here is Breadth-First search. The search starts from the
default state and goes through all the paths until it finds the default (first) state again
or the final state. The pseudo-algorithm is shown in Listing 2.

Listing 2: Pseudo-Algorithm of Test Generation

void getNextState(startState, endState, elementList) {
 TransitionList listOutgoing =

startState. GetTransitionsFromState();
 FOR EACH Transition tran of listOutgoing
 newElementList = elementList.copy();
 newElementList.add(tran);
 nextState = tran.getNextState();
 IF nextState is endState or nextState is final_state
 newElementList.add(nextState);
 // End of One TestCase
 m_vecTestCases.add(newElementList);
 CONTINUE; // End of this path
 END IF
 // visited before?

66 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

 boolean isBefore = newListElement.has(nextState);
 // Check is done... push it
 newListElement.add(nextState);
 IF isBefore is true
 TransitionList listOthers =
 getTransitionsFromState(allTransitions, nextState);
 IF listOthers.size is 1
 // The only path is going back.
 newListElement = null;
 CONTINUE; // end of this path
 ELSE
 boolean bFoundNext = false;
 FOR EACH Transition tran of listOthers
 State otherState = tran.nextState();
 IF newListElement has otherState
 CONTINUE; // try next iteration
 ELSE
 bFoundNext = true;
 newListElement.add(otherTran);
 newListElement.add(otherState);
 getNextState(otherState, endState,

newListElement);
 END IF
 END FOR EACH
 IF bFoundNext isnot true) // Not feasible...
 newListElement = null;
 CONTINUE; // end of this path
 END IF
 END IF
 ELSE
 getNextState(nextState,endState,newListElement);
 END IF
 END FOR EACH
}

Table 1 shows the number of test cases generated from each State Machine
Diagram. All the work is done on a Pentium 4 PC with 2.53 GHz CPU and 3 Gbyte
RAM.

Table 1 shows the comparison of the original State Machine Diagram and
synchronized and externalized State Machine Diagram. The original State Machine
Diagram and synchronized/externalized State Machine Diagram produced more than
10,000 test cases, set as the maximum threshold of the test case generation algorithm.
The actual number of test cases generated from each State Machine Diagram would
be different but, since more than 10,000 test cases is impractical, no further
generation is done. Clearly, more than 10,000 test cases are too many to execute, so
some means of breakdown is needed. In the next section, two ways of breakdown will
be used.

67Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

 nStates nTrans nTestCase t(sec) Remark

Original 210 972 > 10,000 23
Whole
System

Synchronized 210 288 > 10,000 23
Whole
System

Externalized with RT 27 72 > 10,000 23
Whole
System

Externalized with RT 6 12 30 0.078
Whole Sys
w/o timeout

Original 15 33 423 0.485
GCC
Subsystem

Synchronized 15 23 78 0.219
GCC
Subsystem

Externalized with RT 9 15 22 0.078
GCC
Subsystem

Table 1: Comparison of Test Case Generation

5.1.1 Selective Test Case Generation (Horizontal Decomposition)

One advantage of the approach taken here is the ease of making a selection of test
case generation. If the tester decides that certain transitions are not to be tested, the
Stereotype <<ExtStimuli>> can be removed from the transitions. The tester can
merge the State Machine Diagrams again or, one can simply disable the relevant
transitions in the resultant State Machine Diagram. If timeout is not considered as an
external event, the State Machine Diagram can be reduced into a State Machine
Diagram with 6 states and 12 transitions. With this simpler State Machine Diagram
only 30 test cases are generated. Indeed, timeout and its actions are periodic checking
of the system, so they are not relevant in test cases.

Often a test case is best to be described as a UML Sequence Diagram. One of the
test cases is shown in Figure 9. However, generated test cases revealed some design
flaws in the existing system. The original design intention was very strict in that the
event should be sent in the order, as in Figure 9. But, generated test cases show that
other combinations of event order are also possible. This is not acceptable in the real
operation. The design will be revised accordingly in the next version.

68 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Figure 9: Generated Test Cases: Whole System & GCC Subsystem

5.1.2 Subsystem Test Case Generation (Vertical Decomposition)

The selective test case generation ability helps prevent the state explosion problem.
With the approach taken here, the State Machine Diagrams must be merged first. If
there are many State Machine Diagrams in the system or State Machine Diagrams are
very complex, the merged State Machine Diagram will be very complex too. After
synchronization and externalization, the State Machine Diagram will be much
reduced but in some cases it is possible that this approach is insufficient due to the
system’s complexity. One way to avoid state explosion is to divide a system into
small sub-systems. The approach used in this paper is useful to apply, since it is very
flexible. In the sub-system, some transitions, which were originally internal
transitions, will act as external transitions, since the transition which gave rise to that
internal transition is in another sub-system and does not exist in the same sub-system.
In such cases, it is very simple to change the transition status with the approach taken
here. Adding <<ExtStimuli>> to that transition is a sufficient change to test the
subsystem correctly. The GCC subsystem, which is explained and shown in the
previous section, is used for the subsystem approach. The GCC subsystem produced
22 test cases from its 9 states, 15 transitions State Machine Diagram.

5.2 Deadlock detection

Deadlock is a common problem in multi-threaded program. In system-wide State
Machine Diagram, it is sufficient to find the state that does not have an outgoing
transition to detect deadlock. In Model-Checking, the path to lead to a particular case

69Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

is usually shown. (This is often called a counter-example.) This is simple because we
have already done the reachability test and that state has passed it. To provide a
counter-example, we can simply re-run the reachability test for that state alone. The
high level design in GNC_SW project has four independent tasks, so deadlock
checking seems necessary. However, the current design uses pre-defined timing for
task running. Although Semaphore is used to make the tasks run and stop, no two
tasks share a Semaphore. No deadlock is detected in system-wide State Machine
Diagram, since the high level design does not have an inherent deadlock problem.

Figure 10: SICTask/MIMDataHandler/Semaphore Class Diagram

Figure 11: MIMDataHandler/SICTask/Semaphore State Machine Diagram

70 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

But, in detailed design, tasks use shared memory for communication. It is
common that one task writes the data in the shared memory and later the other task
reads the data from the shared memory and uses them. Semaphore is used for the
protection of shared memory, and this behavior is modeled in UML diagrams again.
SICTask (Subsystem Interface Control Task) writes the data in shared memory and
MIMDataHandler (Missile-bus Interface Manager Data Handler) reads the data.

New Stereotypes <<Available>>, <<Taken>>, <<Blocking>> are introduced.
<<Blocking>> State has a blocking function call as an entry action and NULL
transition as the next transition. This <<Blocking>> Stereotype and <<Available>>
Stereotype are used to determine the synchronization of transitions. Figure 12 shows
an invalid transition due to a locked Semaphore. This invalid transition can be
removed during the Synchronization process using Stereotypes.

Figure 12: Invalid transition

Figure 13 shows the system-wide State Machine Diagram composed. It is a deadlock-
free system.

Figure 13: Deadlock free System State Machine Diagram

71Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Since GNC_SW has simple structures only, we used the same approach to
infamous “Dining Philosophers”. The approach successfully identified whether the
system is deadlock-free. The result is in Table 2 for the reference. The time row
shows how long it takes to process the algorithm for each step.

State
Machine
Diagram

Two Philosophers and two Chopsticks Three Philosophers and three Chopsticks

nStates nTransition Time(sec) nStates nTransition Time(sec)

merged 144a 576 0.172 1728 10368 7.344

synchronized 144 440 0.328 1728 7944 23.563

externalized 144 216 1.547 1728 3912 11.562

ext. with RT 21 28 1.750 952 2106 383.156

Table 2: Dining Philosophers System State Machine Diagram

5.3 Consistency checking of Use Case Scenarios

A UML project often starts with Use Case analysis. A Use Case is a system’s
behavior. It shows what the system does and how the system interacts with the Actor.
The Use Case is a black box view of the system. It does not care how the system is
constructed internally. Figure 1 shows one of the Use Cases of the GNC System. It is
insufficient to draw the Use Cases in Use Case analysis. Each Use Case has various
scenarios. The most basic way to describe the scenarios is by using plain text, but
because diagrams are easier to understand than text, diagrams can be used instead. For
the description of scenarios, UML diagrams such as Sequence Diagram,
Communication Diagram, and Activity Diagram can be used. Other diagrams, like
State Machine Diagram, can be used as well, but the Sequence Diagram is probably
the most common, since the diagram is very easy to understand. The Communication
Diagram and Activity Diagram are used in the same way as the Sequence Diagram, so
these two diagrams are easily interchangeable with the Sequence Diagram. In this
paper, only the Sequence Diagram is considered for the scenario, but it can easily be
extended to use the Communication Diagram or Activity Diagram.

The “Destroy Target” Use Case has the scenario in Figure 2. This scenario shows
the basic sequence of launching the Missile. evGccCmd is sent first and evGccEOC,
evMissileAwayReady, evMissileAway events are sent after that. Now that we have a
correct system-wide State Machine Diagram, we can check consistency between
UML diagrams. Use Case scenario, which was described as a Sequence Diagram, can
be traced using the system-wide State Machine Diagram. We can check whether the
scenario is correct in a step-by-step manner. A State Machine Diagram always starts
with the default transition. From the default state, we can determine what kind of
event is accepted and what the corresponding action is.

Figure 2 is a correct Sequence Diagram, so there will be no consistency issues.
However, if we change the last action “ready()” in Figure 2 to “away()”, it apparently
causes inconsistency. (This is because the “ready()” action should follow after the
event “evMissileAwayReady”.) Hence, checking consistency reveals an error. Our
implementation includes showing the error in the Sequence Diagram. In Figure 14,
the result is shown. After the event “evMissileAwayReady”, “ready()” action should

72 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

follow. If the scenario is incorrect with “away()”, however, the result shows that
“away()” is specified, but the correct one is “ready()”.

If the wrong event is specified in the Use Case Scenario, our implementation
shows not only that the event is inadequate, but also the list of possible candidate
events that can follow in place of the incorrect event. In Figure 14, 2 events are shown
after the “evMissileAway”. After the “evFire” – “impactPos()”, either
“evMissileAwayReady” or “evFire” can be injected to the system but if
“evMissileAway” is specified in the Use Case Scenario, which is incorrect, adequate
events are shown. Thus, designers can understand what went wrong and how they
can correct the design.

Here we assumed that Use Case Scenarios are incorrect, but what is important is
the inconsistency found in UML models. It is possible that two models (Use Case
Scenarios as Sequence Diagrams and State Machine Diagrams of the classes) are
valid in their own contexts but could be inconsistent when they are compared together.
The consistency check can be applied anytime when design is done. With the iterative
approach of today’s development process, when the State Machine Diagrams of
classes are done, the automatic checking can follow to check if they are consistent
with Use Case scenarios.

Figure 14: Inconsistent Scenarios and possible events

A simpler example using a hypothetical system with pseudo algorithm can be
found in Min et al [Min 09b].

6 Conclusions

Traditionally, UML development differentiates System Analysis and Design of
Software. Use Case Analysis is done at the system level and based on system analysis,
more detailed design follows. Since real implementation uses detailed design, system-
wide behavior is not directly related to the detailed design. This paper suggests a

73Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

method that derives the system-wide State Machine Diagram by merging the State
Machine Diagrams of each class. The system-wide State Machine Diagram is made
from the cross-product of all the State Machine Diagrams and then Synchronization
and Externalization are applied to it. Stereotypes are used for the Externalization that
is very flexible and easy to adapt.

The system-wide State Machine Diagram can be used for various purposes. First,
test cases can be generated automatically using it. Testing is the most time-consuming
process in the development cycle. The system-wide State Machine Diagram can
generate test cases automatically and these test cases can be used in system testing.
The system-wide State Machine Diagram can be used for property checking, such as
deadlock detection. This is essentially the same as the Model-Checking concept. Our
approach has an advantage over existing methods in that only UML is used for
checking. While synchronizing, all the invalid transitions are removed and the
system-wide State Machine Diagram reveals if system is deadlock-free. The system-
wide State Machine Diagram can be used to compare to Use Case Scenarios for
consistency checking. Since Use Case Scenarios are made prior to detailed design,
designs may have inconsistencies. Use Case Scenarios are about the system behavior,
so the system-wide State Machine Diagram can be used directly to check consistency.

All the research is applied to the Missile Project GNC_SW of ADD. The system-
wide State Machine Diagram is made from the highest level Task designs. For the test
case generation, some breakdown was inevitable due to state explosion and we have
addressed how to solve it using two forms of breakdown, namely Horizontal/Vertical
decomposition. Deadlock detection is performed with detailed task design and
consistency check with Use Case scenarios is also performed. The legitimacy and
correctness of our approach was checked easily, and the approach proved to be very
useful. While the analysis is done, inefficiencies of legacy design were found, as a
side effect, and these will be addressed in a future release of GNC_SW.

7 Final Remark

The GNC_SW project has a good structure for our work. Because there are three
distinguished Task classes, our method was easy to apply. However, this is not the
common case; there needs to be a set of general guidelines. We recommend the
requirement-based sub-system approach. To apply our method, the system should not
be too big. The system needs to be broken down into a certain functionality level
based on requirements. If we focus on certain functionality, the number of relevant
classes is relatively small and the number of State Machine Diagrams is even smaller.
This is similar to the Vertical Decomposition previously mentioned in this paper.
However, we recommend dividing the system by functionalities, not by the physical
structures. This allows for a more logical and easier method to make a smaller system.
Also, this can generate Test Cases for the functionalities and enable direct consistent
checking with functional requirements. Deadlock is not a functional requirement (it is
a mandatory requirement by definition) but the relevant classes and semaphores are
essential for the synchronization. Thus, it is sufficient to check these classes as was
demonstrated in this paper. After having a small enough system, selective
externalization (Horizontal Decomposition) helps to apply our method in most cases.

74 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

Acknowledgment

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (2012R1A1A2009354). The corresponding author is Prof. Jin-Young
Choi.

References

[Abdurazik 00] A. Abdurazik, J. Offutt.: “Using UML Collaboration Diagrams for Static
Checking and Test Generation”; Third International Conference on the Unified Modeling
Language, York, UK. 2000, Vol.1939, 383 - 395.

[Ali 07] S. Ali, L.C. Briand, M.J. Rehman, H. Asghar, M.Z. Iqbal, A. Nadeem.: “A State-based
Approach to Integration Testing based on UML Models”; Information and Software
Technology, 2007, Vol.49, 1087 - 1106.

[Andrews 02] A. Andrews, R. France, S. Ghosh, and G. Craig.: “Test adequacy criteria for
UML design models”; Technical report, Computer Science Department, Colorado State
University, February 2002.

[Briand 01] L. Briand, Y. Labiche.: “A UML-Based Approach to System Testing”; Proceedings
of the 4th International Conference on The Unified Modeling Language, Modeling Languages,
Concepts, and Tools, 2001, Vol. 2185, 194 - 208.

[Briand 02] Briand, L.C., Labiche, Y., and Soccar, G.: “Automating impact analysis and
regression test selection based on UML designs”; In Proceedings of IEEE international
conference on software engineering (ICSM’02) (Montréal, Canada, October 3-6, 2002). IEEE
Computer Society Press, Washington, DC, 2002, 252-261.

[Briand 03] L. C. Briand, J. Cui and Y. Labiche: “Towards Automated Support for Deriving
Test Data from UML State Machine Diagrams”; Proc. ACM/IEEE Int. Unified Modeling
Language conference (UML 2003), Carleton University, 2003.

[Brottier 06] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. L. Traon.: “Metamodel-based
test generation for model transformations: an algorithm and a tool”; In Proceedings of
ISSRE’06, Raleigh, NC, USA, 2006.

[Clarke 99] E. M. Clarke, Jr., O. Grumberg and D. A. Peled.: “Model Checking”; MIT Press,
1999.

[Dinh-Trong 05] T. Dinh-Trong, N. Kawane, S. Ghosh, R. France, and A. Andrews.: “A Tool-
Supported Approach to Testing UML Design Models”; In Proccedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS), June
2005.

[Egyed 05] Alexander Egyed.: “Instant Consistency Checking for the UML”; Proc. of the 28th
International Conference on Software Engineering (ICSE), Shanghai, China, 2005.

[Elaasar 04] M. Elaasar, L. Briand.: “An Overview of UML Consistency Management”;
Technical Report SCE-04-18, Carleton University, Aug. 2004.

[Engels 02] G. Engels, J. H. Hausmann, R. Heckel, S. Sauer.: “Testing the Consistency of
Dynamic UML Diagrams”; Proc. 6th International Conference on Integrated Design and
Process Technology (IDPT 2002), Pasadena CA (2002).

75Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

[Fleurey 04] F. Fleurey, J. Steel, and B. Baudry.: “Validation in Model-Driven Engineering:
Testing Model Transformations”; In MoDeVa’04 (Model Design and Validation Workshop
associated to ISSRE’04), Rennes, France, November 2004.

[Frohlich 00] P. Frohlich and J. Link.: “Automated Test Case Generation from Dynamic
Models”; Proc. 14th European Conf. Object-Oriented Programming, 2000.

[Gnesi 04] Stefania Gnesi, Diego Latella and Mieke Massink.: “Formal Test-case Generation
for UML State Machine Diagrams”; Engineering Complex Computer Systems, 2004.
Proceedings. Ninth IEEE International Conference

[Gallardo 02] Maria del Mar Gallardo, Pedro Merino, Ernesto Pimentel.: “Debugging UML
Designs with Model Checking”; in Journal of Object Technology, vol. 1, no. 2, July-August
2002, pages 101-117.

[Gomaa 03] H. Gomaa, D. Wijesekera.: “Consistency in Multiple-View UML Models: A Case
Study”; Workshop on Consistency Problems in UML-based Software Development II, 6th
International Conference on the Unified Modeling Language--the Language and its applications
(UML'2003), San Francisco (2003) 1-8.

[Hartmann 00] Jean Hartmann, Claudio Imoberdorf, Michael Meisinger.: “UML-Based
Integration Testing”; Proceedings of the 2000 International Symposium on Software Testing
and Analysis, August 2000.

[Heckel 03] R. Heckel, M. Lohmann.: “Towards Model-Driven Testing”; TACoS -
International Workshop on Test and Analysis of Component Based Systems, Warsaw, April
13th, 2003,in conjunction with ETAPS 2003.

[Hartmann 04] Hartmann J., Vieira M. and Ruder A.: “UML based Test Generation and
Execution”; Proc. Workshop on Software Test, Analyses and Verification, 2004.

[Hoare 87] Hoare C. A. R.: “Communicating Sequential Processes”; Prentice Hall, 1987.

[Javed 07] A. Z. Javed, P. A. Strooper, and G. N. Watson.: “Automated Generation of Test
Cases Using Model-Driven Architecture”; Proceedings of the Second International Workshop
on Automation of Software Test. 3. 2007.

[Kansomkeat 03]Kansomkeat, S. and Rivepiboon, W.: “Automated-generating test case using
UML State Machine Diagram diagrams”; In Proceedings of the 2003 Annual Research
Conference of the South African institute of Computer Scientists and information
Technologists on Enablement Through Technology, vol. 47. South African Institute for
Computer Scientists and Information Technologists, 296-300.

[Kandl 06] S. Kandl, R. Kirner, and P. Puschner.: “Development of a framework for automated
systematic testing of safety-critical embedded systems”; In Proc. Workshop on Intelligent
Solutions in Embedded Systems (WISES’06), 2006.

[Kaveh 01] N. Kaveh and W. Emmerich.: “Deadlock Detection in Distributed Object Systems”;
In V. Gruhn, editor, Joint Proc. of the 8th European Software Engineering Conference and the
9th ACM SIGSOFT Symposium on the Foundations of Software Engineering, Vienna, Austria,
pages 44-51. ACM Press, 2001.

[Kim 99] Y.G. Kim, H.S. Hong, S.M. Cho, D.H. Bae and S.D. Cha.: “Test Cases Generation
from UML State Diagrams”; IEE Proceedings Software Vol. 146 No.4 1999.

[Lettrari 01] Lettrari, M., Klose, J.: “Scenario-based monitoring and testing of real-time UML
models”; UML 2001 - The Unified Modeling Language, Modeling Languages, Concepts, and
Tools, 4th International Conference, Toronto, Canada, October 1-5, 2001, Proceedings.
Number 2185 in LNCS, Springer-Verlag (2001) 317–328

76 Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

[Lilius 99] J. Lilius and I. Porres Paltor.: “vUML: A tool for verifying UML models”; In Proc.
IEEE International Conference on Automated Software Engineering, pages 255–258. IEEE
Computer Society Press, 1999.

[Marinov 01] D. Marinov and S. Khurshid, TestEra: “A novel framework for automated testing
of Java programs”; In Proc. 16th IEEE International Conference on Automated Software
Engineering (ASE), San Diego, CA, Nov. 2001.

[Mikk 98] E. Mikk, Y. Lakhnech, M. Siegel, and G. J. Holzmann.: “Implementing State
Machine Diagrams in PROMELA/SPIN”; In Proceedings of Workshop on Industrial-strength
Formal Specification Techniques (WIFT 98), 1998.

[Milner 95] Milner R.: “Communication and Concurrency”; Prentice-Hall, 1st Edition, 1995.

[Min 09a] H.S. Min and J.Y. Choi.: “Automatic Test Generation for System using UML State
Machine Diagram”; SERP ’09, Las Vegas, Nevada, USA, July 2009.

[Min 09b] H.S. Min and J.Y. Choi.: “Automatic Consistency Checking of Use Case Scenarios”;
SEA ’09, Boston, MA, USA, Nov 2009.

[Nebut 06] C. Nebut, F. Fleurey, Y. Le Traon and J.-M. Jezequel.: “Automatic test generation:
a use case driven approach”; IEEE Transactions on Software Engineering, vol. 32 (3), pp. 140-
155, 2006.

[Offutt 99] Jeff Offutt, Aynur Abdurazik.: “Generating Tests from UML Specifications”;
UML’99 – The Unified Modeling Language. Beyond the Standard. Proceeding of the Second
International Conference, Fort Collins, CO, USA, 1999, Vol.1723, 416 - 429.

[Pilskalns 03] O. Pilskalns, A. Andrews, R. France, and S. Ghosh.: “Rigorous Testing by
Merging Structural and Behavioral UML Representations”; in Proc. of the 6th International
Conference on the UML, 2003, pp. 234-248.

[Rasch 03] Holger Rasch, Heike Wehrheim.: “Checking Consistency in UML Diagrams:
Classes and State Machines”; in E. Najm, U. Nestmann, and P. Stevens, editors, Formal
Methods for Open Object-Based Distributed Systems (FMOODS'03), volume 2884 of LNCS,
pages 229-243. Springer, 2003.

[Rutherford 03] M. J. Rutherford and A. L.Wolf.: “A Case for Test-Code Generation in Model-
Driven Systems”; In Proceedings of the second international conference on Generative
programming and component engineering, pages 377–396, 2003.

[Tretmans 99] Jan Tretmans, Axel Belinfante.: “Automatic Testing with Formal Methods”; In
EuroSTAR'99: 7th European Int. Conference on Software Testing, Analysis & Review,
Barcelona, Spain, November pp. 8-12, 1999. EuroStar Conferences, Galway, Ireland.

[Tsiolakis 00] Aliki Tsiolakis.: “Consistency Analysis of UML Class and Sequence Diagrams
based on Attributed Typed Graphs and their Transformation”; ETAPS 2000 Workshop on
Graph Transformation Systems (GraTra), Berlin, Germany, March 2000.

[Wang 04] L. Wang, J. Yuan, X. Yu, J. Hu, X. Li, and G. Zheng.: “Generating Test Cases from
UML Activity Diagram based on Gray-Box Method”; In 11th Asia-Pacific Software
Engineering Conference (APSEC 2004), pages 284–291, 2004.

[Wu 03] Ye Wu, Mei-Hwa Chen and Jeff Offutt.: “UML-based Integration Testing for
Component-based Software”; The 2nd International Conference on COTS-Based Software
Systems (ICCBSS). pages 251-260, Ottawa, Canada, February 2003.

77Min H.-S., Chung S.-M., Choi J.-Y.: Deriving System Behavior ...

