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Abstract: This paper analyzes the use of machine learning techniques for the identification of 
encryption algorithms, from ciphertexts only. The experiment involved corpora of plain texts in 
seven different languages; seven encryption algorithms, each one in ECB and CBC modes; and 
six data mining algorithms for classification. The plain text files were encrypted with each 
cryptographic algorithm under both cipher modes. After that, the ciphertexts were processed to 
produce metadata, which were then used by the classification algorithms. The overall 
experiment involved not only a high quantity of ciphertexts, but also time consuming 
procedures for metadata creation as well as for identification. Therefore, a high performance 
computer and customized memory management were employed. As expected, the results for 
ECB mode encryption algorithm identification were significantly high, and also reached full 
recognition. On the other hand, algorithm identification under CBC is supposed to be marginal, 
but successful identification was up to six times higher than the probabilistic bid. 
 
Keywords: cryptographic algorithm identification, data mining, machine intelligence, parallel 
computing  
Categories: E.3, K.6.5, L.4.0 

1 Introduction  

This paper investigates ciphertext analysis for the identification of cryptographic 
algorithms used in encryptions using machine learning and data mining techniques. 
The aim is to use encrypted text files and a massive analysis to produce metadata in 
order to identify the cryptographic algorithm used for encryption, while at the same 
time employing machine learning techniques for classification. Generally speaking, 
cryptographic algorithms are essential for providing privacy, non-repudiation, 
integrity and authenticity, by ensuring only the sender and receiver are able to access 
the original information content. Kerckhoffs's assumption states that the security of a 
message must be based on key strength and not on the lack of knowledge about the 
features of the algorithm since such algorithms are considered known by everyone.  

Public knowledge of algorithms notwithstanding, there are two possible scenarios 
for cryptanalysis. The first scenario is when it is possible to gather information about 
the cryptographic system. In this situation, the information on which cryptographic 
algorithm was used can be obtained by eavesdropping messages for algorithm 
negotiation, reading protocol specifications, performing social engineering, or even 
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performing reverse engineering of hardware and software. The second scenario 
concerns digital forensics when the ciphertext is the only information available to the 
cryptanalyst. In this scenario, identifying which encryption algorithm is being used 
from the ciphertext alone is a challenging task. This is usually the case in attempts to 
collect evidence from computer media or network traffic seized at a crime scene.  

The present work concerns the latter scenario, when a forensic cryptanalyst faces 
the challenge of knowing nothing about the cryptographic algorithm used. Therefore, 
the identification of the algorithm used is an important procedure because it facilitates 
obtaining the original data by cryptanalysis. Discovering which encryption algorithm 
was used is one of the activities that contribute to decoding, and it precedes key size 
determination and key discovery itself, as well as other cryptanalysis attacks. 

When used to encrypt the same plain text with the same key, symmetric block 
ciphers in ECB (Electronic Codebook) mode generate identical encrypted text blocks. 
Despite this being an expected behavior, as is the clustering of ciphertexts according 
to such algorithms, several papers have been published expressing interest in the 
identification of cryptographic algorithms in ECB mode. Common sense states that 
encryption algorithms must generate sequences with random characteristics so that a 
ciphertext encrypted with algorithm A may be classified into a group of ciphertexts 
encrypted with algorithm B. However, several experimental studies have shown that 
this does not occur, and the groups generated in clustering processes are not mixed. 

Mello et al. [Mello,16] show that, contrary to what one would expect from files 
encrypted via well known and widely used algorithms, there is enough exposed 
information to identify which cryptographic algorithm was used. The present article, 
in turn, is the result of ongoing research, it highlights some interesting observations 
and provides answers to some previously formulated questions. It has three major 
contributions. First, it presents a novel way to use encrypted text features during 
supervised training. Second, the amount of cryptographic algorithms to be analyzed is 
greater than that of previous investigations, since not only ECB encryption mode is 
addressed, but also CBC (Cipher Block Chaining) mode. In fact, this is the most 
important issue here, since CBC mode is not supposed to be sensitive to 
distinguishingattacks, which this paper shows not to be true. The CBC encryption 
mode may be susceptible to such an attack, but the volume of data to be processed is 
prohibitive for conventional computers, and it is needed parallel support from high 
performance computing architecture. Third, the paper describes the computational 
resources needed to fully identify CBC cryptographic algorithms. 

2 Related Work 

The attempt to acquire information about the cryptographic system used for 
generating a ciphertext is known as a “Distinguishing Attack”. One approach is to 
distinguish ciphers from random sequences. The other is to detect differences between 
ciphertexts generated by different algorithms. Maheshwari [Maheshwari,02] and 
Chandra [Chandra,02] tried to separate ciphertexts encrypted with DES from those 
encrypted with IDEA. Rao [Rao,03] used linear programming techniques in an 
attempt to separate RSA from IDEA. Carvalho [Carvalho,06] and Souza [Souza,07; 
Souza,08] grouped ciphertexts generated by RSA, DES and AES, using information 
retrieval techniques. Furthermore, Souza [Souza,07; Souza,03] described an 
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application of neural networks to the same problem, but obtained less successful 
results than clustering techniques. Nagireddy [Nagireddy,08] developed histogram 
methods and block predictions to identify DES, AES, Blowfish, Triple DES and RC5. 
Saxana [Saxana,08] used machine learning techniques to classify ciphertexts 
generated by the algorithms Blowfish, RC4 and Camellia. Torres et al. [Torres,11] 
reported on the use of graph theory techniques and genetic algorithms for detecting 
patterns in ciphertexts. Souza and Tomlinson [Souza,03] presented a neural network 
capable of separating single 128-bit key ciphertexts produced by MARS, RC6, 
Rijndael, Serpent and Twofish. It should be noted, however, that all these works 
employed a distinguishing attack against a small set of algorithms, and they always 
considered only the ECB block cipher mode. There are two main reasons for these 
commonalities: (1) separating a small number of algorithms reduces the complexity 
involved in identification; and (2) the statistical behavior of sequences encoded in the 
ECB mode have smaller entropy than in CBC mode, although sometimes this cannot 
sensitize statistical test (see section 5 for details). The present work, on the other 
hand, analyzes a larger set of algorithms and also examines the CBC mode. 

Progress in the use of computational intelligence to explore weaknesses in 
cryptographic systems has been gradual. Laskari [Laskari,07] used computer 
intelligence to perform a security check of pattern generation. Attempts to identify 
block ciphers have been carried out using neural networks [Albassal,04] and 
regression methods [Swapnaa,10]. The Rogers Isomorphism Theorem was used to 
demonstrate the biunivocal correspondence between a machines’ understanding of 
text and the process of ciphertext analysis [Carvalho,16] based on knowledge 
geometry [Mello,15]. Ciphertext analysis was also performed using information 
retrieval [Carvalho,06; Souza,07; Nagireddy,08], an artificial intelligence technique 
that combines statistics and computational linguistics. These approaches suggest that 
a ciphertext may be considered a text in a language produced by the encryption 
algorithm and understanding the language depends on its linguistic structure. 
Moreover, evaluation of the encryption key [Souza,08] has also been analyzed using 
classificatory processes of computational intelligence. Lastly, cryptographic algorithm 
identification was investigated by combining intelligent classification processes with 
genetic algorithms [Xexeo,11] and employing statistical analysis [Sharif,10].  

The concepts behind this paper are based on Barbosa et al. [Barbosa,16], who 
performed a preliminary experiment of very reduced scope to evaluate algorithm 
identification using the machine learning approach and to understand the technical 
constraints concerning computational resources. Subsequently, Barbosa et al. 
[Barbosa,17] applied the technique to multimedia files, and Mello et al. [Mello,16] 
used Barbosa’s approach with a larger dataset and a greater number of algorithms to 
be identified. The present work presents new features of the metadata used by the 
machine learning techniques. Moreover, the most important and novel aspect of this 
paper is the analysis of not only ECB mode but also the CBC mode. Such an analysis 
suggests that distinguishing attacks against CBC block cipher mode are viable, and 
the computational resources required to obtain complete success in such a task are 
estimated. 
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3 Encryption Algorithm Identification 

The strategy for determining the encryption algorithm used to produce a ciphertext 
consists of applying feature-identification methods to a set of attributes that describe 
the encrypted files. Although one could exploit the same algorithms to perform data 
mining, in this work such algorithms were exploited to perform pattern recognition, 
and therefore perform machine-learning. Figure 1 shows the schematics, which is 
composed of three main modules. The first module is responsible for taking the 
corpora of plain texts and combining it with keys and encryption algorithms in ECB 
and CBC modes, thereby producing the ciphertexts. The next module takes the 
ciphertexts and carries out a transformation, resulting in metadata that describe 
features of those encrypted files. Finally, the last module involves machine-learning 
methods that exploit the large amount of metadata with the purpose of identifying the 
encryption algorithm. 
 

 

Figure 1: Schematics for determining the encryption algorithm used to produce 
ciphertext. 

The corpora of plain texts used in this research included seven different 
languages. It seemed interesting to evaluate whether the original vernacular could 
influence the encryption algorithms, and if such an influence could be captured by the 
classification algorithms. The original idea was to use Portuguese, Spanish, English 
and German texts. However, there was an opportunity to enlarge the number of 
writing systems, and since this would improve the analysis of how cryptographic 
algorithms increase entropy, it seemed reasonable to enhance the sample space by  
incorporating other languages, such as Hebrew, Cyrillic and Mandarin.Moreover, 
these additional texts could not be encoded in ASCII, but in Unicode, which implies 
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an increase in bytes used for character representation. 
The corpora were composed of 4,200 text samples divided into seven distinct 

corpora. Each corpus corresponded to a language system and consisted of 600 
samples of different texts retrieved from newspapers and magazines, with no repeated 
sentences. Each sample had at least 140,000 characters, which corresponds to 
approximately 35 text pages, an unusual size for newspaper and magazine articles. 
Thus, full text articles were concatenated until the minimum number of 140,000 
characters was reached.  

It should be noted that in order to avoid this overhead in gathering small text and 
merging them into a single text, it is common to use long texts for corpus assembly, 
such as the Bible, the Iliad, the Odyssey, and Don Quixote. However, the linguistic 
construction of these works is so distinct from everyday texts that they do not provide 
a good representation of contemporary languages. This may introduce a bias into the 
sample space, so the use of texts from newspaper and magazine articles has become a 
mandatory requirement. 

Since this study is exploratory in nature, classical cryptographic algorithms were 
chosen for evaluation. The criterion is based on evaluating the behavior from block 
encryption, stream cipher encryption, symmetric and public key algorithms. Thus, the 
selected cryptographic algorithms were DES, Blowfish, RSA, ARC4, Rijndael, 
Serpent and Twofish. The implementations of these algorithms was based on source 
codes from Schneier [Schneier,96] and Dai [Dai,16], but each implementation not 
only had to be adapted to the execution environment, but also had to be modified to 
allow its application in ECB and CBC modes, thus resulting in 13 implementations 
(recall that ARC4 is a stream cipher encryption). An important remark must be made 
concerning RSA since it is not a block cipher algorithm, and thus ECB/CBC modes 
are not applicable. In this paper, the traditional algorithm is called RSA, while RSA 
“CBC” describes a variant implementation where the text is broken up into separate 
blocks, and an "add mod N" is performed of the ciphertext of one block to the 
plaintext of the next block, almost like CBC mode. Finally, initialization vectors of all 
CBC algorithms were produced by a pseudo-random bit generator derived from the 
ANSI X9.17. 

Parallelism was obtained by using OpenMP [OpenMP,11] directives in order to 
signal to the compiler which regions contained independent iterations, and thus liable 
to be parallelized, in order to take advantage of a high-performance computer. The 
precise gain obtained through the parallelism of those algorithms extrapolates the 
primary purpose of this work, but prototype testing suggests a significant advantage 
that will be discussed in Section 4. Of course, this benefit occurs with parallel 
implementations of algorithms in ECB mode, which is nonexistent in CBC mode. 
This is because of the high dependence of CBC mode loop iterations, which computes 
an XOR between the current block cipher and the block cipher from the previous 
iteration. 

All encryption keys were composed of 128 bits and were produced by a pseudo-
random bit generator (PRNG) derived from ANSI X9.17 [Schneier,96], with two 
exceptions. Since a DES key needs just 56 bits, the 128-key needed to be shortened. 
Additionally, it is well known that RSA needs two large prime numbers as a private 
key, but these numbers can be substituted by the output from a secure pseudo-random 
number generator. The RSA’ public and private keys are produced by concatenating 8 
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blocks of 128 bits from the PRNG. Each plain text file from the corpora was 
associated with a different key in order to avoid any influence of key patterns on the 
data mining process. The usage of the same key to encrypt distinct files may induce a 
defect in the cryptographic algorithm identification process, which is subject to being 
captured by the classification algorithms, consequently masking results. This kind of 
key generation does not allow operation parallelism, but this task is not 
computationally expensive. 

Once encoding was finished, metadata creation was initiated. This procedure 
extracts useful information from the ciphertexts that is employed in the machine 
learning stage. Each metadata file was associated with one of the seven language 
corpora and with all cryptograms produced from that corpus. An additional metadata 
file was also created corresponding to the fusion of all encoded files, from all 
languages, into a single corpus. The aim of this extra file was to evaluate the behavior 
of identification algorithms when applied to a dataset composed of all seven 
languages. The transformation module also received 600 samples from another 
module called KeyBITS; it is not part of the identification process, and its purpose 
will be explained in the next section. 

Each line record from a metadata file is composed of a histogram from a 
cryptogram, whose bins are the occurrences of a block of contiguous bits, and a label 
for cryptographic algorithm designation. This label is used for training the machine 
learning algorithms and as data control for evaluating results. The bit size of these 
blocks varied from 2 to 34 bits. The 34-bit upper limit was imposed by memory 
capacity as a consequence of resource availability in the parallel computer and by the 
implementations of the data processing modules and machine learning techniques. 
There is an important issue concerning the block collection of contiguous bits used by 
Mello et al. [Mello,16] and the one from this paper. The former isolated blocks 
according to contiguous bit size, and so the machine-learning algorithms analyzed 
them separately. The present study, in turn, grouped all blocks into a single line 
record in order to analyze them together, and eventually explore relationships 
between different block sizes. Moreover, the OpenMP directives were used to signal 
to the compiler what commands from bins calculus can be parallelized. The 
parallelization of this transformation stage is extremely necessary because without it 
the time for computing all metadata becomes prohibitive. 

Finally, the metadata were processed by a set of classifiers at the machine-
learning module. As previously mentioned, this stage uses the bin information of 
histograms cumulatively. The usual approach in the literature is to use a given bin size 
information to create the learning model and perform the classification. However, in 
the present work, all previous bin size information was used to execute these tasks. 
That is, when computing the learning model and performing the classification, at the 
iteration whose bin size is S, all information from bins of size 2 to S-1 were also used.  

Like the cryptographic algorithms, the criterion for choosing the classification 
algorithms was to explore the viability of using machine learning algorithms in 
cryptographic algorithm identification. Thus, algorithms were used that represent 
various categories of classifiers, such as bayesian, functional, rule-based, and decision 
tree generators. For each algorithm, independent iteration loops were located and 
OpenMP directives applied in order to explore parallelism in order to reduce 
computation time. 

30 de Mello F.L., Xexeo J.A.M.: Identifying Encryption Algorithms ...



The classification algorithms used were: C4.5, PART, FT, Complement Naive 
Bayes, Multilayer Perceptron and WiSARD. Although these algorithms are classical, 
they are not outdated or obsolete. Brand new machine learning algorithms provide 
slightly better accuracy, are usually faster and consume less memory, but they are not 
easy to obtain for the target platform being in this experiment. These features may 
reduce the demand for computational resources, but do not contribute significantly to 
improved accuracy, which is the main need of the present work. Thus, availability 
becomes the major criterion for choosing machine-learning methods, and the classical 
algorithms surpass the new ones in this regard. 

The machine learning procedure was divided into two sequential steps; one 
concerns the creation of the classification model for each classifier, and the other 
consists of testing the classification. Therefore, each metadata file was divided into 
two distinct parts. The first, containing 66% of all cryptograms, was used to assemble 
the classification model. The second, comprising the remaining 34% of all 
cryptograms, was used for testing. It is important to note that the experiment 
maintained the same amount of metadata ciphertexts for each cryptographic algorithm 
and for both ECB and CBC modes, so that classification algorithms were neither 
over-trained nor under-trained for identification. There was also a similar balance for 
each language with the metadata file that joins all languages. Consequently, this 
procedure removed the possibility of favoring the identification of one algorithm over 
another, as well as any influence of a better-trained language set. The machine-
learning module produced a confusion matrix for each classification algorithm and 
each metadata file. The goal was to acquire an effective measure of the classification 
model by presenting the number of correct classifications versus the predicted ones. 
From these confusion matrices it was possible to obtain the percentage of correct 
classifications for each classifier, for each algorithm and for each language corpus. 

4 Description of the Experiment 

For the experiment, each classifier was trained using 10-fold cross-validation. The 
C4.5 algorithm was configured to use just one boosting interaction, starting with an 
empty weights vector and with no global pruning step to simplify the tree. For the FT 
algorithm, the minimum number of instances for a node to be considered for splitting 
was set to 15, the number of iterations for LogitBoost was set to 30, and no weight 
trimming. For the PART algorithm, the confidence factor used for pruning was set to 
0.25, the minimum number of instances per rule was set to 2, and 3-folds was used for 
error pruning. The Complement Naive Bayes algorithm does not implement Laplace 
smoothing and density was used as metric predictor. The Multi Layer Perceptron 
algorithm was initially configured with randomized weights, the learning rate was set 
to 0.005, the momentum was set to 0.2, there were two fully connected hidden layers 
with 350 neurons, and the calibration used back propagation. Finally, the WiSARD 
algorithm was configured with 13 RAM-discriminators, and the bleaching technique 
was used with a confidence value of 0.1. 

The environment in which the experiment was developed was a Cray XK6 Nano 
parallel computer. This machine has 40 computational nodes, each with a 16-core 
Opteron 6276 CPU, a NVIDIA Tesla K20 GPU and 32GB of central memory. The 
experiment, however, used only the 16 cores from one computational node in order to 
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avoid parallel constraints concerning CPU and GPU communication as well as inter-
node communication. Moreover, the experiment was checked twice on an 
Environment equipped with 4 nodes of Intel Xeon Phi CPU 7250 @ 1.40GHz, 68 
cores/272 threads each, and 128GB central memory 

Barbosa et al. [Barbosa,16] had previously pointed out the demand for computing 
power in a significantly smaller experiment, as have other researchers [Mello,16] 
[Barbosa,17]. In order to obtain greater computing ability, it was necessary to use not 
only a machine with high computing power but also parallel programming. A 
comparison of algorithm processing time between the present experiment and that of 
Barbosa et al. [Barbosa,16] indicates an increase in speed of 864.02. Moreover, the 
increased speed of the parallelized algorithm using 16 cores versus using only one 
core was 14.24. Table 1 presents the processing times for each module of the 
experimental scheme, and clearly shows that the transformation module and the data-
mining module have a high cost. It should be noted that the experiment was not 
completely automated and the values of Table 1 represent the actual computation 
time, and does not take into consideration manual activities to maneuver data from 
one module to another. 
 

Module Execution (dd:hh:mm:ss) 

Key Generator 00:00:00:08.904 

Encoder 00:01:52:40.621 

Transformation 09:19:54:11.826 

Machine Learning 30:13:51:51.885    

 Classifier Train Test 

 C4.5 00:11:18:45.026 00:02:24:21.614 

 FT 02:18:58:05.186 01:07:12:19.338 

 PART 00:10:27:32.025 00:05:20:37.937 

 Complement Naive Bayes 00:00:10:59.461 00:00:00:48.647 

 Multilayer Perceptron 24:06:11:41.931 00:00:29:42.673 

 WiSARD 00:23:04:21.649 00:00:12:36.398 

Table 1: Experiment processing times. 

The procedures for transforming ciphertexts into metadata is costly due to the 
large number of bins in the histograms, which is directly proportional to number of 
bits used to define block size. In the worst case, the 34-bit block had 234 classes, 
which demands the construction of a dynamic data structure (hash table chained with 
linked lists) for storing the number of times a given bin has occurred in the data set. It 
was not possible to increase this number of bits due to RAM constraints of the 
available environment; however a better data structure can mitigate this problem. 

The machine learning stage was also quite long and the Multilayer Perceptron 
classifier was a key factor in this result, as expected. For this reason, the WiZARD 
neural network was also evaluated as a possible replacement for Multilayer 
Perceptron, since the former is known to be faster than the latter. Furthermore, the 
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computational cost of the classifier Complement Naive Bayes must be highlighted, 
since it was significantly lower than all the other classifiers. 

5 Results 

Randomness tests were first performed to analyze the distribution of the encryption 
keys and the individual ciphertexts in order to determine if there are patterns that 
might confuse further analysis. Tests are usually grouped into test batteries (or test 
suites), which provide more complex randomness analysis. Passing such tests is an 
important step for a pseudo-random sequence to be approved by certification 
authorities.  

The randomness test from NIST (National Institute of Standards and Technology) 
Statistical Test Suite [Rukhin,10] was applied to 600 sequences of cryptograms and to 
the encryption key file in order to detect any grossly inadequate random number 
generators, some hardware and software implementation errors, and normal 
imperfections of pseudo-random number generators. This suite defines 15 empirical 
tests of randomness, some of which are divided into sub tests. The suite report 
indicates the number of failures obtained during such an evaluation. Table 2 
summarizes the results of these tests for the cryptograms of the present work. 

Proportional failure (Prop) occurs when a generator fails a type of test too often. 
The NIST guidelines define a tolerance, which is a level of confidence beyond which 
a sample of generator output can be said to have not come from a true random source. 
None of the cryptographic algorithms of the present study were rejected, nor the 
ANSI X9.17 key generator.  

Furthermore, a single test is considered passed if the P-value is above the 
significance level of 0.01 or below 0.99. The P-value represents the probability of a 
perfect random number generator producing the same or worse test result. Table 2 
presents some small failures, but the interpretation of these is not straight-forward 
since the probability of a good random number generator failing this requirement is 
not zero. Thus it is not surprising for occasional P-values to be smaller than 0.01, such 
as for some instances reported in Table 2. Besides, the smallest P-value obtained was 
0.004462 (ARC4), which is not a big failure, but it is known that this algorithm fails 
statistical tests [Goutam,07]. Therefore, the randomness test is in accordance with 
what is expected from cryptographic algorithms, and thus the individual analyses of 
the ciphertexts do not indicate deviation from randomness. 

The next aspect analyzed was the influence of the original language of the texts 
on cryptographic algorithm identification. The confusion matrices make it possible to 
determine the percentage of correct identifications for the seven given language 
corpora (CL) and for the additional corpus containing all languages (CALL). 
Considering all bin sizes, differences between the percentages for the individual 
single language corpora and the joint language corpus were calculated as the 
normalized distance D=(CALL- CL)*100/ CALL. Figure 2(a) represents these distances 
for the correct identification of the DES encryption algorithm by the C4.5 classifier, 
where the mean value is 3.014 and the standard deviation is 2.347. Moreover, Figure 
2(b) shows the distances for the RSA encryption algorithm and the Complement 
Naive Bayes classifier, with a mean value of 3.004 and a standard deviation of 2.496. 
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Empirical Test Cryptograms 
(First column ECB mode, second column CBC mode – except for 

ARC4; see comment in section 4 regarding RSA.) 

ARC4 Blowfish DES Rijdael RSA Serpent Twofish 

Frequency P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

BlockFrequency P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cumulative 
Sums (+2) 

P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Runs P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

LongestRun P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Rank P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

FFT P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Non-overlapping 
Template (+148) 

P-val. 2 2 1 2 1 0 0 2 1 1 1 1 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Overlapping 
Template 

P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Universal P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Approximate 
Entropy 

P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Random 
Excursions (+8) 

P-val. 0 0 0 1 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

RandomExcur 
sionsVariant (+18) 

P-val. 0 1 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Serial (+2) 
.  

P-val. 1 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Linear 
Complexity 

P-val. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Prop. 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 2: Number of failures reported by NIST randomness test. 

 
 
 

34 de Mello F.L., Xexeo J.A.M.: Identifying Encryption Algorithms ...



 

 

Figure 2: Differences in successful identification between a single language corpus 
and the seven language corpus: (a) distance for DES encryption analyzed by the C4.5 
classifier, (b) distance for RSA encryption analyzed by the Complement Naive Bayes 
classifier. 

Positive values of D indicate that the best identification results were obtained 
when using the corpus with all languages together. In the vast majority of cases this is 
true, but the nominal values obtained for mean distance do not indicate a significant 
difference. The standard deviation also does not show an important dispersion of the 
values of the data set. Therefore, the original language of the plain texts does not 
seem to interfere with the performance of the classification algorithms. The better 
results obtained for the corpus with all languages together is explained by its sample 
space size. Since it has many more instances, the classification model for the corpus 
with all languages is finer trained, and hence produces better results. Consequently, 
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all further analysis in this paper corresponds to the corpus with all seven languages 
together. 

The KeyBITS block in Figure 1 corresponds to a physical pseudo-random bit 
generator [Barbosa,16b], which uses the intrinsic light noise of a laser beam as an 
entropy source. The purpose of using KeyBITS is to create 600 samples of pseudo-
random files of sizes equivalent to those from the ciphertexts. Notice that this random 
bits collection may not be truly random, but its entropy is high enough to be 
considered so [Barbosa,10]. The assumption made is that these files do not have 
exposed patterns that allow successful algorithm identification by the machine 
learning algorithms. Thus, the KeyBITS files were inserted into the identification 
procedure in order to produce base line values and serve as a reference for 
comparison. The machine learning algorithms of the present investigation belong to a 
category of classification algorithms, which means they are employed when there is a 
set of predefined classes and the intention is to know which class a new object 
belongs to. This means that the classification algorithms will not be able to identify 
KeyBITS since it cannot be described by patterns. On the other hand, if the machine 
learning algorithms were clustering algorithms, that is, if such algorithms attempt to 
group a set of objects and find whether there is some relationship between them, then 
there would be a very high hit since the KeyBITS group is defined by all elements 
that do not belong to the other encryption groups. 

The next aspect analyzed was the identification performance of the classifiers. 
Note that the probabilistic control value for a correct random identification of an 
encryption algorithm is 7.14% (100/(13+1)), since the sample space contains equal 
amounts of metadata for the 13 cryptographic algorithms plus KeyBITS. However, if 
just the high entropy instances are considered (BlowFish, Twofish, Serpent, Rijndael 
and DES in CBC mode; RSA “CBC”; KeyBITS) the probabilistic control value is 
14.29% (100/7) because they are the only ones to pose a challenge to the 
identification process. Figure 3 presents six graphs, one for each classification 
algorithm. At first inspection the graphs immediately call attention to the existence of 
two distinct behavioral groups. The top series in the charts, with better identification 
responses, correspond to the cryptographic algorithms in ECB mode and ARC4. On 
the other hand, the bottom series in the charts correspond to CBC mode algorithms 
with lower identification performance. In fact, the difference between these two 
groups is easily understood since the CBC mode increases entropy to higher levels 
than the ECB mode, thus providing a more difficult environment for identification. 
Despite this expected separation, it is still important for cryptanalysis that such a 
detachment did occur. In the following discussion, this paper will develop separate 
analyses for each block cipher mode. Finally, KeyBITS was not classified at all, as 
expected. 
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Figure 3: Success rate in the identification of cryptographic algorithms for classifiers 
C4.5, PART, FT, Complement Naive Bayes, Multilayer Perceptron, WiSARD and 

KeyBITS. 

Considering the ECB mode group (plus RSA and ARC4), the experiment made 
an exhaustive search for possible outlines that may allow the identification of 
cryptographic algorithms. This procedure was expected to be successful in some cases 
and not in others, since the machine learning algorithms have different approaches to 
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the same problem. It can be seen that the identification rates in the C4.5 chart 
converge to almost 100% at a 28-bit bin size, excluding ARC4. The charts for PART 
and FT do not exhibit such a convergence, but they still suggest an increasing ability 
for identification. Moreover, in these three initial charts there is a significant increase 
in the successful identification rate of DES and Blowfish when the number of bits 
used becomes larger than 16 bits. The Complement Naive Bayes chart exhibits the 
best results, with it being able to identify all algorithms with 100% accuracy (except 
RSA) when the bin size was greater than 20 bits.  

This chart also shows a qualitative leap in identifying DES, Blowfish and 
Rijndael when the bin size exceeds 16 bits. The Multilayer Perceptron and WiSARD 
charts also exhibit increasing abilities for identification, with the latter being slightly 
better than the former. All of these features sustain Complement Naive Bayes as the 
classifier that provides the best results for identifying cryptographic algorithms in 
ECB mode. These results reinforce those reported by Mello et al. [Mello,16], even 
though in the present experiment the bin collection of contiguous bits are combined 
(see section 3), by producing identification profiles that are similar, but not equal, to 
the those previously reported. Furthermore, the identification of ECB mode 
encryption algorithms was significantly high because encrypting the same data block 
of plaintext using ECB mode always yields the same block of ciphertext, that is, 
repetitive sequences of bits in the plaintext result in repetitive patterns in the 
encrypted output, thus providing an opportunity for identification. This means that 
ECB propagates frequencies from plaintexts to ciphertexts and produces ciphertexts 
of non-uniform distribution, which makes classification easier. 

On the other hand, the major result of this experiment was with regard to the CBC 
mode group; that is, the successful distinguishing attack against the implemented 
algorithms in CBC mode. CBC encryption mode is not supposed to be sensitive to 
statistical attacks, but the results shown in Figure 3 are evidence that it cannot be take 
unconditionally. Even though high values of correct identification were not achieved, 
there was an unexpected behavior. The CBC mode is known for increasing entropy to 
high levels and increasing randomness, thus, successful identification would not be 
expected to increase monotonically. However, except for Multilayer Perceptron, all 
classifiers exhibited increased identification performance as bin size increases. In 
addition, Complement Naive Bayes exhibited the greatest slope for the identification 
series.  

There are some possible reasons why this happens. First, the patterns being 
identified may be the ones disguised at the first 128 bits from ciphertexts. Note that 
the first 128-bits block from CBC mode are encrypted just after an XOR with the 
initialization vector. This procedure may provide a weak random input blocks before 
encryption, compromising the first 128 bits. If this occurs, the remaining bits from the 
ciphertext are irrelevant for identification, no matter their entropy is. Second, if the 
cipher block is n bits long, then it should be expect a collision after 2n/2 encrypted 
blocks. However, there is a non-zero probability of such collisions happen before this 
number of encrypted blocks. Moreover, some artifact may be interfering with the 
experimental results increasing the probabilistic occurrence of such collisions. Third, 
some of the underlying ciphers may be vulnerable against distinguishing attacks (or 
perhaps the implementation) facilitating identification.  
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Since the cryptograms passed the NIST test, these results suggest that high 
entropy produced by the implemented algorithms is not sufficient for avoiding 
cryptographic algorithm identification by machine learning procedures. Moreover, the 
physical random bit generator KeyBITS, which was used as reference for comparison, 
was mixed among the other encryption algorithms with marginal successful 
identification very close to the probabilistic bid. This means that the classifiers did not 
manage to categorize a uniform distribution of bits, but they did manage to obtain a 
certain amount of success with the CBC distribution of bits produced by our 
implementation. This is a major result because it implies that it may exists a 
distinguishing attack against the CBC block cipher mode of operation, or at least, 
against the implementations used in this work.  

The successful identification of cryptographic algorithms in CBC mode, when 
using Complement Naive Bayes classifier and considering a 34-bit bin size 
cumulatively, ranges 40-50%. This is in stark contrast to the 7.14% of the 
probabilistic bid and suggests that it is possible to identify algorithms in CBC mode. 
These series have a monotonic increasing behavior for successful identification, and 
thus it is convenient to study this property. Note that there are two possible scenarios. 
In the first, the monotonic increasing behavior experiences a reduction in slope and 
adopts an asymptotic course. In such a case, the data obtained from the experiment do 
not contribute to determining its saturation value. In the second scenario, the 
monotonic increasing behavior maintains its slope until full recognition. Thus, it is 
possible to model the relationship between the scalar dependent variable (successful 
identification) and the independent variable denoted by the bin size. Figure 4 shows a 
linear regression of these values. 

 

 

Figure 4: Linear Regression of the successful identification by the Complement Naive 
Bayes classifier. 

Figure 4 also presents the linear regression equation f(x) and the coefficient of 
determination R2. The R2 value is near 1, and thus suggests a good fit for the model. 
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For this reason, it is interesting to extrapolate to predict the bin size for possible full 
recognition. From this point of view, the bin size value for full identification would be 
85.18 bits, which implies a computational challenge. The number of bin variations for 
such a histogram is 286, a significantly higher number than the actual 234 of this 
experiment thus demanding much more computational power and addressing 
capacity. This value is beyond the borderline of processing, that is, reaching this 
number of bin variations is solvable but not in an effective manner. Despite this 
problem is computable, it is not feasible, except if a new method is found, with 
smaller computational complexity. 

6 Conclusion 

This paper presented an experiment involving the use of machine learning for the 
identification of encryption algorithms. It demonstrated that the influence of the idiom 
in which plain texts were written is not relevant to the overall process. The NIST test 
was applied to cryptograms to guarantee the quality of the encoded texts. The 
proposed procedures obtained full identification for almost all of the selected 
cryptographic algorithms in ECB mode. However, the most important result was the 
identification of algorithms in CBC mode. Although the identification of algorithms 
in CBC mode exhibited lower rates than ECB, they were are not insignificant since 
they were greater than the probabilistic bid. Moreover, these rates increased 
monotonically, and thus can be increased by intensive computation. Lastly, the most 
efficient classifier was Complement Naive Bayes, not only with regard to successful 
identification, but also in time consumption. 

It is suggested that future investigations increase the number of cryptographic 
algorithms analyzed. Considering the classification methods, the SVM algorithm was 
tested and produced regular results. However, it seems that it is still possible to 
optimize the parameters of SVM to achieve improved results. Moreover, it was not 
possible to increase bin size due to RAM constraints in the available environment, so 
the implementation of a more refined data structure is recommended in order to 
mitigate this problem. Furthermore, considering the high performance computing 
environment employed, it is important to improve the usage of the processing 
architecture by dispatching tasks not to just one computing node, but to all nodes and 
GPUs available, which would enhance computational capacity. Finally, the number of 
bins estimated to fully detect CBC mode algorithms could be reduced if it were 
possible to enrich metadata files with some kind of additional information.  
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