
MDD Adoption in a Small Company:
Risk Management and Stakeholders’ Acceptance

Federico Tomassetti, Marco Torchiano
(Politecnico di Torino, Torino, Italy

federico.tomassetti, marco.torchianopolito.it)

Lorenzo Bazzani
(Trim srl, Torino, Italy

l.bazzanitrim.it)

Abstract: This article presents the knowledge and experience acquired trough the process of
establishing MDD practices within a small Italian company. Special attention has been devoted
to project constraints, perceived risks, and relative mitigation strategies. Moreover the article
evaluates how the introduction of the MDD approach was received by different stakeholders. In
particular a structured questionnaire was the instrument used to reveal and collect the perceptions
by different roles involved in the MDD adoption process. The case study considered development
of applications conforming to a prescriptive architectural framework, which addresses a complex
multi-tier architecture; the solution aims at describing component composition while avoiding
both repeating tasks and writing awkward configurations.
Key Words: Mode-Driven Development, Small Companies, Experience Report, Risk Manage-
ment
Category: H.5.5

1 Introduction

The idea of developing software based on models has been part of several approaches
and methodologies proposed in the last 20 years [Booch, 1991]. Model-driven devel-
opment (MDD) leverages detailed models by generating automatically the application
code [Jiang and Hu, 2008] or interpreting them at runtime [Zeng et al., 2005]. Such ap-
proach has been proposed both for general purpose development [Jacobson et al., 1999]
and for specific domains (e.g., real-time applications [Selic et al., 1994]).

The MDD family of approaches has been widely adopted in the industry with dif-
ferent gradations and we have reports of the experience acquired in large organizations
(e.g., [Baker et al., 2005; Hutchinson et al., 2011a]). As far as small companies are con-
cerned little empirical or even just anecdotal evidence is available in the literature.

Our goal is to investigate the reasons for success or failure for MDD adoption in
small industrial contexts. In particular we focused our attention on two aspects: (i) the
potential risks and the associated mitigation strategies, (ii) the overall perception by the
different stakeholders. In this work we are specifically considering the initial reception
and the effects of deploying for the first time an MDD solution in a small company.

Journal of Universal Computer Science, vol. 19, no. 2 (2013), 186-206
submitted: 7/5/12, accepted: 31/12/12, appeared: 28/1/13 © J.UCS



As far as the risks about adopting MDD are concerned, from a single case study it is
not possible to derive a statistically based picture, although by relying on the managers
experience we were able to get a clear idea of the perceived risks. It is important to fo-
cus on the perceived risks because they, even though possibly not empirically grounded,
are typically responsible for early rejection of MDD approaches. Moreover while the
promises of MDD are known, we could not find in the literature, despite of our best
effort, an analysis of risks and motivations that cause companies to fail or abandon
adopting MDD. A report about the perceived risks emerged while designing and im-
plementing a MDD solution and the lesson learned about coping with them, apparently
represent an important contribution to the field.

Furthermore the success of MDD practices adoption depends significantly on how
different roles subjectively appreciate them, because participants’ commitment repre-
sent a key factor. A questionnaire (see Table 1) administered to all the participants to the
project allowed us to assess the appreciation and perception from different stakeholders’
perspective.

The research we present here was conducted in the context of a technology transfer
initiative involving the Softeng group at Politecnico di Torino and a small ICT com-
pany (Trim srl). The main goal of the collaboration was to design and implement a
MDD solution based on a Domain Specific Language (DSL) and the supporting tools.
In particular the DSL is used to describe the structure of enterprise applications, realized
in conformance with a prescriptive reference architecture composed by seven different
layers. The DSL allows designing how the different components are linked together, in
order to realize the application, and defining the data structures exchanged between the
layers. By using instruments from the Eclipse Modeling project we were able to realize
the supporting tools in a short period and with a small effort (circa 64K lines of Java
code developed in 5 months of full-time work by one of the academical authors of the
paper). Moreover, we realized an integrated environment by combining such tools with
the Eclipse Java IDE used at the company.

The main contributions of the paper are: (i) an examination of the main risks per-
ceived by SMEs in adopting an MDD solution, (ii) an analysis of the risk mitigation
strategies adopted, (iii) an investigation of the acceptance of the MDD solution by dif-
ferent stakeholders. The contents of this paper are an extension to a previous short
article [Tomassetti et al., 2010].

In the remainder of the paper Section 2 first presents the project considered for the
case study, then Section 3 gives an overview of the devised MDD solution, Section 4
presents a risk management perspective on the MDD adoption, Section 5 discusses how
different stakeholders accepted the new approach, Section 6 summarizes and compares
related works, and finally in Section 7 we draw the conclusions.

187Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



2 Case Study background

Today common enterprise applications comprise many layers [Singh et al., 2002]. At
the bottom we almost always find a relational database and the code needed to deal
with it (Data Access Objects or DAOs). At the top lays the presentation layer (i.e., JSPs
when the chosen technology is Java). In the middle we can find a variable number of
layers composing elementary services, dealing with transactions, playing the Model or
the Controller roles in the Model-View-Controller (MVC) pattern. The prescriptive ar-
chitecture (named Financial Value Chain or FVC) involved in this work is no exception
being composed by seven different layers. Those layers are reported in Figure 1.

Figure 1: Layers of the case study architecture

Each layer brings into the project a different technology. In addition specific tech-
nologies are required to let the layers communicate while preserving abstraction. A
common choice in a Java-based technology stack is to adopt Spring to manage depen-
dency injection. Knowledge of several different technologies is required to deal with
a such varying spectrum of libraries and frameworks. In a small company, counting
a small number of developers, it could be difficult to either find or build this knowl-
edge. There is a certain amount of code and configuration that does not implement any
business logic but it is required just to realize the technological infrastructure, e.g., the
composition of different elements and the communication between layers. We refer to it
as architectural code as opposed to the business logic code. The architectural code and
the related configuration often happens to be repetitive and as consequence error-prone
[Sutcliffe et al., 1999].

2.1 Motivations for MDD

In the context of the project the company had to use a complex multi-layer architecture.
Development for this architecture involved a large amount of repetitive and error prone
tasks which demovatived the developers, moreover only developers with a large skillset
were able to work on this architecture. For these reasons we decided to encapsulate
technological details related to the architectural code in the transformations. In this way
developers could focus on the business logic.

188 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



2.2 Project constraints

The design and implementation of the MDD solution we carried on was tailored for
the specific needs of a company, therefore it had to confront with a set of different
constraints, the most relevant being: i) since the software development project, where
the approach had to be put in trial, involved several companies, it required the integra-
tion of components developed by 3-rd parties; ii) the client imposed quite strict rules
for source code and configuration files that the generation phase had to adhere to; iii)
the company management preferred the use of protected region with respect to other
technical solutions.

Concerning the protected regions, the preference was mainly due to the fact it al-
lowed to obtain generated code very similar to manually-written code. Such similarity,
in case the MDD solution be abandoned, would make the fallback option to traditional
development techniques easier and less expensive. An alternative to protected regions
was to adopt specific strategies to separate generated code from manually written code
(e.g., aspect oriented programming). These solutions while offering advantages would
produce code different from the one produced by the standard development method.
While for mature adopters of MDD the usage of protected-region could be considered
an anti-pattern, in this case it was considered to be a pragmatic compromise increasing
the confidence of the adopters.

2.3 Perceived risks

Due to the lack of previous experience in MDD at the company, we ended up debating a
set of perceived risks, that are quite common among new MDD adopters. We conducted
an open discussion session with the managers of the project aimed to elicit such risks;
we wrote and refined a list of risks and eventually we validate the list back with the
managers. As a result we could summarize four main risks:

R1) Tool rigidity: it is very likely that new development’s best practices appear in the
project lifetime, the tool could not be able to evolve to address them.

R2) Lack of developer adoption: the tool and the change in the development process
could not be accepted by developers. They could feel like they are losing control or
their skills are considered less valuable because of the MDD adoption.

R3) Solution lock-in: the company, at its first MDD experience, in case of failure
could not be able to switch back to the previous (MDD-less) development process
for the whole project or for the development of a single component with a limited
effort.

R4) Application evolutionary inertia: the context of the application is doomed to
rapidly evolve, both in terms of development technologies and as new domain and

189Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



application requirements; while the company knows how to cope with such evolu-
tion using standard development, the fear is that MDD could make it more difficult.
The request is that adopting the tool should not make reaction times longer but
equal or possibly shorter than conventional development.

2.4 Scope of the solution

For the development of the lowest layer of the prescriptive architecture (FVC) an Object-
Relational Mapping (ORM) was already in use. In particular the ORM used was iBatis
and it was used with a companion tool, iBator, which analyzed the database schema and
generated DAOs and configuration for iBatis.

The results obtained using iBatis were satisfactory so we decided to design an MDD
solution that did not involve the database and DAO layers but instead was able to in-
tegrate with those layers as implemented using iBatis and iBator. Being the first MDD
adoption trial at the company we wanted to focus only on the most problematic layers,
where it was easier to obtain a significant improvement.

The company preferred to not adopt MDD for the presentation layer because they
wanted their developers to maintain full control on this particular aspect of the applica-
tion. Therefore the MDD solution was designed to cover five out of the seven layers of
the FVC architecture.

The design of the MDD solution was driven first of all by pragmatism: while in
an environment with experience in MDD usage we would have suggested a different
approach in this case we had to look for a compromise between best practices and
risk perceived. For this reason on one side we chose to focus on a subset of the layers
and in particular on the ones where we could provide a more profound improvement, on
the other hand we accepted the usage of protected regions which are considered an anti-
pattern from more advanced users. In this particular case instead they helped to increase
the confidence of the adopters because they had the possibility to insert custom code as
it was needed. We advocate that the MDD approach has to be tailored on the base of the
maturity of practitioners.

3 Case Study solution

The MDD approach adopted for this project is summarized in Figure 2: it is based upon
three different model levels. The first one, the domain model, is defined by the user by
means of a textual DSL. The second one, the intermediate model, is built reworking
information extracted from the first model and from binary components using reverse
engineering. Finally the third model is made up of the set of Java source files and XML
configuration files generated.

The user defines a model of the architecture, using the DSL syntax. In the model
he specify how components in the various layers are structured. Such a model is then

190 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



translated by means of an automatic model-to-model (M2M) transformation to an inter-
mediate model. From this intermediate model another transformation occurs, this time
a model-to-text (M2T) transformation, producing as output a set of textual files: Java
source code and XML configuration files.

The goal is to describe the domain model through a flexible DSL, so that the lan-
guage can be used to describe a broad range of situations and at the same time be partic-
ularly concise resorting to common cases when it is possible. Conversely flexibility is
not a goal for the intermediate model since it is used as the basis for the generation and
it is never modified manually. Considering that the DSL has to be evolved to provide
a better user-experience and the M2T transformation could have to be adapted to ad-
dress technological changes the intermediate model is useful to somewhat absorbe those
changes without them being propagated to the other extreme (i.e., a change to the DSL
could in the worst case affect the intermediate model but not the M2T transformation,
while a modification to the M2T transformation would not affect the DSL). Moreover
the intermediate model is designed to contain completely specified information, which
simplify the M2T transformation.

The solution devised combines tested practices and techniques into a customized
toolset. It represents, we believe, a typical case of MDD adoption in a small company,
so it lends itself as an exemplar case study.

Figure 2: Models and transformations

3.1 Domain model

We opted to support a textual notation for our DSL and not a graphical one due to ease
of development of tools with advanced features [Voelter, 2009].

One of our goals was to achieve a cost of switching as low as possible for the
Java programmers already involved in the project; the use of a textual java-like syntax
promised to be easier to learn than a graphical one. We considered that one of the main
cost factors is the time needed for developers to learn the new environment and become

191Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



proficient with it, consequently we decided for a notation as close as possible to the no-
tations already used by the clients of the proposed MDD solution, who are mainly Java
developers. In addition we considered concurrent engineering an important feature and
while there are several tools supporting concurrent development for a textual notation
(i.e., tools to execute differences analysis, automatic merge and so on), the adoption of
a graphical notation would be more problematic [Leveque et al., 2009; Voelter, 2009].

The DSL language we designed is used to define the structure of a stack of com-
ponents adhering to the FVC architecture and it is called FVCS (for FVC-Stack). Its
syntax has been defined in agreement with two driving principles: i) the whole solution
is designed to be immediately familiar to its intended users, which are Java program-
mers, so we designed the DSL syntax to resemble Java as much as possible. ii) The
language resorts on some very common cases and for this reason a set of ”shortcuts”
are provided. We report a small script to give the feeling of the language. In the project
circa 1.0K lines of DSL code were written.

// import binary components
jar "path/binaryComponents.jar"
package it.trim {

data in Abc {
string name;
date start;
date end;

}
data out ADataOut {

int total;
}
// implicitiyly refers to data in Abc
businesscmp Abc {

dao importedDao
out ADataOut

}
service wrap Abc
ejb MyEjb {

Abc as "getAllXyz"
}
model MyModel {

allfrom ImportedDao
SomeOtherDao *;

}
}

3.2 The intermediate meta-model

The role of the intermediate model as a basis for the final generation of the application
model (represented by the generated artefacts) requires managing the different cases
for every declaration kind and making explicit all the information provided implicitly
at the domain model level through the DSL. The overall generation can be split in two
transformation phases: i) a M2M transformation aiming to explicit information, ii) a
M2T transformation which has to translate information to the specific target technology.

192 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



By adopting the intermediate meta-model we achieved greater flexibility and simplified
the M2T transformation [Voelter, 2009]. The intermediate meta-model is composed
by roughly one sub-meta-model for each component kind. We report in Figure 3 the
portion of the intermediate meta-model used to represent one of the layer of FVC:
Business Components.

Figure 3: Excerpt of the intermediate Model

3.3 Generated artefacts

From the intermediate model by means of a M2T transformation two different kinds
of artefacts are generated: Java source files and Spring XML configuration files. Java
source files represent the implementation of the components defined using the DSL. In
general a single component may give rise to one or more Java files. For some layers of
the FVC architecture a configuration file may also be required to provide information
relative to the whole set of components pertaining to that layer. Depending on the na-
ture of the generated component it can be completely generated or it can be partially
generated. Source files partially generated contains all the architectural code and let the
user insert the custom logic into well-defined protected regions.

Configuration files define how different components are related and their scope is
project-wide. There are three different configuration files, each of them contains config-
uration relative to a subset of the FVC layers. They are Spring XML configuration files:
one is related to business components, the second one to services, the last one contains
managers and controllers definitions.

193Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



Given the definition of a Business Component the application model consists of the
following files:

– a Java class for the Business Component. It contains the class corresponding to
the business component with the setter for the DAO and the field to hold its refer-
ence, the process method that could be completely specified (for wrapping Business
Components) or just the skeleton containing a protected region in the general case;

– a Java class for the related Converter. The declared class contains methods to con-
vert an ORM to a Data In and a Data Out to an ORM. ORMs are classes represent-
ing data in the database layer in a OO context;

– a portion of an XML configuration file for the Business Component and the related
Converter providing information used by Spring to perform dependency injection.

3.4 Supporting tools

To implement our MDD solution we used Eclipse Modeling [Steinberg et al., 2008]. In
particular we used these components of the bundle: the Eclipse modeling framework
(EMF), Xtext, Xtend, Xpand.

EMF is a framework to define data models and meta-models, the structures of data
models. In particular meta-models can be defined using XML, Java classes or modeling
tools. The framework permits not only to define the structure of the models but also
constraints that can be used to validate the model. EMF provides also a language called
Ecore to define meta-models. Ecore is also a meta-model expressed in the means of
itself. EMF is the technology that permits inter-operation between the different tools
in the Eclipse Modeling Project. Every other tool in the project is able to operate with
EMF models and meta-models.

XText is a DSL framework. It has to be fed with a DSL’s syntax definition using
an extended Backus-Naur Form (BNF). Starting from this syntax definition XText pro-
duces a parser, an EMF meta-model, and the skeleton of an editor. The parser is able
to read a text file conforming to the DSL syntax provided and create from it a model
referring to the generated meta-model. The editor will be specifically targeted at the
DSL defined and will be provided as an Eclipse plug-in. Both the parser and the edi-
tor though fully working need to be customized by specifying validation rules, how to
perform auto-completion, and many others refinements.

XPand is a template language able to consume EMF models to produce text files.
XTend permits to create reusable definitions performing simple manipulations of EMF
data. XTend is often used together with XPand to modularize some definitions that are
reused many times in an XPand template.

One of the requirements was the possibility to re-use components developed with
traditional techniques according to the FVC architecture but not using the designed

194 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



MDD facility we developed. The first reason is that we want to able to re-use com-
ponents developed by other companies that did not adopt MDD techniques. This is
important because Trim (the company involved in the case study) had to cooperate with
other companies working on common projects. As second point in this way we are not
tied up to develop every component of every level with the MDD solution. If a specific
case arises that is hard to model with the current solution and the effort necessary to
enrich the solution is a lot higher than the outcome that very specific component can be
developed outside with traditionally techniques and then be referred in a FVCS file, i.e.,
to build a component in the upper layer. To satisfy the requirement the solution is de-
signed to be able to re-use directly compiled components consisting of both a directory
containing class files or a JAR.

The module devoted to reverse engineering is able to deal with both cases (a direc-
tory of class files or a JAR). This module analyses classes looking for implementation
of components of a certain FVC layer by looking at the class name, at the interfaces
implemented and at the superclass of the examined element.

4 Risks management

The development of the MDD solution for the FVC architecture, through a trial and
error process, allowed us to better understand the key factors and the resulting benefits
in developing and deploying such kind of solution in a small company with no prior
experience about MDD. We first present lessons learned and later we discuss how they
can be used to mitigate risks presented in Section 2.2.

4.1 Lessons learned

L1) need for intermediate level: we realized quite early in the project the necessity to
introduce the intermediate meta-model. It proved to be very useful to prevent changes
happening at one of the ends of the MDD solution to spread across the stages of the
solution itself and affect the other end. This was important because during the develop-
ment of the project we introduced many changes in the DSL syntax that were made as
consequence of feedback from users. In most situations changes did not affect the inter-
mediate meta-model but they were absorbed by the M2M transformation. Due to some
changes we needed occasionally to slightly adapt the meta-model for some components
but we never needed to adapt the M2T transformation due to changes in the syntax.
The insulation role of the intermediate meta-model was also standing for changes com-
ing from the technology side. As consequence both the syntax and the technology side
were able to be improved and adapted separately so that we were free to let the lan-
guage evolve to become more concise and at the same time we could adapt the way we
produced the artifacts to meet the changing technical requirements.

L2) Convention over configuration: to adopt the principle known as ”convention
over configuration” lead to concise scripts. Concise scripts are good for many reasons:

195Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



they are faster to write and they are faster to understand, which is also more impor-
tant. They contain no redundant information so the reader can concentrate just on the
particular cases, where something is not acting as usual.

L3) 3rd party integration: the ability to include components already developed in
the MDD solution is critically important in industry environment. First of all it permits
to not waste precedent investments and it permits a gradual transition from previous
techniques to MDD. There is also another advantage: it brings confidence to be not
locked in the MDD solution. If it is always possible to build components with traditional
techniques and then integrate them in the models it will reduce greatly the risks involved
in MDD adoption. These lessons confirm the findings presented in [Hermans et al.,
2009], where several respondents wished the opportunity of being able to import pre-
existing models. It also permits a gradual adoption of the MDD approach, one of the
important factors reported by [Hutchinson et al., 2011a].

L4) DSL flexibility: the MDD solution and in particular the DSL have to be flexible
enough. In every technique involving modeling a certain amount of rigidity is assumed,
MDD solutions needs to rely on archetypes and repeated patterns. Usually designers
of MDD solutions tend to enforce too much, to limit what developers can do using the
tools they create. A common pitfall is to envision in the small details how the whole
solutions will be used and how the developers will have to implement the applications.
This brings developers to feel unable to adapt their work tools to their way to execute
the job. There is a tendency to consider developers as just another tool of the MDD
solution. It proved to be more successful to think the other way around: developers are
professionals and MDD designers just provide better tools that have to fit their needs
and their own way to organize their work.

L5) Developer’s involvement: developer’s commitment is essential to obtain a suc-
cessful and concrete adoption of the MDD solution. Our experience suggests that in
order to obtain that developers have to be involved in the design phase considering their
feedback as valuable. If developers feel that MDD adoption is going to be forced or that
the solution is not flexible enough to adapt to their needs they are likely going to misuse
it, causing to reduce or void the benefits provided.

4.2 Risk mitigation

The potential risk R1 (tool rigidity) has been mitigated by both L1 (need for interme-
diate level) and L2 (convention over configuration). The presence of an intermediate
level allows adjusting the domain model and the code generation independently, thus
achieving an high evolvability of the tool. Moreover the extensive use of conventions
loosen the coupling among the modules of the tool, the result being a more maintainable
system.

The possible lack of developer adoption (R2) was one of the main concerns during
the development of the MDD approach. We learned that it can be mitigated in different
ways: (i) relying on convention instead of configuring the utmost detail (L2) provides

196 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



conciseness and relieves developers from writing repetitive patterns, (ii) the flexibility
of the DSL (L4) allows the developers to easily work with the language, and (iii) the
involvement of the developers (L5) in the design of the MDD solution ensured a high
rate of adoption.

One of the fears of the company was switching to MDD, and then realizing it was
not suitable for the project, and eventually ending up locked in the solution (R3). The
ability to integrate 3rd party components (L3) mitigated significantly this risk: it is
alway possible to develop directly in Java any ”problematic” component and integrate
it into the system.

An important competitive advantage in software development consists in being able
to keep the pace with technological evolution. It was not clear whether MDD could
jeopardize this ability of the company; the risk is to increase the inertia toward the
evolution of the application to adopt new technologies (R4). The existence of an inter-
mediate level (L1) let the generation phase to evolve easily. Moreover the extensive use
of conventions (L2) avoids over-specified models by introducing technology-dependent
information, so mitigating the risk of evolutionary inertia.

5 Acceptance assessment

The reception of the MDD approach was evaluated by means of a questionnaire which
was addressed to the different roles involved in the project who are employed at Trim.
The goal was not to evaluate our solution but how participants in different roles reacted
to MDD. The questionnaire was carefully developed by the two academical authors of
this paper.

This section presents first the questionnaire, later the answers divided by topic are
analysed.

5.1 Questionnaire definition

The survey was addressed to the Trim’s personnel involved in the project. The MDD
solution was developed at the Politecnico di Torino with the constant feedback of the
company. Later the tool was used and maintained at Trim. In particular there were five
Trim’s workers involved and all of them accepted to fill in a survey tailored for the
specific role they covered in the project. One of the workers is the manager (who is also
a co-author of this paper) who contributed to develop the initial design of the MDD
solution. A second one is a software architect with a broad and deep technical culture:
he contributed with technical comments to the initial design and he was appointed with
the duty to maintain and evolve the tools. The third worker is the project manager of the
projects which used the tools since the first pilot and later in production. Finally there
are two developers involved in those projects. The objectives of the questionnaire are to
evaluate the results and in particular to ascertain possible deficiencies of the proposed
approach, thus providing insights about the reception from the different point of views.

197Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



We adopted the participant-observer case study [Yin, 2002] because we needed the
feedback from the personnel involved. Because we are not evaluating our approach to
demonstrate its efficacy we consider the potential bias caused by the interest in the
project to be not relevant.

Questions are divided into three groups which focus on different aspects of the
project. The first one is about results evaluation (questions R1 through R11), the second
one is about acceptance (questions A1 to A5) and finally the third one is about develop-
ment process changes (questions P1 to P6). Overall we formulated 22 questions that are
reported in the leftmost column of table 1. While the questionnaire was originally writ-
ten in Italian, we present here the corresponding English translation. The questionnaire
included both closed (C) and open (O) ended questions; the second column of the table
describes the type of question. The close questions have been formulated in the form
of assertions with which the respondent had to express his agreement according to a
five point Likert scale [Oppenheim, 1992]: Strongly disagree (1), Disagree (2), Neither
agree nor disagree (3), Agree (4), and Strongly agree (5). The typical encoding, used
also in our analysis, is the integer number reported in parenthesis.

5.2 Discussion of responses

Table 1 reports, for each question, the answers provided by the different roles. Since
the set of questions administered varied according to the role, there are combinations
of role and question that have no response, such lack of answer is represented by void
cells . For close-ended questions the cell contains the level of agreement encoded with
an integer from 1 to 5 as shown above. The check mark, for open-ended questions,
indicates that the question was administered to that role, who provided an answer (the
full text of the responses is available in Appendix A). When the respondent did not
provide any answer we report ”NA”. In particular developers used the possibility to not
give an answer in two different cases because they were less involved into the project
with respect to other roles and the changes due to the adoption of the MDD solution
affected them marginally as we will report while analyzing answers on process changes.
They were less involved because they were working mainly on the presentation layer,
which is the layer excluded by the MDD solution. Anyway their role requires to use
components generated by our solution and by means of specific questions we wanted to
verify that its adoption is almost transparent to them.

5.3 Results evaluation

Typically when introducing modeling solutions there is the concern to cause rigidity
to the development process: we rest reassured that the tool was in no-way a limit dur-
ing the development (R1). The tool managed to reduce repetitive work (R2) although
not to completely eliminate it. Anyway the reduction was sufficient to shorten signif-
icantly the development times (R3). The solution was considered also a tool useful to

198 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



Role
Gr. Question O/C M SA PM D

R
es

ul
ts

R1 The tool constituted a limit in any way during the develop-
ment

C 1 1,1

R2 Tool usage reduced repetitive work C 4 4,4
R3 Tool usage reduced development time C 4 4 4 NA,NA
R4 Tool usage reduced the number of defects in the developed

applications
C NA 3 3 NA,NA

R5 The FvcGen approach supports the design phase and pro-
vides an overview of the system

C 5 4

R6 The approach improved maintainability C 3 3
R7 The tool is easy to use C 4
R8 The tool requires a quick learning phase C 4
R9 The Fvcs DLS syntax is easy to learn C 4
R10 Which aspects would you consider as critical to realize a

similar project?
O �

R11 How could the solution be improved? O �

A
cc

ep
ta

nc
e A1 Using the tool is professionally stimulating C 4 4 4,4

A2 Which were the major resistances to the adoption? O �
A3 What could be done to favor the tool’s acceptance? O �
A4 Which are the most critical aspects for the adoption of a

MDD solution in an organization?
O �

A5 How do you evaluate the adoption for the solution’s users? O �

Pr
oc

es
s

P1 The adoption of FvcGen changed the way you work C 1,1
P2 The transition to the new development process has been

quick
C 4

P3 The transition to the new development process has been very
easy

C 3

P4 Which are the critical aspects for the adoption of FvcGen? O �
P5 Was the development project changed by the introduction of

FvcGen? How?
O �

P6 Introducing FvcGen do the competences required for devel-
opers change?

O �

Table 1: Answers to acceptance assessment questionnaire for different roles:
M - Manager, SA - Software architect, PM - Project Manager, D - Developer. O/C
= Open/Closed question. The numbers reported refer to a Likert scale ranging from 1
(Strongly disagree) to 5 (Strongly agree).

design globally the system and maintain an overview of the whole application (R5).
As far as defect reduction is concerned (R4) the answers indicate that defects were not
reduced by the adoption of the solution. First we note that respondents were mainly
concerned with post-release defects, and we interpret the result as an indication that
architectural errors were not reduced. We believe that low-level errors (typically those
caused by misconfiguration or mistypes) quite common in hand-written code are elim-
inated by our solution. Such defects are show-stoppers and are routinely fixed before
release causing a slow-down in the development and annoyance for developers. Though
the company does not collect measures at this level and therefore no evidence is avail-
able to support this hypothesis. Apparently there is not a particular advantage in terms

199Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



of maintainability (R6). This outcome can be explained by observing that the project
has not entered the maintenance phase yet; therefore the answer to the specific question
was a conservative one. There is a set of questions (R7, R8, R9) specifically addressed
to the principal user of the tools (the Project Manager) and in particular of the FVCS
language. The answers confirm that the tools and the language were practically usable
and quite easy to learn. These characteristics were of course a key factor for the choice
of Trim to adopt the solution. Finally analysing answers to the last questions we can get
more general advice. The Software Architect considered the approach used (R10) to
be correct and repeatable for similar applications, although he expresses doubts about
the applicability of a similar approach to architectures that do not exhibit such a rigid
multi-tier structure. The Project Manager instead points out that the solution could be
improved (R11) by making it more easily deployable and reducing dependencies issues.
As a side note he indicated, also during the development of the project, the necessity
to increase flexibility e.g. by making the destination of generated artefacts for different
components and the definition of Java package names directly configurable.

5.4 Acceptance

Because we consider the solution acceptance from all roles working at the company an
absolute key-factor for the success of the project we realized a set of questions specific
for this topic. We first asked the technical figures involved to find out if the considered
this experience as professionally interesting (A1). We obtained positive answers by all
roles. Then we asked the Manager and the Software Architect for their considerations.
The Manager considers an hindrance to adoption (A2) the fact the developers tend to
dislike technical solution proposed by external subjects. In this case they accepted it be-
cause they could see concrete benefits early. As a second point some issues in the tools
deployment to different Eclipse installations were considered annoying. He suggested
in order to favor the adoption (A3) to organize lessons on the use of the solution. More-
over we asked for advices on the adoption not specifically tailored to this experience.
The Manager affirmed that the MDD solution should be to reused across other projects
(A4). He specify that could be not always possible because, while the customer of this
project would appreciate the adoption of a similar solution, other customers could ask
the company to use a specific development approach not based on the MDD solution.
The Software Architect considered the reaction of the solution users (A5) positive but
he suggested that it could be subject to personal tastes; he elaborated further that while
the people involved in the project appreciated it, it could be the case that developers
prefer to develop manually most of the code in order to maintain strict control.

5.5 Process changes

We also wanted to evaluate how the development process was affected by the intro-
duction of MDD in a small company for its first time and which were the changes. We

200 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



found that transition was quite smooth: quick (P2) and with no particular difficulty (P3).
As far as developers are concerned, since their work is essentially centered in the pre-
sentation layer, the adoption of the MDD approach is almost transparent to them (P4)
and therefore their job is not affected (P1). A major difference emerged for the Project
Manager: he is now able to do on his own a greater amount of work; in particular he
can develop, by means of the tools, the whole back-end of the applications (P5). This
is partially justified by the fact that he is ”shielded” by many technical details related
to the specific technologies involved and as result he is less concentrated on technolog-
ical aspects and can spend more attention on the business logic. Finally, prerequisite on
technical competences for the developers involved in the project can be relaxed (P6).
This represents an important benefit for the company that can hire workers that are not
necessarily expert in every single technology of the architectural stack.

6 Related work

Insights on the diffusion of MDE are reported by a large study from Hutchinson et
al. [Hutchinson et al., 2011b] conducted by means of questionnaires and interviews.
Another study about MDE diffusion (limited to Italian companies) was co-authored by
the academical authors of this paper [Tomassetti et al., 2012; Torchiano et al., 2011].
Those studies are interesting to understand the phenomenon at large but do not reach
the level of detail that case studies and experience reports permit to achieve.

While the literature includes several experience reports on MDD adoption, most if
not all of them concern studies in the context of large industrial setups and companies
with a medium to long experience in the field.

A notable example is Baker et al. [Baker et al., 2005] who report on the competen-
cies developed at Motorola after 15 years since the adoption of MDE. In their experi-
ence the major obstacles in adopting MDE stem to the lack of a well-defined process,
lack of necessary skills and inflexibility in changing the existing culture. Another ac-
count from a 5-years project at the same company can be found in [Foustok, 2007].

Fleurey et al. [Fleurey et al., 2007] report on the 10-years’ experience with MDE
developed at Sodifrance; the focus is on migration projects, where the benefits w.r.t.
conventional techniques can be observed after an initial period, e.g. the first code could
be delivered only after 10 months from project’s beginning. In addition they present
a cost-benefit analysis and suggest the presence of profitability threshold in terms of
project size.

Hen-Tov et al. [Hen-Tov et al., 2009] describe a project with enterprise software;
while the software category is similar to our case study, their approach requires an
initial development effort of 10 man-years.

Hutchinson et al. [Hutchinson et al., 2011a] report lesson learned from adoption of
MDE in three large multinational companies (a printer company, a vehicle manufac-
turer and a manufacturer of electronic systems). They conclude that important enablers

201Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



for the succes of MDE in those large companies were: adopting a progressive and it-
erative approach, obtaining organizational commitment, motivating users, organization
flexibility from the whole company and the presence of a business focus motivating the
adoption of MDE.

The above reports concern MDD solutions that require a very long setup time;
one article from MacDonald [MacDonald et al., 2005], which analyzes development
through MDD of a component for a legacy systems, describes an approach requiring a
low initial development effort. We think that small-companies have to choose a differ-
ent way to MDD adoption than large ones and it seems to be neglected by the current
research trend. For this reason we try to adopt some research approaches used in large-
companies and adapt them to a case study undertook in a small one.

There are other works that studied MDD through a survey as we did. For instance,
a survey on the success factors of DSLs adoption conducted on a large set of projects
spread among many different companies [Hermans et al., 2009]. The scale factor differ-
ence between our work and that one was a crucial aspect affecting the way we designed
our questionnaire and how we analyzed the results. Due to reduced number of people
involved in the project we could not perform statistical analysis. Moreover our work dif-
ferentiate the people involved in the survey by their roles while [Hermans et al., 2009]
does not. Another work is from Staron [Staron, 2006] who proposed a questionnaire to
personnel of two companies considering MDD for adoption, one having already under-
took a pilot, the other not yet. It emerges that the three most important factors influenc-
ing the decision for adoption are i) availability of modeling tools, ii) cost of introducing
the modeling technique to the process, iii) cost of creating models during software de-
velopment. Once again companies considered are really large organizations. Shirtz et
al. [Shirtz et al., 2007] reports considerations about successful way of convincing man-
agement to adopt MDD, their considerations on this topic are not the central part of the
paper and are anyway related just to large companies.

Finally a review of experiences on MDE applications from Mohagheghi and Dehlen
[Mohagheghi and Dehlen, 2010] contains considerations on effects on code quality (but
not supported by data) and productivity while we are trying to perform an analysis of
the effects on the development process and reactions by different roles involved.

7 Conclusions

In this paper we discussed the adoption of a MDD solution in a small-company with no
prior experience with such techniques. We described the specific context and reported
and motivated the principles applied to design the solution. In particular we stressed the
importance to deliver high-quality supporting tools in order to guarantee an acceptable
productivity. In a small company it is particularly important to achieve early benefits as
result of small initial investments. In order to attain such goal we strived to (i) build an
environment as familiar as possible for the prospective users and (ii) avoid any rigidity

202 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



that could hinder the reactivity to requirements or process changes, which is one of the
competitive advantages of small companies in respect to larger ones.

We investigated the perception of the solution by the personnel involved in the
project. We could confirm the good results obtained and we gained considerable in-
sight about deficiencies and ways to improve our approach. The respondents empha-
sized two main key success factors: very high-quality tools and flexibility. While these
aspects were considered satisfying in this case study, they are so important to need still
more attention.

Given the cross-sectional nature of our study, we did not consider long term effects.
In particular no evidence could be found regarding the impact of the proposed MDD so-
lution on maintainability and defect reduction: we plan to investigate more these aspects
in future research.

As future work, we plan to evaluate again MDD approaches in small companies
in the context of different kinds of applications investigating more in depth process
changes.

Acknowledgments
We want to thank the personnel at Trim who took time to answer the questionnaire. We
are also grateful to the anonymous reviewers for their comments and suggestions which
helped us to improve this paper.

References

[Baker et al., 2005] Baker, P. ; Loh, S. ; Weil, F.: Model-driven engineering in a large
industrial context - motorola case study. In: MoDELS ’05, Springer-Verlag, 2005,
pp. 476 –491

[Booch, 1991] Booch, Grady: Object Oriented Design With Applications. Addison-
Wesley, 1991

[Fleurey et al., 2007] Fleurey, F. ; Breton, E. ; Baudry, B. ; Nicolas, A. ; Jezequel, J.:
Model-Driven Engineering for Software Migration in a Large Industrial Context. In:
MoDELS ’07, Springer-Verlag, 2007, pp. 482 –497

[Foustok, 2007] Foustok, M.: Experiences in Large-Scale, Component Based,
Model-Driven Software Development. In: Systems Conf., 2007 IEEE, april 2007,
pp. 1 –8

[Hen-Tov et al., 2009] Hen-Tov, A. ; Lorenz, D.H. ; Pinhasi, A. ; Schachter, L.: Mod-
elTalk: When Everything Is a Domain-Specific Language. In: Software, IEEE 26
(2009), july-aug., No. 4, pp. 39 –46. – ISSN 0740-7459

[Hermans et al., 2009] Hermans, Felienne ; Pinzger, Martin ; Deursen, Arie van:
Domain-Specific Languages in Practice: A User Study on the Success Factors. In:
MoDELS, 2009, pp. 423–437

[Hutchinson et al., 2011a] Hutchinson, J. ; Rouncefield, M. ; Whittle, J.: Model-
driven engineering practices in industry. In: Software Engineering (ICSE), 2011 33rd
International Conference on, may 2011, pp. 633 –642. – ISSN 0270-5257

203Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



[Hutchinson et al., 2011b] Hutchinson, J. ; Whittle, J. ; Rouncefield, M. ; Kristof-
fersen, S.: Empirical assessment of MDE in industry. In: Software Engineering
(ICSE), 2011 33rd International Conference on, may 2011, pp. 471 –480. – ISSN
0270-5257

[Jacobson et al., 1999] Jacobson, Ivan ; Booch, Grady ; Rumbaugh, James: The Uni-
fied Modeling Language Reference Manual. Addison-Wesley, 1999

[Jiang and Hu, 2008] Jiang, Derong ; Hu, Jianfeng: Research of Model-Based Code
Automatic Generation of Management Systems. In: Wireless Communications, Net-
working and Mobile Computing, 2008. WiCOM ’08. 4th International Conference
on, oct. 2008, pp. 1 –4

[Leveque et al., 2009] Leveque, Thomas ; Estublier, Jacky ; Vega, German: Exten-
sibility and Modularity for Model Driven Engineering Environments. In: ECBS ’09,
IEEE Computer Society, 2009, pp. 305–314. – ISBN 978-0-7695-3602-6

[MacDonald et al., 2005] MacDonald, A. ; Russell, D. ; Atchison, B.: Model-driven
development within a legacy system: an industry experience report. In: Software
Engineering Conference, 2005. Proceedings. 2005 Australian, 29 2005, pp. 14 – 22.
– ISSN 1530-0803

[Mohagheghi and Dehlen, 2010] Mohagheghi, Parastoo ; Dehlen, Vegard: Where
Is the Proof? - A Review of Experiences from Applying MDE in Industry. In:
Model Driven Architecture Foundations and Applications Ed. 5095, Springer Berlin
/ Heidelberg, 2010, pp. 432–443. – URL http://www.springerlink.com/

content/n008724135474004/. – ISBN 978-3-540-69095-5
[Oppenheim, 1992] Oppenheim, A. N.: Questionnaire Design, Interviewing and At-

titude Measurement. London : Pinter, 1992
[Selic et al., 1994] Selic, Bran ; Gullekson, Garth ; Ward, Paul T.: Real-Time Object-

Oriented Modeling. John Wiley & Sons, 1994. – 560 p
[Shirtz et al., 2007] Shirtz, Dov ; Kazakov, Michael ; Shaham-Gafni, Yael:

Adopting Model Driven Development in a Large Financial Organization. In:
Model Driven Architecture- Foundations and Applications Ed. 4530, Springer,
2007, pp. 172–183. – URL http://www.springerlink.com/content/

j3840236386r8074. – ISBN 978-3-540-72900-6
[Singh et al., 2002] Singh, Inderjeet ; Stearns, Beth ; Johnson, Mark: Designing En-

terprise Applications with the J2EE(TM) Platform (2nd Edition). Prentice Hall, 2002
[Staron, 2006] Staron, Miroslaw: Adopting Model Driven Software Development

in Industry A Case Study at Two Companies. In: Model Driven Engineering Lan-
guages and Systems Ed. 4199, Springer, 2006, pp. 57–72. – URL http://www.

springerlink.com/content/05n8w2176843p862/. – ISBN 978-3-540-
45772-5

[Steinberg et al., 2008] Steinberg, Dave ; Budinsky, Frank ; Paternostro, Marcelo ;
Merks, Ed: EMF: Eclipse Modeling Framework. Addison-Wesley, 2008

[Sutcliffe et al., 1999] Sutcliffe, Alistair ; Galliers, Julia ; Minocha, Shailey: Human

204 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



Errors and System Requirements. In: Requirements Engineering, IEEE International
Conference on (1999), pp. 23. – ISSN 1090-705X

[Tomassetti et al., 2010] Tomassetti, Federico ; Torchiano, Marco ; Bazzani,
Lorenzo: Applying MDA to complex multi-tier enterprise architectures. In: Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement. New York, NY, USA : ACM, 2010 (ESEM
’10), pp. 61:1–61:1. – URL http://doi.acm.org/10.1145/1852786.

1852863. – ISBN 978-1-4503-0039-1
[Tomassetti et al., 2012] Tomassetti, Federico ; Torchiano, Marco ; Tiso, Alessan-

dro ; Ricca, Filippo ; Reggio, Gianna: Maturity of software modelling and model
driven engineering: A survey in the Italian industry. In: Evaluation Assessment in
Software Engineering (EASE 2012), 16th International Conference on, may 2012,
pp. 91 –100

[Torchiano et al., 2011] Torchiano, Marco ; Tomassetti, Federico ; Ricca, Filippo ;
Tiso, Alessandro ; Reggio, Gianna: Preliminary Findings from a Survey on the MD
State of the Practice. In: Proceedings of the 2011 International Symposium on Empir-
ical Software Engineering and Measurement. Washington, DC, USA : IEEE Com-
puter Society, 2011 (ESEM ’11), pp. 372–375. – URL http://dx.doi.org/

10.1109/ESEM.2011.51. – ISBN 978-0-7695-4604-9
[Voelter, 2009] Voelter, Markus: Best Practices for DSLs and Model-Driven Devel-

opment. In: Journal of Object Technology 8 (2009), No. 6, pp. 79–102. – ISSN
1660-1769

[Yin, 2002] Yin, Robert K.: Case Study Research: Design and Methods, Third
Edition, Applied Social Research Methods Series, Vol 5. 3rd. Sage Publications,
Inc, December 2002. – URL http://www.amazon.com/exec/obidos/

redirect?tag=citeulike07-20\&path=ASIN/0761925538. – ISBN
0761925538

[Zeng et al., 2005] Zeng, L. ; Lei, H. ; Dikun, M. ; Chang, H. ; Bhaskaran, K. ; Frank,
J.: Model-driven business performance management. In: e-Business Engineering,
2005. ICEBE 2005. IEEE International Conference on, oct. 2005, pp. 295 –304

205Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...



A Appendix - Responses to open ended items

Item Question
Role Response
R10 Which aspects would you consider as critical to realize a similar project?
SA The current version is suitable for the development of multi-tier applications, therefore

for such kind of projects FvcGen does not bring any criticality. On the other hand, if the
architecture were less layered then the use of the instrument as-is could introduce some
issues. A further re-engineering of the tool could be required.

R11 How could the solution be improved?
PM Right now it appears to be too constrained both in terms of generated code and used

libraries. It was very hard to make it compatible with current work instruments (e.g. dif-
ferent versions of Eclipse and Ant)

A2 Which were the major resistances to the adoption?
M In general developers are not likely to accept technical decisions taken by others. In this

case, though, who used the tool immediately gained real benefits. The problem, which
could limit its adoption in future projects, is the complexity of the installation procedure,
due also to the several version of Eclipse.

A3 What could be done to favor the tools acceptance?
M No idea about the tools. Though we could organize training sessions.

A4 Which are the most critical aspects for the adoption of a MDD solution in an organiza-
tion?

M For sure process and technologies ought to be standardized. For a company like ours, this
is very difficult since customers often impose their techniques. In a context such as our
current banking customer I see the adoption of this technique as very feasible without
particular criticalities (but those related to natural resistance towards change).

A5 How do you evaluate the adoption for the solutions users?
SA Positively, although it is heavily dependent on the person that use it (some are more

productive when they work according their habits, others are more open to innovation)

P4 Which are the critical aspects for the adoption of FvcGen?
D I did not use it directly (both developers replied in this way).

P5 Was the development project changed by the introduction of FvcGen? How?
M Changing the process was exactly the goal of this collaboration. In particular we wanted

the team to be less focused on the technological aspects and closer to the business is-
sues. The solution actually collapsed on a single person the development of the generated
components.

P6 Introducing FvcGen do the competences required for developers change?
M Yes. All the generated portion hides precisely the technological complexity.

Table 2: Responses to open ended items (translated from Italian into English)

206 Tomassetti F., Torchiano M., Bazzani L.: MDD Adoption ...


