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Abstract: A well-known privacy-preserving network data publication problem focuses on how 
to publish social network data while protecting privacy and permitting useful analysis. 
Designing algorithms that safely transform network data is an active area of research. The 
process of applying these transformations is called anonymization operation. The authors 
recently proposed the (α,β,γ,δ)-SNP (Social Network Privacy) model and its an anonymization 
technique. The present paper introduces a novel anonymization algorithm for the (α,β,γ,δ)-SNP 
model. The desirability metric between two individuals of social network is defined to show the 
desirability of locating them in one group keeping in mind privacy and data utility 
considerations. Next, individuals are grouped using a greedy algorithm based on the values of 
this metric. This algorithm tries to generate small-sized groups by maximizing the sum of 
desirability values between members of each group. The proposed algorithm was tested using 
two real datasets and one synthetic dataset. Experimental results show satisfactory data utility 
for topological, spectrum and aggregate queries on anonymized data. The results of the 
proposed algorithm were compared in the topological properties with results of two recently 
proposed anonymization schemes: Subgraph-wise Perturbation (SP) and Neighborhood 
Randomization (NR). The results show that the proposed method is better than or similar to SP 
and NR for preservation of all structural and spectrum properties, except for the clustering 
coefficient. 

Keywords: privacy, network data sharing, anonymization, data utility, information loss, 
background knowledge. 
Categories: H.0, H.2, K.6.5, L.4 

1 Introduction  

Nowadays, there is a lot of interest by data miners and decision makers to analyze 
social network data and extract useful knowledge about society [Srivastava 2008], 
[Kleinberg 2007] such as disease transmission, the influence of a publication, and 
network data resiliency to faults and attacks. It is difficult to obtain access to actual 
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network data, in part, because they usually contain private information about 
individuals (such as relationship with important people) making data owners reluctant 
to publish them. Instances of the unintended release of private information [Barbaro 
2006] have caused organizations to become increasingly conservative about releasing 
such data sets. The issue becomes how to publish social network data while protecting 
privacy and permitting useful analysis. This problem is known as privacy-preserving 
network data publication.  

There are different types of social networks, including online social network sites, 
friendship networks, telephone call networks and academic co-authorship networks to 
name a few. Real-world social network data fits graph data structure. Vertices of the 
graphs represent individuals and the edges model the relationships between them.  

Researches [Bonchi 2011], [Campan 2008], [Cheng 2010], [Cormode 2010], 
[Hay, 2010a], [Wu 2010b], [Zou 2009] have focused on privacy-preserving network 
data publication beyond replacing identifiers (such as name and SSN) by a 
meaningless unique identifier. Malicious users (adversaries) may have background 
knowledge about some properties of victims (targets) and use them for re-
identification to obtain additional information. For instance, they may be able to infer 
the presence or absence of edges (edge disclosure) or the number of connected entities 
(degree disclosure).  

Preserving the structural properties of graphs is as important as preserving data 
utility. The present study designed new algorithms to safely transform network data. 
The process of applying these transformations is called anonymization operation. 

Existing anonymization algorithms are based on two models:  
 
1. k-anonymity [Sweeney 2002]: Some of such algorithms cluster nodes and edges 

into groups and anonymize a subgraph into a super-node [Bhagat 2009], 
[Cormode 2010], [Campan 2008], [Hay 2010b]. Each super node contains at least 

k nodes. In this way they restrict the probability of re-identification to at most  
ଵ௞.  

Most of these anonymization algorithms are greedy. The nodes are selected in 
order (based on metrics) to be grouped to make a super node and then continue to 
generate other groups. Others modify graph structures using a sequence of edge 
deletions and additions such that each node in the modified graph is 
indistinguishable with at least k-1 other nodes in terms of some types of structural 
patterns [Zhou 2011], [Liu 2008], [Wu 2010b], [Zou 2009], [Cheng 2010], [Yuan 
2013], [Tai 2014]. In [Wu 2010b], [Yuan 2013], noise nodes may be added to 
achieve specified requirements. Tai [Tai 2014] splits nodes into multiple 
substitutes to achieve privacy requirements. All these methods protect re-
identification against specified background knowledge. Methods presented in 
[Zhou 2011], [Yuan 2013] and [Tai 2014] also protect sensitive label and 
community identity disclosure, respectively, by considering l-diversity 
[Machanavajjhala 2007] as well as k-anonymity. For l-diversity, each group of 
nodes should consist of at least l well-represented sensitive values (well-
represented means that there are at least l distinct values for a sensitive attribute in 
each group). Most algorithms in this category use dynamic programming and 
greedy techniques to apply minimal changes that preserve graph structure as much 
as possible. 
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2. Randomization: Such algorithms modify graph structure by randomly 
adding/deleting or switching edges. They protect against re-identification in a 
probabilistic manner [Hay 2007], [Medforth 2011], [Wu 2010a], [Ying 2009], 
[Ying, 2008], [Bonchi 2011]. Research [Milani Fard 2012, 2013] introduced new 
edge randomization methods to protect edge disclosure. Only the destination of 
each edge is replaced with a randomly-chosen node from a subset of nodes (close 
to the source node of the edge). In this way, the out-degrees of the nodes in 
published data remain unchanged. 
 
Most researches on network data publishing have been developed to protect 

against only one disclosure. The proposed (α,β,γ,δ)-SNP privacy model [Rajaei 2013]  
considers both structural and tabular data and protects against disclosure of 
membership, sensitive attribute, degree, and relationship.  An anonymization  
technique ASN (Ambiguity Social Network) has been proposed based on 
anatomization operation [Xiao 2006]. ASN specifies how to publish data to satisfy 
(α,β,γ,δ)-SNP privacy requirements. The values of the attributes are published in 
separate tables.  

To make this paper self-contained, the previously proposed privacy model and 
anonymization technique are briefly reviewed. Next, a greedy anonymization 
algorithm is proposed that satisfies privacy requirements of (α,β,γ,δ)-SNP and 
preserves data utility at an acceptable level. 

We make following contributions:  
 The present paper defines desirability metrics based on privacy and utility 

requirements to evaluate the desirability of locating two individuals in one 
anonymization group. This metric considers both tabular and structural 
properties [section 3].  

 It also introduces an anonymization algorithm for ASN technique based on 
the (α,β,γ,δ)-SNP model. The algorithm uses greedy techniques based on 
values of the desirability metric between pairs of individuals [section 4].  

 The method of estimating query result are presented for three types of 
queries (aggregate tabular, aggregate network, graph topological and 
spectrum) on anonymized network data based on ASN [section 6]. 

Rest of this paper is organized as follows: [section 2] depicts notations and 
reviews the privacy model and anonymization technique. [Section 3] introduces the 
proposed desirability metric. [Section 4] describes the proposed anonymization 
algorithm. [Section 5] describes the three types of queries for evaluating information 
loss for anonymization algorithm and introduces methods for computing each kind of 
query for anonymized network data based on ASN. [Section 6] describes the 
experimental results that demonstrate that information loss from the proposed 
algorithm is very low. 

2 Privacy Model and Anonymization Technique 

Network data can include tabular and/or structural data. Structural data is used to 
construct graphs and tabular data comprises the labels of the vertices. The social 
network data structure is defined formally as follows: 
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Definition 1: Social network data is a simple directed graph N = (V, E) where V is the 
set of individual attributes (|V|=n) and E is the set of relationships on V (|E|=m). 
Elements of E are directed edges or arcs. Multiple nodes cannot represent one 
individual. Each ݒ ∈ ܸ has the following labels: 

 1ܫ, ,2ܫ . . . ,  are identifier attributes such as name and SSN containing ݎܫ
information that explicitly identifies an individual; 

 ܳ1ܫ, ,2ܫܳ … ,  are quasi-identifier attributes (QID) such as zip code and ݍܫܳ
gender that potentially identify record owners;. 

 S describes sensitive person-specific information such as diagnosis or income 
that is assumed to be unknown to adversaries. 

 
[Fig. 1] is an example of a money transformation network. Each node contains 

five labels from one of three categories: name (identifier), gender, job and zip code 
(quasi identifier) and income (sensitive). 

 

 

name gender Job zipcode Income 
Alice F Nurse 23000 3500 
Bob M Teacher 21000 3000 
Carol F Nurse 52000 4500 
Dave M Teacher 73000 4000 
Ed F Doctor 23000 7000 
Fred M Mechanic 73000 5000 
Greg M Police 43000 7000 

Figure 1: An example of money transformation network 

An adversary may know the quasi-identifier labels, in-degrees out-degrees, and 
sensitive values about victims. The goal of the proposed privacy model is to restrict 
the likelihood of extracting new information about victims under specified thresholds. 
It restricts the probability of assigning a specific sensitive value, in-degree value, out-
degree value, and existence of a directed relationship to a specified individual when 
adversary has some of above background knowledge. It also protects against 
membership disclosure, which decreases the certainty of other findings. The (α,β)-
privacy [Wang 2010] and l-diversity [Machanavajjhala 2007] models are extended for 
network data in the proposed privacy model. 

 
Definition 2 (α,β,γ,δ)-SNP: Given a network data N, let ܰ∗ be its anonymized 
version. Say that ܰ∗ satisfies (α,β,γ,δ)-SNP (Social Network Privacy) if it satisfies all 
of the following constraints: 

 α-presence: for each entity ݅ ∈ [ܫܳ]݅) ∗ܰ = ,ଵ݅ݍ} ,ଶ݅ݍ … , ݅)	௤}), Pr݅ݍ ∈ ܰ)  ;(Pr” denotes probability“) ߙ≥
 β-sensitive-association: for any sensitive association	(݅, (ݏ ∈ ܰ∗,	Pr	((݅, (ݏ ∈ܰ|݅ ∈ ܰ) ≤  ;ߚ
 γ-degree-association: for any in-degree (out-degree) association	(݅, ݀) ∈ܰ∗,	Pr	((݅, ݀) ∈ ܰ|݅ ∈ ܰ) ≤ γ; 
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 δ-relationship: for any directed relationship	(݅ଵ, ݅ଶ) ∈ ܰ∗,	Pr	((݅ଵ, ݅ଶ) ∈ܰ|݅ଵ ∈ ܰ, ݅ଶ ∈ ܰ) ≤ δ. 
 Pr	(݅ ∈ ܰ) denotes the probability of adversary knowledge about the existence of 

individual i (with specified quasi-identifier attributes) in the original network data. 
The α-presence limits Pr(݅ ∈ ܰ) to below α.  

β-sensitive-association restricts adversary belief about an association between 
individuals and the value of sensitive attribute S to below β. The association between 
individual i and sensitive value s is denoted by (݅,  Since inference of any private .(ݏ
association of a specific individual is based on the presence of his/her nodes in the 
original network, probability of sensitive-association privacy is defined as 
conditionally dependent on the probability of presence privacy. The γ-degree-
association is defined as similar to the β-sensitive-association for in-degree (out-
degree). The δ-relationship binds adversary knowledge of the existence of a directed 
edge from one individual to another in the network to δ. (݅ଵ, ݅ଶ) denotes a directed 
relationship from individual i1 to i2. Similarly, the probability of relationship 
disclosure is conditionally dependent on the probability of the presence of both 
individuals. 

The proposed anonymization technique specifies how to publish data to satisfy 
(α,β,γ,δ)-SNP privacy requirements. This technique stores all tabular and structural 
data in multiple relational tables. Instead of publishing a generalized value [Sweeney 
2002] for each attribute, exact values are published in separate tables. In this way, the 
number of individuals generated by the lossy join of these tables is more than the 
number of individuals in the original data. In other words, false tuples are generated 
by lossy join creating uncertainty about membership and assigning of private 
information to each person. A formal definition of ASN follows. 

 
Definition 3 (ASN(Anonymity Social Network)): Given social network data N = (V, 
E), assume that all identifier attributes 1ܫ, ,2ܫ . . . ,  are removed and one unique and ݎܫ
random label l is assigned to each vertex v. Vertices are partitioned into ݊′ groups G = 
{G1, G2,…,ܩ௡ᇱ} such that ⋃ ௜ܩ = ܸ௡ᇱ௜ୀଵ , and for any ݅ ≠ ݆, ௜ܩ ∩ ௝ܩ = ∅. ASN produces 
two quasi-identifier auxiliary tables (QATs), a sensitive table (ST), a degree table 
(DT) and a successor vertices table (SVT) as: 

 Quasi-identifier attribute set ܳ = ൛ܳܫଵ. ,ଶܫܳ … ,  ௤ൟ is partitioned into twoܫܳ
sets ܲ = { ଵܲ, ଶܲ} such that ∀݅, ݆:	 ௜ܲ ∩ ௝ܲ = ∅	and	 ⋃ ௜ܲଶ௜ୀଵ = ܳ. Each set ௜ܲ 	 = 	 ,௜,ଵܫܳ} ,௜,ଶܫܳ … ,  ௜,|௉௜|} (|Pi| denotes the size of Pi) corresponds toܫܳ
auxiliary table QATi of schema (ܦܫܩ, ,௜,ଵܫܳ … , ,|௜,|௉௜ܫܳ count) with | ௜ܲ| + 2 
columns. For any group ܩ௝(1	 ≤ 	݆	 ≤ 	݊′) and any distinct quasi-identifier 
value (ݍଵ, ,ଶݍ … , ,௜,ଵܫܳ) ௉௜|) of|ݍ ,௜,ଶܫܳ … , ,݆) ௜,|௉௜|) in Gj, there is a tupleܫܳ ,ଵݍ ,ଶݍ … , ,|௉೔|ݍ ܿ) 	 ∈ ܣܳ	 ௜ܶ where c is the number of vertices ݒ	 ∈  ௝ suchܩ	
that ݒ[ܳܫ௜,ଵ] 	= 	 ,ଵݍ [௜,ଶܫܳ]ݒ 	= ,ଶݍ	 … , [|௜,|௉೔ܫܳ]ݒ 	=  is the value of [ܣ]ݒ) |௉೔|ݍ
attribute A of vertex v).  

 S corresponds to the ST of schema (GID, S, count). For any group ܩ௝(1	 ≤	݆	 ≤ 	݊′) and any distinct sensitive value s of S in Gj, there is a tuple 
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(݆, ,ݏ ܿ) 	 ∈ 	ܵܶ, where c is the number of vertices ݒ	 ∈ ௝ܩ	  such that ݒ[S]  .ݏ	=	
 The exact in-degree and out-degree of the vertices is published in the DT of 

schema (ܦܫܩ, ݈ܾ݈ܽ݁, ,݊݅ܦ 	௝(1ܩ For any group .(ݐݑ݋ܦ ≤ 	݆	 ≤ 	݊′) and any 
vertex v in Gj, there is a tuple (݆, ݈, ݀݅݊, (ݐݑ݋݀ 	∈  where din and dout are ,ܶܦ	
the in-degree and out-degree of v such that ݒ[݈ܾ݈ܽ݁] 	= 	݈. 

 Successor vertices of nodes of each group are published in a SVT of schema (ܦܫܩ, ݈ܾ݈ܽ݁, 	௝(1ܩ For any group .(ݐ݊ݑ݋ܿ ≤ 	݆	 ≤ 	݊′) and any distinct vertex 
u in the successor nodes of Gj, there is a tuple (݆, ݈, ܿ) 	 ∈ 	ܸܵܶ, where c is the 
number of vertices v ∈ Gj such that ݑ	 ∈ [݈ܾ݈݁ܽ]ݑ and [ܿܿݑݏ]ݒ	 	= 	݈, where [ܿܿݑݏ]ݒ = ,ݒ)|ݑ} (ݑ ∈  .{ܧ

 
[Fig. 2] shows an example of the ASN technique using the network data in [Fig. 

1]. 
When an adversary tries to discover new information about victim i, he should 

find all groups that cover i based on his background knowledge about i. If background 
knowledge of the adversary about the victim is Xଵ = vଵ, … , X௕ = v௕ where Xଵ, … , X௕  
are known properties, then group ID of all covering groups equals ீߨ௜ௗ ቀߪଡ଼భୀ୴భ∧…∧ଡ଼್ୀ୴್(ܳܣ ଵܶ ⋈ ܣܳ ଶܶ ⋈ ܶܦ ⋈ ܵܶ)ቁ. These two reasons means that 

victim i only belongs to one group. Based on Definition 1, there are no multiple nodes 
related to one individual in the network data. Based on Definition 7 below, the 
intersection of the groups in ASN is empty. 

 

Gid gender job count 

1 F nurse 2 
1 F doctor 1 
1 M mechanic 1 
2 M teacher 2 
2 M police 1 

 

Gid zipcode Count
1 23000 2 
1 52000 1 
1 73000 1 
2 21000 1 
2 73000 1 
2 43000 1 

 

Gid income count
1 3500 1 
1 4500 1 
1 5000 1 
1 7000 1 
2 3000 1 
2 4000 1 
2 7000 1 

Gid label Din Dout
1 a 1 2 
1 c 1 0 
1 e 2 1 
1 g 1 1 
2 b 2 2 
2 d 1 2 
2 f 2 2 

Gid label Count 
1 b 2 
1 f 1 
1 d 1 
2 c 1 
2 g 1 
2 e 2 
2 f 1 
2 a 1 

 

QAT1 QAT2 ST DT SVT 

Figure 2: An example of ASN technique 

When an adversary tries to reconstruct quasi-identifier values, he/she will have 
multiple candidates resulting from the lossy join of QATs on the GID.  The set of all 
candidates for each group Gj, is called Generated Combinations set (GCj), where หܥܩ௝ห = ܣூ஽ୀ௝ܳீߪ௖௢௨௡௧(∗)൫ߨ ଵܶ൯ × ܣூ஽ୀ௝ܳீߪ௖௢௨௡௧(∗)൫ߨ ଶܶ൯. Based on the sum of count 

values for each group j, หܩ௝ห = ܣூ஽ୀ௝ܳீߪ௦௨௠(௖௢௨௡௧)൫ߨ ଵܶ൯, so there are ቆหܥܩ௝หหܩ௝ห ቇ 

choices for reconstructing members of Gj.  
In some of these choices, the number of repetitions of each distinct value matches 

the count value of that in the QATs. These sets of choices are called probable World 	ܩ௝ (PWj). Of all possible worlds, only one subset contains the same individuals as in 
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the original data. Some of these possible worlds contain quasi-identifiers of individual 
i and is called interesting worlds (ܫ ௝ܹ௜ = {ܶ|ܶ ∈ ܲ ௝ܹ, and	݅ ∈ ܶ}, so Pr൫݅ ∈ ௝൯ܩ =ቚூௐೕ೔ቚห௉ௐೕห. Each member of GCj may belong to group Gj, but the maximum size of ܫ ௝ܹ௜  in 

Gj is a combination of the most frequent value of each QAT in Gj (probable 
combination (pcj)). The most frequent value of QATi in Gj is ୍୕ߨୈ౟,భ,…,୕୍ୈ౟,|ౌ౟| ൬ீߪ௜ௗୀ௝∧௖௢௨௡௧ୀగౣ౗౮(೎೚ೠ೙೟)൫ఙಸ೔೏సೕ(ொ஺்೔)൯(ܳܣ ௜ܶ)൰. In other words, ∀݅ ∈ ܫ௝: หܥܩ ௝ܹ௜ห ≤ ቚܫ ௝ܹ௣௖ೕቚ, so ∀i ∈ GC௜:	Pr൫݅ ∈ ௝൯ܩ ≤ ฬூௐೕ೛೎ೕฬห௉ௐೕห .  

Let G* = {G1,…,Gk} be the set of all groups that cover individual i based on 
quasi-identifier values. Since i belongs to at most one group, the maximum 
probability of presence for i is Pr(i ∈ ܰ) ≤ max∀∋݆ܩ	ܩ∗ Pr൫݅ ∈ ௝൯ܩ ≤ max∀∋݆ܩ	ܩ∗ ฬூௐೕ೛೎ೕฬห௉ௐೕห .  

If an adversary knows that i belongs to Gj, then the probability of associating i 

with sensitive value s is 
஼ೕೞหீೕห where 	ܥ௝௦ =  When .(∧ௌୀ௦ܵܶ	ூ஽ୀ௝ீߪ)௖௢௨௡௧ߨ

sensitive value s is the most frequent sensitive value ( ௝݂) in group Gj, 
maximum sensitive-association probability occurs for (i, ௝݂) in that group. 

Since ܥ௝௙ೕ = Pr ,(ூ஽ୀ௝ܵܶீߪ)௠௔௫(௖௢௨௡௧)ߨ ቀ(݅, (ݏ ∈ ௝ቚiܩ ∈ ௝ቁܩ ≤ ஼ೕ೑ೕ|ீೕ|. Let G* = 

{G1,…,Gk} be the set of all groups that cover individual i. Then 	Pr൫(݅, (ݏ ∈ Nหi ∈ ܰ൯ ≤ ∗ܩ	∋݆ܩ∀ݔܽ݉ ቄPr ቀ(݅, (ݏ ∈ ቚi݆ܩ ∈ ቁቅ݆ܩ ≤ ∗ܩ	∋݆ܩ∀ݔܽ݉ ൝݂݆ܥ  .ൡ|݆ܩ|݆
Same as sensitive-association probability, the maximum probability of assigning 

degree d to an in-degree (out-degree) of individual i is Pr൫(݅, d) ∈ ܰห݅ ∈ ܰ൯ ݂݆݊݅ܥ}∗ܩ	∋݆ܩ∀ݔܽ݉≥ ݆݅݊|ீೕ| } (Pr൫(݅, d) ∈ ܰห݅ ∈ ܰ൯ ≤ ݂݆ݐݑ݋ܥ}∗ܩ	∋݆ܩ∀ݔܽ݉ |ೕீ|݆ݐݑ݋ }) where ݅ܥ ௝݊௙௜௡ೕ 
is the frequency of the most frequent in-degree (݂݅݊௝) in group Gj and ݐݑ݋ܥ௝௙௢௨௧ೕ is 

the frequency of the most frequent out-degree(݂ݐݑ݋௝) in Gj. 
When an adversary tries to reconstruct output edges from each group based on the 

DT and SVT tables, he/she will have multiple candidates from the lossy join of the 
tables on GID (as for presence probability). The set of all edges generated by lossy 
join for Gj is GEj, where หܧܩ௝ห = ൯ܶܦ	ூ஽ୀ௝ீߪ௖௢௨௡௧(∗)൫ߨ ×  ூ஽ୀ௝ܸܵܶ൯. Theீߪ௖௢௨௡௧(∗)൫ߨ
sum of Dout for each group j makes the total number of output edges (OE) from 

group j, หܱܧ௝ห =  ௝หቇ choices to reconstruct theܧ௝หหܱܧܩ൯. There are ቆหܶܦூ஽ୀ௝ீߪ௦௨௠(஽௢௨௧)൫ߨ

output edges of Gj. Some of these choices are valid; each valid choice ܸܥ ,ݑ)}= ,ݑ)|(ݓ (ݓ ∈ ,ݑ)ܵ ௝} (|VC|=|OEj|) should meet two requirements. 1)Letܧܩ (ܥܸ ,ݑ)}= (ݓ,ݑ)|(ݓ ∈  be the set of all directed output edges of VC with u being the {ܥܸ
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source node. Now, for each label u in Gj, |ܵ(ݑ,  .should equal the Dout for u in DT|(ܥܸ
2) Let ݀(ݑ, (ܥܸ = ,ݓ)} ,ݓ)|(ݑ (ݑ ∈  be the set of all directed output edges of VC {ܥܸ
with u being the destination node. For each label u in Gj, |݀(ݑ,  should equal the|(ܥܸ
count value in the SVT table for Gj. These sets of choices are 
called	݈ܾ݁݅ݏݏ݋݌	݈݀ݎ݋ݓ	ݏ݁݃݀݁	݂݋	ܩ௝	(ܹܲܧ௝). Some of these possible worlds contain 

(i1,i2,), called interesting world edges (ܧܹܫ௝(௜భ,௜మ) = {ܶ|ܶ ∈ ,௝ܧܹܲ and	(݅ଵ, ݅ଶ) ∈ ܶ}; 
thus, Pr((݅ଵ, ݅ଶ) ∈ หOE௝ห|݅ଵ ∈ G௝, ݅ଶ ∈ ܰ) = ቚூௐாೕ(೔భ,೔మ)ቚห௉ௐாೕห . The number of interesting 

worlds contain most probable edge (pe) (the edge from the label with maximum Dout 
in DT to the most frequent label as the successor of nodes of Gj in SVT) is greater 
than for other combinations of GEj. ∀(݅ଵ, ݅ଶ) ∈ GE௝: Pr((݅ଵ, ݅ଶ) ∈ หOE௝ห|݅ଵ ∈ G௝, ݅ଶ ∈ܰ) ≤ ฬூௐாೕ೛೐ೕฬห௉ௐாೕห . If i2 does not belong to the successor nodes of Gj, this probability is 

zero.Pr	((݅ଵ, ݅ଶ) ∈ ܰ|݅ଵ ∈ ܰ, ݅ଶ ∈ ܰ) ≤ ,ଵ݅))ݎܲ}∗ܩ	∋݆ܩ∀ݔܽ݉	 ݅ଶ) ∈ หOE௝ห|݅ଵ ∈ G௝, ݅ଶ ∈ܰ)} ≤ ฬூௐாೕ೛೐ೕฬห௉ௐாೕห}∗ܩ	∋݆ܩ∀ݔܽ݉ }. 
 

Corollary. Let N be network data and let ܰ∗ be its anonymized network; using ASN 
technique with tables ܰ∗ = {QAT1, QAT2, ST, DT, SVT} and ݊′ groups G = {G1, 

G2,…,ܩ௡ᇱ}. N* satisfies (α,β,γ,δ)-SNP privacy requirements if ∀ܩ௝ ∈ :ܩ
ฬூௐೕ೛೎ೕฬห௉ௐೕห ,	ߙ≥ ݂݆ܥ ݆ห݆ܩห ≤ ,ߚ ݂݆݊݅ܥ ݆݅݊หீೕห ≤ ,ߛ ݂݆ݐݑ݋ܥ หீೕห݆ݐݑ݋ ≤ ,ߛ ฬூௐாೕ೛೐ೕฬห௉ௐாೕห 	≤ δ. 

3 Desirability Metric 

The Desirability Metric (DM) measures the desirability of locating two individuals in 
one group with the goal of attaining privacy requirements as soon as possible.  We 
assign a desirability weight between each two individuals based on this metric. We 
should consider two aspects of grouping of individuals: the privacy of members and 
data utility. So we define two metrics Privacy Metric (PM), and Utility Metric (UM). 
PM is determined based on privacy requirements; this metric shows how different are 
the properties of two individuals. UM is computed based on topological and aggregate 
properties and show how similar are the properties of successor nodes of two 
individuals. Therefore, DM equals the sum of the privacy metric (PM), and utility 
metric (UM). This produces: 
,ݒ)ܯܦ  (ݑ = ,ݒ)ܯܲ (ݑ + ,ݒ)ܯܷ  (1) (ݑ

3.1 Privacy metric 

PM covers the following four cases: 
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1. As shown in section 2, the maximum possibility of presence in Gj is  
ฬூௐೕ೛೎ೕฬห௉ௐೕห . Let 

for i=1,2  ௜ܺ = ܣܳ)ூ஽ୀ௝ீߨ ௜ܶ). For a constant |Gj|, if the number of distinct values 
of each QID-attribute (| ௜ܺ|) in each group increases, the maximum possibility of 
presence will decrease for two reasons. First, since for i=1,2  หܩ௝ห = ∑ ௫∈௑೔[ݐ݊ݑ݋ܿ]ݔ (the sum of [ݐ݊ݑ݋ܿ]ݔ remains unchanged while | ௜ܺ| 
increases), the value of [ݐ݊ݑ݋ܿ]ݔ decreases for ݔ ∈ ௜ܺ. If the frequency of the 
most frequent value (max௫∈௑೔{[ݐ݊ݑ݋ܿ]ݔ}) decreases, the difference between the 
frequency of the most frequent value and that of the least frequent value decreases 
and maximum possibility of presence decreases. Second, when the count values of 
all distinct values are 1, the number of valid choices of Gj is maximized. By 
decreasing count values, the denominator increases. For example, locate Alice, 
Bob, and Carol in a group [Fig. 1]. The tuple values of QAT1 and QAT2 for this 
group are {(F,nurse,2),(M,Teacher,1)} and {(23000,1),(21000,1),(52000,1)} 
respectively. Its possible world is: 

൞൫(F, nurse, 23000), (F, nurse, 21000), (M, Teacher, 52000)൯,൫(F, nurse, 23000), (F, nurse, 52000), (M, Teacher, 21000)൯,൫(F, nurse, 21000), (F, nurse, 52000), (M, Teacher, 23000)൯ൢ (F, nurse, 23000) is one probable combination that appears in 2 cases. The 

maximum possibility of presence in this group is 
ଶଷ. Now locate Fred in this group 

instead of carol. There are more distinct values in QAT1 with the same group size. 
Here, the size of the possible world increases to 6: 

ەۖۖ
۔ۖ
,൫(Fۓۖ nurse, 23000), (M, Teacher, 21000), (M,Mechanic, 73000)൯,	൫(F, nurse, 23000), (M, Teacher, 73000), (M,Mechanic, 21000)൯,൫(F, nurse, 21000), (M, Teacher, 73000), (M,Mechanic, 23000)൯,൫(F, nurse, 21000), (M, Teacher, 23000), (M,Mechanic, 73000)൯,൫(F, nurse, 73000), (M, Teacher, 23000), (M,Mechanic, 21000)൯,	൫(F, nurse, 73000), (M, Teacher, 21000), (M,Mechanic, 23000)൯ ۙۖۖ

ۘۖ
ۖۗ

 

The appearance of all combinations equals 2. In other words, the difference 
between the frequency of the most frequent value and that of the least frequent 
value is zero. The possibility of the presence of each combination in this group is ଵଷ; therefore, ܲݒ)ܯ,   .increases for each different QID-value for v and u (ݑ

2. As shown, the maximum possibility of sensitive association for Gj is 
஼ೕ೑ೕหீೕห. If ܥ௝௙ೕdecreases, the possibility of association also decreases. In other words, 

increasing the number of distinct values for the sensitive attribute of individuals of 
each group of constant size decreases the possibility of sensitive association in that 
QID group. ܲݒ)ܯ,  .increases when the sensitive values of v and u are different (ݑ

3. As shown, the maximum possibility of degree-association in Gj is 

max൝݂݆݊݅ܥ ݆݅݊หீೕห , ݂݆ݐݑ݋ܥ หீೕห݆ݐݑ݋ ൡ. Again, increasing the number of distinct values for the in-

276 Rajaei M., Haghjoo M.S., Miyaneh E.K.: An Anonymization Algorithm ...



degrees (out-degrees) of individuals of each group of fixed size decreases the 
probability of degree-association. Since in-degree and out-degree are numerical 
attributes, in-degree values for individuals of one group can occur in a narrow 
range (for example, [10, 15]	); therefore, the adversary may infer a narrow range 
for the in-degree but not an exact value; thus, wide ranges for in-degree (out-
degree) values for members of each group are preferred. 

4. As proven, the maximum possibility of edge disclosure in Gj is 
ฬூௐாೕ೛೐ೕฬห௉ௐாೕห . The 

method of measuring the probability of a relationship is similar to that for the 
possibility of presence; however, to decrease count value of QAT, the number of 
distinct values of each QID attribute in each group of constant size should 
increase. The role of count in QATs is the same as Dout in DT and count in SVT. 
In this case, the same policy is not applicable because the out-degrees of nodes 
cannot be changed nor can only nodes with low out-degrees be used. To decrease 
the maximum possibility of edge disclosure, it is best to decrease the difference 
between probabilities of disclosure of the most probable edge with disclosure of 
the least probable edge. There are two options for this. First, decrease the 
difference between the out-degrees of the nodes of each group j with their 
maximum out-degrees. For this goal, the out-degrees of the nodes of each group 
should fall into a narrow range. This goal is in conflict with the tendency for 
degree-association. For example, let a two-member group have labels a and b with 
out-degrees 1 and 3, respectively. This group has four distinct successors (ݏ, ,ݐ ,ݍ  having frequency 1. The size of the possible world edges for this group (ݎ
is 4. Edge (b,s) is one probable edge that appears in 3 cases. The maximum 

probability of relationship disclosure in this group is 
ଷସ. Now, suppose that the out-

degrees of both of a and b are 2 (with a lower difference between out-degrees). In 
this case, |PWE| = 6 and |IWpe| = 3. The maximum probability of relationship 

disclosure decreases to 
ଵଶ.The second option is to decrease the count value of all 

successor labels of Gj in SVT. Grouping nodes with lower common successor 
nodes is advantageous so that the maximum possibility of edge disclosure 
decreases. 
 
According to the above reasoning, grouping individuals with greater differences 

between attributes, in-degrees, and successor nodes is more desirable. In this way, 
groups with smaller group sizes attain α-presence, β-sensitive-association, γ-degree-
association, and δ-relationship; thus, PMs of individual pairs with a greater number of 
different properties are assigned higher values. 
 
Definition 4 (Privacy Metric(PM)): Let N = (V, E) be original social network data. 
For each two individuals u, v in V, PM(ݒ,  :can be calculated as (ݑ
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,ݒ)ܯܲ (ݑ = ෍ቀܨொூ × ܲ݁ொூೖ × ,[௞ܫܳ]ݒ)݈ܽݑݍ݁_ݐ݋݊ ቁ௤([௞ܫܳ]ݑ
௞ୀଵ + ൫ܨ௦ × ܲ݁௦ × ,[ܵ]ݒ)݈ܽݑݍ݁_ݐ݋݊ +൯([ܵ]ݑ ቆܨ஽௜௡ × ܲ݁஽௜௡ × [݊݅ܦ]ݒ| − (݊݅ܦ)ݔܽ݉|[݊݅ܦ]ݑ − min	(݊݅ܦ)ቇ

+ ۈۉ
ۇ ஽௢௨௧ܨ × ܲ݁஽௢௨௧ × [ݐݑ݋ܦ]ݒ| − (ݐݑ݋ܦ)ݔܽ݉|[ݐݑ݋ܦ]ݑ − min	(ݐݑ݋ܦ) ௦௨௖௖ܨ+ × (1 − ܲ݁஽௢௨௧) × ቆ1 − [ݐݑ݋ܦ]ݒ| − ,[ݐݑ݋ܦ]ݒ)ݔܽ݉|[ݐݑ݋ܦ]ݑ ۋیቇ([ݐݑ݋ܦ]ݑ

ۊ
+ ൭ܨ௦௨௖௖ × ܲ݁௦௨௖௖ × ቆ1 − ,[ݐݑ݋ܦ]ݒ)ݔܽ݉ [ܿܿݑݏ]ݒ|([ݐݑ݋ܦ]ݑ ∪ |[ܿܿݑݏ]ݑ ቇ൱ 

(2)

 
Where 

,ݔ)݈ܽݑݍ݁_ݐ݋݊  (ݕ = ൜0			ݔ = ݔ		1ݕ ≠ ݕ  

ݔ∀   ∈ ൛ܳܫଵ, … , ,௤ܫܳ ܵ, ,ݐݑ݋ܦ ܲ݁௫	ൟ:݊݅ܦ = ∑ ቀ௙௥௤ೡೣଶ ቁ∀ೡ∈೏൫ೣ௡ଶ൯    

  ݀௫ is the set of all distinct values of property x  that appears more than once in 
network data N 
௩௫ݍݎ݂   = ௦௨௖௖݁ܲ ((ܰ)௫ୀ௩ߪ)(∗)௖௢௨௡௧ߨ = ∑ ∑ ℎܽ[ܿܿݑݏ]ݒ)ݐܿ݁ݏݎ݁ݐ݊݅_ݏ, ௨ஷ௩∈௏∀௩∈௏∀([ܿܿݑݏ]ݑ 2 × ቀ2݊ቁ  

ℎܽݐܿ݁ݏݎ݁ݐ݊݅_ݏ(ܺ, ܻ) = ቄ0			ܺ ∩ ܻ = ∅1		ܺ ∩ ܻ ≠ ∅  

,ொூܨ   ,ௌܨ ,஽௜௡ܨ ,஽௢௨௧ܨ ௦௨௖௖ܨ  are specified by data publisher. 
 
Since the difference in properties with limited domains and less distinct values is 

more important than the difference in properties with wide domains and more distinct 
values, use ܲ݁௫where ݔ ∈ ൛ܳܫଵ, … , ,௤ܫܳ ܵ, ,ݐݑ݋ܦ  ൟ to determine the probability of݊݅ܦ
equality of property x for two individuals. A higher ܲ݁௫ indicates the importance of 
differences in property x for individuals of each group. For example, the gender 
attribute can only have F or M values. The probability of the same gender values for 
two individuals is high. On the other hand, zip code can get a wider range of values, 
so the probability of the same zip code value for two individuals is low.  

To calculate ܲ݁௫, first find ݀௫ (set of all distinct values of property x that appear 
more than once in network data N). For each value ݒ ∈ ݀௫, the probability of the 

values of property x for two individuals from N having the same value v is 
ቀ௙௥௤ೡೣଶ ቁ൫௡ଶ൯   

where ݂ݍݎ௩௫ is the number of repetitions of value v in property x in network data N. 

The probability of two individuals having the same value for x is ∑ ቀ௙௥௤ೡೣଶ ቁ൫௡ଶ൯∀௩∈ௗೣ . The 

difference in the value of property x having higher ܲ݁௫ has more effect on PM. For 
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example, in the dataset shown in [Fig. 1], there are 4 and 3 tuples with values M and F 

respectively, for the gender attribute; thus ܲ݁௚௘௡ௗ௘௥ = ቀସଶቁାቀଷଶቁቀ଻ଶቁ = ଽଶଵ. There are two 

values for zip code that appear twice (23000, 73000); thus, ܲ݁௭௜௣௖௢ௗ௘ = ቀଶଶቁାቀଶଶቁቀ଻ଶቁ = ଶଶଵ. 
The function not-equal checks the equality of its arguments. It can be modified 

for numerically-sensitive values such as salary to protect against range attacks [Zhang 
2007]. Sometimes numerical sensitive attributes for each group may contain k distinct 
values, but all these values occur in a narrow range, which helps attackers infer the 
range without specifying the exact value. For example, there are 5 individuals with 
different salaries {1000, 1050, 1070, 1100, 1020} in one group. Although their 
salaries are different, all fall in a narrow range [1000,1100]. To protect against this 
attack, the values for the sensitive attribute of each group should cover a wide range.  

When computing PM, modify the not-equal function for numerically sensitive 

values to ݊ݒ)݈ܽݑݍ݁_ݐ݋[ܵ], ([ܵ]ݑ = |௩[ௌ]ି௨[ௌ]|୫ୟ୶(ௌ)ି୫୧୬	(ௌ), where max(S) and min(S) are the 

maximum and minimum values, respectively, for sensitive attributes in network data 
N. This fraction measures the difference in their values compare to the available range 
in the dataset as a number between 0 to 1.The resulting fraction for small differences 
in the values of v and u for a narrow-range attribute has a greater effect than that for a 
wide-range attribute.  

The in-degree of an individual is also numerical and should be protected against 

an adversary. Its not-equal function is 
|௩[஽௜௡]ି௨[஽௜௡]|௠௔௫(஽௜௡)ି୫୧୬	(஽௜௡); thus a greater difference in 

in-degrees relative to the range of all in-degree nodes increases the value for the not-
equal function and consequently has more effect on PM. 

As stated, out-degrees of group members affect the requirements of degree-
association and relationship. There are two conflicting policies: 1) The out-degree 
values of members of one group should be in a wide range to protect against range 
attack. To prevent out-degree disclosure, it is sufficient to have different values to 
satisfy δ-degree-association.  2) On the other hand, out-degrees of group members 
should be close together to protect relationship disclosure. To resolve the conflict, the 
effect of out-degree on PM for any two individuals should cover both cases. Its first 

effect is similar to in-degree at ܨ஽௢௨௧ × ܲ݁஽௢௨௧ × |௩[஽௢௨௧]ି௨[஽௢௨௧]|௠௔௫(஽௢௨௧)ି୫୧୬	(஽௢௨௧). Its second 

effect is calculated as ܨ௦௨௖௖ × (1 − ܲ݁஽௢௨௧) × ቀ1 − |௩[஽௢௨௧]ି௨[஽௢௨௧]|௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧])ቁ. In this way, 

the coefficients of ܨ஽௢௨௧ and ܨ௦௨௖௖ specify their effects.  
When the out-degrees of group members are low, a small difference in out-degree 

results in a large change in relationship disclosure probability for that group. For 
example, in a group with 3 members and out-degree sequence (2,2,1) in a DT with 5 
different individuals as successor nodes in SVT with no intersection in their successor 
nodes, there are 30 valid choices to reconstruct output edges; 12 of them contain 
probable combination. The maximum probability of disclosure of each possible 

output edge is 
ଵଶଷ଴ = ଶହ. If this group contains individuals with out-degree sequence 

(3,1,1) in DT with 5 different individuals as successor nodes in SVT, there are 20 
valid choices to reconstruct output edges and 12 of them contain a probable 
combination. The maximum probability of disclosure of each possible output edge is 
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ଵଶଶ଴ = ଷହ. As shown in this example, small changes in the out-degree of one group can 

change the disclosure probability by about  
ଵହ. If the out-degree sequence is (9,10,10), 

and there is no intersection between successor nodes of individuals of this group, the 

maximum relationship disclosure likelihood is 
ଵ଴ଶଽ (the SVT table contains 29 labels 

with frequency 1 for this group). If the out-degree sequence is (9,9,11) with 29 

distinct successors, the maximum likelihood of relationship disclosure changes to 
ଵଵଶଽ. 

In this case, a small change in out-degree causes a small change of about 
ଵଶଽ in the 

probability of relationship disclosure.  
For this reason, divide the difference in out-degrees of two individuals by their 

maximum out-degree. For high out-degree nodes, a small difference in out-degree 

does not drastically decrease PM. The fraction 
|௩[஽௢௨௧]ି௨[஽௢௨௧]|௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧]) falls in the range 

[0,1]. When out-degrees of both individuals are zero, consider this fraction to be zero.  
As stated, to protect against relationship disclosure, the out-degrees of nodes of 

each group should fall into a narrow range. It is better to keep this fraction near 0; 

therefore, use ቀ1 − |௩[஽௢௨௧]ି௨[஽௢௨௧]|௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧])ቁ. The higher value for this expression shows 

more desirability for putting the two individuals into one group and increases their 
PM value. Since a higher probability of inequality of out-degree between 
individuals	(1 − ܲ݁஽௢௨௧) makes it harder to put individuals with the same out-degree 
in one group, that expression is multiplied by(1 − ܲ݁஽௢௨௧). ܲ݁௦௨௖௖  indicates the probability of having the same successor for two individuals 
in network data N. To compute it, count all pairs of individuals N with common 
successor nodes and divide them by the number of all possible pairs. A higher value 
for ܲ݁௦௨௖௖  means a low probability of finding individuals without a common 
successor. If individuals v and u are located in a group, there are |[ܿܿݑݏ]ݒ ∪  |[ܿܿݑݏ]ݑ
distinct labels in SVT for that group. The high bound for probability of existence of a 
directed relationship from v to each member of [ܿܿݑݏ]ݒ ∪  is approximately ௩[஽௢௨௧]|௩[௦௨௖௖]∪௨[௦௨௖௖]|. For example, let there be two nodes having out-degrees 2 and 3 where [ܿܿݑݏ]ݑ

the union of their successor nodes has 4 members. If these two nodes are located in 
one group, since the out-degree of the second node is 3, it should be connected to 3 
successors; the probability of existence of an edge between it and each member of the 

successors is 
ଷସ. 

A simple expression was used to compute PM. The fraction 
௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧])|௩[௦௨௖௖]∪௨[௦௨௖௖]|  

approximates the maximum probability of disclosure of a directed relationship if these 
two individuals are members of one group. Lower values denote increased desirability 

to put them in one group. ܨ௦௨௖௖ × ܲ݁௦௨௖௖ × ቀ1 − ௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧])|௩[௦௨௖௖]∪௨[௦௨௖௖]| ቁ is used in the 

PM equation. As for the previous case, if the out-degree of two individuals equals 

zero, consider 
௠௔௫(௩[஽௢௨௧],௨[஽௢௨௧])|௩[௦௨௖௖]∪௨[௦௨௖௖]|  to be zero. Since there are no successor nodes, the 

probability of disclosure of the relationship is zero. ܨொூ, ,ௌܨ ,஽௜௡ܨ	  ௦௨௖௖are coefficients for quasi-identifiers, sensitiveܨ ஽௢௨௧ andܨ	
attribute, in-degree, out-degree, and relationship, respectively, which have important 
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effects on PM and grouping methods. The diversity of sensitive attributes, in-degree 
(out-degree), and successor individuals has a direct effect on sensitive-association, 
degree-association, and relationship probabilities, respectively. Their coefficients 
should be greater than FQI , which effects PM for all quasi-identifier attributes; thus, if 
the number of quasi-identifier attributes is high, the increased value of PM relates to 
inequality in the quasi-identifier attributes. The composition of quasi-identifiers only 
affects probability of presence, while other properties have a direct effect on other 
privacy constraints. As a result, if other coefficients are set to 1, FQI should be set to 

about  
ଵ௤, where q is the number of quasi-identifiers. 

When the corresponding quasi-identifier or sensitive attribute of two individuals 
are not equal, the output of the not-equal function is 1. For other properties, when the 
corresponding values are not equal, the inequality ratio is in the range [0,1]. To 
compensate, ܨ஽௜௡,    .௦௨௖௖ coefficients should be greater than 1ܨ ஽௢௨௧ andܨ	

Other important factors used to set the coefficients are thresholds α, β, γ and δ. 
For example, when the constraint of the β-sensitive-association is limited and the 
density of the sensitive attribute is high and close to β, it is better to choose a higher 
value for FS. This increases the effect of differences in sensitive values of individuals. 
The density of x is the ratio of the number of individuals with the most frequent value 
for property x by the number of individuals in the network data. For instance, if the 
density of the successor property attribute is 20%, it means that 20% of individuals 
have the same successor node. Thresholds β, γ and δ cannot be less than the density of 
the sensitive attribute, in-degree (out-degree), and successor properties, respectively. 
It their value is less than their density, then no grouping will be found thatall groups 
satisfy the privacy requirements. It is reasonable to consider high coefficients for 
more limited constraints. 

As stated in Definition 4, the calculation for PM is ܱ(ݍ) (q is the number of QID 
attributes of N) and there are ܱ(݊ଶ) pairs of individuals; the total time complexity for 
computing PM for all pairs is ܱ(݊ݍଶ). In addition, computing each factor ܲ݁௫ where ݔ ∈ ൛ܳܫଵ, … , ,௤ܫܳ ܵ, ,ݐݑ݋ܦ  ൟ is O(n) and the time complexity for computing Pesucc݊݅ܦ
is ܱ(݊ଶ ∗ (݁݁ݎ݃݁݀ݐݑ݋)ݔܽ݉ ∗  The upper bound for the .(((݁݁ݎ݃݁݀ݐݑ݋)ݔܽ݉)݃݋݈
has-intersect time complexity is ܱ(݀ ∗  where d is the maximum size of its (݀݃݋݈
input parameters. In the worst case, d equals max(out-degree). ܲ݁௫ and Pesucc are 
calculated only once. 

3.2 Utility metric 

This metric determines the similarity of two individuals in the data and structural 
utility. [Section 5] reviews four types of analysis possible for published data. When 
publishing data, the results of analysis on published data should be similar to those on 
original data. For PM, the value of DM is increased to satisfy the privacy 
requirements of groups of minimum size because a smaller size for the anonymization 
group decreases information loss. In UM, the value of DM is increased to preserve 
better data utility, while considering two concerns: 
 

1. Preserving the shortest path length (distance) between each two individuals 
in the published network is an important metric in topological and structural 
properties of the network data. When an analyzer reconstructs graph data 
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from published ASN data, each node label in the SVT table for group j can 
be considered a successor node for each member of group j. The goal is to 
group members with low average distances from all successor nodes of that 
group. If the shortest path length is preserved, closeness can also be 
preserved, along with the diameter and spectrum properties of the graph data. 

2. An aggregate network query calculates aggregation on paths or subgraphs 
satisfying specific query conditions. One example is the average distance 
from nodes with specified values for sensitive attributes to other nodes in a 
network structure. To preserve the data utility of this type of query, the 
members are grouped with the most similar sensitive value distributions of 
their successor nodes. 

 
Based on above reasoning, higher value is assigned to utility metric of the two 

individuals with lower average distances to their successor nodes and more similar 
sensitive value distributions of successor nodes. 
 
Definition 5. (Utility Metric(UM)): Let N = (V, E) be the original social network data, 
for each two individuals u and v in V, UM (ݒ, ,ݑ)ܯܷ :is calculated as (ݑ (ݒ = ௧௢௣ܨ |ܱܷ| + |ܱܸ|∑ ,ݒ)ݐݏ݅݀ (ݔ +௫∈ை௎ ∑ ,ݑ)ݐݏ݅݀ +௫∈ை௏(ݔ ௔௡ܨ ൮1 − ∑ (݅)௩݌| − ,(݅)௩݌)ݔܽ݉|(݅)௨݌ |ݐ݈ܸ݁ܵܽܵ|௨(݅))௜∈ௌ௏௔௟ௌ௘௧݌ ൲ 

 

(3) 

where ܱܸ = [ܿܿݑݏ]ݒ − ܷܱ  [ܿܿݑݏ]ݑ = [ܿܿݑݏ]ݑ	 − ,ݒ)ݐݏ݅݀  [ܿܿݑݏ]ݒ (ݑ = ൜2݊, there	is	not	path	from	ݒ	to	ݑ																																				length	of	shortest	path	from	ݒ	to	ݑ	on	N, ݐ݈ܸ݁ܵܽܵ  ݁ݏ݅ݓݎℎ݁ݐ݋ = ݔ∃|ݏ} ∈ ܱܸ ∪ ܱܷ: [ܵ]ݔ = ݅∀   {ݏ ∈ (݅)௩݌	:ݐ݈ܸ݁ܵܽܵ = |{௫|௫∈ை௏:௫[ௌ]ୀ௜}||ை௏| , (݅)௨݌ = |{௫|௫∈ை௎:௫[ௌ]ୀ௜}||ை௎| ,௧௢௣ܨ    ௔௡ are specified by data publisherܨ
 
Although the increase in the common nodes of successors of v and u increases 

data utility, it increases the probability of relationship disclosure. Because this 
contrasts with privacy requirements, common successor nodes are not considered in 
UM so that they do not negate the effect of PM. Consider two sets OV and OU which 
contain nodes that are successors of only v and only u, respectively. If nodes v and u 
are grouped together, the average distance from each node (v(u)) to nodes that are 

only successors of other node (OU (OV))(
∑ ௗ௜௦௧(௩,௫)ାೣ∈ೀೆ ∑ ௗ௜௦௧(௨,௫)ೣ∈ೀೇ|ை௎|ା|ை௏| ) is used as a 

metric to preserve topological properties. The ideal value for this is 1. Since a lower 
average is more desirable, the inverse of this fraction is used for UM. If the numerator 
or denominator of this fraction is zero, consider 0.5 for its inverse. In [Fig. 1], 
consider Dave as v and Fred as u. Then,  OV = {Alice, Ed}, OU = {Fred,Gerg} and 
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the inverse of this fraction equals: ଶାଶௗ௜௦௧(஽௔௩௘,ி௥௘ௗ)ାௗ௜௦௧(஽௔௩௘,ீ௘௥௚)ାௗ௜௦௧(ி௥௘ௗ,஺௟௜௖௘)ାௗ௜௦௧(ி௥௘ௗ,ாௗ) = ସଶାଷାଷାଷ = ସଵଵ. 
Wave hedges metric [Cha 2007] is used to compare the difference in distribution 

of sensitive values in the OV and OU nodes. To compute their probability density 
functions (pdf), we define SValSet, which contains all sensitive labels of the OV and 
OU nodes. For each value ݅ ∈  ௨(݅), respectively. Higher values of݌ ௩(݅)and݌ we compute its probability in OV and OU as ,ݐ݈ܸ݁ܵܽܵ

|௣ೡ(௜)ି௣ೠ(௜)|௠௔௫(௣ೡ(௜),௣ೠ(௜)) show a greater 

difference between the probability of the existence of i in OV and OU relative to their 

maximum. Value of this fraction falls in the range [0,1]. ∑ |௣ೡ(௜)ି௣ೠ(௜)|௠௔௫(௣ೡ(௜),௣ೠ(௜))௜∈ௌ௏௔௟ௌ௘௧ 	is 
the sum of differences of probabilities for all values of SValSet. To normalize the 
difference, it is divided by |SValSet|. This value is in range [0,1] and indicates the 
difference between two pdfs. Since more similarity is desirable for UM, subtract it 
from 1. In the example, for Dave and Fred, SValSet={3500,7000,5000}, ݌஽௔௩௘(3500) = ଵଶ and ݌ி௥௘ௗ(3500) = 0. This produces: 1 − ∑ |೛ೡ(೔)ష೛ೠ(೔)|೘ೌೣ൫೛ೡ(೔),೛ೠ(೔)൯೔∈ೄೇೌ೗ೄ೐೟|ௌ௏௔௟ௌ௘௧| =
1 − หభ మൗ షబหభ మൗ ାหభ మൗ షభ మൗ หభ మൗ ାหబషభ మൗ หభ మൗଷ = ଵଷ. 

Ftop and Fan are coefficients that show the importance of preserving the utility of 
analysis. They have important effects on UM values and grouping methods. 

As stated in Definition 5, calculation of the first and second terms of UM takes  ܱ(|ܱܸ| + |ܱܷ|) and ܱ(|ܸ݈ܵܽܵ݁ݐ|), respectively; both time complexities are less than ܱ([ݐݑ݋݀]ݒ + ∑ So time complexity of UM for all pairs is .([ݐݑ݋݀]ݑ ∑ [ݐݑ݋݀]ݒ) + ௨∈௏௩∈௏([ݐݑ݋݀]ݑ 	∈ ܱ(݊ଷ).  
[Section 4] applies a greedy algorithm for grouping individuals. This algorithm 

creates groups with a minimum number of members and maximum average weight 
for all pairs. 

4 Anonymization Algorithm  

This section describes greedy algorithm grouping social-network data (GroupingSND 
(Grouping Social-Network Data) based on the DM for implementing ASN technique. 
The algorithm partitions individuals of network data N into non-overlapping groups 
so that each group satisfies privacy requirements of (α,β,γ,δ)-SNP. To decrease 
information loss, construct groups in small sizes. First, compute the DM for all pairs 
of individuals and then apply a greedy algorithm to group them. This algorithm makes 
groups with a minimum number of members and maximum average desirability.  

[Fig.3] depicts the algorithm. First priority was assigned to all nodes (individuals) 
(lines 1-3). Priority v indicates the similarity of individual v with other individuals in 
network data N for tabular (quasi-identifiers and sensitive) values and structural (in-
degree, out-degree, relationship) properties. The priority of each node is calculated as: 
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[ݒ]ݕݐ݅ݎ݋݅ݎ݌ = ෍ ቌܨ௑ (∗)௖௢௨௡௧ߨ ቀߪ௫ୀ௩[௫](ܶ)ቁ݊ ቍ௫∈൛ொூభ,…,ொூ೜,ௌ,஽௜௡,஽௢௨௧ൟ+ ௦௨௖௖ܨ ∑ [݊݅ܦ]ݓ) − 1)௪∈௩[௦௨௖௖] ݊  

(4) 

Fx and Fsucc are coefficients represented in PM (Fx equals FQI for ݔ ,ଵܫܳ}∋ … ,  ௤}). The rate of property x for an individual is calculated using the numberܫܳ
of individuals with the same value v[ݔ] divided by the total number of individuals in 
network data N. In the dataset shown in [Fig. 1], the rates for the zip code for Alice 

and Bob are 
ଶ଻  and 

ଵ଻, respectively because there are 2 tuples with zip code 23000 and 

1 tuple with 21000. To measure the similarity of successor nodes, compute the sum of 
the in-degrees of all successor nodes of current individual v. For each ݓ ∈  ,[ܿܿݑݏ]ݒ
there are (w[Din]-1) other individuals (besides v) with successors sets having an 
intersection with v[ܿܿݑݏ] (at least w is a common member). If individuals v and u 
have more than one common successor, u is counted for each common successor node 
in ∑ [݊݅ܦ]ݓ) − [ܿܿݑݏ]௩∋ݓ(1 , because the number of common nodes in the successor sets 
of individuals increases their similarity. Finally, the priority of v is the sum of 
similarity rates of all quasi-identifiers, sensitive attribute, in-degree, out-degree, and 
successor nodes of individual v.  

Next, all nodes are sorted in descending order based on their priority and put in 
the unmarked list (line 4). Early determination of group members with more similarity 
(higher priority) has an important impact on group size. The goal is to group vertices 
with more differences in their properties, most individuals with the least similarity 
(low priority value) are selected first. In the end, only similar individuals with high 
priority remain ungrouped. This causes the group size of remaining individuals to 
grow. In each step k, the first member of group k is the node with maximum priority 
in the unmarked list (lines 8-9) and it is removed from the unmarked list (line 10). In 
this way, the chance of finding unmarked vertices with a greater number of different 
properties and the probability of belonging to a smaller group size grows. 

Next, other members of group k are determined (lines 11-18). The node with the 

maximum average DM with the current members of group k (
ଵ|ீೖ| ∑ ,௧ݒ]ܯܦ ௥]∀௥∈ீೖݒ ) 

is selected, removed from the unmarked list, and added to members of group k (lines 
12-14). If there are multiple nodes with the same DM average, the node with the 
maximum priority is selected. The privacy parameters for the current group k are then 
measured (line 11). If it does not satisfy the privacy requirements of (α,β,γ,δ)-SNP 
with current members, the next node from the unmarked set is similarly selected; 
otherwise, the next step k+1 is serviced (line 7).  

Generation of groups continues until the unmarked set becomes empty. Finally, in 
lines 17-24, if the last group does not satisfy (α,β,γ,δ)-SNP, delete it and add its nodes 
to the previously-generated groups. For each node in this last group, find the group 
with the maximum DM average so that adding this new node does not violate 
(α,β,γ,δ)-SNP privacy requirements.  
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Algorithm: GroupingSND  
Input: N=(V,E) where |V|=n and parameters α, β, γ and δ, matrix DM[n][n] contains DM 
value of all pairs 
Output: QID-groups 
1) for i← 1 to n do 
2)      calculate priority[vi] based on equation 4 
3) end for 
4) unmarked ← Sort-descending(priority,V) ; //all nodes put on unmarked list  
5) k ← 0; // group ID 
6) repeat 
7)        k ← k + 1; // generate next group 
8)         i ← first node of unmarked list;  //node with max∀௝∈௨௡௠௔௥௞  [݆]ݕݐ݅ݎ݋݅ݎ݌
9)         Gk← {i}; //i is the first member of group k 
10)         unmarked ← unmarked – {i}; //remove i from unmarked list 
11)         while (Gk dose not satisfy privacy requirments ) and unmarked ≠ ∅	do    
12)                    i ←  individual with max∀௧∈௨௡௠௔௥௞ ଵ|ீೖ| ∑ ,௧ݒ]ܯܦ ௥]∀௥∈ீೖݒ   //next member 

13)                    Gk ← Gk ᴜ {i} 
14)                    unmarked ← unmarked – {i} 
15)         end while 
16) until unmarked = ∅  //stop generate group when no ungrouped node 
17) if (Gk dose not satisfy privacy requirments)  //if last group is incomplete 
18)        for each q Є Gk 

19)               Gj ← group with maxଵஸ௝ழ௞ ଵหீ݆ห ∑ ,௤ݒൣܯܦ ݆ீ∋௥൧∀௥ݒ   adding q does not violate 

privacy constraints of Gj 
20)               Gj ← Gj ᴜ {q} // add memebers of last group to other group 
21)               Gk  ← Gk – {q} 
22)        end for 
23)        k ← k -1 //last group removed 
24) end if 
25) return G1,…, Gk 

Figure 3: Greedy algorithm to generate groups 

The number of repetitions of inner instruction (lines 11-18) is ܱ(݊). In each 
execution of instructions, one vertex is removed from the unmarked list until all 
vertices are selected. In each iteration of the while loop, line 12 takes O(|G௞| |ܩ|)ܱ The high bound for it is	.(|݇ݎܽ݉݊ݑ|∗ ∗ ݊), where |G| is the maximum group 
size. The time complexity for computing sensitive and degree disclosure probabilities 
are ܱ(1). The time complexity of computing presence and relationship disclosure 
probabilities (to count all PWs in the worst case) equal |G|!. The complexity of the 
function privacy_req is ܱ(|ܩ|!). The upper bound for lines 6-16 is ܱ൫݊ !|ܩ|)∗ + |ܩ| ∗ ݊)൯. Lines 17-24 are related to the last group and the complexity of line 
19 is ܱ(݊); making the total time for these lines O(|݈ܽݐݏ	݌ݑ݋ݎܩ|. n). The time 
complexity for computing the priority of each individual u is ܱ(݊ ∗ ݍ +  .([ݐݑ݋ܦ]ݑ
Lines 1-3 are ܱ(݊ଶ ∗ ݊)ܱ Sorting the list in line 4 is .(ݍ ∗ log ݊). Therefore, the 
overall time cost of the algorithm in the worst case is ܱ(݊ଶ ∗ 	ݍ + 	݊ ∗ log݊ +
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݊ ∗ !|ܩ| + |ܩ| ∗ ݊ଶ + |݌ݑ݋ݎܩ	ݐݏ݈ܽ| ∗ ݊). If (|ܩ| − 1)! < ݊, the time complexity is ܱ(|ܩ| ∗ ݊ଶ); otherwise it is ܱ(݊ ∗  The anonymization algorithm in data .(!|ܩ|
publishing is an offline algorithm and its time complexity is not critical. 

5 Measurement of Information Loss  

In the proposed anonymization algorithm, the groups were generated so that all their 
members satisfy the requirements of the privacy model. To evaluate the algorithm, we 
measure the information loss of the anonymized network data that it generates. 

Let Q be a count query Q(N) (actual result) and let Q(N*) (anonymized result) be 
the accurate and approximate results by applying Q to original network data N and the 
released network data N*, respectively. The relative error equals the proportion of 
absolute difference of the actual and anonymized results to the actual result, in this 
way the small difference increases more the relative error when the actual value is 
small with respect to its large value: 

E = 
|ொ(ே)ିொ(ே∗)||ொ(ே)|  (5) 

As in [Wang 2010], [Xiao 2006], this metric is used to compute information loss. 
Four types of queries were used to measure information loss of the proposed 
anonymization algorithm as follows: 

5.1 Aggregate tabular query 

The relationship between individuals is not considered for queries on tabular data. 
Assume that each individual has some attributes (quasi-identifiers, sensitive attribute, 
in-degree and out-degree). Each query of this kind is count query ܳ =  .((ܰ)஼ߪ)ݐ݊ݑ݋ܿ
It can be transformed to ܳ = ܣ)஼ߪ)ݐ݊ݑ݋ܿ ଵܶ ⋈ ܣ ଶܶ ⋈ ܶܦ ⋈ ܵܶ)) on the released 
ASN schema	(ܣ ଵܶ, ܣ ଶܶ, ܵܶ, ,ܶܦ ܸܵܶ), where C is a selection condition. There is no 
foreign key between these tables, so many false tuples are generated by the lossy join 
of the tables (ܣ ଵܶ, ܣ	 ଶܶ, ܵܶ,  Query Q on their lossy join produces more tuples .(ܶܦ
than the original tuples in N; thus, estimate the result of query Q using the following 
method:  

Approximate ASN estimates Q(N*) by applying an estimation to tables ATi, ST 
and DT. Use Ci(1 ≤ i ≤ 2), Cd and CS to denote the results of applying selection 
condition C on the schema of tables ATi , DT and ST. If the selection condition does 
not contain attributes of any of the above tables, the condition for that table would be 
empty. For example, for C = ‘job = nurse and Din = 1 and income = 3500 on the ASN 
scheme in [Fig. 2], C1 (on AT1) =’job = nurse’, C2(on AT2)=’’, Cd(on DT) = ‘Din = 1’ 
and CS (on ST)  = ‘Disease = stroke’. Furthermore, each condition can take two forms: 
equality or range. The range condition is in the form (x1< attribute <x2) for numerical 
attributes and the attribute in {x1, x2,…, xv} for non-numerical or categorized 
attributes such as job. 

The pseudo code in [Fig. 4] shows the details of how to approximate the result of 
the count queries. First, determine all groups that satisfy CS (line 1). Second, for each 
group Gj, estimate the count result (lines 3-15). In particular, compute count result sj 
as the sum of count attribute that satisfies CS in sensitive table ST where GID = j (line 
4). Then, for every selection condition Ci on table ATi (1 ≤ i ≤ 2) (and Cd) calculate 
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probability pi (and pd) of the tuples in Gj that satisfy Ci (and Cd). The result of 
multiplication of these probabilities is stored in p. Each tuple in Gj satisfies all 
conditions C1, C2, and Cd with probability p (lines 7-16). Then adjust the count result 
accordingly by multiplying s by p (line 17). Finally, sum the adjusted counts for all 
groups (line 17). This sum is an estimation of the result of query Q for anonymized 
data based on ASN. 
 

Algorithm: estimateAggregateTabularQuery 
Input: ASN tables(AT1,AT2,ST,DT,SVT), query Q 
Output: the estimated result of Q 
1) GIDS ←ПGID (σCs(ST)); //groups that satisfy Cs 
2) n ← 0 
3) for each group ID j Є GIDS do 
4)       sj←Пsun(count)(σ(Cs,GID=j)(ST)); //memebers in Gj that satisfy Cs 
5)      |Gj|←Пsun(count)(σGID=j(ST)); // compute group size 
6)       p ← 1; 
7)       for each Ci isn’t empty do 
8)            k ←Пsun(count)(σ(Ci,GID=j)(ATi)); //memebers in Gj that satisfy Ci 
9)            pi←(k/|Gj|); 
10)            p ← p × pi; 
11)       end for 
12)       if Cd isn’t empty then 
13)            k ←Пsun(count)(σ(Cd,GID=j)(DT)); //memebers in Gj that satisfy Cd 
14)            pd←(k/|Gj|); 
15)            p ← p × pd; 
16)        end if 
17)       n ← n + sj × p; 
18) end for 
19) return n; 

Figure 4: aggregate tabular query estimation algorithm 

Example: Using the ASN scheme in [Fig. 2], show how the algorithm in [Fig. 4] 
operates on the following query to estimate the results of count queries for query Q1: 

SELECT count(*)  
FROM Released-network-data 
WHERE job =”nurse” AND Din=1 AND income=3500; 

Only group 1 satisfies the condition income = 3500 on ST (S1 = 1). For group 1, ݌ = ଶସ × ଷସ = ଺ଵ଺, where ݌ଵ = ଶସ corresponds to 2 tuples out of 4 in group 1 that satisfy 

job = “nurse” in table AT1, and  ݌ௗ = ଷସ corresponds to 3 tuples out of 4 in group 1 

that satisfy Din=1 in table DT. The result of this query is ଵܵ × ݌ = ଺ଵ଺. The result of 

this query on original network data in [Fig. 1] is 1, since only Alice has those 

conditions. As a result, the relative error is  
ቚ లభలିଵቚଵ = 0.62. 
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5.2 Aggregate network query 

An aggregate network query calculates aggregation on paths or subgraphs satisfying 
some query conditions. One example is the average distance from a nurse node to a 
teacher node in a network structure. For this kind of query, conditions Csource and Cdest 
exist for source and destination nodes, respectively. These conditions are defined for 
attributes of individuals, such as quasi-identifiers, sensitive attributes, in-degree, or 
out-degree. To execute this kind of query on original network data, first determine the 
set of all individuals that satisfy those conditions (ܵܰ = ܰܦ ,(ܰ)஼ೞ೚ೠೝ೎೐ߪ  ஼೏೐ೞ೟(ܰ)). Then compute the minimum distance from each node in SN to each nodeߪ=

in DN. Then calculate average (ݐ݈ݑݏ݁ݎ_ݕݎ݁ݑݍ = ଵ|ௌே|×|஽ே| ∑ ∑ ,݅)ேݐݏ݅݀ ݆)௝∈஽ே௜∈ௌே ), 

where ݀݅ݐݏே(݅, ݆) is the length of the shortest path from i to j in network N. 
Next, estimate the result of this kind of query on anonymized network data by 

ASN. As done previously, each condition Csource and Cdest are divided by related 
conditions in tables (ܣ ଵܶ, ܣ	 ଶܶ, ܵܶ,  Since false individuals are generated by the .(ܶܦ
lossy join of the AT tables, there may be tuples of tables (ܣ ଵܶ, ܣ	 ଶܶ, ܵܶ,  for Gj (ܶܦ
that satisfy Csource(Cdest). While, in reality, no members of Gj satisfy all conditions. For 
every label in each group that satisfies Csource(Cdest), measure the probability that its 
corresponding individual satisfies Csource(Cdest) in the original data based on the 
algorithm in [Fig. 5].  

 
Algorithm: estimateLabelwithProbability 
Input: ASN tables(AT1,AT2,ST,DT,SVT), condition C={C1,C2, Cs, Cd} 
Output: the set of pair (label,probability) 

1) GIDS ←ПGID (σCs(ST)); //groups that satisfy Cs 
2) Pairs ← {}; 
3) for each group ID j Є GIDS do 
4)      sj←Пsun(count)(σ(Cs,GID=j)(ST)); //memebers in Gj that satisfy Cs 
5)     |Gj|←Пsun(count)(σGID=j(ST)); // compute group size 

6)      prob ← 
௦ೕหீೕห; //probabilty of each member Gj satisfy Cs 

7)      for each Ci isn’t empty do 
8)            k ←Пsun(count)(σ(Ci,GID=j)(ATi));  
9)            pi←(k/|Gj|); //probabilty of each member Gj satisfy Ci 
10)            prob ← prob × pi; 
11)       end for 
12)      if prob>0 then 
13)            labels ←Пlabel(σ(Cd,GID=j)(DT)); 
14)      end if 
15)      for each L in labels do 
16)            pairs← pairs ∪ (L, prob); 
17)       end for 
18) end for 
19) return pairs; 

Figure 5: Algorithm to estimate probability of labels that satisfy condition C 
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The inputs of this algorithm are ASN tables and the set of conditions on each 
table (some conditions may be empty). For each group Gj,, compute the probability of 
each tuple in the lossy join of (ܣ ଵܶ, ܣ	 ଶܶ, ܵܶ) for Gj that satisfies conditions {C1, C2,  
Cs} (lines 1-11). For each table, calculate the sum of values of the count column of 
tuples in Gj that satisfy the condition (lines 4 and 8) divided by the size of members in 
Gj  (lines 6 and 9) and multiply all these results (line 10). This value (prob in [Fig. 5]) 
shows the probability of each tuple of Gj in the lossy join of those tables that satisfy 
conditions {C1, C2, Cs}. If this probability is zero for Gj, there is no node in Gj that 
satisfies C; otherwise all labels in Gj that satisfy Cd may meet all conditions of C with 
probability prob (lines 12-14). For each of those labels, the pair (label, prob) is added 
to the result (lines 15-17). 

To estimate this kind of query for the ASN data, extract all labels that satisfy 
Csource(Cdest) based on the algorithm [Fig. 5] and put them into set pairsS (piarsD). To 
execute this query, compute the distance from each label in pairsS to each label in 
pairsD, but, based on [section 2], for each group there are probable world edges to 
reconstruct the output edges of each group. If |PWEj| denotes the number of valid 

output edges sets for Gj, there are ∏ ௝|௡ᇲ௝ୀଵܧܹܲ|  choices to reconstruct all edges of the 
network. Some of these reconstructed networks are randomly generated. The average 
of the query result on all randomly reconstructed networks was considered as 
estimated result of query for the published network data. The estimated result of the 
query for each reconstructed network SG is computed as the weighted average of the 
distance of all {(݈ܾ݈ܽ݁[݅], ݈ܾ݈ܽ݁[݆])|݅ ∈ ,ௌݏݎ݅ܽ݌ ݆ ∈  ஽}. The weight of eachݏݎ݅ܽ݌
distance of each pair (݈ܾ݈ܽ݁[݅], ݈ܾ݈ܽ݁[݆]) is ܾ݋ݎ݌[݅] ×  The query result on .[݆]ܾ݋ݎ݌
network SG is: 1∑ ∑ .[݅]ܾ݋ݎ݌) ×௝∈௣௔௜௥௦ವ௜∈௣௔௜௥௦ೄ([݆]ܾ݋ݎ݌ 	෍ ෍ .[݅]ܾ݋ݎ݌) .[݆]ܾ݋ݎ݌ ,[݅]݈ܾ݈݁ܽ)ௌீݐݏ݅݀ ݈ܾ݈ܽ݁[݆]))௝∈௣௔௜௥௦ವ௜∈௣௔௜௥௦ೄ  

(6) 

5.3 Graph Topological Properties 

One of the most important applications of social network data is analysis of graph 
properties. To understand and utilize the information in a network, various measures 
have been developed to describe the structure and characteristics of the network from 
different perspectives. Some of these measures are degree sequences, shortest 
connecting paths, clustering coefficients, closeness and betweenness. As stated above, 
there are multiple candidate graphs to reconstruct the network from the released data 
based on ASN. As for the previous query, evaluate the structural measures on some 
reconstructed graphs and then compare the averages of their properties with the 
original network. The anonymization algorithm has no effect on degree sequence 
because, in ASN technique, the degree of nodes remains unchanged; we consider the 
following measures: 

 Connectedness: Every anonymization algorithm can modify the connectivity 
of the network (split a component or combine multiple components). Since 
the network graph is assumed to be directed, consider this measure in two 
ways: 
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• Size of maximum strongly-connected component: (strongly 
connected component with maximum nodes) 

• Size of maximum weakly-connected component: (weakly connected 
component with maximum nodes) 

 Shortest path length: we evaluate the effect of the anonymization algorithm 
on the shortest path lengths in the graph. Since it is possible to have no path 
from one node to another, consider three cases to compare shortest paths 
(because the network structure is directed, there are ݊(݊ − 1) pairs to 
measure their shortest path): 

• Existing paths: Compute the average distance of all pairs having a 
path from source to destination 

• All pairs: Compute the average path length between all pairs; for 
pairs with no path, let the path length be 2|V| instead of an infinite 
value 

• Selected pairs: Select 100 random pairs (source node, destination 
node) having paths between them in the original network and 
compute average distance of them 

 Diameter: The original directed network may not be strongly connected. To 
neglect infinite paths, consider the maximum shortest path lengths of all 
existing paths as the diameter. 

 Closeness: Closeness of a vertex v is  
ଵ∑ ௗ௜௦௧(௩,௧)೟∈ೇ . If there is no path from v 

to t, consider the distance as 2|V|.  
 Betweenness: This quantifies the number of times a node acts as a bridge 

along the shortest path between two other nodes. It is introduced as a 
measure to quantify the importance of an individual in communication 
between others in a social network.  

 Clustering coefficient: It is a measure of the degree to which nodes in a graph 
tend to cluster together. To compute this scale, the edge direction is ignored. 
If nv is the set of all neighbors of v, the clustering coefficient of v is the 
number of pairs in nv that are adjacent to each other in the network divided 
by the number of possible pairs (|݊௩|(|݊௩| − 1)/2). 

5.4 Graph spectral properties 

The graph spectrum has close relations with many graph characteristics and can 
provide global measures for some network properties. We consider the following 
metrics: 

 Normalized eigenvector: The eigenvector is a non-zero vector ݒ ,ଵݒ}= … ,  ௡×௡ is multiplied by v, it yields aܣ ௡};  when graph adjacency matrixݒ
constant multiple of v. The latter multiplier is denoted by λ (ݒܣ =  Ying] (ݒߣ

2008]. The normalized eigenvector equals ݊ݒ = ଵ∑ ௩೔೙೔సభ  .ݒ

 Page rank: The page rank of each vertex specifies a score that is the fraction 
of time spent visiting that vertex (measured over all time) in a random walk 
over the vertices (following outgoing edges from each vertex) of the graph. 
Compare the page rank of each vertex in original and anonymized network. 
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 Spearman similarity of top k ranked vertices: Higher ranked vertices have 
more effect on preserving graph utility. Sort the vertices of the graph based 
on their page rank scores, then extract the top 5% (݇ = 0.05݊) of them in 
ranked lists L and L* for the original and anonymized graph. As [Milani Fard 
2013], evaluate the Spearman similarity (SS) between these lists as ܵܵ = 1 −ଶ(௞ି|௓|)(௄ା!)ା∑ ห௥ಽ(௜)ି௥ಽ∗(௜)หି∑ ௥ಽ(௜)ି೔∈ೄ೔∈ೋ ∑ ௥ಽ∗(௜)೔∈೅௞(௞ାଵ) , where Z is the set of nodes 

in both L and L*, S is the set of nodes that are only in L, T is the set of nodes 
that are only in L*, and ݎ௅(݅) is the rank of node i in list L. The range of SS is 
[0,1] where 0 denotes totally reserved and 1 denotes totally identical. 

6 Experimental Results 

Experiments were conducted on datasets to evaluate information loss of the 
anonymized network data generated by our GroupingSND based on ASN technique. 
We compared the results of the four types of queries in [section 5] for the anonymized 
and original networks. The complete comparison of the proposed algorithms with 
other anonymization methods for all four types of queries is impossible for the 
following reasons: 

1. There is no privacy model other than (α,β,γ,δ)-SNP to protect against four 
kinds of disclosure of private information (membership disclosure, sensitive 
attribute disclosure, degree disclosure, relationship disclosure) on the 
directed social network. Existing research only protects against some of 
these attacks. Providing more privacy protection decreases utility [Wu 2009]. 

2. The social network model is considered to be an undirected graph in almost 
all existing research [Bhagat 2009], [Campan 2008], [Hay 2010b], [Liu 
2008], [Tai 2014], [Zhou 2011], but a directed graph for the proposed 
privacy preserving method.  

Despite this, we compared the proposed algorithms with Subgraph-wise 
Perturbation (SP) [Milani Fard 2012] and Neighborhood Randomization (NR) [Milani 
Fard 2013] for the graph topological properties, although they only protect against 
relationship disclosure in the directed graph. In SP and NR, quasi-identifiers and 
sensitive attributes for nodes are not considered. Since the goal of NR is not to protect 
re-identification, it does not consider any background knowledge, such as degree. 

6.1 Experimental Setup and Datasets 

Setup: We implemented the proposed anonymization algorithm in JAVA and used 
JUNG 2.0.1[1] software library to manipulate and analyze the graphical data. The 
used system platform was Windows 7, Oracle 11g, Intel core i4 with 2.4GH and 14G 
RAM. 
 
Datasets: We evaluated  ASN and GroupingSND on the following network data:  

 Wikivote[2]  which contains all Wikipedia voting data from the inception of 
Wikipedia until January 2008. Nodes in the network represent Wikipedia 
users. A directed edge from node i to node j shows that user i has voted for 
user j. The network contains 7115 nodes and 103689 directed edges.  
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 URVEmail[3] which contains edges of e-mail interchanges between 
members of the University of Rovirai Virgili (Tarragona). This email 
network contains 1133 nodes and 10933 directed edges.  

 Random, which was generated by Pajek[4] with 2000 nodes. It contains 
109832 edges.  

 
Since the nodes should contain quasi-identifiers and sensitive labels, micro-

dataset Census [5] was used, which contains personal information of 1,000,000 
Americans. Census was produced by the data extraction system of the US Bureau of 
Census. This dataset contains 7 QID-attributes and one sensitive attribute. Details of 
the attributes are summarized in [Tab. 1]. Random sets of 7115, 1133, and 2000 
tuples were assigned to the above networks nodes. 

 
Attribute Age Gender Maritial Race Birth Place Education Work class Salary 
Number of distinct value 100 2 6 9 144 12 16 950 

Table 1: Summary of attributes of dataset 

 D(indegree) D(outDegree) D(sensitive) Indegree range Outdegree range 
Wikivote 0.66 0.335 0.235 0-457 0-893 
URVEmail 0.132 0.132 0.228 1-71 1-71 
Random 0.059 0.059 0.17 26-83 30-84 

Table 2: properties of datasets 

[Tab. 2] shows details of each dataset. The function D(x) (density of property x) 
returns the frequency of the most frequent value for attribute x in network data N 
divided by the number of all individuals in N. As mentioned at the end of [Section 
3.1],  to find a grouping were all groups satisfy privacy requirements, the thresholds 
of β, γ, and δ should be more than the density of the related properties. In the worst 
case, if all individuals are located in one group, this group should satisfy privacy 
constraints. We set privacy parameters for all experiments to α = 0.25, β = 0.25, γ = 
0.7, δ = 0.7, Ftop = Fan = 4. 

Wikivote has power law degree distribution [6]. In this dataset, more than half of 
the nodes have out-degrees of 0 or 1 and in-degree 0; a few nodes have out-degrees 
greater than 400. In this dataset, finding a grouping based on ASN such that all its 
groups satisfy relationship privacy is difficult. In the proposed algorithm, if current 
members of Gk do not satisfy the δ-relationship constraint, next node added to Gk to 
decrease the probability of relationship disclosure for Gk. Adding a node with out-
degree 0 to Gk does not increase the output edges of Gk; thus, its probability of 
relationship disclosure remains unchanged. There are many nodes with this property 
and all of them should be located in groups. This increases group size. The size of the 
group that includes the nodes with the highest out-degree (893) is large. To satisfy the 
δ-relationship of that group, the nodes with high degree having few intersections with 
successor nodes should be added to it. A few nodes have high out-degree and most of 
them are connected to nodes with high in-degree (intersection at successor nodes), 
which increases the size of this group.   
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In the Random dataset, the range of in-degrees and out-degrees of all nodes is 
limited; therefore, the degrees of nodes are close to each other. Here, finding a 
grouping to satisfy the degree and relationship privacy is easy. 

URVEmail has a power law degree distribution, but the range of degree is more 
limited than for the Wikivote dataset. Finding the ASN groups is not as difficult as for 
the Wikivote dataset. 

Since satisfying privacy constraints differs from one dataset to another, the values 
of ܨொூ, ,ௌܨ ,஽௜௡ܨ  ௦௨௖௖ were different for each dataset. For example, inܨ ஽௢௨௧ andܨ
Wikivote, the density of in-degree is near its constraint of γ = 0.7 and satisfying 
relationship privacy is difficult; thus, ܨ஽௜௡	and	ܨ௦௨௖௖ should be higher than other 
coefficients. 

6.2 Results 

The proposed algorithm was evaluated for the network types described previously. To 
measure information loss, queries were generated in each of the four types [section 5] 
and the relative error of results of queries on anonymized network was computed for 
comparison with the original network data.  

[Fig. 6(a)] shows the minimum, average, and maximum group size for each set of 
anonymized data. Group size has an important impact on information loss (a decrease 
in group size decreases information loss). Because β equals 0.25, the minimum 
possible group size to satisfy the sensitive association requirement is 4. [Fig. 6(a)] 
shows that there were groups with 4 members in all experiments. The average and 
maximum group size for the URVEmail and Random datasets were similar and close 
to each other. The average was close to the minimum group size. In Wikivote, the 
average and maximum group size were greater than for other datasets because it was 
difficult to attain the degree and relationship requirements for groups with members 
having high out-degrees.  
 

(a) (b) 

Figure 6: (a) minimum, average and maximum group size, (b) average of individuals 
privacy disclosure probability  

Each individual is a member of one group, but the probability of privacy 
disclosure of each group may differ from other groups. [Fig.6(b)] illustrates the 
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average probability of privacy disclosure for all network individuals. As shown, all 
disclosure probabilities were below their specified thresholds. 

6.2.1 Aggregate Tabular Query  

Two types of aggregate tabular queries were considered: (1) queries with only 
equality conditions and (2) queries with range conditions for quasi-identifiers, in-
degree, and out-degree. In both types, the condition for sensitive attribute was 
equality. To evaluate each anonymized network, 100 equality queries and 100 range 
queries were randomly generated. For each random query, properties (quasi-
identifiers, in-degree, and out degree) were chosen randomly and a random condition 
was created for each property. The number of conditions differed from one query to 
another. The selectivity of one query is defined by the number of individuals 
satisfying all its conditions. Increasing the number of selected properties decreases 
selectivity. In addition, selectivity of range queries is more than equality queries with 
the same selected properties. 

For evaluation, the relative error (equation 5) was computed for each random 
query. [Fig.7] shows the minimum, average, and maximum relative error for all 
random queries for each dataset. As shown, the average of relative error for range 
queries was lower than that for equality queries in all datasets. The average error for 
all datasets was close to each other for equality queries.  
 

(a) equality queries (b) range queries 

Figure 7: relative error for aggregate tabular queries 

 [Fig.8] shows the average relative error by the number of properties for the query 
conditions for all experiments. It shows that, in both queries, accuracy decreased 
when the number of properties increased for the query condition. As mentioned, 
increasing the number of properties in query condition usually decreases selectivity.   
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(a) equality queries (b) ) range queries 

Figure 8: relative error of aggregate tabular queries with respect to number of 
involved properties in query conditions 

6.2.2 Aggregate Network Query 

In this kind of query, the goal is to compute the average distance from source nodes 
with specified properties to destination nodes with determined properties for all 
random reconstructed graphs. For each dataset, 100 random queries of this kind were 
generated. To describe the source nodes for each random query, properties (quasi-
identifiers, in-degree, and out degree, sensitive) were randomly chosen to create 
random conditions for each property. Condition of each property was able to be either 
equality or range condition. The same was done to describe the properties of the 
destination nodes.   

[Fig.9(a)] represents the minimum, average and maximum relative error of all 
generated queries in all experiments. As shown, information loss from the Random 
dataset was lowest. Although the average error of all datasets was relatively small, the 
maximum relative error for Wikivote was high. Since the size of some groups for the 
Wikivote dataset was large, the number of false combinations generated by lossy join 
increased. This increased the information loss for some queries in those groups. 

[Fig.9(b)] shows the average error for all datasets by the number of properties 
involved in source and destination conditions. Since each condition of query was able 
to be either equality or range, there was no general trend for increasing the number of 
properties involved. Since a query with more conditions can have more range 
conditions, its selectivity can increase. 
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(a) (b) 

Figure 9: relative error on aggregate network queries: (a) minimum, average, and 
maximum relative error, (b) average relative error based on number of involved 
properties in query conditions 

6.2.3 Graph Topological Properties 

To evaluate information loss for topological properties, the first step is to reconstruct 
the graph from released tables. The graph edges should be reconstructed based on 
tables DT and SVT. As mentioned in [section.2], for each group j, Dout in DT 
indicates how many times each label appears as the source of an edge and count in 
SVT shows how many times each label appears as a destination edge for that group’s 
members. There are probable world edges (PWEj) for reconstructing the output edges 

of Gj; therefore, there are ∏ ௝|௡ᇲ௝ୀଵܧܹܲ|  choices to reconstruct the graph edges. For 
each dataset, 100 reconstructed graphs were randomly generated. In each 
reconstructed graph, for each group Gj, one member of PWEj was generated 
randomly. Next, the topological properties explained in [section 5.3] were measured 
for each reconstructed and original network and the average of each property on all 
reconstructed networks was compared with the original one [Tab.3]. The topological 
properties of our method in most cases were very close to actual values in the original 
network. The size of the largest strongly-connected component and largest weakly- 
connected component changed for Wikivote. The changes in the clustering 
coefficients for URVEmail and Wikivote were considerable. 

If only the average of a property (such as betweenness) on all nodes in one 
reconstructed network is compared with the original network, then ܣܧ =|ୟ୴୥ೡ∈ೇ ொ(௩)ିୟ୴୥ೡ∈ೇ ொ(௩∗)|ୟ୴୥ೡ∈ೇ ொ(௩)  This is not a good .(*denotes the corresponding v in N∗ݒ)

measure for evaluating the anonymization algorithm, because, when betweenness of 
one node decreases 10 units and another node increases 10 units, the average remains 
unchanged while it creates information loss for the betweenness. On the other hand, 
the value of a property such as betweenness or the clustering coefficient can be zero 
for some nodes in the original network. This means it is not reasonable to use the 

average relative error of all nodes ܧܣ = ∑ |ೂ(ೡ)షೂ(ೡ∗)|ೂ(ೡ)ೡ∈ೇ |௏|  (division by zero occurs). 
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Instead, an additional measure was considered to provide better evaluation than EA. 
The proportion of the average absolute difference by the average of all nodes values 

as calculated by ܣܦܧ = ୟ୴୥ೡ∈ೇ|ொ(௩)ିொ(௩∗)|ୟ୴୥ೡ∈ೇ ொ(௩)  was used.  
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Wikivote 
Original 1300 7066 3.48 2.92 10 0.0000849 0.141 3930.5 1 

GroupingSND 1300.7 7071.4 3.36 2.57 8.36 0.000085 0.0664 3656.5 0.771 

URVEmail 

Original 1133 1133 3.61 3.74 8 0.282 0.221 2950 1 

GroupingSND 1133 1133 3.33 3.41 7.56 0.305 0.0675 2636.2 0.882 

SP1k 1132.6 1133 3.60 3.61 8.22 0.273 0.0261 2948.3 0.033 

SP50k 1126.1 1132.9 3.63 3.65 8.2 0.102 0.1622 2955.8 0.531 

NR 1095.8 1133 3.48 3.50 7.9 0.012 0.245 2716.5 0.765 

Random 
Original 2000 2000 2.19 2.21 3 0.45732 0.0543 2374.2 1 

GroupingSND 2000 2000 2.19 2.20 3 0.4527 0.0547 2374.6 0.969 

Table 3: topological properties of original and anonymized network 

[Fig.10] shows the average relative error on all random reconstructed graphs for 
all topological and spectrum properties explained in [sections 5.3 and 5.4]. The 
diameter of all reconstructed graphs was equal or close to the diameter of the original 
network in all datasets. Wikivote had the highest average relative error for this 
property.  

As explained in [section 5.3], the average distance between all two nodes was 
computed for each reconstructed graph and original network. In this case, it was 
possible for there to be no path between some pairs; so the average distance between 
all pairs with some paths on the network was calculated. [Fig. 10] shows that the 
values of EA for the Random dataset were close to zero and that URVEmail had the 
highest relative error. Furthermore, for each original network, 100 pairs with paths 
between them were selected. Then the AE of shortest path length of each pair in 
anonymized network was computed. As mentioned, calculation of the EA does not 
provide a good metric. As seen, the AE of the selected pairs in the Random dataset 
was greater than that for the URVEmail dataset, while the EA for the Random dataset 
approached zero.  

[Fig.10] shows the EDA for the closeness, betweenness and clustering coefficient 
since their values for some nodes in the original network could be zero. As shown, the 
proposed algorithm preserved closeness and betweenness in all datasets very well. It 
preserved the clustering coefficient for the URVEmail and Wikivote datasets at a 
satisfactory level. 
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Figure 10: Topological and spectrum properties in original and anonymized network 

The maximum strongly-connected component size (MSCCS) and maximum 
weakly-connected component size (MWCCS) remained unchanged for the Random 
and URVEmail datasets, but changed in the Wikivote dataset. These changes had an 
important impact on the diameter and shortest path length. 

The eigenvector and page rank vectors were first normalized and the relative error 
of corresponding elements of the two vectors was computed. Finally, the average 
relative errors (AE) were computed. As seen, their relative errors were low for all 
datasets, especially for the Random dataset. To compute the relative error of spearman 
similarity a value of 1 was considered to be its actual value in the original network. 
For Wikivote, the spearman similarity showed greater information loss. 

6.2.4 Effect of Priority Measure 

In the proposed anonymization algorithm, the first member of each group is chosen 
based on its priority measure. Now in this Section, we consider same priority for all 
nodes. The URVEmail dataset was tested to evaluate the effect of priority measure. 
[Fig.11] shows the average of relative error for equal, range and aggregate network 
queries. As shown, the relative error increased slightly. [Fig. 12] shows the relative 
error for topological and spectrum properties. As shown, the relative errors were 
similar. In some case, GroupingSND without priority has lesser information loss. As 
mentioned in [section 4], some nodes remain in the last incomplete group because 
there are no unmarked nodes to add to this group and because its privacy 
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requirements are not satisfied using the current members. Without the use of priority, 
the members remaining in last group increased. Each node should be added to a 
suitable available group without violating privacy requirements. 
 

 

Figure 11: Evaluation of removing priority measure on average of relative error on 
equal, range and aggregate network query 

6.2.5 Summary of Results 

Experimental results showed that the relative errors of aggregate network queries and 
graph topological and spectrum properties were lower than that for aggregate tabular 
queries. This means that ASN preserves the structural properties better than tabular 
properties. The proposed anonymization algorithm preserves data utility for all 
datasets at an acceptable level. A utility metric should be considered for only the 
tabular data in desirability metric to decrease information loss in tabular queries. On 
the other hand, for tabular queries that do not consider structural data, the publishing 
relational data methods introduced in [Fung 2010] can be employed.   

Notice that the relative error approaching 1 is not unfavorable (equation 5) in 
cases where the actual value approaches zero, because a slight change in the 
anonymized value sharply increases the change in error. 

Another way to increase the accuracy of analysis of published data is to publish 
the average relative error for each topological property and each kind of query. In this 
way, after extraction of the query response from the anonymized data, the actual 
range of the query response can be estimated. This may not be applicable to all 
publishing methods since, in the privacy-preserving data publication problem, the 
method of data anonymization is assumed to be known by the analyzer, so publishing 
the average relative error may cause privacy disclosure in some methods. All aspects 
of this issue will be analyzed in future research. 

The relative error of the aggregate network queries and graph topological and 
spectrum properties in the Random dataset approached zero. As a result, the proposed 
anonymization algorithm preserves data utility well when the node degree of the 
graph is distributed within a narrow range.  
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6.3 Comparison with SP and NR 

In this section, we first introduce SP and NR, and compare them with the proposed 
algorithm for the topological and spectrum properties of the graph. 

SP: Subgraph-wise perturbation perturbs the destination of a link to achieve 
uncertainty of inferring the correct destination. It follows the (p1,p2) privacy model (0 
< p1<p2< 1) that states that if prior belief of the adversary is that node v is the 
destination of a link is not greater than p1, then his posterior belief that v is the true 
destination of a link is not greater than p2. One drawback of this approach is that it is 
only limits inference of destination nodes that have low in-degrees (prior belief less 
than p1). In contrast to SP, the proposed approach limits the probability of relationship 
disclosure to less than δ(=p2) for all edges of the graph. To compare SP with the 

proposed algorithm we consider ݌ଵ ≥ ୫ୟ୶ೡ∈ೇ{௩[஽௜௡]}|{௩∈௏|(௩,௨)∈ா}|  so that all nodes satisfy prior 

belief. The graph is partitioned in SP into link-partitioned subgraphs G1,…,Gk. For 
each (directed) link (u,v), it is retained with certain probability p and replaces (u,v) 
with link (u,w) with probability 1-p, where w is randomly-selected from nodes in each 
subgraph. This method is called SP. A larger k increases retention probability, and 
decreases the reconstruction error, and increases the threat of identifying a true link 
[Milani Fard 2012]. 

NR: Neighborhood randomization also replaces the destination with random node w 
with probability 1- p, but selects w from a local neighborhood of u. NP protects 
relationship privacy by ensuring that probability of an observed link in the published 
graph being a true link is not greater than δ. Two parameters influence information 
loss of a published graph: (1) radius of neighborhood (r) and (2) size of candidate set 
for random replacement of destination edges from u (s). Smaller s and r values mean 
that a randomized destination is chosen from a more compact neighborhood with 
fewer choices, leading to better preservation of the graph structure. Larger s and r 
values create more uncertainty for a randomized destination, hiding the true 
destination better [Milani Fard 2013]. 

SP and NR only protect against link disclosure. The proposed algorithm protects 
against four types of disclosure. Since is no better choice, the proposed algorithm was 
compared with SP and NR. The proposed algorithm has greater information loss for 
some structural properties for URVEmail dataset than for other datasets [Fig. 10]; this 
comparison was carried out using URVEmail. In all cases, the maximum disclosure of 
a link was 0.7. In SP, p1 and p2 were set to 0.1 and 0.7, respectively. In NR, r and s 
were set to 2 and 3, respectively. For SP, experiments with different k values (1 and 
50) were run and are denoted by SP1k and SP50k, respectively. Since SP and NR are 
random algorithms, each was run 10 times. [Tab.3] and [Fig.12] show the average 
structural properties and information loss for all generated anonymized networks for 
each experiment. The results of the comparison are: 

1. The proposed method (GroupingSND) did not change the in-degree and out-
degree of nodes in the published graph. SP and NR retained the out degree of 
nodes, but distortions occurred in the in-degrees of the nodes.   

2. Relative errors for MSCCS and MWCCS were very low for all methods 
[Fig.12], but small changes in MSCCS had an important effect on changes in 
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the distance between pairs. NR had the highest relative error for MSCCS in 
comparison with SP and GroupingSND. 

3. Relative error for the diameter of all methods was very low and close to each 
other. GroupingSND had the highest relative error in diameter. 

4. NR had the highest error for MSCCS; thus, the EA of the distances of all 
pairs and the AE of distances of pairs with paths between them were very 
high. [Fig.12] shows that the relative error of GroupingSND for the EA of 
the distances of all pairs and the AE of existing paths lengths were much 
lower than those for SP and NR. The AE of the selected pairs distances were 
close to each other for all methods. 

5. In comparison with SP and NR, GroupingSND preserved closeness well. 
Information loss from GroupingSND for betweenness was similar to that for 
SP50k and much lower than that of SP1k. NR preserved betweenness better 
than GroupingSND. 

6. The EDA of the clustering coefficient for SP50k and NR was smaller than 
that for GroupingSND. 

7. GroupingSND preserved the page rank, eigenvector, and Spearmen 
similarity much better than did the other methods. 

Figure 12: comparison of our method with SP and NR 
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There is always a trade-off between privacy and utility. Increasing privacy 
requirements decrease data utility. SP and NR only consider structural data and only 
protect against link disclosure. The proposed method considers both tabular and 
structural data and protects against four types of disclosure. Although the proposed 
method is not absolutely superior [Fig. 12], but the proposed method established a 
better trade-off between privacy and utility over the results of SP and NR 

7 Conclusion and Future Work 

We presented a novel greedy algorithm based on a new desirability metric to generate 
anonymized groups of the ASN technique and the (α,β,γ,δ)-SNP model [Rajaei 2013]. 
This algorithm tries to preserve structural and tabular data utility while it satisfies all 
four privacy constraints of (α,β,γ,δ)-SNP using two novel metrics: (1) privacy metrics 
for each privacy requirement (α-presence, β-sensitive-association, γ-degree-
association, δ-relationship) measure the desirability of two individuals being located 
in the same group; (2) utility metrics  measure the similarity of individuals located in 
the same group to preserve data utility for topological and aggregate network queries.  

These two metrics are denoted as desirability metric used in the proposed 
grouping method to generate groups of minimal size. In addition, methods were 
introduced based on ASN to measure the aggregate tabular and network queries on 
the published data. A new utility metric, EDA, was provided to evaluate information 
loss of topological properties which considers the average absolute difference of all 
individuals. 

Experimental results on three datasets demonstrated that the proposed 
anonymization technique (ASN) and algorithm preserved data utility at a satisfactory 
level in all four types of query (aggregate tabular, aggregate network, graph 
topological, spectrum properties). Since, the proposed method uses directed network 
data, the only options for comparison of the proposed algorithm for structural 
properties were SP [Milani Fard 2012] and NR [Milani Fard 2013]. In contrast to the 
proposed method, these methods only consider structural data and only protect against 
relationship disclosure in a directed network. Experimental results showed that while 
the proposed method protects against disclosure of the more private information, it 
preserves most structural properties better than or similarly to SP and NR. As a result, 
the proposed method provides a better trade-off between privacy and utility than did 
SP and NR. 

An important area for future study is improvement of data utility using learning 
methods to find suitable coefficients (ܨொூ, ,ௌܨ	 ,஽௜௡ܨ	  ௦௨௖௖) based on theܨ ஽௢௨௧ andܨ	
original network data distribution. These coefficients effect the calculation of the DM. 
[Fig. 6(b)] shows that, in some cases, the average probability of disclosure of each 
privacy requirement was much lower than the required privacy thresholds. In privacy 
model, it is sufficient to maintain these probabilities near their thresholds. We plan to 
design a grouping algorithm with few nodes and low differences between disclosure 
probabilities and privacy thresholds that can generate groups with more similar nodes 
than the proposed greedy algorithm. In this way, information loss decreases and 
privacy requirements are protected at the specified thresholds with the same group 
sizes. 
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Every social network can be anonymized using the proposed anonymization 
technique if the thresholds of β, γ, and δ are greater than the density of the related 
properties in the dataset. In the worst case, all individuals are located in one group and 
this group satisfies the privacy constraints. Some anonymization methods, especially 
the greedy algorithm, may not able to find this grouping. For example, in the 
proposed anonymization algorithm, a node may remain in the last group, but 
appending it to each generated group violates privacy constraints. In this case two 
groups should be merged and the node added to the newly-merged group. Future 
plans include the design of a grouping algorithm based on evolutionary algorithms to 
provide better grouping. 

Another area for future work is development of a grouping algorithm for ASN 
technique that considers different privacy thresholds for different individuals. 
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