
A Data Management Middleware for ITS Services

in Smart Cities

Luca Carafoli

(FIM - University of Modena and Reggio Emilia, Italy

luca.carafoli@unimore.it)

Federica Mandreoli

(FIM - University of Modena and Reggio Emilia, Italy

federica.mandreoli@unimore.it)

Riccardo Martoglia

(FIM - University of Modena and Reggio Emilia, Italy

riccardo.martoglia@unimore.it)

Wilma Penzo

(DISI - University of Bologna, Italy

wilma.penzo@unibo.it)

Abstract: A major societal challenge to be tackled in megacities is sustainable urban
transportation. Intelligent Transportation Systems (ITSs) are actually data-centric ap-
plications that need to store and query real-time as well as historical/static data from
various data sources and have to provide timely responses to users’ transportation
needs.

In this paper we introduce a data management middleware that offers the robust-
ness of a common framework to support the development of smart applications having
the above needs. It supports the efficient storage and access to real-time and histori-
cal/static data and provides both one-time and continuous query capabilities. While
the middleware has been designed to be general and versatile to support data manage-
ment for any kind of application, in this paper we explore its suitability to ITS smart
services also by means of an experimental evaluation conducted on a variety of traffic
scenarios.

Key Words: Data management middleware, Intelligent Transportation Systems,
Database Management Systems, Data Stream Management Systems, Smart City

Category: H.2, H.2.8, E.2

1 Introduction

By 2025, the upward trend of world urbanization is expected to move around 5

billion people towards megacities. Great efforts are going to be made to make

citizens’ life-style sustainable in such an overcrowded scenario, thus laying the

foundations for the so-called smart cities [European Commission, 2014]. Accord-

ing to the Horizon 2020 EU Programme, a major societal challenge to be tackled

Journal of Universal Computer Science, vol. 22, no. 2 (2016), 228-246
submitted: 19/5/15, accepted: 29/1/16, appeared: 1/2/16 © J.UCS



229Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



plementations. However, despite the fact that such services implement different

logics depending on their own specific objectives, they actually are data-centric

applications that need/have to:

– access heterogeneous data at different sources;

– manage and query high rate data streams;

– provide real-time responses.

The implementation of this kind of applications would greatly benefit of

software development facilities like:

– data management capabilities to satisfy the above needs;

– the robustness of a common framework, to give up näıf implementation so-

lutions that start from scratch every time;

– the decoupling between service logics and data management, so that devel-

opers can focus on the implementation of the service objectives;

– ease of specification of services’ data access needs, to facilitate the develop-

ers to make use of various data by disregarding specific data source access

details.

This is in line with the well-established design principles of DBMSs, that

represent a full-fledged and universally adopted technology for the design and

development of data-centric applications. However, standard DBMSs are not

suitable for such smart services’ purposes, mainly because they are inefficient

in storing/retrieving data at the rate that satisfying real-time demands requires

[Chandrasekaran and Franklin, 2004].

On the other hand, in order to cope with large volumes of stream-

ing data in use to common software applications, Data Stream Manage-

ment Systems (DSMSs) were introduced [Abadi et. al., 2003, Arasu et al., 2006,

Chen et al., 2000, Liarou et al., 2009]. These systems natively support continu-

ous queries (CQs) over (continuous unbounded) streams of data according to

windows where only the most recent data is retained. Once data goes out of the

windows it is deleted from the system.

Unfortunately, this model too does not completely fit the needs of a smart

city service context, where:

1. past streamed data has to be retained in the system since it represents a

valuable knowledge for diverse service purposes, e.g., to provide for statistical

data and traffic forecasts;

230 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



2. besides CQs, also one-time queries (OTQs) on a variety of re-

cent/historical/static data have to be supported, e.g., to reconstruct the

dynamics of an accident.

In order to fulfill these needs, in this paper we present a Data Management

Middleware born as a result of our data management experience in the PEGA-

SUS ITS project1 and featuring the guarantees discussed above. The middleware

offers the following facilities:

– it enables the efficient storage of streaming data through the implementation

of fast mechanisms for continuous writes on temporary and permanent data

stores;

– it manages both static data and real-time/historical data, coming from het-

erogeneous sources, in a transparent way;

– it provides a wide range of SQL-like query capabilities for the timely delivery

of smart city services, i.e. both CQs and OTQs, and supports their execution

efficiently.

To this end, we consider the scenario of a Control Centre that offers var-

ious smart city services. These services rely on the data access functionalities

made available by the data management middleware we propose. Notice that,

while the envisioned scenario is conceptually centralized, the offered facilities

can be clearly implemented in a distributed fashion on several servers, both at

the service level and at the data management level, e.g. by employing cloud

computing technologies like Software-as-a-Service (SaaS) and Data-as-a-Service

(DaaS) mechanisms, respectively. The proposed middleware has been designed

to be general and versatile in efficiently and effectively supporting data manage-

ment for any kind of service. In this paper we explore its suitability to services

for ITSs.

The paper is organized as follows. Section 2 presents the reference scenario

and sketches the middleware’s architecture, which is detailed in Section 3. Sec-

tion 4 shows the experimental evaluation we conducted on a variety of traffic

scenarios, Section 5 discusses related work, while Section 6 draws conclusions

and briefly describes future work.

2 Scenario and Architecture

In this section we consider a scenario where a Control Centre delivers ITS smart

services to different users. Looking at the top part of Figure 1, we see some

cutting-edge services and applications, among which:

1 Italian Council Industria 2015 PEGASUS Project,
http://www.wilab.org/content/progetto-pegasus.

231Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



232 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



by a Data Management Middleware (see central part of Figure 1) that provides

a common framework offering data access and query capabilities. In this way,

data management would be decoupled from the service logics and the developers

would be lightened from the burden of dealing with data management issues.

In our ITS scenario, the data management middleware is located in a Control

Centre, and it receives data from different information sources. Figure 2 details

the middleware’s architecture that consists of three main components:

The Data Acquisition Manager has the goal to convert data coming from

heterogeneous data sources to common formats to be stored and queried. For ex-

ample, as to geographic coordinates, one possible format is the Universal Trans-

verse Mercator UTM-NAD83 [NOAA, 2008]. In this case, all data coming in

the system in different formats, e.g. Degrees, minutes and seconds - WGS84

[NIMA, 2000], needs to be converted. It is also in charge of implementing data

cleansing algorithms to extract useful information from noisy inputs with a sat-

isfactory level of confidence [Kanagal and Deshpande, 2008].

The Real-time Data Storage Manager (RTDSM) has the goal to collect, store,

and index data, supporting both very large volumes and very high input rates.

Real-time Data Stores span both main and secondary memory to seamlessly ac-

commodate and retrieve both recent and historical data in a flexible and scalable

way, while static data is maintained in standard Relational Data Stores and can

be accessed and joined when needed.

The Real-time Query Processor (RTQP) is in charge of the efficient execution

of continuous and one-time queries. For instance, whenever a citizen submits a

parking request, the smart parking service could retrieve the vehicle’s position

through location services, which would perform one-time queries (OTQs) on

the position reports acquired from the vehicles. Best routes could be computed

thanks to traffic monitoring services, which would perform continuous queries

(CQs) returning, every minute, the average traveling speed of each segment. Most

importantly, besides “fresh” data, many advanced services could also work on

past trends, i.e. historical data, joining them with real-time data. For instance,

an “accident and jams diversion” service could forecast the possible jams for the

next 30 minutes by comparing the current traffic situation with historical trends,

better directing the vehicles and avoiding congestions.

In the following section we will focus on the storage and querying features

offered by the RTDSM and RTQP components.

3 Storing and Querying Data

Unlike DSMSs [Abadi et. al., 2003, Arasu et al., 2006, Chen et al., 2000,

Liarou et al., 2009] where the storage manager (SM) and the query processor

(QP) are tightly coupled, the proposed middleware borrows from traditional

233Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



DBMSs a decoupled design principle: the RTDSM is in charge of data storage

and indexing and enables the RTQP to solve both OTQs and CQs on the stored

data. The decoupling principle preserves change independence between the two

components. In this view, the middleware aims at extending traditional DBMS

technologies toward stream processing, thus leveraging a considerable amount

of long-established query processing and data management techniques and

making modifications on one component transparent to the other. Its interface

is a declarative language that extends SQL with primitives for real-time data

declaration and continuos query specification.

3.1 The Real-time Data Storage Manager

In the RTDSM, static data is kept into the relational data stores that are based

on standard relational tables and indices. Real-time data is instead stored into

real-time data stores that found on ad-hoc data structures and algorithms meant

for supporting very high data write rates and low access latency. While the former

kind of data stores is well-established in the literature, the latter one represents

a novel contribution and we will focus on it to show how it supports the storage

of real-time data flowing from the data sources into the system.

When a real-time data source2 is added, a real-time data store is directly

connected to the source stream and pulls the item from it. To this end, a data

definition language statement is put at data and service designers disposal to

create data stores and define their schemas. Schemas are represented as a set

of attributes and always include a temporal attribute [Snodgrass, 1995] given

the temporal nature of the stored data. For instance, the schema of the reports

received from the active vehicles can ben defined as VEHICLES(TIME, VID, SPD,

XWAY, LANE, DIR, SEG, POSITION), where TIME is the temporal attribute, VID

is the vehicle ID, SPD represents the reported speed, while the other attributes

are related to the actual position of the vehicle in the reference road map.

Each item is retained in the store for a long period, ideally forever. The

middleware allows designers to specify the above period, named historical period,

through a specific command. For instance, it is possible to specify that vehicle

reports must be retained in its store for two weeks.

Relational data stores exploit standard indices (e.g. B+-trees). Fast access

to real-time data stores are instead ensured by two novel kinds of indices that

efficiently support the specific workload this kind of data stores are subject

to: high write rate together with concurrent continuous reads with real time

requirements and one-time reads often involving temporal predicates.

A temporal index on a real-time data store T accelerates temporal predicate

evaluation as well as temporal window computation. It is implemented at main

2 Regardless of their nature and aim, we consider real-time data sources as possible
infinite sequences of data items having a fixed schema.

234 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



memory level through a circular dynamic array that covers T’s window and allows

for efficient random access to a circular linked list of blocks on a temporal value

basis; at secondary memory level, the index exploits the temporal order of T’s

tuples in the disk blocks and it is implemented as a block-oriented clustered

B+-tree built on the lower bound of the time interval covered by each block.

A value index on a real-time data store T provides fast access to data values. It

extends both kinds of standard secondary memory index, i.e. B+-tree and hash,

with a main memory structure for fast access to the most recent data. This

component is a linked list of entries where all tuples with the same attribute

value are linked through forward and backward pointers, by creating a ring for

each attribute value.

More details about indices can be found in [Carafoli et al., 2016]. For in-

stance, it is possible to create an index on the attributes VID and TIME in the

vehicle data store VEHICLES to speed up vehicle position requests at specific

times, or to index segments (attribute SEG) to facilitate the computation of the

average traveling speed of each segment.

Data stored in a real-time data store is made available to the RTQP through

a data access interface that provides two methods:

– Scan(store name[,pred]) that supports one-time reads, where:

store name is a real-time data store name; pred is an optional selec-

tion predicate on store name’s attributes;

– CScan(store name,window,sample[,pred]) that implements continuous

reads, where: store name is a real-time data store name; window is a time-

frame that specifies the portion of the most recent items of interest; sample

is a period of time and represents the delivery period; pred is an optional

selection predicate on store name’s attributes. Please note that, whereas

CScan calls are issued only once, updates are delivered at the time rate that

is specified in the sample parameter.

Both access methods are implemented through sequential scans as well as

indexed scans.

3.2 The Real-time Query Processor

The RTQP represents the middleware entry point. It receives CQs and OTQs

from the services running in the Control Centre and executes them by accessing

the data available in the RTDSM. Results are then delivered to services to be

used for the specific service purposes.

For continuous query specification, we draw inspiration from the CQL con-

tinuous query language [Arasu et al., 2006]. For instance, the following query

could be submitted by the location and traffic monitoring service to calculate

the average speed of each road segment:

235Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



SELECT segment, AVG(speed)

FROM VEHICLES [WINDOW INTERVAL ’1’ MINUTE]

GROUP BY segment

SAMPLE INTERVAL ’1’ MINUTE

According to the SAMPLE INTERVAL statement, the RTQP delivers the query

results every minute while the WINDOW INTERVAL statement sets the query’s do-

main to the data arrived in the last minute. To process the above query, the

RTQP submits the continuous request CScan(VEHICLES,60,60)3 to the RTDSM

over the VEHICLES real-time data store. Every minute, the RTQP computes the

average speed of each road segment within query answering latency specified in

the query.

It is worth noting that for the SAMPLE INTERVAL specification, the special

parameter REALTIME can be used in place of a time interval, that means that the

query is re-evaluated as new data arrive. For instance the following CQ shows

the possibility of querying real-time data together with static data, joining them

as needed:

SELECT p.stationId, AVG(p.ozone)

FROM POLLUTION p [WINDOW INTERVAL ’30’ MINUTE]

GROUP BY p.stationId

HAVING AVG(p.ozone) > (SELECT c.qty FROM CRITICAL LEVELS c

WHERE c.type =’ozone’)

SAMPLE INTERVAL REALTIME

It involves the POLLUTION real-time data store that receives pollution reports

from the pollution stations at specific time intervals and the relational data store

CRITICAL LEVELS that maintains the critical dust levels at the ground level. The

query returns the identifiers of the stations whose average ozone values in the ref-

erence period are greater than the admitted value (indeed, ozone concentration

at the ground level could be harmful to people). In this case the RTQP splits

the query into the continuous request CScan(POLLUTION,1800,REALTIME) and a

standard read request over the CRITICAL LEVELS to the RTDSM. Each time the

RTQP receives the required data from the RTDSM, it computes the aggregate

values and joins them against the CRITICAL LEVELS values.

Finally, the following query is an OTQ on a a real-time data store:

SELECT position

FROM VEHICLES

WHERE time=NOW

AND vid=VID X

3 Notice that intervals are always expressed in seconds.

236 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



returns the current position of a specified vehicle, so it is one base query for the

location and traffic monitoring service. In this case, the RTQP submits the one-

time request Scan(VEHICLES,time=NOW AND vid=VID X ) to the RTDSM and

directly delivers the returned result to the calling service.

4 Experimental Evaluation

We implemented a prototype of the data management middleware, where all the

real-time data store structures and management code are implemented in Java

1.6. We exploited Oracle BerkeleyDB 11gR2, a lightweight embedded database

library, to implement the secondary memory component of the two new kinds

of indices, i.e. temporal and value indices, described in Section 3.1; standard

relational data stores, i.e. relational tables and their indices, are maintained in

PostgreSQL 9.0. Furthermore, we completed the functionalities of our system by

implementing in Java the state-of-the-art QP algebraic operators.

In this section we will show the results we obtained from the tests we per-

formed on the prototype. All the experiments are executed on standard PC con-

figuration: an Intel Core2 Quad Q9450 2.66Ghz Win7 Pro 64Bit workstation,

equipped with 4GB RAM and a 500GB 7200rpm SATA disk.

4.1 Experimental Setting

Since the tests are mainly focused on the prototype overall performance and

scalability, without loss of generality we will consider vehicles (i.e., their position

and speed sensors) as the primary source of incoming information. In particular,

we will report on the tests we designed to stress the middleware capabilities

in reacting to simulated smart city-like workloads. We considered four different

city scenarios, reproducing actual traffic conditions of as many cities in different

parts of the world:

– Bologna: a portion of the city center of Bologna (Italy), i.e. a typical Euro-

pean urban scenario involving narrow streets;

– Rome: another European portion involving non-central junctions and cross-

roads in Rome (Italy), with fast and multi-way segments, and high traffic

density;

– Toll Plaza: a portion of multi-way road junctions in Camden (New Jersey,

USA), including a toll-payment station, with medium traffic density;

– Beijing: a portion of Beijing traffic network, with very intense, congested

and heterogenous (i.e. cars, motorbikes and bicycles) traffic conditions.

237Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



238 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



Figure 4: Results: Response time and retrieved tuple rates for the three query

workloads on the four city scenarios

On these four scenarios, we considered three different query workloads (high,

medium and low load) each composed by a varying number of CQs and OTQs

taken from 6 representative types (see Figure 3(b)). CQ1, CQ2 and CQ3 repre-

sent possible queries issued by location, traffic monitoring, and dynamic vehicle

counting services, respectively. On the other hand, the OTQs could be possibly

issued for an insurance check (OTQ1), for analysing a recent accident (OTQ2)

or for a parking violation check (OTQ3). All OTQs are generated randomly with

the mean frequency shown in table, while all the CQs run continuously over the

full simulation time; therefore, we will have from 3000 (low workload) to 30000

(high workload) CQs concurrently running, besides all OTQs. All queries involve

the retrieval of a combination of recent, historical and static information from

the middleware (see the Description field in the figure); in order to answer most

of the queries, further elaborations on the retrieved data are also required and

performed, such as aggregates (e.g. CQ2 and CQ3) and joins (e.g. CQ3, OTQ2,

OTQ3).

4.2 Middleware Performances

Figure 4 shows the average, minimum and maximum response time the mid-

dleware achieves for the three query workloads on the four city scenarios. The

retrieved tuple rate, i.e. the number of tuples that have to be accessed and re-

trieved in order to produce the final answers, is also shown in order to quantify

239Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



240 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



241Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



response time keeps steady, and its trend is completely comparable to the one

shown in Figure 5(a), even if the tests take place on a 10 times longer time span.

This confirms the general stability and good scalability of the middleware, with

low average response time keeping below 100 ms.

The second kind of scalability tests we performed (Figure 6(b)) is based on

the synthetic Linear Road benchmark [Arasu et al., 2004], which is a reference

in the ITS and stream data management fields. The benchmark simulates a real

time traffic management scenario where a multitude of cars move on multiple

lanes of a virtual highway and pay dynamically calculated tolls. The position of

cars have to be monitored and the tolls each of them needs to pay have to be

computed in real-time; this computation should also be performed by dynami-

cally identifying accidents. Four types of requests have to be satisfied in a strict

response time deadline of 5 seconds: accident notifications, toll notifications,

account balances and daily expenditures. The input data can be generated at

varying levels of complexity (i.e., number of simulated expressways); in our tests

we simulated two expressways. As it is, the standard benchmark is mainly de-

vised for testing in-memory systems; therefore, we extend its requirements to go

beyond recent data: while executing all the CQs and OTQs required for produc-

ing the output, we also demand the system to maintain the full stream history of

position reports and to make such history always queryable. Figure 6(b) shows

the obtained results for average response time for toll notification queries (other

queries performed in a similar manner). Please note that the more time goes

by, the more data enter the system (see shadowed area in figure), making this

kind of test specifically significant for our scalability evaluation purposes: for in-

stance, in the last minutes of the simulation we get to process more than 200000

reports per minute along with complex OTQs and CQs running. Also in this

setting, the average response time is kept steadily below 0.7 seconds, well below

the benchmark requirements, even with the additional requests on secondary

memory storage.

5 Related Work

Building on our data management experiences in actual smart city scenarios

[Mandreoli et al., 2010, Carafoli et al., 2012], and from the preliminary ideas

presented in [Carafoli et al., 2013], we developed the middleware we presented

and tested in detail in this paper. While we experienced its application in the

ITS context, the middleware is actually general and can be employed in several

areas (e.g., networking, retail industry, sensor networks). Its main advantage is

the full decoupling between service logics and data management, supporting the

development of any kind of service, and between data storage and data querying,

making the management of real-time, historical, and static data an intuitive and

unified experience, as is for static-only data in a standard DBMS.

242 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



To the authors’ knowledge, no data management proposals exist which are

explicitly devoted to the issues of ITSs, or which are able to offer all the advan-

tages proposed.

To the state of the art, the core of a typical ITS is usually a Data StreamMan-

agement System (DSMS), a powerful architecture in processing huge amounts

of real-time data. This is witnessed by DSMSs’ successful application in spe-

cific real-world ITS contexts such as a real-time route planner in Lucerne

[Özal et al., 2011] or a real-time traffic information management system in Stock-

holm [Biem et al., 2010]. In these systems, data is stored in main memory only,

and it is kept there as long as it is needed in order to solve the continuous re-

quests that are currently in execution; then, data flows out of the system. Due

to these characteristics, DSMSs (e.g., [Abadi et. al., 2003, Arasu et al., 2006,

Liarou et al., 2009, Chandrasekaran and Franklin, 2003, Chen et al., 2000]) as

well as NewSQL systems (e.g. [Cetintemel et al., 2014]) do not comply with the

context envisioned for the development of complex smart city services, where

real-time data must be retained beyond their real-time processing to offer ex-

tended knowledge for various service purposes and also need to be joined with

static data.

Although some DSMSs have moved towards mechanisms that permanently

store part of the data [Abadi et. al., 2003, Arasu et al., 2006], in such systems

any flow of stored tuples is actually a stream, and OTQs reduce to CQs. The

severe overhead of converting permanently stored data to streams before being

able to query it makes these systems unsuitable to support application scenarios

like the ones considered in this paper. Moreover, they need to redesign from

scratch a core of well-established DBMS functionalities that can not be reused

as such in a DSMS architecture.

Other works (e.g., [Botan et al., 2009, Golab et al., 2009,

Balazinska et al., 2007, Tufte et al., 2007, Chandrasekaran and Franklin, 2004])

propose two-layered solutions with a DSMS relying on the storage functionalities

provided by a DBMS. However, in these dichotomic DSMS-DBMS solutions,

persistent storage of streaming data is performed through external databases,

thus making queries on historical data highly inefficient and ineffective because

of the lack of continuous update capabilities by traditional DBMSs, as also

discussed in [Franklin et al., 2009] and shown in section 4.

Other systems, like key-value and column-oriented NoSQL DBs

[Han et al., 2011, Apache Software Foundation, 2015], although supporting

high-performance read/write workloads, hardly fit complex and general scenar-

ios like the one considered in this paper. They are primarily designed to either

efficiently support primary-key-based operations or to accelerate aggregation

operations in data warehouse contexts, but in more general and query-intensive

scenarios their performance degrades significantly, as shown by our experiments

243Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



in Sect. 4.

Some commercial DBMS vendors have recently invested in the development

of streaming systems [IBM, 2015, PipelineDB, 2015, TIBCO Software, 2015,

StreamInsight, 2014, Witkowski et al., 2007]. For instance, InfoSphere

Streams [IBM, 2015], StreamBase [TIBCO Software, 2015], StreamInsight

[StreamInsight, 2014], and Oracle [Witkowski et al., 2007] offer powerful plat-

forms for the development of complex event processing and real-time analytical

applications. These systems enable the access to live and historical data in a

streaming fashion, in that databases are considered as event sources and/or

targets. Thus, they implement the dichotomic DSMS-DBMS vision having the

limitations discussed above. PipelineDB [PipelineDB, 2015] is an open-source

relational database that runs SQL queries continuously on streams, incremen-

tally storing results in tables. The main difference with our approach is that

in PipelineDB continuous queries are intended to reduce the cardinality of the

streaming data to be stored. To this end, queries must be known a priori.

On the other hand, by following an orthogonal approach, we adopt an all-

embracing perspective, in that we aim at proving the feasibility of making both

real-time, past streamed, and traditional static data coexist under a common

framework, by offering transparent data storage and query capabilities. The

results obtained by the evaluation of the middleware introduced in this paper

show that this perspective is practicable and offers satisfactory results. Further,

thanks to its generality and versatility, the proposed architectural approach may

lead to many benefits in the design and management of ITSs as well as of various

hybrid data-centric applications.

6 Conclusions and Future Work

In this paper we have presented a Data Management Middleware that offers

implementation facilities for the development of smart city services that require

access to both real-time and historical/static data, and need to execute both

continuous queries (CQs) and one-time queries (OTQs). While being employable

in various domains, as a proof of its good performances, we have shown very

promising results obtained by its application in an ITS scenario on a variety of

traffic conditions.

In this application domain, several research directions could be further ex-

plored. For instance, leveraging on our previous work on the employment of

vehicle-to-infrastructure (V2I) data reduction techniques for guaranteeing sus-

tainable workloads in data-intensive scenarios like ITSs [Carafoli et al., 2012],

a possible future direction would be to blend these techniques with vehicle-to-

vehicle (V2V) counterparts (e.g. [Ilarri et al., 2015]), within a synergistic combi-

nation of techniques.

244 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



As a final note, the prototype of the proposed middleware currently runs

on a single-node architecture. In the future, we plan to investigate the op-

portunity of implementing its design principles on parallel and/or distributed

architectures such as the recently proposed Big Data Lambda Architecture

[Marz and Warren, 2015] in order to support heavier workloads and data vol-

umes.

Also, further investigations will be devoted to other open research issues,

such as query optimization and query reuse.

References

[Abadi et. al., 2003] Abadi et. al., D. (2003). Aurora: a new model and architecture
for data stream management. VLDBJ, 12(2):120–139.

[Apache Software Foundation, 2015] Apache Software Foundation (2015). The
Apache Cassandra Project. http://cassandra.apache.org/.

[Arasu et al., 2006] Arasu, A., Babu, S., and Widom, J. (2006). The CQL continuous
query language: semantic foundations and query execution”. VLDB J., 15(2):121–
142.

[Arasu et al., 2004] Arasu, A., Cherniack, M., Galvez, E., Maier, D., Maskey, A., Ryvk-
ina, E., Stonebraker, M., and Tibbetts, R. (2004). Linear Road: A Stream Data
Management Benchmark. In Proc. of VLDB, pages 480–491.

[Balazinska et al., 2007] Balazinska, M., Kwon, Y., Kuchta, N., and Lee, D. (2007).
Moirae: History-Enhanced Monitoring. In Proc. of CIDR, pages 375–386.

[Biem et al., 2010] Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A.,
Verscheure, O., Koutsopoulos, H., Rahmani, M., and Güç, B. (2010). Real-time
traffic information management using stream computing. IEEE Data Eng. Bull.,
33(2):64–68.

[Botan et al., 2009] Botan, I., Alonso, G., Fischer, P., Kossmann, D., and Tatbul, N.
(2009). Flexible and scalable storage management for data-intensive stream process-
ing. In Proc. of EDBT, pages 934–945.

[Carafoli et al., 2012] Carafoli, L., Mandreoli, F., Martoglia, R., and Penzo, W. (2012).
Evaluation of data reduction techniques for vehicle to infrastructure communication
saving purposes. In IDEAS, pages 61–70.

[Carafoli et al., 2013] Carafoli, L., Mandreoli, F., Martoglia, R., and Penzo, W. (2013).
A Framework for ITS Data Management in a Smart City Scenario. In SMART-
GREENS, pages 215–221.

[Carafoli et al., 2016] Carafoli, L., Mandreoli, F., Martoglia, R., and Penzo, W. (2016).
Streaming Tables: Native Support to Streaming Data in DBMSs. Under review.

[Cetintemel et al., 2014] Cetintemel, U., Du, J., Kraska, T., Madden, S., Maier, D.,
Meehan, J., Pavlo, A., Stonebraker, M., Sutherland, E., Tatbul, N., Tufte, K., Wang,
H., and Zdonik, S. (2014). S-Store: A Streaming NewSQL System for Big Velocity
Applications. Proc. VLDB Endow., 7(13):1633–1636.

[Chandrasekaran and Franklin, 2003] Chandrasekaran, S. and Franklin, M. (2003).
PSoup: a system for streaming queries over streaming data. VLDB J., 12(2):140–156.

[Chandrasekaran and Franklin, 2004] Chandrasekaran, S. and Franklin, M. (2004).
Remembrance of Streams Past: Overload-Sensitive Management of Archived Streams.
In Proc. of VLDB, pages 348–359.

[Chen et al., 2000] Chen, J., DeWitt, D., Tian, F., and Wang, Y. (2000). NiagaraCQ:
A Scalable Continuous Query System for Internet Databases. In Proc. of SIGMOD,
pages 379–390.

245Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...



[Delot et al., 2013] Delot, T., Ilarri, S., Lecomte, S., and Cenerario, N. (2013). Sharing
with Caution: Managing Parking Spaces in Vehicular Networks. Mobile Information
Systems, 9(1):69–98.

[Echelon Corp., 2013] Echelon Corp. (2013). Smart Street Lighting.
https://www.echelon.com/applications/street-lighting/.

[European Commission, 2014] European Commission (2014). The Digital Agenda for
Europe. http://ec.europa.eu/digital-agenda/.

[Franklin et al., 2009] Franklin, M., Krishnamurthy, S., Conway, N., Li, A., Rus-
sakovsky, A., and Thombre, N. (2009). Continuous Analytics: Rethinking Query
Processing in a Network-Effect World. In Proc. of CIDR.

[Golab et al., 2009] Golab, L., Johnson, T., Seidel, J., and Shkapenyuk, V. (2009).
Stream warehousing with DataDepot. In Proc. of SIGMOD, pages 847–854.

[Han et al., 2011] Han, J., E, H., Le, G., and Du, J. (2011). Survey on NoSQL
Database. In Proc. of Int. Conf. on Perv. Comp. and App. (ICPCA), pages 363–366.

[IBM, 2015] IBM (2015). InfoSphere Streams. http://www-
03.ibm.com/software/products/us/en/infosphere-streams.

[Ilarri et al., 2015] Ilarri, S., Delot, T., and Trillo, R. (2015). A data management per-
spective on vehicular networks. Communications Surveys Tutorials, IEEE, PP(99):1–
1.

[Kanagal and Deshpande, 2008] Kanagal, B. and Deshpande, A. (2008). Online filter-
ing, smoothing and probabilistic modeling of streaming data. In IEEE 24th Interna-
tional Conference on Data Engineering (ICDE’08), pages 1160–1169.

[Liarou et al., 2009] Liarou, E., Goncalves, R., and Idreos, S. (2009). Exploiting the
power of relational databases for efficient stream processing. In Proc. of EDBT, pages
323–334.

[Mandreoli et al., 2010] Mandreoli, F., Martoglia, R., Penzo, W., and Sassatelli, S.
(2010). Data management issues for intelligent transportation systems. In Proc. of
SEBD, pages 198–209.

[Marz and Warren, 2015] Marz, N. and Warren, J. (2015). Big Data. Principles and
best practices of scalable realtime data systems. Manning Publications.

[NIMA, 2000] NIMA (2000). Department of defense world geodetic system 1984, its
definition and relationships with local geodetic systems. Technical report, NIMA
Technical Report TR8350.2.

[NOAA, 2008] NOAA (2008). Nad 83 (nsrs2007) national readjustment final report.
Technical report, NOAA Technical Report NOS NGS 60.

[Özal et al., 2011] Özal, A., Ranganathan, A., and Tatbul, N. (2011). Real-time route
planning with stream processing systems: a case study for the city of lucerne. In Pro-
ceedings of the 2nd ACM SIGSPATIAL International Workshop on GeoStreaming,
IWGS ’11, pages 21–28.

[PipelineDB, 2015] PipelineDB (2015). PipelineDB. https://www.pipelinedb.com.
[SFMTA, 2014] SFMTA (2014). San Francisco Park. http://sfpark.org/.
[Snodgrass, 1995] Snodgrass, R., editor (1995). The TSQL2 Temporal Query Lan-
guage. Kluwer.

[StreamInsight, 2014] StreamInsight (2014). StreamInsight.
http://msdn.microsoft.com/en-us/sqlserver/ee476990.aspx.

[TIBCO Software, 2015] TIBCO Software (2015). StreamBase.
http://www.streambase.com.

[Tufte et al., 2007] Tufte, K., Li, J., Maier, D., Papadimos, V., Bertini, R., and Rucker,
J. (2007). Travel time estimation using NiagaraST and latte. In Proc. of SIGMOD,
pages 1091–1093.

[UCL, 2013] UCL (2013). London City Dashboard.
http://citydashboard.org/london/.

[Witkowski et al., 2007] Witkowski, A., Bellamkonda, S., Li, H., Liang, V., Sheng, L.,
Smith, W., Subramanian, S., Terry, J., and Yu, T. (2007). Continuous Queries in
Oracle. In Proc. of VLDB, pages 1173–1184.

246 Carafoli L., Mandreoli F., Martoglia R., Penzo W.: A Data Management ...


