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Abstract: Many image-processing algorithms require several stages to be processed that cannot 
be resolved by embedded microprocessors in a reasonable time, due to their high-computational 
cost. A set of dedicated coprocessors can accelerate the resolution of these algorithms, although 
the main drawback is the area needed for their implementation. The main advantage of a 
reconfigurable system is that several coprocessors designed to perform different operations can 
be mapped on the same area in a time-multiplexed way. This work presents the architecture of 
an embedded system composed of a microprocessor and a run-time reconfigurable coprocessor, 
mapped on Spartan-3, the low-cost family of Xilinx FPGAs. Designing reconfigurable systems 
on Spartan-3 requires much design effort, since unlike higher cost families of Xilinx FPGAs, 
this device does not officially support partial reconfiguration. In order to overcome this 
drawback, the paper also describes the main steps used in the design flow to obtain a successful 
design. The main goal of the presented architecture is to reduce the coprocessor reconfiguration 
time, as well as accelerate image-processing algorithms. The experimental results demonstrate 
significant improvement in both objectives. The reconfiguration rate nearly achieves 320 Mb/s 
which is far superior to the previous related works. 
 
Keywords: FPGA, Spartan-3, partial reconfiguration, embedded system, image-processing, 
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1 Introduction  

Complex algorithms, such as those used for extracting biometrics features 
(fingerprint, iris, face, etc.), require several image-processing stages. Their resolution 
is generally carried out by software, executing a program on a high-performance 
computer characterized by its high cost and power consumption. Embedded systems 
are usually built around a low-cost and low-power consumption microprocessor, 
which does not have adequate performance for processing intensive operations in a 
reasonable time. Thus, when these algorithms are ported to embedded platforms, they 
are usually modified to reduce their computational requirements. However, these 
modifications imply increasing the biometric error rates measured in terms of False 
Acceptation Ratio/False Rejection Ratio (FAR/FRR). A better approach is to 
accelerate the most time-consuming stages by using dedicated coprocessors, in order 
to improve the response time. The main drawback is that the more coprocessors there 
are, the more area is needed for their implementation. Usually, this could be a critical 
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issue in FPGAs, since the algorithm consists of several image-processing stages, each 
one executed by a coprocessor that only is active during a slot time, being the 
remainder on standby awaiting the conclusion of the previous stage. A reconfigurable 
coprocessor mitigates this drawback, since it can dynamically accommodate a new 
coprocessor that performs a different computation in the same area. This objective is 
achieved by reconfiguring a section of the FPGA by retrieving a bit-stream from a 
memory. The number of theoretical coprocessors, which can be mapped on the 
reconfigurable section, is limited by the capacity of the memory that stores the set of 
bit-streams (each one related to one of these coprocessors) without increasing the area 
needed to implement the overall system. Although it is out of the scope of this work, 
another advantage of reconfigurable systems is that power consumption can be 
reduced, since it decreases in FPGAs with smaller logic capacity. Their main 
disadvantage is the reconfiguration time overhead, which must be small enough in 
order not to significantly degrade the overall computational performance. 

Usually, self-reconfigurable systems are mapped on partially reconfigurable 
FPGAs, such as Virtex-2/4/5 FPGAs, due to the design flow support and internal 
architecture. The main drawback of these Xilinx devices is their high cost when they 
are compared with low-cost families such as Spartan-3. Implementing self-
reconfigurable systems on Spartan-3 is a great challenge, since it does not officially 
support partial reconfiguration, which is the reason why there are few research works 
published on this subject.  

The main contributions of this paper are focused on reducing the reconfiguration 
time of a self-reconfigurable embedded system implemented in a Spartan-3, which 
accelerates image-processing algorithms by means of a dynamically reconfigurable 
coprocessor. In order to greatly reduce the reconfiguration time, the system embeds 
two new controllers, a fast reconfiguration controller and a high-bandwidth memory 
controller that performs the reconfiguration retrieving bit-streams directly from an 
external FLASH. Moreover, the memory controller also provides direct access from 
the coprocessor to an external SRAM, improving the execution time of image-
processing stages. The paper also addresses the design flow followed to build a 
successful reconfigurable system on a Spartan-3. 

Section 2 summarizes the main features of partial reconfiguration on Spartan-3 
that have been considered during our system design. Section 3 presents the state of the 
art of self-reconfigurable embedded systems on Spartan-3 FPGAs, focusing on their 
main drawbacks. The next section describes the system architecture, including the 
memory and reconfiguration controllers developed. Section 5 overviews the design 
flow used to build the system. The experimental results are presented in Section 6, 
and the conclusions and future work are presented in the last two sections. 

2 Partial Reconfiguration on Spartan-3 

The section presents the limitations related to the partial reconfiguration of Spartan-3 
that are taken into account in the proposed reconfigurable system. In contrast to 
FPGAs such as Virtex-2/4/5, Xilinx does not officially support partial reconfiguration 
on the Spartan-3 devices. At the design flow level, these devices are not supported by 
the PlanAhead with Partial Reconfiguration tool [Dorairaj, 05]. Additionally, at the 
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internal architecture level, Spartan-3 are characterized by coarse-granularity and non-
glitchless reconfiguration, and they lack the internal reconfiguration port [Xilinx, 08]. 

The parallel SelectMAP and the serial JTAG are two external configuration ports 
available in Xilinx FPGAs that are used for programming the device from an external 
controller during the boot-up sequence. Moreover, high-end FPGA families, such as 
Virtex-2/4/5, provide the Internal Configuration Access Port (ICAP) which is used to 
perform partial reconfiguration at run-time. Although the ICAP circuitry is not 
available in Spartan-3, an embedded system mapped on the device can control the 
reconfiguration of the FPGA through some I/O pins that are externally connected to 
the SelectMAP or JTAG ports by simple wires.  

A bit-stream is composed of a large set of configuration bits that are grouped in 
frames, and each frame is composed of a fixed number of 32-bit configuration words. 
The reconfiguration granularity is the minimum set of bits required to update the 
FPGA resources. The granularity on a Virtex-2 is a single column frame whose size is 
proportional to the number of rows of Configurable Logic Blocks (CLB). This feature 
only allows the reconfigurable sections to be arranged horizontally. Virtex-4/5 
devices have a finer granularity which is independent of the device size. Since each 
frame configures a bit-wide column with a height of 16 CLBs, it is also possible to 
arrange reconfigurable sections vertically. By contrast, the Spartan-3 FPGAs are 
featured by a coarse reconfiguration granularity defined by a configuration column. 
Each configuration column is composed of a set of frames that configures different 
hardware resources, depending on the column type. A CLB column configures the 
CLBs from the top-side to the bottom-side of the FPGA, as well as the neighbouring 
routing lines and the associated Input/Output Blocks (IOB). The clock column 
configures the global routing lines that are usually dedicated to the distribution of the 
system clock, and it is physically located at the central position of the Spartan-3 
columns. The coarse granularity of Spartan-3 means that the device must be 
reconfigured by configuration columns. Therefore, a reconfigurable system on 
Spartan-3 must be partitioned into sections that are horizontally arranged, since each 
section is constrained to the hardware resources that are configured by whole 
columns, and one of these sections contains the clock column. 

The reconfiguration on Virtex-2/4/5 is free of glitches (or glitchless). The 
glitchless reconfiguration guaranties that if a configuration bit has the same value 
before and after the reconfiguration, the hardware resource controlled by this bit does 
not undergo any discontinuities in its operation. However, Spartan-3 is non-glitchless 
and configuration bits that are going to be reconfigured are initially cleared. 
Therefore, routing lines connecting a reconfigurable section to the rest of the system 
(including IOBs attached to external memory) are temporally disconnected and 
affected by glitches during the reconfiguration process. Moreover, if the central 
column of the FPGA is reconfigured, the clock signal, which is distributed by the 
global routing lines, is also temporally disconnected and affected by glitches. 

Virtex-2 provides internal tri-state buffers and routing lines usually used in 
reconfigurable systems to ensure that the interconnecting busses between sections are 
unaltered between different configurations. In the rest of Xilinx FPGAs, including 
Spartan-3, the solution that is usually adopted is bus-macros.  
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3 State of the Art of Self-Reconfigurability on Spartan-3 

This section summarizes the drawbacks of the previous related publications about 
self-reconfigurable embedded systems on Spartan-3 devices. The presented 
drawbacks are addressed in the proposed system.  

The lack of official support for partial reconfiguration on Spartan-3 (in terms of 
design flow and internal architecture) has promoted a limited number of papers about 
reconfigurable systems mapped on this low-cost family. The previous research papers 
dealing with self-reconfigurable embedded systems on Spartan-3 have the following 
drawbacks.  

The work by Gonzalez et al. [Gonzalez, 07][Gonzalez, 08] covered the design 
flow and architecture of a self-reconfigurable system for accelerating cryptographic 
applications. The hardware resources of the FPGA are partitioned in two sections: the 
dynamic section, which allocates a reconfigurable coprocessor, and the static section 
to implement the rest of the system (i.e. the microprocessor, memory controller and 
peripherals). The system is based on Microblaze, the soft-core microprocessor 
provided by Xilinx to build embedded systems. The Microblaze controls the 
reconfiguration process, driving a General Purpose Input Output (GPIO) peripheral 
which is externally connected to the SelectMAP port. While the reconfiguration 
process is running, the microprocessor retrieves the configuration bit-stream from an 
external DRAM. The I/O pins attached to the DRAM are allocated in the static 
section, in order to assure the proper communication with the external memory during 
the reconfiguration. Moreover, the central column is placed in the static section, in 
order to avoid the disconnection of the global routing lines that distribute the system 
clock due to the non-glitchless reconfiguration. Therefore, the dynamic section 
occupies a small area of the FPGA (less than 50%) which is a negative constraint 
when implementing coprocessors that may need many logic resources. The 
reconfigurable coprocessor is attached to Microblaze through dedicated links called 
Fast Simplex Links (FSL). The microprocessor has to execute the specific read/write 
instructions to exchange data with the coprocessor through the FSLs. In these 
systems, glitches do not affect the FSL operations, since the microprocessor stops 
communication with the coprocessor during the reconfiguration process.  

The publications by Paulsson et al. [Paulsson, 07][Paulsson, 08] show an 
embedded system provided with an ICAP version. This system is designed to be 
externally connected to the JTAG serial port, although the reconfiguration time is 
significantly increased. Moreover, the system has the same drawbacks: a small area 
for the dynamic section, and the I/O pins and the clock column must be both allocated 
in the static section.  

Research by Cantó et al. [Cantó, 08][Cantó, 08b] focused on the system design 
and design flow to map a self-reconfigurable embedded system whose bit-streams are 
retrieved from an external SRAM memory. The memory capacity of SRAMs is 
smaller than for DRAMs, however they provide simpler control and lower power 
consumption when they are in standby mode. The main contributions are that there 
are no constraints on the placement of I/O pins and that the dynamic section occupies 
more than 50% of the FPGA area. These characteristics were achieved by executing a 
reconfiguration routine on the microprocessor and distributing the clock in different 
routing lines for static and dynamic sections. The routine analyzes bit-streams from 
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the external SRAM and separates them into individual column frames. Each column 
is temporarily stored in the internal FPGA memory, i.e. the Block RAM (BRAM), in 
order to reconfigure the large dynamic section column by column. Therefore, the 
microprocessor communication with the internal BRAM is not affected during 
reconfiguration, while communication with the external SRAM is re-established once 
the reconfiguration of a column is completed. To improve the poor performance of 
the GPIO, the authors developed a faster controller able to drive the 8-bit wide 
SelectMAP port efficiently. The main disadvantages of this system are the time 
needed by the microprocessor to execute the routine and the large number of BRAMs 
used as temporal memory. Although the reconfiguration time is acceptable for many 
applications, it is desirable to accelerate it to improve the overall performance of more 
complex algorithms. Another important difference compared with the previous works 
is that the reconfigurable coprocessor is attached to the microprocessor using the On-
chip Peripheral Bus (OPB), a bus shared with the rest of peripherals. During the 
reconfiguration, unexpected glitches generated in the OPB bus could hang-up the 
system. In order to prevent this problem, an isolation circuitry disables the OPB 
signals that arrive from the dynamic section during the reconfiguration. 

We should also mention the Parallel Configuration Access Port (PCAP) and 
Compressed PCAP (cPCAP), two fast reconfiguration controllers for Spartan-3 
published by Bayhar et al. [Bayhar, 08] [Bayhar, 08b]. These controllers are designed 
to read a bit-stream already loaded into the internal BRAM, and able to achieve a 400 
Mb/s reconfiguration rate. However, they can only reconfigure a very small area of 
the FPGA due to the small capacity of the BRAM. Moreover, the controllers are 
stand-alone and cannot be attached to an embedded system; therefore, updating a bit-
stream stored in the BRAM requires an external PC connected through JTAG to 
program the whole FPGA. There are unresolved issues in these reconfigurable 
systems, such as how to reconfigure larger bit-streams that cannot fit in the internal 
BRAM, or how to dynamically update BRAM contents without a FPGA programmer. 
A hypothetical embedded system attached to these controllers would significantly 
decrease the reconfiguration rate, due to the time the microprocessor devotes to 
retrieving a bit-stream portion from an external memory (or host) and to copying it in 
the BRAM, before enabling the PCAP reconfiguration. 

None of the previous embedded systems permits direct access to an external 
memory from the reconfigurable coprocessor. As a consequence, the microprocessor 
has to execute a routine to read/write data from/to the memory and exchange it with 
the coprocessor through FSL or OPB. Image-processing algorithms usually require a 
large amount of data to be accessed from an external memory, and thus an 
architecture that permits direct access to the memory at high-bandwidth can accelerate 
the algorithm resolution. Moreover, previous systems must copy a bit-stream from a 
host to SRAM or DRAM before performing a reconfiguration.  

This paper aims to improve the main drawbacks of previous works related to self-
reconfigurable embedded systems. The properties of our proposed system can be 
summarized as follows:  

1. The size of the dynamic section is larger than the static one, in order to 
increase the hardware resources available on the reconfigurable coprocessor. 

2. The system clock is distributed differently for the static and dynamic 
sections, in order to avoid the clock disconnection for the static section 
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during the reconfiguration, and to prevent malfunction of the coprocessor due 
to a clock-skew in the larger FPGA area.  

3. The reconfiguration rate has been improved to reduce the reconfiguration 
time overhead. 

4. Bit-streams are retrieved from an external non-volatile memory (FLASH) 
during the reconfiguration, in order to save time f they were previously 
copied to the volatile memory (SRAM). 

5. In order to accelerate the image-processing stages, the reconfigurable 
coprocessor accesses to the external SRAM through a high-bandwidth 
memory controller. 

4 Architecture of the Self-Reconfigurable Embedded System 

The section presents the architecture of the embedded system which is designed to 
reduce the reconfiguration time of the dynamic coprocessor. This way, the embedded 
system can rapidly switch the coprocessor architecture, in order to efficiently resolve 
the different stages of an algorithm.  

The system, depicted in Fig. 1, is partitioned into two sections that are linked 
using a set of bus-macros. The bus-macros maintain the connectivity of the nets that 
attach the static and the dynamic sections, once the reconfiguration is completed. A 
bus-macro [Carvey, 09] is composed of two Look-Up Tables (LUT) interconnected 
through a routing line which crosses the partition between the sections. Each LUT is 
placed in a different section, and depending on the directionality of the bus-macro, 
one of the LUTs provides an input port and the other one provides the output port. 
The static section (instance sys) includes the microprocessor and peripherals, whereas 
the dynamic section (instance drip) includes the reconfigurable coprocessor. The 
static and dynamic sections occupy 34% and 66% of the area in a XC3S1500 device, 
respectively. This FPGA provides two columns of BRAM and 18x18 multipliers 
(MULT18x18). Each BRAM+MULT18x18 column is placed near the left or the right 
edges of the device [Xilinx, 08c], thus half the BRAM and MULT18x18 resources 
belong to the static section, and the other half belong to the dynamic section. The 
clock column belongs to the larger section, since it is located at the central position of 
the FPGA columns. Hence, to avoid the system clock disconnecting from the 
microprocessor during the non-glitchless reconfiguration, the input clock pin (clk) 
was changed from the default location in the dynamic section to another pin located in 
the static section. The clock is distributed separately on local low-skew routing lines 
in the static section (sys_clk_local), and on global routing lines (drip_clk_global) in 
the dynamic section through a BUFGMUX buffer.  

In order to perform the self-reconfiguration, the SelectMAP interface of the 
FPGA is linked through wires to the devoted ports of the system (rcf_*). The system 
is also attached to an external SRAM to allow the microprocessor to execute large 
programs. In addition, the system is also connected to a FLASH memory that stores 
the set of bit-streams of the reconfigurable coprocessor. In order to prevent the 
microprocessor executing the reconfiguration routine [Canto, 08], which increases 
reconfiguration time, the I/O pins linked to the external memory (emc_*) are placed 
in the static section. The rest of the I/O pins, i.e. input reset (rst) and the serial 
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transmission/reception (TX, RX), can be placed in the dynamic sections, transferring 
the signals towards the static section through bus-macros. 

Reconfigurable
coprocessor

(drip)
led

bm_R2L

bm_L2R

bm_R2L

bm_L2R

External 
SRAM

+FLASH

Microblaze
+ peripherals

(sys)

OPB2IP_*

IP2OPB_*

OPB_*

IP_*
emc_*

emc_dataEMC2IP_*

IP2EMC_*

emc_*

emc__*

clk

sys_clk_local
drip_clk_global

bm_R2L

bm_L2R

TX

RX

rst

sys_TX

sy
s_

R
X

sy
s_

rs
t

rcf_*

dynamic static

bufgmux

SelectMAP

 

Figure 1: Top-level architecture of the self-reconfigurable embedded system 

The static section, depicted in Fig. 2, allocates the Microblaze, peripherals and 
busses. The peripherals UART, MDM and Timer are provided by Xilinx’s Embedded 
Development Kit (EDK), and they are connected as slaves of the OPB for debugging 
and testing purposes. The Instruction and Data Local Machine Busses (ILMB, 
DLMB) connect the microprocessor with the internal BRAM. Instead of using the 
OPB External Memory Controller (OPB-EMC) provided by the EDK, we developed a 
faster LMB-EMC, a dedicated EMC-Bus and its arbiter to permit time-multiplexed 
access to the external memory from the EMC-Bus masters.  

Our ReConFiguration (RCF) and Direct Memory Access (DMA) controllers are 
connected as masters of the EMC-Bus, which allows direct access to external 
memory. They can be controlled by the microprocessor, since they are also linked as 
slaves of the OPB. The reconfigurable coprocessor can also access external memory 
directly through the LMB-EMC, in the same way as the RCF and DMA controllers, to 
accelerate the resolution time of image-processing algorithms. Therefore, the 
architecture provides three EMC-Bus masters (RCF, DMA and drip) that can access 
the external memory through the LMB-EMC controller. 

The static and dynamic sections are isolated by using specific interfaces, which 
avoids the harmful effect of glitches on busses that can produce the improper 
operation of the system during the reconfiguration.  

 
 
 
 
 
 
 
 

307Canto E., Fons M., Fons F., Lopez M., Ramos R.: Fast Self-Reconfigurable ...



Microblaze

32KB
BRAM

ILMB
control

DLMB
control

LMB EMC
controller

OPB_*

Sln_*

ILMB DLMB

OPB2IP
Interface

RCF
controller

IP2EMC
Interface

UART
peripheral

MDM
peripheral

DLMBILMB

MEMC_*
SEMC_*

Timer
peripheral

emc_* 
(Attached to external SRAM+FLASH)

IP_Halt

IP2EMC_*

EMC2IP_*

OPB2IP_*

IP2OPB_*

sys_TX sys_RX

rcf_*
(Attached to SelectMap)

mb_rst

portA portB

OPB Bus

EMC-Bus

DMA
peripheral

Reset
Interface

sys_rst

mb_rst

 

Figure 2: Architecture of the static section 

During the reconfiguration, the RCF controller asserts the IP_Halt signal which 
drives the isolation interfaces (see Fig. 2). The isolation interface of the OPB 
(OPB2IP Interface) is depicted in Fig. 3(a). The main functionality of this interface is 
to de-assert the arriving OPB signals (IP2OPB_*) from the dynamic section when the 
IP_Halt is asserted, in order to prevent unexpected OPB glitches that would hang-up 
the system. It provides two additional functionalities: holding the dynamic section in 
reset state during its reconfiguration (signal OPB2IP_Rst), and incorporating a partial 
address decoder (signal OPB2IP_Select) in order to reduce the number of bus-macros 
needed by the OPB address bus (signal OPB2IP_Addr). Fig. 3(b) shows the isolation 
interface of the EMC-Bus (IP2EMC Interface), which is simpler since it only de-
asserts the start request signal to memory access from the reconfigurable coprocessor 
(Memc_strtreq(2)) when the IP_Halt is asserted. The rest of the EMC-Bus signals 
(Mecm_strack, Memc_* and Semc_doutack*) are de-asserted by the bus arbiter, as 
shown in Fig. 3(d), since it controls the priority of accesses to external memory from 
the three EMC-Bus masters. The reset I/O pin (rst) is placed in the dynamic section 
and transferred to the static section (sys_rst) through a bus-macro (see Fig. 1); hence, 
there is also a very simple isolation circuit (Reset Interface) to prevent an undesired 
reset (signal mb_rst) due to the glitches during the reconfiguration, as depicted in Fig. 
3(c). 
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Figure 3: Isolation interfaces of the OPB (a), EMC-Bus (b), and reset signal (c). 
Schematic of the EMC-Bus arbiter (d), the LMBLMB-EMC) (e) and the RCF (f) 

4.1 The LMB External Memory Controller (LMB-EMC) 

This subsection presents the memory controller which connects the system with the 
external SRAM and FLASH memories. Usually, Microblaze accesses external 
memory through the OPB memory controller, which is not as fast as the LMB due to 
the more sophisticated bus handshake. In order to improve the speed to access 
external memory from the microprocessor, the new memory controller shares the 
LMB busses with the internal BRAM memory controllers. 

Microblaze is connected to the internal BRAM memory through dedicated 
DLMB/ILMB busses and BRAM controllers. The LMB busses are designed to link 
Microblaze with the internal dual-port synchronous BRAM, and they allow 
reading/writing in 1 TCLK (system clock cycles) along with simultaneous access to 
data and instruction memory. The Xilinx EDK OPB-EMC facilitates designing 
embedded systems attached to an external memory, due to the very limited capacity 
of the internal BRAM. However, programs executed on Microblaze from an external 
SRAM undergo a large decrease in speed, due to the poor performance of the OPB 
and the OPB-EMC. We designed a new external memory controller (LMB-EMC) 
which optimizes the number of clock cycles required to read/write data from/to the 
asynchronous memory. It provides three interface channels: DLMB, ILMB and EMC-
Bus. The DLMB and ILMB channels are used by the Microblaze, and the EMC-Bus 
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channel is used by the rest of the system. The LMB-EMC is composed of the channel 
interfaces, the registers that drive the external memory, and a Finite State Machine 
(FSM) which performs the control tasks, as depicted in Fig 3(e). 

Figure 4 (top) depicts the waveforms when the OPB-EMC is configured to fit the 
characteristics of the Spartan-3 development kit [Avnet, 04] clocked at 40 MHz (TCLK 
=25 ns), which uses a 12-ns asynchronous 32-bit wide SRAM [Cypress, 03]. These 
waveforms show one data writing cycle (data d2 written to the memory address a2) 
between two reading instruction cycles (data d1 and d3 read from the memory 
addresses a1 and a3, respectively). It depicts two groups of signals: the OPB signals 
(denoted as opb_*) and the I/O pins connected to the external memory (denoted as 
emc_*). In order to start a new memory access, Microblaze waits for the completion 
of the previous OPB access, checking if the transfer acknowledge signal 
(opb_xferack) is asserted at every rising edge of the clock signal (clk). At the 
beginning of a read cycle, Microblaze requests an instruction read from the internal 
BRAM through the ILMB. If the address is not in the BRAM range, the instruction 
read is requested to the external memory controller through the OPB, asserting the 
select signal (opb_select) and driving the address bus (opb_abus). Then, the OPB-
EMC drives the SRAM address bus (emc_addr) and enables the read signal 
(emc_noe). The asynchronous SRAM drives the data bus (emc_data) with the valid 
read data after 12 ns. Finally, the OPB-EMC stores the read data into a register which 
drives the OPB data bus (opb_dbus), and asserts the transfer acknowledge signal 
(opb_xferack) to indicate the end of the OPB access cycle. A read cycle takes 12 TCLK 
(or 10 TCLK if there is a previous write cycle), of which 4 TCLK are devoted to reading 
the word from the SRAM, and the rest are used to handshaking and registering data 
between ILMB, OPB and OPB-EMC. A write cycle to external memory is quite 
similar, but Microblaze starts requesting the data to be written into the BRAM 
through the DLMB. Since the address is not in the BRAM range, the data is 
transmitted to the external memory controller through the OPB data bus (opb_dbus). 
Then, the OPB-EMC drives the address bus (emc_addr) and enables the SRAM write 
signal (emc_nwe) meanwhile it drives its data bus (emc_data) during more than 12 ns. 
The write cycle takes 8 TCLK, of which 3 TCLK are devoted to writing the word into the 
SRAM, and the other 5 TCLK are devoted to handshaking between DLMB, OPB and 
OPB-EMC.  

Figure 4 (bottom) depicts the same three SRAM accesses as the previous case 
(two instruction reads and a data write) through the LMB-EMC. It shows three groups 
of signals: the ILMB signals (denoted as ilmb_*), the DLMB signals (denoted as 
dlmb_*), and the I/O pins connected to the external memory (denoted as emc_*). In 
order to start a new memory access, the Microblaze must acknowledge the completion 
of the previous access by checking the assertion of the ready signal of the ILMB or 
DLMB (ilmb_ready or dlmb_ready) at every rising edge of the clock (clk). The 
Microblaze starts requesting an instruction read, driving the ILMB address bus 
(ilmb_abus) and asserting its strobe signal (ilmb_addrstrobe). In a similar way, the 
microprocessor requests a data write asserting the strobe signal (dlmb_addrstrobe) 
and driving the address bus (dlmb_abus) and the data bus (dlmb_dbus). The LMB-
EMC drives the external memory I/O pins (emc_*) in order to read or write data at 
the requested address and asserts the ILMB/DLMB ready signal 
(ilmb_ready/dlmb_ready) when it completes. A write access requires 2 TCLK, while a 
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read access requires just 1 TCLK for the same SRAM. The new memory controller can 
read a new 32-bit word (4 bytes) from SRAM every clock cycle (40 MHz), therefore 
it can achieve a read bandwidth of 160 MB/s (40 MHz*4 bytes/1 TCLK), which is 
much superior to the 13.3 MB/s (160 MB/s /12) to 16 MB/s (160 MB/s /10) of the 
OPB-EMC provided by the EDK.  
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Figure 4: Read and write access to an external SRAM (12 ns) from Microblaze (40 
MHz), using the OPB-EMC (top) and the LMB-EMC (bottom) controllers 
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The Xilinx EDK also provides the MultiChannel (MCH) OPB-EMC module to 
accelerate the execution of programs from an external SRAM when Microblaze 
incorporates cache memory. However, our embedded system provided with the LMB-
EMC is faster and it occupies less FPGA area, since it does not dedicate BRAM and 
logic resources for implementing the microprocessor’s cache memory. Moreover, the 
implementation of cache memory for the coprocessor would increase the number of 
resources needed as well as the design complexity. However, our system architecture 
permits efficient access to an external memory from the dynamic coprocessor through 
the LMB-EMC. 

On the other hand, the LMB-EMC provides fast page reading from a FLASH 
memory, a feature not available in the (MCH) OPB-EMC offered by the EDK, which 
improves the reconfiguration time when bit-streams are retrieved from this memory. 
In order to achieve the fast page reading, the LMB-EMC decreases the number of 
TCLK required to read a new word from FLASH if it is in the same page of the 
previous word read. An internal register stores the address of the last completed 
reading from the FLASH, and the LMB-EMC compares the address of any read 
access from FLASH against the stored address, detecting when the page remains 
unchanged. Our development board is provided with an Intel StrataFlash J3 [Intel, 05] 
which requires 120 ns for the first word reading from a new page, and 25 ns for the 
following word readings within the same page (a page contains 4 words). Hence, as 
the embedded system is arranged with a 40 MHz clock, the retrieval of the initial 
word takes 5 TCLK, whereas each of the following 3 words needs only 2 TCLK. Thus, 
an averaged read cycle takes 2.75 TCLK when data is sequentially retrieved from 
FLASH. Therefore, our system achieves a read bandwidth of 58.2 MB/s from this 
non-volatile memory.  

4.2 The Reconfiguration Controller (RCF) 

This subsection presents the controller which performs the reconfiguration of the 
dynamic coprocessor. The reconfiguration time is reduced, since the controller drives 
the SelectMAP interface according to the bit-stream which is retrieved from the 
external memory, independently of the microprocessor. 

The reconfiguration task executed by the microprocessor is simplified and it 
consists on writing in the control registers of the RCF for setting the start address and 
size of a bit-stream. Then, the RCF retrieves the bit-stream from the SRAM/FLASH 
through the LMB-EMC, and drives the SelectMAP interface according to the 
configuration words. The RCF is composed of several building blocks, as depicted in 
Fig. 3(f). The Microblaze writes on the control registers of the RCF through the OPB 
slave interface. The RCF accesses the external memory, where the bit-stream is 
stored, through the master interface of the EMC-Bus. The RCF stores a new 
configuration word (32-bit wide) into a register which slices it on bytes, in order to 
drive synchronously four times the data bus (8-bit wide) of the SelectMAP. 
Therefore, the RCF takes 4 TCCLK (configuration clock cycles) to write a single 
configuration word to the SelectMAP. The maximum recommended frequency of the 
input CCLK is 50 MHz to avoid non-continuous data loading to the SelectMAP 
[Xilinx, 08b]. 

The RCF has a dedicated First Input First Output (FIFO) buffer which stores a 
queue of configuration words to increase the Reconfiguration Rate (RR). The RCF 

312 Canto E., Fons M., Fons F., Lopez M., Ramos R.: Fast Self-Reconfigurable ...



stores the last configuration word retrieved from memory into the FIFO, and 
concurrently drives the SelectMAP according to the first available word in the queue. 
The RR is limited by the time required to carry out these two actions being its 
theoretical expression defined in Mb/s by: 
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where fCCLK and fCLK are the CCLK and system clock frequencies, respectively. The 
N32b-READ is the averaged number of TCLK cycles needed to read a configuration word 
(32-bit wide) from the memory. The fCLK/N32-READ and fCCLK/4 are the throughputs 
(expressed in 32-bit words per second) of reading configuration words from memory 
and driving them to the SelectMAP, respectively. In our system fCCLK=fCLK=40 MHz, 
since it provides a single clock domain to avoid the additional complexity of the 
communication channels required to synchronize data [Varela, 08]. The N32b-READ for 
the SRAM or FLASH of the development board are 1 and 2.75 TCLK, respectively. By 
substituting these data in (1), the system achieves a RR of 320 Mb/s in both cases.  

Figure 5 shows the initial bit-stream retrieval from the external SRAM (top) or 
from the FLASH (bottom) (signals denoted as emc_*), along with the SelectMAP 
control lines that come from the RCF controller (denoted as rcf_*). The RCF starts 
reading the bit-stream words (d1, d2) at sequential addresses (a1, a2) from the 
external memory through the LMB-EMC until de FIFO is filled up. The first 
configuration word stored in the FIFO (d1) is transferred to the SelectMAP controller 
which slices it into bytes (d1.1, d1.2, d1.3, d1.4) and drives the 8-bit data bus (rcf_d) 
synchronously with the configuration clock (rcf_cclk). Concurrently, the RCF 
requests to the LMB-EMC the next word retrieval (d3) at the address (a3), taking 1 
TCLK to read it from the SRAM. In order to improve the bit-stream retrieval from 
FLASH, the LMB-EMC takes advantage of the fast page reading. The first word from 
a page is read in 5 TCLK, and each of the remainder three words takes 2 TCLK. The 
average time taken to read a configuration word from the SRAM or FLASH is smaller 
than the 4 TCLK required for driving the SelectMAP interface. Although the SRAM is 
faster than the FLASH, the RR achieved is 320 Mb/s in both cases, once the FIFO 
buffer is filled up. The reconfiguration rate is limited by the SelectMAP interface, 
instead of being constrained by the bit-stream retrieval from the external memory. 
Therefore, it is unnecessary copying the bit-streams from the non-volatile FLASH to 
the SRAM during the boot-up sequence, in order to accelerate the reconfiguration.  

5 Design Flow of the Self-Reconfigurable Embedded System 

This section covers the design flow which is used to implement the reconfigurable 
embedded system on Spartan-3. The implemented system must accomplish some 
requirements about the partitioning and the distribution of the clock network due to 
the reconfiguration features of the Spartan-3. Moreover, the design flow uses a 
custom tool for merging partial layouts, since the Xilinx tools do not support the 
modular design on Spartan-3. 
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Figure 5: Initial bit-stream retrieval from the external SRAM (top) and FLASH 
(bottom) and the SelectMAP control  

As we mentioned previously in Section 2, PlanAhead with the Partial 
Reconfiguration patch neither support Spartan-3, so it was necessary to use a design 
flow based on the Integrated Software Environment (ISE) by Xilinx. The flow 
executes the ISE tools in modular design mode [Xilinx, 04], but some steps are 
modified due to our system requirements. The modular design starts from the netlist 
files of the modules that build the reconfigurable system. Therefore, the design flow 
starts synthesizing the modules, it continues implementing the layouts using modular 
design, and it finishes generating the bit-streams, as depicted in Fig. 6 (top). 

The reconfigurable system is composed of several modules. The first module 
corresponds to the static section of the embedded system (according to Fig. 2), and it 
is synthesized using the EDK flow to get the static module netlist (sys netlist). The 
dynamic module netlists are the set of coprocessors that can be mapped in the 
dynamic section. A netlist file is obtained for each dynamic module with a synthesizer 
(such as Xilinx XST or Leonardo) from its VHDL description. Figure 6 depicts the 
design flow for two dynamic modules: dummy and copro1. The dummy coprocessor 
is an empty design (its use is explained during the bit-stream generation), and copro1 
is an image-processing coprocessor. Finally, the modular design requires a system 
top-level netlist (top netlist) which is synthesized from a VHDL file. The top-level 
VHDL describes the system which is composed of two black-boxes (the static and 
dynamic modules) interconnected using bus-macros (according to Fig. 1). It also 
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instantiates the I/O pins and the BUFGMUX buffer which is used to distribute the 
system clock on global routing lines. 
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Figure 6: Steps of the design flow (top): synthesis, implementation, and bit-stream 
generation. Phases of the implementation in modular design mode (bottom): initial 
budgeting, implementation of modules, and final assembly. 

There are three phases in the modular design, as depicted in Fig. 6 (bottom). The 
first phase is the initial budgeting, which describes the top-level design as a set of 
interconnected modules and their associated constraints. The second phase is the 
active module implementation that computes the partial layout of each module 
separately. The last phase is the final assembly, which merges partial modules to build 
the complete system layout. 
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The initial budgeting phase implements the top-level layout which is composed of 
the two modules, the bus-macros, the I/O pins and the BUFGMUX buffer. It runs the 
ngdbuild tool to annotate the placement of the top-level components declared in the 
User Constraints File (UCF) [Xilinx, 07b]. Code 1 shows the main constraints for the 
XC3S1500 FPGA which consists of an array of 104-width and 128-height of CLB 
slices, and two columns of 16-height BRAM+MULT18x18 resources. The first two 
sections of the UCF declare the FPGA resources reserved to the dynamic and the 
static modules (instances drip and sys, respectively). The modules are horizontally 
arranged, since the first 68 whole columns of CLB slices (left side of the FPGA) are 
devoted to the dynamic module, and the rest of columns to the static one. It also 
dedicates a whole BRAM+MULT18x18 column to each of the modules. The third 
section of the UCF sets the placement of the bus-macros along the edges of the 
partition. The last section of the UCF sets the placement of the input clock pin (clk) in 
the static section, and the placement of the BUFGMUX (instance bufgmux_drip_clk) 
which distributes the clock signal in the dynamic module (net drip_clk_global) using 
the global routing lines. Finally, the UCF configures the routing of the clock in the 
static module (net sys_clk_local) on low-skew routing lines, in order to prevent the 
malfunction of the static module due to the incremented delays of the local routing 
lines. 
 
INST "drip"   AREA_GROUP="DYNAMIC"; 
AREA_GROUP "DYNAMIC"  RANGE=SLICE_X0Y0:SLICE_X67Y127; 
AREA_GROUP "DYNAMIC"  RANGE=RAMB16_X0Y0:RAMB16_X0Y15; 
AREA_GROUP "DYNAMIC"  RANGE=MULT18X18_X0Y0:MULT18X18_X0Y15; 
... 
INST "sys"   AREA_GROUP="STATIC"; 
AREA_GROUP "STATIC"  RANGE=SLICE_X68Y0:SLICE_X103Y127; 
AREA_GROUP "STATIC"  RANGE=RAMB16_X1Y0:RAMB16_X1Y15; 
AREA_GROUP "STATIC"  RANGE=MULT18X18_X1Y0:MULT18X18_X1Y15; 
... 
INST bm1   LOC=SLICE_X67Y118; 
INST bm2   LOC=SLICE_X67Y100; 
INST bm3  LOC=SLICE_X67Y94; 
... 
NET clk   LOC=AB26;  
INST bufgmux_drip_clk LOC=BUFGMUX1; 
NET sys_clk_local  USELOWSKEWLINES; 

Code 1: Main constraints of the top UCF file 

The second phase is the active module implementation which computes the 
layout of each module and its connection with the top-level components, running the 
MAPping (map) and the Placement And Routing (par) tools [Xilinx, 07]. This phase 
also requires annotating a UCF file, composed of the top-level UCF plus the 
particular constraints for the implemented module. The output of this phase is the 
partial layout of the static module (sys layout) and the partial layout of the dynamic 
modules (layouts dummy and copro1, in Fig. 6), according to the same top-level 
constraints. 

The last phase of the modular design is the final assembly to compute the 
complete layout, which merges the partial layouts of the static module and one of the 
dynamic modules. The assembly is executed for every dynamic module that can be 

316 Canto E., Fons M., Fons F., Lopez M., Ramos R.: Fast Self-Reconfigurable ...



mapped on the reconfigurable coprocessor. Unfortunately, the final assembly phase 
cannot be completed using the ISE tools for Spartan-3 devices, because the top-level 
components (the global clock net, the BUFGMUX, the bus-macros, and IOBs) are 
declared in both partial layouts. Another undesired behaviour in the layout of the 
dynamic module is that the par tool routes the global clock net (drip_clk_global) on 
local lines instead of global lines. In order to solve these two problems, we developed 
a new PERL script based on the one developed by Gonzalez et al. [Gonzalez, 07], but 
modified for our system requirements. The modified script is able to place the IOBs 
either in static or dynamic partitions, and to devote a large FPGA area to the dynamic 
section, since it permits the clock column to be allocated in the dynamic section. The 
script cannot interpret layout files given in the proprietary format Native Circuit 
Description (NCD), but it can deal with the format Xilinx Description Language 
(XDL). Hence, it is necessary to execute a translator program before and after its 
execution (ncd2xdl and xdl2ncd tools, respectively). A layout file is composed of a 
list of instances of FPGA components (LUT, IOB, BUFGMUX, BRAM, 
MULT18x18) and interconnection nets, including the configuration and placement 
details. The script basically performs the following steps: 

1. Delete the declaration of the drip_clk_global net in the partial layout of 
the static module, since it is already declared in the partial layout of the 
dynamic module. 

2. Clear the configuration of the drip_clk_global net in the partial layout of 
the dynamic module, since the par tool routed it on local routing lines.  

3. Delete the top-level nets and instances that are placed in the dynamic 
module, but they are already declared in the partial layout of the static 
module. 

4. Delete the top-level nets and instances that are placed in the static 
module, but they are already declared in the partial layout of the dynamic 
module.  

5. Add a prefix onto the names of nets and instances that are declared in the 
partial layout of the dynamic module, in order to prevent name duplicities 
in the next step. 

6. The merged layout is composed by simply copying the list of instances 
and nets of the partial layouts of the two modules. 

The merged layout is not entirely completed because the configuration of the 
drip_clk_global net is cleared due to the PERL script. Thus, the par tool is executed 
for the merged layout, in order to distribute the drip_clk_global net on the global 
routing lines that are driven by the BUFGMUX. The layout of each dynamic module 
is merged with the same layout of the static module. The output implementation using 
the modular design tools is a set of complete layouts in NCD files (sys_dummy.ncd 
and sys_copro1.ncd, in Fig. 6).  

Finally, in order to generate the set of partial bit-streams necessary to reconfigure 
the dynamic section, we executed the bitgen tool [Xilinx, 08b]. The first execution of 
bitgen generates the bit-stream of the complete layout (sys_dummy.bit), which 
consists of the layouts of the static and the dummy modules (sys_dummy.ncd). This 
bit-stream is used to boot up the FPGA, and is obtained by executing the following 
command line: 
 
bitgen -w –d –g Binary:yes –g Persist:yes sys_dummy.ncd sys_dummy.bit 
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where the Persist option is set to yes to keep the SelectMAP port enabled after the 
device initialization. 

The partial bit-stream of the dynamic module copro1 (rcf_copro1.bit), necessary 
to reconfigure the dynamic section, is obtained executing the bitgen tool using the 
following command: 

 
bitgen -w -d -g Binary:yes -g Persist:yes -g ActiveReconfig:yes  
-g PartialMask0:000001ffffffffd -g PartialMask1:1 -g PartialMask2:1  
-r sys_dummy.bit sys_copro1.ncd rcf_copro1.bit 

 
where the –r sys_dummy.bit option is used to compute the partial bit-stream from the 
layout composed of the static and the copro1 modules (sys_copro1.ncd). It is also 
necessary to set the ActiveReconfig option to yes to permit the partial reconfiguration. 
The options PartialMask0, PartialMask1 and PartialMask2 generate the partial bit-
stream that corresponds to the CLB and BRAM+MULT18x18 columns assigned to 
the dynamic section. The same procedure is executed to create the partial bit-stream 
of the dummy module (rcf_dummy.bit), which is used to void the reconfigurable 
coprocessor. 

The rest of the dynamic modules, and their partial bit-streams, are obtained 
following the same steps used to obtain the partial bit-stream of copro1. This set of 
partial bit-stream files are programmed into the FLASH memory. Once the Spartan-3 
is booted-up, the embedded system can retrieve a partial bit-stream from the non-
volatile memory to reconfigure the dynamic section when it is required by the 
microprocessor. 

Figure 7 (left) shows the complete layout when the dynamic section maps the 
copro1. As it can be seen, the dynamic section is larger than the static one, providing 
a large number of free hardware resources available to map complex dynamic 
modules. Both sections are interconnected by the bus-macros, and each one contains 
one of the BRAM+MULT18x18 columns. The clock column (the central column of 
the FPGA), which configures the global routing lines, belongs to the dynamic section, 
and the clock input pin is placed into the static section. The clock is distributed in the 
static section on local routing lines (sys_clk_local), as depicted in Fig. 7 (right-top). 
In the dynamic section, the clock is distributed using the global routing lines 
(drip_clk_global) through the BUFGMUX, as presented in Fig. 7 (right-bottom). 

6 Experimental Results 

The experimental results were obtained by implementing a fingerprint feature 
extraction algorithm [Fons, 07]. The fingerprint images are 512*280 pixels (8-bit grey 
levels). The algorithm executes three different image-processing stages: 
segmentation, normalization plus filtering, and field orientation. The results were 
obtained using the AVNET Spartan-3 Development Kit [Avnet, 04], which allocates 
an XC3S1500 FPGA, and the SRAM and FLASH memories.  
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Figure 7: Layout of the static section and one coprocessor (left), and the clock 
distribution in the static section (right-top) and in the dynamic section (right-bottom) 

The first set of experimental results tests the performances of our LMB-EMC, in 
terms of speed and area. The LMB-EMC is compared against the two SRAM 
controllers provided by the Xilinx EDK: the OPB-EMC and the MCH OPB-EMC. 
The algorithm is implemented in software and executed by the Microblaze. The 
memory size required by the software is larger than the capacity of the internal 
BRAM, so the program is stored in the external SRAM. We built three different 
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embedded systems depending on the memory controller. Table 1 shows the execution 
time and the synthesis results of each one. Our LMB-EMC controller significantly 
reduces the number of registers due to the design optimization and the LMB interface. 
The LMB-EMC achieves a great speed improvement compared with the OPB-EMC, 
as it is about 9 times faster. When the system is designed using the MCH OPB-EMC 
controller, Microblaze implements cache logic on some additional CLBs, and 10 
BRAMs are devoted to cache memory (8 KB for data +8 KB for instructions). The 
LMB-EMC is about 11% faster and requires 70% less area when compared against 
the MCH OPB-EMC. Moreover, using our controller, Microblaze is synthesized 
without the cache, saving 10% of CLBs dedicated to the cache logic and the BRAMs 
devoted as cache memory. In addition, the main advantage of the LMB-EMC is that 
coprocessors do not need to incorporate cache logic and memory to speed-up the 
processing time from external SRAM, which simplifies their design and devoted area. 

 

  OPB-EMC 
MCH 

OPB-EMC 
LMB-EMC 

E
xe

cu
ti

on
 Segmentation (s) 6.1 0.65 0.63 

Norm+Filter (s) 79.3 9.37 8.65 

Field Orient. (s) 13.1 1.86 1.37 

Total time (s) 98.5 11.9 10.7 

S
yn

th
es

is
 CLB Slices  196 616 185 

Flip-flops 323 730 171 

LUTs 135 705 347 

Frequ. (MHz) 136 71 125 

Table 1: Execution time on Microblaze with the different SRAM controllers, and their 
synthesis results  

Table 2 shows the reconfiguration rate of our system when a bit-stream is 
retrieved from the external FLASH, and compares it with the reconfigurable 
embedded systems described in Section 3 that retrieve bit-streams already loaded in a 
SRAM or DRAM. It also shows the measured reconfiguration time for our 
reconfigurable coprocessor, in which the bit-stream size of the dynamic section is 409 
KB (66% of the area of the XC3S1500). In our proposed system the measured 
reconfiguration rate is quite close to the theoretical 320 Mb/s, demonstrating the high 
efficiency of the LMB-EMC and RCF controllers. The reconfiguration rate achieved 
is also better than other self-reconfigurable embedded systems mapped on higher cost 
devices, such as the 41 Mb/s [Braun, 08] on a Virtex-2, or the 26.2 Mb/s [Llamocca, 
09] on a Virtex-4. 
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[Gonzalez,08] [Paulsson,08] [Canto,08] 

Proposed 
system 

RR (Mb/s) 16.1 2 36.3 319.8 

Time (ms) 203 1636 90 10.2 

Table 2: Reconfiguration rate and time (409 KB bit-stream)  

Table 3 shows the execution time of the image-processing stages when they are 
implemented as hardware coprocessors. It also reports the number of occupied CLB 
slices, BRAM and multiplier blocks. As can be seen, the execution time is greatly 
improved compared with the Microblaze execution time, since the coprocessors 
access to the SRAM directly and execute several computations in parallel. The last 
two rows of this table show the execution time and area of the three coprocessors 
when they are statically implemented or dynamically mapped on the reconfigurable 
coprocessor. The static implementation requires that the three coprocessors are 
attached to the rest of the system; therefore, the total area is the sum of the individual 
coprocessor areas. The processing time is also the sum of the processing times, since 
a computation stage cannot start until the previous one has been completed. In the 
dynamic implementation, the area needed by the reconfigurable coprocessor can be 
constrained by the maximum area of the individual coprocessors, while the processing 
time is exactly the same as that of the static implementation with the addition of the 
reconfiguration time of three reconfigurations. The self-reconfigurable embedded 
system accelerates the processing time by about 145 times compared with the 
software execution on the embedded system using Microblaze with the cache 
memory. The processing time is quite competitive even if it is compared with the 
execution on a high-performance PC (Intel Core Duo 2GHz) which takes 16.7 ms. 

 
 Time (ms) CLB Slices BRAM MULT18x18 

Segmentation 11.7 2489 2 4 

Norm+Filter 23.6 6519 4 4 

Field Orient. 12.0 2468 2 8 

STATIC 50.8 11476 8 16 

DYNAMIC 81.4 6519 4 8 

Table 3: Execution time and area of the three coprocessors, and their static and 
dynamic implementation 

7 Conclusions 

This work demonstrated that the low-cost family Spartan-3 of Xilinx is able to 
implement fast self-reconfigurable embedded systems to accelerate the computational 
stages of image-processing algorithms. A reconfigurable coprocessor, which maps a 
set of coprocessors multiplexed in time, speeded up the processing of the stages 
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involved in algorithms. The number of such coprocessors is limited by the external 
FLASH which allocates the set of partial bit-streams, but not by the device size. The 
proposed architecture included a new external memory controller (LMB-EMC) that 
permits direct access to SRAM from the reconfigurable coprocessor, in order to 
improve computational performance. Moreover, the reconfiguration time was reduced 
by designing a new reconfiguration controller (RCF) which efficiently retrieves bit-
streams from FLASH memory through the LMB-EMC. The reconfiguration rate of 
the presented system achieved 319.8 Mb/s, widely outperforming the experimental 
results obtained from the other previous related works. Therefore, despite the 
reconfiguration time required by the stages, the reconfigurable coprocessor 
accelerated 145 times the computational time of a fingerprint feature extraction 
algorithm. 

8 Future Work 

The reconfiguration rate is not limited by the retrieval of bit-streams from the external 
memory, but rather by the SelectMAP interface. In order to improve the 
reconfiguration rate of the system, the configuration clock should be increased. A 
straightforward way of achieving this aim is to increase the system clock to 50 MHz 
to obtain the maximum RR (400 Mb/s). However, we could not complete the design 
due to the timing problems in the placement and routing of Microblaze. An embedded 
system with two clock domains can solve the problem, since the system and the 
SelectMAP can run at 40 MHz and 50 MHz respectively. However, the interface 
between clock domains will complicate the design. Moreover, the RCF can run at 
higher frequencies if the data loading into SelectMAP is non-continuous, although it 
complicates the RCF design. 

The static section of our system allocates the Microblaze configured with an FPU 
(Floating Point Unit). The FPU accelerates floating-point operations executed by the 
microprocessor, although it occupies a large area of the static section. A new FPU 
designed to be mapped on the reconfigurable coprocessor will allow the static section 
to be reduced, and consequently a larger area can be assigned to the dynamic section. 
The FPU could be dynamically mapped on the reconfigurable coprocessor when 
Microblaze requires computing a large number of floating-point operations. 

Another point of interest is the study of the system’s power consumption. The 
CMOS static power has a great impact on advanced submicron technologies that 
increases according to the silicon area occupied by larger FPGAs. The reconfigurable 
system can map a large number of coprocessors multiplexed in time, reducing the 
FPGA size and, hence, the static power. The analysis of the dynamic power is more 
complicated. This consumption is incremented due to the reconfigurations of the 
dynamic section. However, on the other hand, the size of the clock distribution 
network decreases in smaller devices, and it is one of the most important terms of 
dynamic power in FPGA technologies [Wang, 09]. Moreover, dynamic 
reconfiguration permits the reconfiguration of the clock managers [Paulsson, 09], 
which can be used to dynamically scale the clock frequency to fulfil the power 
requirements.  
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