
Polymorphic Malicious JavaScript Code Detection for

APT Attack Defence

Junho Choi

(Division of Undeclared Majors, Chosun University

Gwangju, South Korea

xdman@chosun.ac.kr)

Chang Choi

(Department of Computer Engineering, Chosun University

Gwangju, South Korea

enduranceaura@gmail.com)

Ilsun You

(School of Information Science, Korean Bible University

Seoul, South Korea

ilsunu@gmail.com)

Pankoo Kim

Corresponding author

(Department of Computer Engineering, Chosun University

Gwangju, South Korea

pkkim@chosun.ac.kr)

Abstract: The majority of existing malware detection techniques detects malicious
codes by identifying malicious behavior patterns. However, they have difficulty iden-
tifying new or modified malicious behaviors; consequently, new techniques that can
effectively and accurately detect new malicious behaviors are crucial. This paper pro-
poses a method that defines the malicious behaviors of malware using conceptual graphs
that are able to describe their concepts and the relationships among them and, conse-
quently, infer their malicious behavior patterns. The inferred patterns are then learned
by a Support Vector Machine (SVM) classifier that compares and classifies the behav-
iors as either normal or malicious. The results of experiments conducted verify that the
proposed method detects malicious codes more efficiently than conventional methods.
In the experimental results, it exhibits a better detection rate than that of malicious
code detection methods that rely solely on the signature based approach. This suggests
that the proposed method is not only suitable for detection of malicious codes, but is
also more efficient than other detection methods as it combines the advantages of more
than two malicious code detection methods.

Key Words: Conceptual graph, Malicious code detection, APT attack defence

Category: D.4.6, I.2.6, K.6.5

Journal of Universal Computer Science, vol. 21, no. 3 (2015), 369-383
submitted: 30/6/14, accepted: 28/2/15, appeared: 1/3/15 J.UCS

1 Introduction

Recently, Advanced Persistent Threat (APT) attacks have become an issue in

Information Security. An APT attack is a set of stealthy and continuous com-

puter hacking processes, often orchestrated by humans targeting a specific entity.

APT attacks usually target organizations and nations for business or political

motives. Further, APT processes require a high degree of covertness over a long

period of time.

In order to circumvent APT attacks, integrated detection and monitoring

from the routing section, rather than an individual detection policy for each

client is needed. Conventional approaches to countering APT attacks are of two

types: security solutions based on the network, and interception of spreading mal-

ware that occur in a repetitive pattern. These approaches rely on methods such

as URL blacklists and signatures. However, by definition, these approaches are

ineffective against dynamic attacks that exploit zeroday vulnerabilities. Various

techniques can result in a decrease in detection rate, resulting in attempts to stop

APT attacks proving ineffective [Dell SecureWorks, 12], [Giura and Wei, 12].

A case in point is the JavaScript language, which is used extensively on

the Web. Many attack methods hide malware site URLs and exploit JavaScript

code. Recently, these attempts have increased gradually, resulting in a variety

of file types, including JavaScript, being vulnerable [Elshoush and Osmank, 11],

[Laskov and Srndic, 11].

This paper proposes a new method of detecting malicious JavaScript codes.

The majority of existing malware detection techniques examines the character

string signature or the behavior pattern in order to distinguish between normal

programs and malware. However, with these techniques, finding new malicious

codes or their variants is difficult. Furthermore, as the use of signature based

systems to detect scripts for malicious behaviors increases, diverse techniques are

being devised to counter them. We propose a method that infers relationships

among codes and analyzes heir meanings using conceptual graphs. The proposed

method analyzes malicious code distribution patterns and expresses their related

characteristics via conceptual graphs and patterns. The patterns are then learned

by a Support Vector Machine (SVM), a popular machine learning method.

The remainder of this paper is organized as follows: Section 2 discusses con-

ceptual graphs and the Conceptual Graph Interchange Format (CGIF). Section

3 outlines how features are extracted and patterns created for static analysis of

malicious scripts. Section 4 discusses SVM learning and classification of malicious

patterns. Section 5 presents and evaluates the results of experiments conducted.

Finally, Section 6 concludes this paper and outlines future work.

370 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

2 Related works

2.1 Advanced persistent threat (APT) attacks

Generally, an advanced persistent threat (APT) attack means a new attack form

for damage to specific target such as information hijacking, system failure and so

on. An object of APT attack can be divided into three things. The first is to build

organization based on the information technology for information hijacking. The

second is to weaken and hinder a target’s mission. The final is to prepare the

foundation for APT attack in the future.

The APT attack is defined as the four steps of preparation, internal network

penetration, internal activities and achievement of goal. The preparation step

is to prepare an attack such as information gathering, information analysis,

web page modulation, preparing command and control (C&C) server and so

on. Actually, this step cannot detect the APT attack because of the APT attack

is prepared in the external network[Legg et al., 13],[Shen et al., 14].

The next step is internal network penetration and various methods are used

such as sending malicious e-mail, modulated web bulletin board connection,

modulated software update server connection and so on [Wei and Erik, 09]. The

internal activities step is the gathering information of targets internal IT in-

frastructure such as, connection between zombie PC and C&C server, malicious

code download, sending malicious code to zombie PC, additional vulnerability

gathering, authorization acquisition for database connection and so on. Finally,

the goal achievement step is performed information hijacking and destroying IT

infrastructure using malicious code [Ajay, 12], [Liu et al., 13].

2.2 Existing malware detection techniques

Malicious malware exist in many different forms. Viruses, worms, trojans, and

adware are the most common categories. However, each category also comprises

various types of threats, with equally as many different methods of combating

malware. The majority of conventional anti malware scanners combine several

of these techniques[Christodorescu and Jha, 03], [Shahzad and Lavesson, 13].

Malicious code detection solutions traditionally strongly relied on signature

based scanning, also referred to as scan string based technologies. In this method,

the signature based scan engine searches within given files for the presence of cer-

tain strings and, if the predefined strings are found, certain actions such as alarms

are triggered. However, signature based scanning only detects known malware

and is therefore ineffective against new attack mechanisms [Kruegel et al., 09].

Heuristic scanning is similar to signature scanning, with the exception that

instead of looking for specific signatures, heuristic scanning searches for certain

instructions or commands within a program that are not found in typical ap-

plication programs. As a result, a heuristic engine is able to detect potentially

371Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

malicious functionality in new, previously unexamined, code such as the repli-

cation mechanism of a virus, the distribution routine of a worm or the payload

of a Trojan. However, heuristic methods are time consuming [Ho et al., 13].

Conventional malware protection methods are becoming increasingly inca-

pable of providing protection against some of the latest threats. Network based

malware protection systems are therefore becoming important advanced threat

detection mechanisms, and conceptual access to malicious code is also crucial

[Likarish et al., 09].

2.3 Conceptual graph and conceptual graph interchange format

(CGIF)

A conceptual graph is a knowledge representation language that integrates sev-

eral semantic networks, and has the expressive power of logically concise and

natural languages using schematics [Hensman, 04], [Karalopoulos et al., 04]. It

can describe meanings in a form that can be easily understood by humans and

available natural language processing systems on the computer. For example, a

sentence such as “Smith is going to New York by bus” can be expressed as the

conceptual graph shown in Figure 1.

Figure 1: The example of Conceptual Graph

The rectangle in Figure 1 represents concepts, the oval indicates the relation-

ships between the concepts, and the nodes are connected by indicators. Thus,

“Agnt”, “Dest”, and “Inst”signify the relationship between the concepts and

“Smith”, “New York”and “Bus”refer to the concept of each node. The expres-

sion “Person: Smith”means that “Smith”is an instance of the concept “Person”.

In addition, a conceptual graph can be converted to CGIF, an extended

graphic notation called Backus Normal Form or Backus Naur Form (BNF). Ta-

ble 1 lists the conceptual graph notation converted into a linear notation, and

an example of CGIF conversion from a conceptual graph based on the linear

notation [Baget, 03], [Zhong et al., 02].

372 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Table 1: Examples of Linear Notation and CGIF Expression of Conceptual Graph

Linear Notation of Conceptual Graph CGIF Expression of Conceptual Graph

[Go]− [City : NewY ork] (Dest?x1NewY ork)

(Agnt) → [Person : Smith] [Bus : ∗x2] (Inst?x1?x2)

(Dest) → [City : NewY ork] [Person : Smith] (Inst?x1?x2)

(Inst) → [Bus] [Going : ∗x1]

3 Conceptual graph and SVM using malicious script code
analysis

After collecting normal script codes and malicious script codes, it is necessary

to create a conceptual graph by conceptual analysis of the ability of the attack

code to attack the source codes vulnerability. Then, tokenization of the code

is carried out through static analysis of the malicious script codes collected

[Mishne and Rijke, 04], [Choi et al., 11].

The relationship between the tokenized codes and the concepts can be created

using the conceptual graph, which is then converted into a predefined pattern

through CGIF [Zhang and Yu, 01]. Patterns of malicious script codes are gen-

erated as the frequency of CGIF codes for malicious behaviors is checked, and

then stored in a database. The stored malignant patterns are used to create

SVM training data by matching the CGIF converted from the normal scripts

with those converted from the malicious scripts, and also for SVM learning. Af-

ter the CGIF script codes that are to be classified are created, they are matched

with the malicious patterns to form test datasets for SVM classification and,

based on the dataset, scripts codes are SVM classified for malicious script de-

tection. Figure 2 shows the overall flow of the malicious code analysis procedure

described above.

Figure 2: Processing of Malicious Script Analysis using Conceptual Graph and

SVM

373Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

3.1 Definition of JavaScript Code Concept and Relation

Malware authors create and distribute malicious codes in JavaScript because

most web services are based on JavaScript. As a result, malicious JavaScript

codes have been increasing every year [Cova et al., 10], [Fredrikson et al., 10].

Figure 3 shows a sample malicious script code created with JavaScript. The

code is a malicious script that induces users to access another malicious web

page and to download and run malicious code (real.swf) using vulnerability

existing in Flash Player.

Figure 3: An Example of Malicious JavaScript Code

In Figure 3, the JavaScript code with the malicious behavior, “navigator.user

Agent.toLowerCase(),”is a function that obtains the user agent information used

by the browser. On ascertaining the version of the web browser the user is using,

the JavaScript script obtains the vulnerable part of the browser by accessing

the web associated with the corresponding vulnerability part using the iframe

method of the document.write() class. The concepts in the source code are hi-

erarchically classified using the components used in programming languages in

order to express the malicious JavaScript code as a conceptual graph, as shown

in Figure 4. The component of each hierarchy is defined as the concept of the

source code.

Concepts are defined as shown in Table 2 based on the hierarchy classified

above. The relationship between the concepts within the source code is defined as

shown in Table 3. For example, the grammatical concept “Procedure”indicates

that it is related with the relationship Condition, Argument [Gregoire, 09].

374 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Figure 4: Hierarchy of Components in Programming Language

Table 2: Definition of Source Code Concept

Concept Description

Procedure
A series of task sequences and processes executed to

solve a problem

Statement

Conditional
Sentence used to control program execution in dif-

ferent ways depending on the given condition

Loop
Program sentence to execute a series of given com-

mands repeatedly

Error
Operation carried out in a way different from the way

predetermined for that operation

Operator

Comparison Task of comparing the sizes of two input data

Logical
Operation to create the result of being true or false,

by applying logical operators to logical variables

Arithmetic
Arithmetic operations for numeric data such as ac-

tual numbers and integers

. . .

3.2 Definition of Malicious Code Pattern and Conceptual Graph

Expression

Codes for malicious behaviors in the JavaScript code are expressed according to

the previously defined concepts and relationships, as shown below:

iframe code(width,height value (0 or 1)

document.writeln or document.write

eval(jsString)

:

navigator.userAgent.toLowerCase()

375Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Table 3: Definition of Source Code Relationship

Relationship Definition
Relationship Condition

High-level Concept Low-level Concept

Condition
Condition for

jump syntax
Conditional, Loop

Statements, Operator,

Assign, Procedure,

(-Call), String, Variable

Contains

Concept that

contains

another concept

* *

Comment Comment * String

Return
Concept that

returns a value
Function, Method Function, String, Variable

(* : Set of concepts, which contains all concepts and relationship conditions)

In order to analyze for methods of attack to carry out certain malicious

behaviors or damage security products, it is necessary to create concepts of

malicious codes and the relationship among the codes, express them in a con-

ceptual graph, and then convert the graph to a canonical format applicable to

the system.

Figure 5 shows a conceptual graph of a malicious code that uses “JS/Redi-

rect”. It is the conceptual graph of the part of the code that verifies the vulner-

able section of flash player and downloads a piece of malicious code that then

executes another malicious code. JS/Redirect is a typical piece of malicious code

in JavaScript. The conceptual graph in Figure 5 contains “Statements”(part A)

for carrying out a malicious behavior, and “Methods”(part B) for downloading

and executing the malicious script using the statements. According to the con-

ceptual graph, the malicious code uses “Statements”to check the vulnerability

to be used for a malicious behavior, and induces downloading and execution of

the malicious code using the “Method: iframe”concept. When various forms of

malicious codes are expressed in conceptual graphs using the method described

above, it is possible to detect conceptual malicious behaviors even if their sources

are modified or new malicious codes are generated.

4 Learning malicious script code patterns using SVM

4.1 CGIF conversion of conceptual graph

In order to create malicious script code patterns, it is necessary to translate

the codes related to the malicious behaviors into a conceptual graph, and then

376 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Figure 5: A Conceptual Graph for Malicious Script Code

convert the conceptual graph into CGIF. Table 4 shows an example of CGIF,

in which “[]”refers to the concept and “*”refers to the concept type. The sym-

bol “:”is used to distinguish between concepts and relationships, “()”shows the

relationship, and “?”expresses the relationship between the concepts involved.

Table 4: An Example of CGIF converted from Conceptual Graph

01 : [Else if: *x1] 14 : [argument: width=468]

02 : [Variable: Var name[major]] 15 : [argument: height=60]

03 : [String: 10] 16 : [argument: framebord=0]

04 : [argument: frameborder=0] 17 : [argument: fleska.php]

05 : [Compare OP: ==] 18 : [String: 12]

06 : [Assign: *x2] 19 : [Procedure: Script Download]

07 : [: *x3] 20 : [Statement: JavaScript]

08 : [Variable: Var name[rev]] 21 : [Statement: *x4]

09 : [String: 22] 22 : · · ·

10 : [Method: document.write] 23 : · · ·

11 : [argument: iframe src=gg.html] 24 : (contain ?x4 Var name)

12 : [argument: width=0] 25 : (contain ?x2 document.write)

13 : [argument: height=0] 26 : (contain ?x6 ?x2)

377Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

4.2 Malicious script code pattern generation

Malicious scripts are analyzed and the codes related to malicious behaviors are

extracted from the converted CGIF codes. The extracted CGIF codes are defined

as malicious code patterns, and stored in a malicious pattern database. Then,

by matching the CGIFs of normal script codes and those of the malicious codes

to be classified, SVM learning datasets and test datasets are created.

Malicious behavior patterns are determined based on the malicious attack

techniques known to date and the codes that attempt malicious behaviors. Then,

the frequency with which each malicious pattern appears in normal scripts and

malicious scripts is calculated. The malicious code pattern with a higher fre-

quency in malicious scripts and a lower frequency in normal scripts is recorded

on a higher level index. Using the finalized ranking list of each malicious code

pattern, the malicious CGIF patterns are generated after the patterns of less fre-

quent malicious codes (lower rank); that is, the malicious patterns and normal

patterns with less frequencies, are excluded. The malicious CGIF patterns are

generated based on the frequencies of normal patterns and malicious patterns.

4.3 Learning script code pattern using SVM

The codes related on malicious activity are extracted to use the converted CGIF

codes through malicious script analysis. The extracted CGIF codes are defined

as malicious code pattern. And then, the data set (SVM learning data set and

test data set) is building through matching between CGIF of general script codes

and CGIF for classification.

The malicious activity pattern is defined based on the well-known malware

codes and attack methods. The frequency of malicious activity is calculated

between general scripts and malware scripts. If malicious pattern indicates low

frequency of general scripts and high frequency of malicious scripts, this pattern

can be defined the malicious activity pattern and it is recorded the malicious

pattern list. Table 5 is malicious CGIF pattern based on frequency between

general and malicious pattern. Actually, malicious patterns are consist of concept

and relation for malicious activity.

Many of the existing classification results of the SVM classification algo-

rithm have proved highly accurate. It is used predominantly in the field of pat-

tern recognition, and is most successful in the area of document classification

[Wang and Chiang, 09], [Chen et al., 09]. In this paper, a malicious code detec-

tion approach is proposed in which conceptual graphs are created using the

concepts and relationships of the source codes and malicious code SVM learning

conducted. Figure 6 shows the process of generating an SVM dataset through

matching of the malicious code patterns in CGIF and normal script codes or

script codes subject to classification.

378 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Table 5: Malicious code patterns

Pattern Index Malicious Pattern

1 [String: 1]

2 [Variable: Var name[major]]

3 [String: 10]

· · · · · ·

60 Contain ?x2 gaobumingbai())

Figure 6: SVM Data Set Creation

Learning data and test data are created using the results of matching based

on 60 selected malicious patterns. CGIFs of the selected malicious codes are

matched with those of the normal script codes, with resulting values used as

index values for SVM learning data and test data. When the CGIF pattern of

the normal script code or of the script code to be detected matches that of the

malicious code, a 1 is returned; otherwise, a 0 is returned. Table 6 shows examples

of datasets created using the resulting values from the pattern matching process

in Figure 6. When the patterns are matched, the data has a truth value of 1;

otherwise, it has a false value of 0.

The new script is performed the pattern learning. If the new script is ma-

379Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Table 6: Created Data Sets

Code Pattern 1 2 3 4 · · · 60

Code Set(1) 1 0 1 1 · · · 0

Code Set(2) 1 0 0 1 · · · 1

licious code, it needs classification of malicious codes. Therefore, we explain

the weight value measurement method. In this paper, we selected five malicious

pattern based on the highest frequency. The extracted malicious patterns are

integrated after malicious pattern learning. Equation 1 shows the weight value

measurement method based on keyword.

iPf(t) = log(
|w|

frw(t)
) (1)

where w is the total number of scripts, fr w is the frequency of t (malicious

pattern) in learning scripts. In equation 1, iPf can be classified the noise and

general pattern (small malicious concept and relation). Equation 2 shows weight

value of malicious pattern using Term Frequency (TF) and Inverse Term Fre-

quency (iTF).

KW = TF (t)× iTF (t) (2)

5 Experiments and evaluation

We conducted experiments in which malicious JavaScript codes were collected

and a total of 210 scripts used as experimental datasets (105 learning datasets

and 105 test datasets). Each dataset consisted of a total of three groups. The

first group contained 35 malicious JavaScript codes; the second group contained

malicious behaviors that were not malicious but were similar; and the last group

consisted of 35 normal JavaScript codes.

Table 7 shows the results of experiments conducted using the SVM based

on the datasets. The malicious code detection result for Group A shows a high

detection rate of about 94%; Group B, 83%; and Group C, 15%. In general,

Groups A and B show high detection rates. On the other hand, the Group C

result shows a positive error of 15%, which can be considered a low detection

rate. Group B, the group for detecting variants of malicious codes, has a high

detection level, which implies that the proposed method has a high detection

rate for similar and variant malicious behavior forms.

For malicious codes corresponding to Group A, all three methods exhibit

similar results. However, for the codes similar to the malicious codes subject to

comparison as in Group B, the results of the malicious code detection method

380 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

Table 7: A Result of Comparison between the Proposed Method and Existing

Techniques

Group

Proposed Detection Method A’s Vaccine B’s Web Browser

Detected
Detection

Detected
Detection

Detected
Detection

Rate Rate Rate

A 33 94.2% 34 97.1% 31 88.5%

B 29 82.8% 28 80% 20 57.1%

C 5 14.2% 8 22.8% 12 34.2%

using the conceptual graph proposed in this paper show a higher detection rate

than those of other methods. This implies that the concept based similarity

measurement method using conceptual graphs is more suitable for detecting

the codes similar to malicious behaviors than the existing pattern matching

techniques. In addition, the search result for Group C, which shows the lowest

positive error, signifies that the proposed method is suitable for malicious code

detection.

In the table 7, group A is the detection result based on the well known

malware codes and result is indicated similar result between proposed method

and others. The group B is the result based on the little known malware codes

and proposed method is better than others. Finally, group C the detection result

based on general codes (not malware codes) and proposed method is lower than

others.

The existing malicious code detection methods used by A and B are signature

based approaches that use a string of malicious codes. However, the malicious

script analysis method proposed in this paper, which uses conceptual graphs

created from the patterns of malicious behaviors, combines the signature based

detection method and the behavior based detection methods. As shown in the

experimental results, it exhibits a better detection rate than that of malicious

code detection methods that rely solely on the signature based approach. This

suggests that the proposed method is not only suitable for detection of malicious

codes, but is also more efficient than other detection methods as it combines the

advantages of more than two malicious code detection methods.

6 Conclusions and future work

This paper presented a method for detecting unknown malicious codes that are

similar to or variants of existing malicious codes, using conceptual graphs and

SVM. In general, conventional malicious code detection methods create patterns

only through analysis of malicious codes, and attempt to detect malicious codes

381Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

by comparing those patterns. In contrast, our proposed method creates mali-

cious patterns not only through analysis of malicious codes but also using the

concept of malicious behaviors and the relationships between those behaviors

and malicious codes.

Furthermore, it uses SVM, which exhibits outstanding machine learning per-

formance, for malicious code detection. It combines the advantages of signature

based and behavior based detection methods. The results of the experiments

verify that the proposed malicious script code analysis and detection method

effectively detects both malicious scripts and unknown malicious codes. It is

necessary to collect more diverse patterns in order to improve the performance

of the system. However, as the number of patterns increases, positive errors, in

which normal codes are identified as malicious codes, may occur. In order to pre-

vent such a drawback, a method that defines the concepts and the relationships

of the codes more accurately and in more detail is required.

Thus, in future studies, we plan to improve the malicious code detection

accuracy by collecting more patterns and thereby increasing the number of pat-

terns. In addition, research into the definition of malicious behaviors through

the relationships among malicious codes will be conducted.

Acknowledgements

This study was supported by research fund from Chosun University, 2014.

References

[Ajay, 12] Ajay, K.: Modern Malware and APT: What You May be Missing and Why;
AtlSecCon (2012).

[Baget, 03] Baget, J.: Simple conceptual graphs revisited: Hypergraphs and conjunc-
tive types for efficient projection algorithms; Springer-Verlag, 2746, (2003), 229-242.

[Chen et al., 09] Chen, Y., Liu, F., Vanschoenwinkel, B., Manderick, B.: Splice Site
Prediction using Support Vector Machines with Context-Sensitive Kernel Functions;
Journal of Universal Computer Science, 15, 13(2009), 2528-2546.

[Choi et al., 11] Choi, J., Kim, H., Choi, C., Kim, P.: Efficient Malicious Code Detec-
tion Using N-Gram Analysis and SVM; 14th Network-Based Information Systems,
(2011), 618-621.

[Christodorescu and Jha, 03] Christodorescu, M., Jha, S.: Static Analysis of Executa-
bles to Detect Malicious Patterns; 12th USENIX Security Symposium, 1, (2003),
12-12.

[Cova et al., 10] Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-
by-download attacks and malicious Javascript code; In Proceedings of the 19th
international conference on World Wide Web, (2010), 281-290.

[Dell SecureWorks, 12] Dell SecureWorks.: Advanced Presistent Threats: Higher
Education Security Risks; http://www.secureworks.com/resources/articles/
featured_articles/20120709-hcr/

[Elshoush and Osmank, 11] Elshoush, H., Osmank, I.: Alert correlation in collabora-
tive intelligent intrusion detection systems - A survey; Applied Soft Computing In
Press, 11, (2011), 4349-4365.

382 Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

[Fredrikson et al., 10] Fredrikson, M., Jha, S., Christodorescu, M., Sailer, R. Yan, X.:
Synthesizing Near-Optimal Malware Specifications from Suspicious Behaviors; In
Proc. of 2010 IEEE Symposium on Security and Privacy, (2010), 45-60.

[Giura and Wei, 12] Giura, P., Wei, Wang.: A Context-Based Detection Framework
for Advanced Persistent Threats; Cyber Security 2012 International Conference,
(2012), 69-74.

[Gregoire, 09] Gregoire, J.: JavaScript and Visual Basic Script threats: Different script-
ing languages for different malicious purposes; 18th International EICAR Confer-
ence, (2009).

[Hensman, 04] Hensman, S.: Construction of Conceptual Graph Representation of
Texts; HLT-SRWS ’04 Proceedings of the Student Research Workshop, (2004), 49-
54.

[Ho et al., 13] Ho, T., Kang, H., Kim, S.: Graph-based KNN Algorithm for Spam SMS
Detection; Journal of Universal Computer Science, 19, 16(2013), 2404-2419.

[Karalopoulos et al., 04] Karalopoulos, A., Kokla, M., Kavouras, M.: Geographic
Knowledge Representation Using Conceptual Graphs; 7th AGILE Conference on
Geographic Information Science, (2004), 511-521.

[Kruegel et al., 09] Kruegel, C., Kirda, E., Mutz, D., Robertson, W., Vigna, G.: Poly-
morphic worm detection using structural information of executables; In RAID ’06:
Proc. 8th International Symposium on Recent Advances in Intrusion Detection,
LNCS, (2006), 207-226.

[Laskov and Srndic, 11] Laskov, P., Srndic, N.: Static detection of malicious javascript
bearing pdf documents; In ACSAC ’11: Proc. 27th Annual Computer Security Appli-
cations ConferenceAnnual Computer Security Applications Conference. IEEE Com-
puter Society, (2011), 373-382.

[Legg et al., 13] Legg, P., Moffat, N., Nurse, J., Happa, J., Agrafiotis, I., Goldsmith,
M., Creese, S.: Towards a Conceptual Model and Reasoning Structure for Insider
Threat Detection; Journal of Wireless Mobile Networks, Ubiquitous Computing,
and Dependable Applications(JoWUA), 4, 4(2013), 20-37.

[Likarish et al., 09] Likarish, P., Jung, E., Jo, I.: Obfuscated Malicious Javascript De-
tection using Classification Techniques; Malicious and Unwanted Software, (2009),
47-54.

[Liu et al., 13] Liu, F., Wang, J., Bai, H.: YaVNC - A Virtual Application Solution for
Smartphone; Journal of IT Convergence Practice, 1, 4(2013), 39-49.

[Mishne and Rijke, 04] Mishne, G., Rijke, M.: Source Code Retrieval using Conceptual
Similarity; Conf. Computer Assisted Information Retrieval, (2004), 539-554.

[Shahzad and Lavesson, 13] Shahzad, R., Lavesson, N.: Comparative Analysis of Vot-
ing Schemes for Ensemble-based Malware Detection; Journal of Wireless Mobile Net-
works, Ubiquitous Computing, and Dependable Applications(JoWUA), 4, 1(2013),
98-117.

[Shen et al., 14] Shen, Y., Chien, R., Hung, S.: Toward Efficient Dynamic Analysis
and Testing for Android Malware; Journal of IT Convergence Practice, 2, 3(2014),
14-23.

[Wang and Chiang, 09] Wang, J., Chiang, J.: An Efficient Data Preprocessing Proce-
dure for Support Vector Clustering; Journal of Universal Computer Science, 15,
4(2009), 705-721.

[Wei and Erik, 09] Wei, Y., Erik, W.: Toward Automatic Discovery of Malware Signa-
ture for Anti-virus Cloud Computing; Complex Sciences, (2009), 724-728.

[Zhang and Yu, 01] Zhang, L., Yu, Y.: Learning to Generate CGs from Domain Spe-
cific Sentences; Proc. of ICCS’01, (2001), 44-57.

[Zhong et al., 02] Zhong, J., Zhu, H., Li, J., Yu, Y.: Conceptual Graph Matching for
Semantic Search; Proc. of ICCS’02, (2002), 92-106.

383Choi J., Choi C., You I., Kim P.: Polymorphic Malicious ...

