
Social Network Based Reputation Computation and

Document Classification

Joo Young Lee, Yue Duan, Jae C. Oh, Wenliang Du, Howard Blair

Lusha Wang, Xing Jin

(Syracuse University, Syracuse, USA

jlee150, yuduan, jcoh, wedu, blair, lwang40, xjin05@syr.edu)

Abstract We develop two social network based algorithms that automatically com-
pute author reputation from a collection of textual documents. We first extract keyword
reference behaviors of the authors to construct a social network, which represents re-
lationships among the authors in terms of information reference behavior. With this
network, we apply the two algorithms: the first computes each author’s reputation value
considering only direct reference and the second utilizes indirect reference recursively.
We compare the reputation values computed by the two algorithms and reputation
ratings given by a human domain expert. We further evaluate the algorithms in email
categorization tasks by comparing them with machine learning techniques. Finally, we
analyse the social network through a community detection algorithm and other analy-
sis techniques. We observed several interesting phenomena including the network being
scale-free and having a negative assortativity.

Key Words: social network, reputation management, community analysis, computer
security

Category: H.2, H.3.7, H.5.4

1 Introduction

Reputation management plays an important role in online communities that

include e-commerce web sites, such as e-bay and amazon.com, peer-to-peer com-

puting environments [Jung 2009], and online social networks [Jung 2010, Jung

2012]. Existing reputation management schemes often require users to explicitly

rate each other to compute reputations. For example, the simplest way of com-

puting reputation is to average all the ratings a user receives from other users as

in amazon.com’s 5-star rating system. However, in general, these rating systems

have the following weaknesses: (1) systems cannot force users to rate each other,

and (2) consequently, not all user interactions contribute to ratings, resulting

inaccurate calculation of reputation. In this paper, we show that it is possible to

compute reputations of authors by analysing their reference behaviors in a social

network that is built by extracting key contents of documents. Our method can

extract reputation based on users’ interactions manifested in the constructed

social network.

Reputation management can also be useful in rating documents in their im-

portance. In processing a large amount of unstructured data such as web docu-

Journal of Universal Computer Science, vol. 18, no. 4 (2012), 532-553
submitted: 30/9/11, accepted: 14/12/11, appeared: 28/2/12 © J.UCS



ments and emails, identifying author’s reputation can help in extracting impor-

tant information. For example, an automatic document summarization technique

can extract key phrases and return a shortened version of the original text. Be-

fore automatically summarizing documents, one could filter out less important

documents with the additional aid of author reputation. Visualization is an-

other example of presenting textual data in a schematically abstracted graphical

form [Friendly 2009]. When visualizing a network of relationships among texts in

a graphical form, one could associate quantitative measures of reputation with

nodes and edges of the graph.

In this paper, we develop two automatic reputation computation schemes

using knowledge extraction from unstructured emails through constructing a

social network of authors. The first algorithm computes reputation only con-

sidering direct reference behaviors of authors. The second algorithm goes one

step further and incorporates indirect references in the computation. The social

network based algorithms are also tested on classification of emails. Finally, we

conducted network analysis on the resulting network. We show that the network

is scale-free as many social networks are, but does not have positive assortativ-

ity [Newman et.al. 2003]; rather, each community in the network asymptotically

satisfies a power law distribution.

This paper is organized as follows. In Section 2, we discuss related work. Sec-

tion 3 describes the steps in processing raw email data into tagged and separated

format. In Section 4, we explain the two algorithms for automatic reputation

computation. Section 5 presents experimental results on automatic reputation

computation and email classification tasks. Section 5 also discusses network anal-

ysis on the social network found. Finally, Section 6 presents conclusions.

2 Background

Massive amount of information available on the Internet is motivating researchers

to find efficient and effective ways to extract useful knowledge from massive

quantities of unstructured data. Researchers have been working to transform

such information into structured formats so that the data can be further pro-

cessed and presented in forms that can be easily understood by humans. In order

to process such massive amounts of data, various automation tools have been

developed to extract information of interest.

Automatically computing the importance of documents has been well stud-

ied. Hummon and Doreian [Hummon et.al. 1989] proposed three indices rep-

resenting weights of arcs to automatically identify the important sequences of

links and nodes in the citation network. Later, Vladimir Batagelj [Batageli 2002]

made a progress to efficiently compute the Hummon and Doreian’s weights so

that they can be used for analysis of very large citation networks with several

533Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



thousands of vertices. They are interested in finding communities of papers that

play important roles in citation networks by applying search algorithms. They

focus on connectivity of search paths to identify strong communities. On the

other hand, we focus on authors reference behavior and analyse how commu-

nities form in relation to the reference behavior. Google’s PageRank algorithm,

which has been influenced by citation analysis, also computes the importance of

each page, called PageRank, based on the the number of pages supporting it as

well as the PageRank of supporting pages [Page et. al. 1999]. In these examples,

the referring documents’ importance is considered, but the reputation of the

authors of those referring documents is not.

Many methods for computing reputation usually require human users to pro-

vide ratings. Sporas [Zacharia 2000] is an example of how one can compute the

reputation of individuals of interest in a network. Each user has one reputation

value and the value is updated iteratively according to ratings given by other

users.

We combine the above two approaches to automatically compute reputation

values from documents using social network. The reputation values can be used

to help data mining tasks for cyber security, which is our test application domain.

In the following sections, we describe our approach in detail.

3 Document Preparation for Social Network Analysis

In this paper, we focus on email data to construct social network and compute

reputation. We use emails from three mailing lists over a one month period

for a total of 2, 415 individual emails. In order to construct a social network

for reputation computation, we pre-process email data. Fig. 1 shows the main

steps of preprocessing. First, we start with a very long text file containing a

series of raw emails. Then we separate the file into individual emails, one file per

email, using our separator program, written in Java. These individual emails are

one of the two inputs to reputation computation. Next, we remove the header

and signature information from emails using a MIME (Multipurpose Internet

Mail Extensions) reader to eliminate noise. We then use UIMA (Unstructured

Information Management Architecture) to tag entities such as IP, URL and

DOMAIN in the emails. Fig. 2 shows one of the tagged email by UIMA. 1 UIMA

is an open source architecture that analyses unstructured documents, video and

audio. We wrote a UIMA descriptor that identifies IP, URL and DOMAIN as

well as email addresses of authors. We then convert the UIMA annotated outputs

into tagged emails. We construct a social network using both individual tagged

emails and emails with headers. The purpose of emails with headers is to extract

Date and Time of the emails sent to extract reference behaviors among authors.

1 Details of the email are deleted for confidentiality.

534 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 1: Original data is one long text file containing many emails. We separate

emails using a separator program to individual files. We remove unwanted in-

formation from individual emails using simple MIME Reader to get Non-MIME

formatted emails. These emails are further processed by UIMA to get tagged

emails for the social network algorithms. We build a social network of authors

based on their reference behavior and use Gephi [Bastian et. al. 2009] to visualize

the network information.

4 Constructing Social Networks and Computing Reputations

This section discusses the method for building a social network from email data.

We also discuss the two reputation computation algorithms.

4.1 Building a network

An author reputation social network is a weighted digraph where vertices rep-

resent authors and weighted edges represent reference behaviors. The weighted

edges are computed as described in 4.2 and 4.3. Such a network is built from

a time-stamped collection of documents. Next, in order to present the network

535Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 2: An example of a tagged email using UIMA; this figure shows two

DOMAIN tags and an IP tag.

building algorithms we define several convenient functions. Following these def-

initions we give an example of applying the functions to a set of documents.

In the application at hand, where we build a network from a collection of

email text files, a document is an email, where we assume for each document

d that a single author, denoted by author(d), and a single time stamp, which

we represent by a real number and denote by time(d), is extractible from each

email. Define a function authors that maps sets of documents to sets of authors

by

authors(D) =
⋃
d∈D

{author(d)}

Also, where D is a set of documents, let

times(D) =
⋃
d∈D

{time(d)}

Assume that each document contains one or more entities , the nature of which

may be left as a parameter to be instantiated later. We also assume that the

set of entities, entity(d) contained in a document d is extractable from d. Again,

where D is a set of documents, let

entities(D) =
⋃
d∈D

entity(d)

(Note that in the above definitions, author(d) and time(d) are not sets,

whereas entity(d) is a set.)

While a document d uniquely determines a time t and an author a, the con-

verse determination, a time/author pair (t, a) uniquely determines a document,

536 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



is also true, assuming an author can generate only one document at a time (al-

though the time stamps associated with any particular author may be in rapid

succession.) Therefore, a document is a partial function of a time/author pair.

(The function is partial because an author a may not have generated a document

at a particular time t). We will, in the sequel, regard time/author pairs (t, a) as

documents. Think of (t, a) as the undefined document, if there is no document

in the set D of documents input to our algorithms with both time stamp t and

author a.

The following are three email headers extracted from the real separated email

documents:

From the previous email headers, we can extract:

authors(D) = {owner@xxx.net}
⋃
{owner@yyy.net}

⋃
{owner@xxx.net}

= {owner@yyy.net, owner@xxx.net}
times(D) = {”Wed Mar 09 18:20:18 GMT 2011”, }

”Tue Mar 08 20:34:22 GMT 2011”,

”Fri Mar 04 23:14:00 GMT 2011”}

537Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Therefore, we get six pairs of (t, a), three (in italic) of which correspond to

undefined documents:

(Wed Mar 09 18:20:18 GMT 2011, owner@xxx.net),

(Fri Mar 04 23:14:00 GMT 2011, owner@xxx.net),

(Tue Mar 08 20:34:22 GMT 2011, owner@yyy.net),

(Tue Mar 08 20:34:22 GMT 2011, owner@xxx.net),

(Wed Mar 09 18:20:18 GMT 2011, owner@yyy.net),

(Fri Mar 04 23:14:00 GMT 2011, owner@yyy.net).

A document uniquely determines an author and time but the reverse doesn’t

hold. We consider authors as nodes when constructing the network later on, so

the reverse need not hold (we don’t need to know which documents entities come

from as long as they belong to the same author).

The algorithm Build Social Network takes as input a finite sequence of 4-

tuples, each of which is a well-formed Information entity . An Information entity

is a 4-tuple (e, t, a, b), where e is an entity, t is a time, a is an author and b is

a boolean. (e, t, a, b) is well-formed iff (t, a) is a defined document, e ∈ entity(d)

and b = initial(t, a) where

initial(t, a) =

{
false, if (t, a) is a reply/forward

true, otherwise

Pseudo code for the network building algorithm is given in Algorithm 1.

Again, the input to the algorithm is a finite sequence of information entities, I,

and the output is the social network. (Once entities are extracted, we need not

know which documents they are coming from since information entities have all

the information we need.)

An example of an instance of a sequence of three Information entities is given

below. The example extracts entities from the email shown in Fig. 2. The email

has 3 entities; mypremierfutbol.com, todaysfutbol.com and XXX.YY.ZZZ.220.

The timestamps, author and boolean value for all three are the same since they

belong to the same email.

(mypremierfutbol.com, 22 Jul 2010 13:52:08, s@X.com, FALSE)

(todaysfutbol.com, 22 Jul 2010 13:52:08, s@X.com, FALSE)

(XXX.YY.ZZZ.220, 22 Jul 2010 13:52:08, s@X.com, FALSE)

When multiple authors have a common entity in any of their emails, a di-

rected edge exists to the source author, whose email precedes others in terms

of the time sent, from a destination author whose email has the same entity

with the source email. More specifically, as shown in Fig. 3, when more than one

author has a common entity, e1, and if it is the case where author a1 mentioned

the entity e1 and author a2 also mentioned e1 as a reply or forward, a1 gets

an incoming edge from a2 with weight 1. Otherwise, if e1 was mentioned by

another author a3 not as a reply or forward, a1 will get another incoming edge

538 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Algorithm 1 Build Social Network(I )

for each element (ei, ti, ai, bi) in I do

a← the first author who mentioned ei
if a = ai then

{self–referencing, next element in I}
break

end if

if bi =FALSE then

{ei is in a reply or forward document}
make a connection from ai to a with weight 1

end if

if bi =TRUE then

{ei is in an original document}
make a bidirectional connection between ai and a with weight 2

end if

end for

from a3 with weight 2 and a3 will also get an incoming edge from a1 with weight

2. Authors mentioning common entities supports the fact that those entities are

hot issues and the author who brought the issue first gets the credit. We only

give a positive weight to directed edges because regardless of the context, either

positive or negative, authors mentioning a common entity increases the popu-

larity of the entity. The rationale for independent reference getting twice the

weight is that since all the authors involved in independent reference are orig-

inals, their importance is identified as originators, unlike the authors of replies

and forwarded messages. These weights are the basis for computing reputations

of authors in algorithms described in 4.2 and 4.3.

We have developed two algorithms to calculate the reputation of each author;

one uses only direct references and the other uses indirect references as well. Both

algorithms run on the network built from the previous algorithm.

4.2 A Sporas-based algorithm (Direct reference)

The first algorithm we propose is based on Sporas, a reputation mechanism for

loosely connected online communities [Zacharia 2000]. Sporas updates user’s rep-

utation upon each rating given by another user. Ratings given by users with high

reputation are weighted more. Since our application doesn’t assume centralized

environment where the system can ask users to rate each other whenever they

have interactions, we adopted reference behavior as a way of giving ratings to

other users. Therefore, from the social network we built, a node, which represents

an author, has a reputation based on incoming edges it gets.

539Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 3: A social network of three authors; a1, a2, and a3. All three of the

authors mention the same entity, e1. a2 references a1 as a reply or forward while

a1 and a3 reference each other independently.

The reputation value for each author is computed as follows:

Rt+1 =
1

θ

t∑
i=1

Φ(Ri)×Rother
i+1 ×

Wi+1

2

Φ(R) = 1− 1

1 + e
−(R−D)

σ

Where,

t is the number of references the author has received so far,

θ is a constant integer greater than 1,

W i represents the rating given by the user at time i,

Rother is reputation of the author who is referencing R,

D is the range of the reputation values,

σ is the acceleration factor of the damping function Φ.

The smaller the value of σ, the steeper the damping factor Φ(R).

For experiments, we used θ = 3 and σ = 0.5. The maximum value for the

reputation is 5 and the default value is 1. The damping function Φ(R), ensures

that the reputations of trustworthy persons are more robust against temporary

malicious attacks. The value of θ determines how fast the reputation value of the

user changes after each rating. The larger the value of θ, the longer the memory

of the system. For detailed information on Sporas algorithms, refer to [Zacharia

2000].

4.3 The Indirect Referencing algorithm

The second algorithm is based on the TrustMail rating system [James et.al. 2004].

TrustMail calculates the reputations of incoming emails based on human ratings.

540 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Since the original algorithm was not designed for distributed settings, authors do

not have representative reputation values. In the TrustMail system, reputation is

computed only when a user asks for another’s reputation value. The reputation

values depend on the relationship between all of the requester’s neighbors and the

destination node (i.e., the node being evaluated). Consequently, reputations are

relative. Since we want authors to have objective reputation values–so that we

can have results to compare with the first algorithm–we evaluate all the relative

reputation values for each author. In other words, we run the indirect algorithm

for each author node as if each node is asking for everyone else’s reputation

values. Algorithm 2 describes how reputation can be inferred when the source

is asking for sink ’s reputation value. We then average out the reputation values

since we accumulate all the reputation values from all the neighbors a node has.

Algorithm 2 getRating(source, sink)

mark source as seen

if source has no rating for sink then

denom = 0, num = 0

for each j in neighbors(source) do

if j has not been seen then

denom++

j2sink = min(rating(source, j), getRating(j, sink))

num += rating(source, j) * j2sink

mark j unseen

end if

rating(source, sink) = num/demon

end for

return rating(source, sink)

end if

The main idea that given source i and sink node s, if i has direct edge to

s then no inference is necessary. If there is no direct edge between i and s, i

forwards the query to all the neighbors, namely j. The algorithm calculates t is ,

the relative reputation of the sink for the source i. The condition in this formula

ensures that the source will never trust the sink more than any intermediate

node.

tis =
1

n

n∑
j=0

{
(tjs × tij), if t ij≥ t js
t2i j, if t ij < t js

541Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



4.4 Applying time decaying function to the algorithms

There could be cases where multiple authors independently discuss the same

entity. As discussed in section 4.1, the dependency relationship, the direction

of an edge, is determined by the timestamp. Whoever has mentioned the entity

earliest gets credit for the originality, whereas in the independency relationship,

all the involved authors get credit regardless of time in independency relation-

ship. Consider the case in Fig. 4. In addition to a1 and a3, a4 mentions the same

entity, e1, say, a week later. According to the Sporas-based algorithm, both a4

and a1 should get incoming edges with weight 2. However, if the latter indepen-

dent reference, which is a4 mentioning e1, happens after a sufficient amount of

time, it is reasonable to consider the latter reference as a new topic rather than

relating it to the previous reference.

Figure 4: Independency relationship; a1, a3 and a4 get bidirectional edges from

each other since they all contain e1, independently.

To accommodate this issue, we incorporated a time decaying function shown

in Fig. 5. When a new entity is introduced by a source author and shortly ref-

erenced by others, there is a high chance that the references are related, but

the relevance decreases over time. Therefore, after a sufficient amount of time

has passed, we consider the entity to be independent from previous references.

We use the cosine function to capture this idea. According to our time decaying

function, when a new entity, e2, is mentioned by the first author and indepen-

dently referenced by another author immediately, they will both get incoming

edges with weight 2 (technically, the latter author will get an edge with weight

slightly less than 2 by the function). As time passes, authors who independently

references e2 will have incoming edges with weight less than 2 according to the

542 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



time decaying function, at worst case with weight 1, when the topic has com-

pletely died out. Now, the edge weight of an independent reference is calculated

as follows.

weight = 0.5× cos(period× (t2 − t1)) + 1.5

Where, t1 is the time when original author introduce an entity, e, t2 is the

time when a new author independently references e, period is a 604,800,000 /

2× PI.

604,800,000 is a week in milliseconds and period is set so that the period of

the cosine function be a week.

Figure 5: Time decaying function: cos(period× t)

5 Analysis

5.1 Comparison of the Two Algorithms

From 2,415 emails, we have extracted 426 authors. In Fig. 6, we show the repu-

tation values of all the authors, sorted in descending order from the perspective

of the second algorithm. For the two algorithms, the reputation of authors in

the top and bottom tiers tend to agree more than the middle ones.

The comparison between the two algorithms with the time decaying function

is shown in Fig. 7. Fig. 8 shows differences in reputation values using the time

decaying function or not using. We only picked 15 authors here, since visualizing

all 426 authors would be messy. We picked five authors with high reputation,

five authors with middle reputation, and five authors with low reputation. Some

differences from authors with high reputation were zero and that’s why some

values are not shown. For authors with high and low reputations, the effect of

time decaying function was minimal. Authors with the mid-reputation range

543Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 6: Reputation of authors before applying the time decaying function.

Figure 7: Reputation of authors after applying the time decaying function.

show that the difference between two algorithms is smaller in most cases after

the time decaying function is applied.

We also compared human assigned reputations and reputations computed by

the algorithms. Eleven authors were picked and assigned reputations by a human

domain expert. Fig. 9 shows how the reputations given by the domain expert

compared to the reputations computed by the algorithms before applying the

time decaying function. Fig. 10 shows the result with the time decaying function.

It is hard to conclude whether one is superior to the other since only eleven

authors’ reputation values are available from the domain expert. This difficulty

motivated us to test our algorithms further; we compare the two algorithms

with a decision-tree based machine learning algorithm in categorizing emails in

Section 5.2.

In summary, we have shown that the two algorithms produce agreeing rep-

utation values; but the reputations assigned by the domain expert shows small

divergence from the reputations given by the algorithms. Possible explanations

include the human expert may have assigned higher reputation values to recog-

544 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 8: Effect of using time decaying function. We show differences of the rep-

utations given by the two algorithms before and after applying the time decaying

function. We pick 15 authors to compare; first 5 entries represent authors with

high reputations, next 5 entries represent authors with middle reputations, and

the last 5 entries represent authors with low reputations.

Figure 9: Human assigned reputations compared with the algorithm based rep-

utations: without the time decaying function

545Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 10: Human assigned reputations compared with the algorithm based rep-

utations: with the time decaying function

nized authors or authors given high reputation by the domain expert were not

active in writing important emails during the time the data were collected (one

month). For future research, we plan to gather email data ranging over a year

and study how experiment results change. It would be interesting if we divide

the period into three so that each has four months of email data and compare

how reputations of authors change over time.

A word of clarification may be needed about the tail ends of Fig. 6 and Fig.

7. In Fig. 6 and Fig. 7, the tail with euqal values represents authors with the

default value. The difference only exists because author reputation given by the

two algorithms were in different ranges before normalization. Since reputations

given by the second algorithm go up to 255, even if an author has the same default

reputation value from both algorithms, which is 1, when normalized, reputation

given by the second algorithm appears to be smaller. The same explanation

applies to Fig. 9 and Fig. 10 as well as other comparisons. For example, in Fig.

8, the rightmost short bars from authors with low reputation actually represent

no difference between the two algorithms.

5.2 Email Categorization Experiments

Generally, reputation results are very hard to evaluate since there is no concrete

values to compare with and the values are often subjective. We have used human

expert’s ratings to compare with outputs from our algorithms but the available

546 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 11: Distribution of the reputations of authors by the direct reference

algorithm follows power law distribution

number of ratings was not enough. To further evaluate the efficacy of our al-

gorithms, we test the algorithms in email categorization task and compare the

results with machine learning algorithms.

We categorize emails into three groups: useful, helpful, and useless. We used

16 attributes to categorize emails. The details of each attribute is explained in

Table 1. We use RapidMiner [Mierswa et. al. 2006], which is the most widely

used open source data mining tool, to train the model. First, we manually cat-

egorize 100 samples of emails into the three groups by reading the contents of

the emails, without relying on the attributes so that our manual categorization

be independent from the machine learning of RapidMiner. Then we train the

model with the training set. Fig. 14 shows the decision-tree model trained.

To build a social network of emails, for each email, we counted the number of

entities referenced by other emails. Analogous to the reference behaviors among

authors, our intuition is that, if an email has higher reputation than others, (i.e.,

it has been referenced highly) then it is categorized as useful. The reputation of

emails ranges from 0 to 10.

Among 709 emails, the decision tree model categorized 537 as useless, 67 as

helpful and 105 as useful. As shown is Fig. 15, most of the emails categorized as

useless has low supported score, i.e., less than 1, and only a few have supported

score higher than 3. The emails categorized as helpful have consistent supported

score between 2.5 and 3.5. The useful category, as expected, has the highest

supported score on average, most of these emails having supported score of more

547Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 12: Distribution of the reputations of authors by the indirect reference

algorithm follows power law distribution

than 3.5.

5.3 Social Network Analysis

In this section, we analyze the social network constructed in Section 4. For

the purpose of analysis, we used Gephi [Bastian et. al. 2009], an interactive

visualization and exploration platform for networks and complex systems.

5.3.1 Community Detection

Community detection can reveal interesting facts about social networks. For ex-

ample, the community structure of a social network can serve as a summary of

the entire network, producing an easy to understand visualization of the net-

work. Fig. 16 is a visualization of our social network. Nodes and edges represent

authors and reference behaviors, respectively, in the emails. Colors represent

communities. The network has 36 communities and the modularity is between

0.46. A network with modularity of 0.4 or greater has meaningful community

structures.

5.3.2 Average Path Length

The network has the average path length of 4.1, which is shorter than the “e-mail

network”of Ebel et al. [Ebel et. al. 2002]. Since email communication doesn’t

548 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



(a) Modularity class 1

(b) Modularity class 9

(c) Modularity class 38

Figure 13: Each community follows power law distribution

require senders and receivers to closely share certain chracteristics, unlike other

networks, such as co-authorship networks, email networks are believed to have

lower value of average path length. This means that nodes in the network in

general are more closely connected.

549Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Figure 14: Trained tree model for categorization by Rapidminer

(a) categorized useless (b) categorized helpful

(c) categorized useful

Figure 15: Comparing categorization result from the machine learning algorithm

versus supported score of emails

5.3.3 Scale-free behavior

A scale-free network is a network with its degree distribution following power

law, at least asymptotically. As shown in Fig. 11 and Fig. 12, the distribution of

550 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



Attribute Name Usage

ConcreteSecurityTerm Concrete security terms in the email,

such as root kit, Zeus

GenericSecurityTerm Generic security terms in the email,

such as threat, Malware

SpecialWords Special interesting words,

such as Russia, Iran

SecurityVerb Security related verbs in the email,

such as attack, hide

Length Length of each email

RegistrantInfo True, if the email contains system-

generated registrant information

Request True, if the email is requesting specific information

ReplyToRequest True, if the email is a reply to any request

Attachment True, if the emails contains attachment

List True, if the email contains non-

Natural Language formats such as a list

IP IPs in the email

DOMAIN DOMAINs in the email

URL URLs in the email

EMAIL EMAIL addresses in the email

WinRegistry True,

if the emails contains window registry information

Total Sum of the number of attributes values

(except the attributes that return boolean values)

Table 1: Sixteen attributes used for training

reputation in the overall network follows a power-law distribution. Interestingly,

each community in the network also follows a power-law distribution as in Fig.

13. Within each community, there is a “super” author that the members of

the community follows. This implies that the network has negative assortativity

which will be discussed in the next section.

5.3.4 Assortativity

Assortativity is a preference for nodes in a network to attach to others that

are similar or different in a metric. We calculated the assortativity coefficient,

r, of the network found. The assortativity coefficient is essentially the Pearson

correlation coefficient of degree between pairs of linked nodes [Newman 2002].

551Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



The value of r is approximately -0.2 in the network. This is interesting because,

unlike many social networks, which have positive assortativity [Newman et.al.

2003], each community in our social network follows a power law distribution.

This means that in each community, there is small number of authors with high

reputations followed by a greater number of authors with lower reputations as

shown in Fig. 13. This characteristic is shared with citation networks [Page

et. al. 1999]. Another fact is that the network has two obvious clusters as shown

in Fig. 16. The clusters have almost equal number of authors and the degree

distributions of nodes for the two clusters are quite similar. The nodes connecting

the two cluster may play special roles. We plan to investigate the roles in our

future work.

Figure 16: Social network of the authors; nodes are weighted with degrees, colors

are partitioned by modularity classes.

6 Conclusions and Future Work

Document processing and social network reputation computation have been

around for some years, but combining them to automatically compute repu-

tations of authors and to categorize emails has rarely been done. We developed

552 Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...



a method to extract references from contents of documents and to build author

reputation network automatically. We also have developed two algorithms for

calculating reputations of authors by traversing the network using direct refer-

ences and indirect references. Our methods can be applied not only to emails

but also to other unstructured data such as RSS and proxy logs, which will be

our next step. We analyzed the reputation network generated using community

detection. Some interesting properties are identified–such as power-law distri-

bution of author reputations within each community as well as in the global

network . In future research, we plan to evaluate importance of documents using

automatically extracted author reputation and construct visualization tools that

highlight the importance.

References

[Bastian et. al. 2009] Bastian, M., Heymann, S., and Jacomy, M.: “Gephi: An open
source software for exploring and manipulating networks”, 2009.

[Batageli 2002] Batagelj, V., and Batagelj, V.: “Efficient algorithms for citation net-
work analysis”, 2002.

[Ebel et. al. 2002] Ebel, H., Mielsch, L. I., and Bornholdt, S.: “Scale-free topology of
e-mail networks”; Physical Review E 66 (2002), 035103+.

[Friendly 2009] Friendly, M.: “Milestones in the history of thematic cartography, sta-
tistical graphics, and data visualization.”; http://datavis.ca/milestones/.

[Hummon et.al. 1989] Hummon, N. P., and Doreian, P.: “Connectivity in a citation
network: The development of DNA theory.”; Social Networks 11 (1989), 39-63.

[James et.al. 2004] James, J. G., and Hendler, J.: “Reputation network analysis for
email filtering.”; In In Proc. of the Conference on Email and Anti-Spam (CEAS),
Mountain View (2004).

[Jung 2009] Jung, J. J.: Trustworthy knowledge diffusion model based on risk discovery
on peer-to-peer networks. Expert Systems with Applications, 36(3):7123–7128, 2009.

[Jung 2010] Jung, J. J.: Integrating social networks for context fusion in mobile service
platforms. Journal of Universal Computer Science, 16(15):2099–2110, 2010.

[Jung 2012] Jung, J. J.: Evolutionary Approach for Semantic-based Query Sampling
in Large-scale Information Sources. Information Sciences, 182(1):30–39, 2012.

[Mierswa et. al. 2006] Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., and Eu-
ler, T.: “Yale: Rapid prototyping for complex data mining tasks.”; In KDD ’06:
Proceedings of the 12th ACM SIGKDD international conference on Knowledge dis-
covery and data mining (New York, NY, USA, August 2006), L. Ungar, M. Craven,
D. Gunopulos, and T. Eliassi-Rad, Eds., ACM, pp. 935–940.

[Newman 2002] Newman, M. E. J.: “Assortative mixing in networks.”; PHYS. REV.
LETT. 89 (2002), 208701.

[Newman et.al. 2003] Newman, M. E. J., and Park, J.: “Why social networks are dif-
ferent from other types of networks.”; Physical Review E - Statistical, Nonlinear
and Soft Matter Physics 68, 3 Pt 2 (2003), 036122.

[Page et. al. 1999] Page, L., Brin, S., Motwani, R., and Winograd, T.: “The pagerank
citation ranking: Bringing order to the web, 1999.”

[Zacharia 2000] Zacharia, G.: “Trust management through reputation mechanisms.”;
Applied Artificial Intelligence 14 (2000), 881–907.

553Lee J.Y., Duan Y., Oh J.C., Du W., Blair H., Wang L., Jin X. ...


