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Abstract: Light Detection And Ranging (LiDAR) technology provides the means for fast and 
accurate acquisition of geospatial data. Quality control of the derived data is an important 
process for verifying whether the requirements of the scanning mission have been met. Point 
density presents one of the most important factors for evaluating LiDAR data. This paper 
presents a new method for evaluating the point density of LiDAR data through by applying 
methods of computational geometry. This method treats the LiDAR scan with regard to terrain 
characteristics and divides it into those areas that can be scanned and those that prevent quality 
scanning and produce weak returns. Point density evaluation is performed using the Voronoi 
diagram, which allows efficient extraction of actual LiDAR point density. 
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1 Introduction  

1.1 LiDAR scanning 

Over the recent years, Light Detection and Ranging (LiDAR) has become one of the 
leading technologies in remote sensing. Mounted on airplanes, airborne LiDAR 
systems are capable of fast data acquisition from remote geographical areas. Other 
types include terrestrial scanning where LiDAR scanners can be stationary or 
mounted on land vehicles, however this paper is focused on data acquired by airborne 
scanning. Range measurement is performed by observing the time delay between the 
transmission and the detection of the laser pulse [Shan, 09]. In order to determine the 
position of the scanner, the global positioning system (GPS) is used, while the inertial 
measurement unit allows for determining the roll, pitch, and heading of the sensor 
mounted on the aircraft. This information, combined with the angular data measured 
by the scanning mechanism, is used to determine the georeferenced coordinates of the 
scanned points. Modern LiDAR scanners are capable of performing over 300,000 of 
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effective measurements per second [Massaro, 14] and ranging accuracy down to 5 
mm [Deems, 13]. 

While the evaluation of LiDAR data is mainly focused on the vertical and 
horizontal accuracies of LiDAR points or inconsistencies from overlapping strips 
produced by multiple scanning [Habib, 10], there are other factors that have great 
influence on the quality of LiDAR data.  

1.2 Point density significance and scanning issues 

Point density, especially, has been recognised as one of the more important 
characteristics in mission planning [Maune, 03]. The effect of point density and point 
spacing on the accuracy of DTM generation has been studied by [Gueudet, 04, Liu, 
07, Pirotti, 10, Sanii, 08]. These authors observed the accuracy of LiDAR-derived 
DTM by artificially reducing the point densities and compare them to the original 
scans. The effect of point density on DTM generation accuracy was also noticed by 
[Mongus, 12]. Although point density is recognised as an important factor, authors 
rarely provide methods for its estimation. The most obvious approach, often used in 
practice, is achieved by dividing the scan into cells and counting the number of points 
within them. While this approach offers a vague description of point density, it does 
not consider those variations in local point densities that appear due to various factors 
during scanning. Balsa-Barreiro et al. [Balsa-Barreiro, 12] studied the variations of 
point densities produced by an oscillating mirror scanning mechanism. This point 
density estimation was performed by dividing a single strip covering a terrain into 
several segments according to the scan angle. Comparison between the segments 
revealed an increase in point densities within the sectors where the scan angles are at 
the maximum. The authors suggested excluding extreme sectors for calculating the 
average point density. Alternative approaches for point density estimation that employ 
triangular meshes or Voronoi diagrams were suggested by [Shih, 06]. In their more 
recent research [Lari, 12] presented a method that considered planar relationships 
between neighbouring LIDAR points with focus of calculating point density of planar 
points. Local point densities are estimated by using a predefined number of nearest 
neighbours for each point per area of the circle between the point and the furthest of 
the selected neighbours. Their approach also provides suitable means for estimating 
the point densities in terrestrial LiDAR scans.  

Problems arise when a pulse produces no return, which leads to voids in the data. 
Void appearances in LiDAR data occur due to several factors, most of which can be 
attributed to shadows and weak returns [Becker, 13]. Although the effects of both 
cases may be similar, distinguishing between shadows and weak returns allows for a 
better evaluation of LiDAR scans. Shadows are a consequence of objects blocking the 
path of the laser pulse and can be avoided or drastically reduced by multiple scanning. 
On the other hand, voids that appear due to weak returns are caused by terrain 
characteristics that prevent proper scanning. Weak returns are usually the result of the 
laser pulse hitting a surface, which reflects the majority of the pulse away from the 
scanner, and returns too small an amount of pulse energy for detection [Maune, 03]. 
Multiple scanning of such areas does not solve this problem, and thus it is viable to 
question whether they should be considered during point density estimation.  

Minimal point density is a general requirement in the contract between the 
customer and the LiDAR operator, and presents one of the major influences on 
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variable mission costs [Saylam, 09]. The expected point density of LiDAR scanning 
is mainly dependent on mission plan parameters such as scan area, scan frequency, 
scan angle, pulse repetition frequency, scanning altitude, and aircraft speed. In the 
desire to set these parameters for minimising mission costs, quality control presents 
an important process for both parties to confirm as to whether the mission 
requirements have been met. This paper proposes a new method for LiDAR point 
density evaluation by taking into account those terrain areas that prevent effective 
scanning. LiDAR data evaluation focuses on areas that can be directly influenced by 
adhering to the mission plan, while those areas of weak returns that are the results of 
unfavourable terrain characteristics are excluded. Separation of weak return areas 
from successfully scanned areas reduces the bias in estimating the point density of 
scans covering unfavourable terrain characteristics such as rivers, lakes, etc. 

2 Point Density Calculation 

While point densities from LiDAR scans rely on several factors, a theoretical 
estimation is described by 
ߩ  = ௡ܨ ௌܶ/(1)                                       ܣ 
 
where F represents the scanning frequency, ܶݏ the net flying time per strip, ݊ the 

number of strips, and ܣ the scanned area [Baltsavias, 99]. While this equation 
provides a vague estimation, the expected result may be very different from it, 
depending on terrain characteristics, weather conditions, navigational errors, etc. 
Furthermore, the number of LiDAR points may be further reduced by filtering, 
depending on the purpose of LiDAR scanning. In order to provide a more precise 
estimation of point densities within a LiDAR scan, the proposed method handles data 
voids that can appear during scanning due to those factors mentioned above. This 
method isolates areas of weak returns and focuses on estimating the point densities of 
the remaining areas. Point density is estimated by constructing a Voronoi diagram on 
LiDAR points and observing the areas of the Voronoi regions. The Voronoi diagram 
is also used for reconstruction of the scan boundary, and also for precise descriptions 
of void areas, that are retrieved by inserting artificial points into the Voronoi diagram. 
This method consists of the following steps:  

 
 Voronoi diagram construction, 
 Scan boundary reconstruction, 
 Weak return void filling,  
 Point density calculation using the Voronoi diagram 

2.1 Void Description 

In order to handle voids in LiDAR data, it is first necessary to describe them. In 
continuous data, a void can be considered as any discontinuity that appears. LiDAR 
points, however, being sampled at a specific scanning frequency are recorded 
irregularly. Given the nature of LiDAR scanning, it can be expected that the points 
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are recorded with almost constant spacing along the scan line, with variations at 
objects and vegetation borders. Assuming ideal scanning conditions (flat terrain, 
straight flight line, etc.) any deviation from the average point spacing would indicate 
the occurrence of a void. By observing scanned points, a void appears when the 
distance between two consecutively recorded points exceeds the average spacing by a 
certain value. However, given that no point is expected to appear within the average 
point spacing of another, it is reasonable to take this space into account as well. 

It is for this purpose that an area of influence is constructed around each point in 
such a way that each point covers an area between the previously and subsequently 
recorded point. This area is defined as the union of half-distances between 
neighbouring points. Based on this, a void is no longer regarded as the complete 
distance between consecutively recorded points, thus exceeding the average spacing. 
Instead, the average spacing is subtracted from both edges to the neighbouring points, 
as given in Equation 2: 
	ݒ  = 	ݔ	 ∈ 	ܺ	|	 ௜ܲିଵ 			+ 	 ݀̅/2	 ൏ 	ݔ	 ൏ 	 ௜ܲ − 	 ݀̅/2               (2) 

 
where ݒ indicates the covered length (area) of the void, X represents a line, d the 
average point spacing of LiDAR points, and points ௜ܲିଵ and ௜ܲ  the points 
encompassing a void. An example of this idea can be seen in Figure 1. 
 

 

Figure 1: Void area (red) restricted by neighboring points 

As it is, this approach is only suitable for describing voids on flat surfaces, which 
is hardly the only expected result of LiDAR scanning. Any change in the geometry 
that occurs by the appearances of objects or vegetation disrupts the linear pattern of 
the scanned points. This understanding requires a different approach to handling 
voids, although the main concept of limiting the voids based on point distribution in 
local neighbourhoods remains valid. 

2.2 Detecting weak returns 

As mentioned earlier, the proposed method treats voids caused by shadows and those 
caused by weak returns separately. By excluding areas of weak returns, such as rivers 
or lakes, the point density estimation is focused only on those terrain parts that allow 
effective scanning. While point spacing by itself provides little indication whether a 
void is caused by a shadow or a weak return, LiDAR scanning provides additional 
data along with position, which can be exploited for further analysis. For the purpose 
of this method the required input data must include the GPS time of recording along 
with positional information of each point. A strong correlation between the time and 
spatial position of each LiDAR point allows for void detection in the time domain, in 
which the changes in the scan pattern do not pose a problem.  
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Except on the edges of the scan line, scanning is usually performed at an almost 
constant frequency. The elapsed time or time-frames between consecutively scanned 
points are thus expected to be nearly identical with only minimal variations. Based on 
this, the time for each detected return can be predicted. In this way, the missing 
returns can be detected by finding a deviation from the predicted time. Although the 
shadows increase the time frames as well, their effect in comparison is minor enough 
to be ignored, which allows for distinguishing between both void types. The 
exception present the situations of weak return areas appearing within shadows, in 
which case a shadow may be falsely detected as part of the weak return area. 

Identifying weak returns requires the defining of a tolerance for exceeding the 
expected time frame. Depending on the number and particularly the sizes of the voids 
within a scan, the mean time-frame between consecutively scanned points may 
significantly exceed the reasonably expected value therefore the median value is used 
instead. Similarly as in the geometrical description (Equation 2), a void can now be 
perceived in the time domain, which provides a significantly more reliable approach 
for detecting weak returns. This means that each point has to appear within its 
designated interval. The condition for identifying a weak return in a stream of LiDAR 
points, is given as follows: ݐ௣௜ −	 ௣௜ିଵݐ 	>  (3)                           2/ݐ3̃	

 
with ݐ௉௜ and ݐ௉௜ିଵ being the GPS times of consecutively scanned LiDAR points, and ݐ 
the median value of all time frames. The median value is used instead of the mean, 
since weak returns can significantly increase the time between consecutively scanned 
points, and can thus influence the mean value. Regarding the correlation between the 
time and the position of the scanned points, the expected areas of influence are used 
for setting the maximum tolerance. Within the time domain, the area of influence of 
each point can be viewed as the time between	ݐ௣ − ௣ݐ and 2/ݐ̃ +  where the upper 2/ݐ̃
value corresponds with 3̃2/ݐ between two consecutively scanned points. This 
provides the same interval in the time domain as described in Figure 1 for the spatial 
domain for detection of voids.  

Each pair of points encapsulating a void detected by this approach is marked for 
further processing. An example of weak return detection within a LiDAR dataset 
consisting of a river, vegetation, and several buildings is displayed in Figure 2. As it 
can be seen, the method outlines the points bordering on undetected water surfaces, 
while the shadows are unaffected. The red marked points represent those LiDAR 
points bordering on voids caused by weak returns. While water surfaces can produce 
returns, these are too dispersed compared to the rest of the scan to providing a proper 
representation of the scanned surface.  

As already mentioned, the proposed approach relies on the correlation between the 
time and the position of consecutively scanned points. However, this correlation is 
disrupted whenever a sudden change in the geometry appears, such as the appearances 
of vegetation or objects. While objects present minor problems as the positional 
variations are usually relatively uniform along the objects borders, vegetation 
introduces substantial variations in the positions of the LiDAR points. This requires 
paying special attention to those void border points appearing in vegetation areas, 
such as trees or bushes on riverbanks. 
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Scanning a flat surface results in evenly-distributed points along the scan line. 
However, scanning vegetation or objects produces significant positional variations 
and breaks the linear distribution of consecutively scanned points. The result of this is 
a diminished correlation between the time of recording and the position of the 
scanned point, consequently the void border points detected during the time domain 
may not be properly reflected in the scan geometry. Void border points can be 
detected behind properly scanned points, thus preventing proper void description. 

The distances between consecutively scanned points are observed in order to 
counter this effect. Any points found nearer between detected void borders along the 
scan-line, are used to replace the detected border points.  
 

 

Figure 2: LiDAR points bordering on voids (red) 

Figure 3 displays an example of proximity correction. The border points along the 
scan line are detected as too much time passed between consecutive returns (ݐ௜,  .(௜ାଵݐ
While this represents a void in the time domain (left), the actual spatial representation 
requires that the borders are corrected remove any points appear within a void. This is 
done by replacing the border points with those that are geographically nearest (right).  

Since the void border points in this approach are identified only per scan line 
appearance, it is necessary to examine the broader vicinity to completely describe the 
voids in local areas. The most straightforward approach would be to connect the 
neighbouring points into polygons and then subtract those polygons from the rest of 
the covered area. However, the arrangement of the void border points can lead to 
severe difficulties without a single solution. Among others, the unclear order of the 
points, concavities, possible holes within the polygons (caused by isolated validly 
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scanned points within a void), or voids running along the scanning direction, which 
may completely thwart the identification of a border. 

A relationship between neighbouring points should be established to counter 
these problems. Constructing a Delaunay triangulation or its dual the Voronoi 
diagram provides a means of creating a quality mesh without unwanted elements [de 
Berg, 08]. 

 

 

Figure 3: Proximity correction of void border points 

2.3 The Voronoi diagram 

While the use of Delaunay triangulations or Voronoi diagrams was suggested for 
point density estimation [Shih, 06], none of the solutions have suggested an approach 
for proper handling of data voids. The proposed method constructs the Voronoi 
diagram of a LiDAR dataset with regard to the weak return data voids, which 
improves the overall precision and reduces the bias of point density estimation caused 
by unfavourable terrain characteristics.  

The previous section mentions the consideration of LiDAR points with regard to 
their areas of influence. While seen at the level of the scan-line this problem is 1-
dimensional, parallels of this idea to the 2D Voronoi diagram are apparent. Although 
LiDAR points are provided with 3D positions among other data, only the x and y 
coordinates are used for constructing the Voronoi diagram. By using LiDAR points as 
sites of the Voronoi diagram, the Voronoi regions around the sites allow for 
computation of point density for each individual LiDAR point as the inverse area 
value of the Voronoi region. Disregarding data voids and other issues, the point 
density of a LiDAR dataset could be calculated by: 

ߩ  = ௡∑ ஺௥௘௔ሺோ೔ሻ೙೔సభ                                (4) 

 
where ݊ represents the number of LiDAR points and ܴ௜ the Voronoi region of each 
point. While Equation 4 might provide a quick estimate of LiDAR point density by 
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subsequently subtracting the Voronoi regions constructed by void border points, there 
are two main problems that need to be addressed first.  

Figure 4 displays a region of the Voronoi diagram constructed on the previously 
shown dataset (see Figure 2). The sites on the outer boundary of the dataset produce 
disproportionally large Voronoi regions, and are even unbounded at the sites that are 
part of the convex hull. Naturally, these regions cannot be used to represent the areas 
of influence of their corresponding LiDAR points, and need to be culled from the 
Voronoi diagram. Another issue is the handling of void borders. Just as each void 
border point was marked during void detection, so were their corresponding Voronoi 
regions. As explained in the continuation, simply removing those void regions is not 
sufficient for accurately describing weak return data voids. 

 

 

Figure 4: Voronoi diagram of LiDAR points from a region of the dataset displayed in 
figure 2 

2.4 Boundary reconstruction 

Along with culling the uncharacteristic Voronoi regions, the computation of the outer 
boundary is necessary to define the exact area covered by the LiDAR points. 
Assuming all outer points belong to the bounding rectangle, this process is trivial. 
However, if concavities appear on the outer boundary, they produce too large Voronoi 
regions within the bounding rectangle, and need to be addressed accordingly.  

Although Delaunay triangulation-based methods for detecting the boundary points 
of point clouds do exist [Žalik, 06], those methods rely on the statistics of interior 
angles and edge lengths. Whilst this approach seems appropriate, and as an according 
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data structure is already given with the constructed Voronoi diagram, the z-shaped 
scanning pattern of the LiDAR points produced by the oscillating mirror scanning 
mechanism provides a possibility for constructing the exact boundary.  

For this purpose the edges of the scan-lines are identified within the point cloud. 
While LiDAR points may carry the information as to whether they present the edge of 
a scan-line, this is marked by the LiDAR system and may not necessarily mark the 
real edge in the scanned geometry. 

 

 

Figure 5: Boundary region culling 

Therefore, it is necessary to check the points, as to whether they are the most 
extreme within a single swing. This is done by observing the distances between the 
starting point and the consecutively scanned points of the scan line. The distances 
increase until the furthest point is found, after which the distances begin to decrease. 
Since vegetation or objects may produce local variations of the calculated distances, it 
is necessary to use a frame of several points along the scan line to ensure that the most 
distant is found. The selected point is used as the base for finding the opposite 
extreme by continuing the approach. The opposite extremes are used to construct two 
separate polylines, representing the left and the right boundary of the point cloud 
along the flight direction. As for the top part of the boundary, the points between the 
beginning and the first extreme point are used.  

In order to complete the frontal part of the boundary, the Voronoi neighbourhood 
of the starting point is checked for the nearest point of the scan line in the opposite 
direction, after which all points to the next extreme are used to construct the 
remainder of the starting boundary. The back side of the boundary is determined in 

595Rupnik B., Mongus D., Zalik B.: Point Density Evaluation ...



the same way using the finishing point and the last opposite extreme points. In order 
to deal with concavities, which represent the biggest problem of outer boundary 
reconstruction, each region of the Voronoi diagram is checked for intersection with 
the boundary polygon. All Voronoi regions intersecting the boundary polygon are 
culled from the Voronoi diagram, with the remaining regions covering the actual 
scanned area (Figure 5). In this way, all Voronoi regions that do not provide a suitable 
description in local areas of influence are removed. 

2.5 Filling the voids 

The Voronoi regions constructed around the void border sites (red points in Figure 6a) 
greatly deviate from the other regions in size. The straightforward approach suggests 
removing any region belonging to a border site. However, depending on the void 
geometry, a similar problem appears as with handling the outer boundary. Non-void 
points can produce overly large Voronoi regions (Figure 6b), which do not properly 
represent their local point density (Figure 6c). One of the reasons for this occurrence 
is the fact that every border point is not necessarily found during void detection. This 
is especially noticeable at concavities or in case where a void border runs parallel 
along the scanning direction, in which case a majority of the border may remain 
completely undetected.  

 

   
a     b 

   
c    d 

Figure 6: LiDAR weak return void borders (a), Voronoi diagram of the LiDAR 
dataset (b), Voronoi diagram with culled void regions (c), weak return void 

reconstruction (d) 
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Lines between the void border points are observed in order to address this problem. 
These lines are mostly aligned with the scan- line with minor variations. Based on the 
void definition with respect to the area of influence of neighbouring points, the 
solution requires bounding the void areas, while preserving the area of the scanned 
points. This cannot be done by simply removing the void border sites. Instead of this, 
the lines between void border points are used to predict the positions of weak return 
points. The points are predicted by linear interpolation between both void border 
points with the average distance between the last 10 consecutively scanned points. 
Artificial points calculated this way are used as additional input to the Voronoi 
diagram. The effect of inserting the artificial points becomes apparent, when 
observing the revised Voronoi regions (Figure 6d). The artificial points essentially fill 
those spots where the points were expected to appear, and thus expand the 
neighbouring Voronoi regions until they are bound by the actual void border sites. 
Consequently, it is no longer necessary to remove the void border sites from point 
density computation. Instead, the sites/regions constructed by the artificial points are 
used to describe weak return voids in the dataset.  

At this stage the marked Voronoi regions offer a solid description of any weak 
return void. Essentially, it is now only necessary to remove any marked region from 
the Voronoi diagram, while the residue provides the basis for point density 
estimation. 

2.6 Point density and point spacing 

To sum it up, the proposed method includes the construction of a Voronoi diagram on 
a LiDAR dataset, after which all Voronoi regions belonging to the outer boundary and 
all regions covering weak return voids are removed. The point density of a LiDAR 
dataset is then: 

ߩ  = ௡ି௡್∑஺௥௘௔ሺோ೔ሻି	∑஺௥௘௔ሺோೡሻି	∑஺௥௘௔ሺோ್ሻ              (5) 

 
where ݊ is the number of all sites of the Voronoi diagram prior to inserting artificial 
points, and ݊௕ the number of sites on the boundary. Areas of outer boundary Voronoi 
regions (ܴ௕) and weak returns (ܴ௩) are subtracted from the whole area of the Voronoi 
diagram. Since the Voronoi diagram constructs regions for each point individually, 
this approach allows for a precise analysis of variations in point density within a 
dataset at the level of a single point. Point spacing provides another important factor 
of LiDAR data evaluation and is highly linked with point density [Raber, 03]. Point 
spacing is calculated through the neighbouring relationships constructed by the 
Voronoi diagram. Distances to its neighbouring sites are calculated for each Voronoi 
site with the average value representing local point spacing. Sites that are inserted 
during void filling are excluded from point spacing calculation. 

2.6 Strip overlapping 

LiDAR scanning is often performed multiple times in order to cover larger areas or to 
increase the point density of a particular area. The resulting multiple scans, that may 
overlap each other, require some additional handling. Boundary detection is first 
performed for each strip individually. The final boundary is formed as a union of the 
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boundary polygons of each strip. The boundary Voronoi region culling is no longer 
performed per strip, instead only the Voronoi regions intersecting the final boundary 
are removed. As for the computation of weak return areas, they are performed for 
each strip. The weak return void areas are calculated for each strip separately. 
Otherwise, the points are inserted into the Voronoi diagram without any restrictions. 

3 Results 

The method was implemented using C++ and the Boost Voronoi library [Boost, 14] 
for the construction of the Voronoi diagram. The system consists of Intel Core 2 
Q6600 CPU running at 2.4 GHz and 8GB of working memory. Datasets of various 
terrain types were selected for testing including at, hilly, urban, and vegetation areas. 
Most of the selected datasets include multiples of weak return areas (rivers, lakes, or 
ponds) in order to demonstrate the effect of limiting the point density calculation to 
the well-scanned surface. With LiDAR systems being capable of detecting multiple 
returns per pulse, only the last returns were used for the calculations, as they 
presented the highest probability of representing ground points. Strip overlapping is 
present in most of the datasets. The calculations included the complete area 
(boundary) of the scan, the number of detected weak returns, the estimated area 
covered by weak returns (artificially inserted Voronoi sites), average point spacing, 
and average point density. The weak return Voronoi regions were excluded from the 
point density and point spacing calculations. The results of the measurements can be 
seen in Table 1, and Figure 7 displays point density maps of some of the datasets.  
 

S
e
t 

Points 
(M) 

Strips WR 
(K) 

Area 
(km2) 

Point 
spacing 
(m) 

Point 
density 
(points
/m2) 

St. 
dev. 
(points
/m2) 

1 1.6 3 120 0.373 0.493 6.863 5.695 

2 1.2 7 176 0.110 0.250 17.362 15.447 

3 2.4 3 10 0.974 0.782 2.965 1.341 

4 4.5 3 341 0.434 0.210 12.523 10.925 

5 5.5 6 17 1.050 0.479 7.954 5.403 

6 5.6 7 459 6.696 1.002  0.936 0.354 

Table 1: Results of LiDAR point density estimation on test datasets 

By discarding areas of weak returns and focusing the calculations only on 
properly scanned areas, the average point density is higher compared to the count per 
area. The relatively high standard deviation from the average value is mostly the 
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result of overlapping strips, which introduce great variations at overlapping areas. 
Otherwise, variations in point densities can be contributed to objects and vegetation, 
and also to the local density increases at the edges of the scan-line. 
 

 

Figure 7: Point density maps of LiDAR datasets 1, 2, 3, and 4 

A more detailed analysis was performed on Dataset 1 from Table 1. This dataset 
consists of a mainly at area with some vegetation cover and objects, a minor elevation 
and a river (Figures 8a to 8e). Strip overlapping covers approximately a quarter of the 
whole area. Observing the values per each strip individually reveals a more even 
distribution of point densities. Figures 8a, 8b, and 8c display the density maps of each 
individual strip. Different colour scales were used for each strip to emphasise 
variations in local point densities. Density build-ups can be seen at objects and 
vegetation appearances where they are oriented towards the scanner as well as at the 
edges of the scan-line. Decreased density areas can be seen around the shadows. The 
point densities at the river borders are not lowered by the weak return voids instead 
the values represent the point densities of local neighbourhoods. Figure 8d represents 
the point density including strip overlapping consisting of only last returns. Although 
only single pulse returns are usually used for LiDAR processing, the effect of using 
both first and last returns on point density was observed in Figure 8e to provide a 
better estimation in vegetation areas. 

The resulting point densities of Dataset 1 can be seen in Table 2. Performing 
calculations per each strip individually, reveals a lower standard deviation compared 
to the results in Table 1. The higher standard deviation of the third strip is caused by a 
relatively small scanned area containing several shadows. Strip overlapping naturally 
produces an increase in point density. The overlapping strip areas (rows 4 and 5 of 
Table 2) can be seen in Figures 8d and 8e. The last row represents the values of 
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dataset 1 including both the first and last returns in order to properly estimate the 
point densities in vegetation areas. 

 

 
a 

 
b 

 
c 
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d 

 
e 

Figure 8: LiDAR point density maps of individual strips (a-c) and strip overlapping 
(d and e) 

Each of the point density maps in Figure 8 is assigned a colour scale going from 
the blue shade representing the lowest point density and up to the highest point 
density represented by the red colour as displayed on the right side of each density 
map. While the calculations themselves reveal the average values and the standard 
deviations imply the differences, the density maps reveal the behaviour of the 
scanning. Overall the scans of the available datasets present a relatively equally 
distributed point density when observing last returns, while including other returns 
naturally increases point density as well as its variation. Further, the density maps 
reveal that each object creates a fairly characteristic variation in local point densities 
that could be used for further processing.  
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Strip Points 
(M) 

Area 
(km2) 

WR 
(K) 

Point 
spacing 
(m) 

Point 
density 
(points/m2) 

St. 
dev. 

1 0.457 0.136 58 0.589 4.080 1.541 
2 1.035 0.281 84 0.573 4.213 1.598 
3 0.149 0.040 2 0.594 4.572 3.961 
1-2 0.490 0.050 35 0.394 10.212 5.423 
2-3 0.375 0.033 4 0.411 9.832 4.322 
All  1.92 0.373 120 0.449 8.324 7.199 

Table 2: Results of LiDAR point density calculation on dataset 1 per individual strip 

4 Conclusion 

The presented method is based on separating the terrain into valid and invalid areas, 
where invalid areas present terrain parts that do not to yield proper returns for LiDAR 
detection. While most of the weak return areas can be contributed to bodies of water, 
weak returns caused by other factors can be treated in the same way without 
noticeably reducing the quality of the method. Utilizing the Voronoi diagram provides 
means for measuring variations in point density with great precision at the level of 
each individual point. The number of detected weak returns and the cumulative areas 
of the Voronoi regions constructed by inserting artificial points provide an important 
measure for LiDAR data evaluation that needs to be considered along with point 
density and point spacing. Excluding weak return areas eliminates the 
disproportionate lowering of point densities that cannot be prevented, while flaws in 
point densities that occur due to inadequate mission planning are still detected, which 
provides an unbiased means for point density evaluation of LiDAR data.  

The approach using the Voronoi diagram greatly increases the precision of point 
density evaluation compared to other methods, and at the same avoids errors that 
occur due to surfaces that cannot be scanned. As the point density maps reveal 
characteristic increases in point density at occurrences of objects, this method could 
be expanded for detection and reconstruction of objects from LiDAR scans. 
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