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Abstract: Building secure software is challenging, time-consuming, and expensive.
Software vulnerability prediction models that identify vulnerable software components
are usually used to focus security efforts, with the aim of helping to reduce the time and
effort needed to secure software. Existing vulnerability prediction models use process or
product metrics and machine learning techniques to identify vulnerable software com-
ponents. Cross-project vulnerability prediction plays a significant role in appraising the
most likely vulnerable software components, specifically for new or inactive projects.
Little effort has been spent to deliver clear guidelines on how to choose the training
data for project vulnerability prediction. In this work, we present an empirical study
aiming at clarifying how useful cross-project prediction techniques are in predicting
software vulnerabilities. Our study employs the classification provided by different ma-
chine learning techniques to improve the detection of vulnerable components. We have
elaborately compared the prediction performance of five well-known classifiers. The
study is conducted on a publicly available dataset of several PHP open-source web
applications in the context of cross-project vulnerability prediction, which represents
one of the main challenges in the vulnerability prediction field.

Key Words: cross-project vulnerability prediction, software security, software qual-
ity, data mining.
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1 Introduction

Software development and engineering is a very complex endeavor that contends

with limited resources [Fenton and Bieman, 2014], potentially causing software

to behave in an unexpected manner. One essential reason for the insecurity

of web applications is the fact that most developers lack appropriate knowl-

edge regarding secure coding [Medeiros et al., 2014]. The most worrisome class

of these faults can be exploited by attackers. These faults are considered a secu-

rity vulnerability [Bishop, 2005] that is recurrent, causing companies to struggle

to allocate resources for their management [Nyanchama, 2005].

Software Security Vulnerability Prediction is a research field that utilizes ef-

fective methods for predicting the vulnerability in a given software component
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[Abunadi and Alenezi, 2015]. These methods help security tester engineers allo-

cate their limited resources to the most vulnerable systems. The process of build-

ing secure software systems is expensive, difficult, and time-consuming. Building

and distributing vulnerability prediction models can cause quality assurance

teams to focus their time and resources on the vulnerable parts of their code

base. Researchers, however, usually build vulnerability prediction models that

use metrics and vulnerability data. Known as supervised learning approaches

in machine learning fields, these models implement different types of learning

algorithms.

Finding and solving vulnerabilities in the early stages of software composi-

tion is an important step. Software vulnerability prediction is a quality assurance

technique that includes inspection and testing within the software quality engi-

neering discipline [Zhang et al., 2011]. However, such quality assurance is best

done by engineers who are specially trained in software security [McGraw, 2006].

Methods and techniques that identify components that are more likely to con-

tain vulnerabilities can provide significant aid to the security engineers who focus

their attention on higher risk components.

The security of most systems and networks depends on the security of the

software running on them. Most of the attacks on these systems exploit vul-

nerabilities found in these software applications [Walden et al., 2010]. Security

failures in software are common and growing [Chowdhury and Zulkernine, 2011].

A vulnerability in software is considered a flaw that can be exploited to cause a

security failure. It is very challenging to find vulnerabilities before they manifest

themselves as security failures while the software is operating, because security

concerns are usually not sufficiently known at early stages of the software devel-

opment life cycle. Therefore, it is essential to know in advance the characteristics

of software files that can indicate vulnerabilities. These indications would help

software security testers and managers take proactive action against potential

vulnerabilities. Security testing is an important requirement of software secu-

rity [Damiani et al., 2008], even if it is very resource intensive, security testing

activities need to be guided.

Software is a competitive business that evolves rapidly to respond adapting

to markets, hardware, and software platforms [Alenezi and Khellah, 2015]. New

projects are born, and aged ones are rewritten, creating a challenge for vulner-

ability prediction models that rely on historical vulnerability data to predict

future vulnerability proneness. Because many new projects do not have enough

historical data to train prediction models, we can use models estimated from

training data available on other projects. PHP web applications are the focus

of this paper since PHP has a poor security reputation within the open-source

community and in comparison to Java, more than twice as many open-source

web applications are written in PHP [Walden et al., 2010].
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Within-project vulnerability prediction is built from a part of a project and

evaluated on the remainder of the project. Cross-project vulnerability prediction

is done when new projects lack sufficient vulnerability data to build a prediction

model. In this case, we use data from other projects to build a prediction model.

Several companies and projects might not yet have attained historical informa-

tion about vulnerabilities in order to build prediction models. As a result, the

ability of several metrics collected from software files is evaluated in this work.

These files are used to predict vulnerabilities in a project by using other projects’

datasets. Hence, this is a cross-project vulnerability prediction endeavor.

The rest of this paper is organized as follows: Section 2 provides a background

about this study while Section 3 describes the proposed approach, and Section 4

is a case study with its experimental evaluation. Section 5 discusses the results

obtained in this study; Section 6 discusses some threats to validity. Section 7

discusses related work. Last, Section 8 concludes the paper.

2 Background

Necessary background information about this study is provided. Subsection 2.1

discusses software vulnerabilities in general. Subsection 2.2 discusses some back-

ground details about software metrics. Subsection 2.3 explains the meaning of

classification in data mining. Subsection 2.4 explains the difference between

within and cross project prediction.

2.1 Software Vulnerabilities

Software vulnerability is a security fault or weakness found in software, which

lead to security concerns. According to Common Vulnerabilities and Exposures

(CVE), 69417 vulnerabilities were found in web applications within 1999-2015.

Among them, 31.4 belong to Remote Code Execution, 21% to Denial of Ser-

vice Attack (DoS), 13.5% to Cross-Site Scripting (XSS), 9% to SQL Injection,

3.1% to File Inclusion, and 1.7% to CSRF. The data used in this study focuses

on Code Injection, Cross-site Request Forgery (CSRF), XSS, Path Disclosure,

Authorization issues, and other types. These common vulnerabilities are respon-

sible for more than 75% of the total number of vulnerabilities found. All of these

types of vulnerabilities are caused by potential weakness in web applications.

According to the Open Web Application Security Project (OWASPs) Top Ten

Project [OWASP, 2015], SQL injection, cross site scripting (XSS), remote code

execution (RCE), and file inclusion (FI) are the most common and serious web

application vulnerabilities threatening the privacy and security of both clients

and applications. We describe the most common vulnerabilities types as the

followings:
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– Code Injection: This type allows attackers to modify arbitrary server-side

variables, modify arbitrary HTTP headers, or execute PHP, SQL, or native

code on the server.

– CSRF: Cross-site request forgery vulnerabilities allowing for outside, mali-

cious HTML to induce the user to perform unwanted actions

– XSS: Cross-site scripting which allows malicious Javascript to be executed

in a users browser

– Path Disclosure: A vulnerability that allows for the installation path of the

application to be maliciously obtained. Authorization issues: Confidentiality,

integrity, or availability violations not related to another category. These in-

clude privilege bypass vulnerabilities; information disclosure vulnerabilities;

vulnerabilities related to missing or inadequately implemented encryption.

– Other: Miscellaneous vulnerabilities related to phishing, man-in-the-middle

attacks, or unspecified attack vectors.

2.2 Software Metrics

Software metric is a measure of a degree to which a software system pos-

sesses some property. There are four categories of software metrics. This clas-

sification is based on what they measure and what area of software develop-

ment they focus on. At a very high level, software metrics can be classified

as Process Metrics, Project Metrics, Product Metrics, and Personnel Metrics

[Fenton and Bieman, 2014]. The data used in this study focuses on Product Met-

rics. They measure characteristics of the result of a software development process.

Product metrics are typically calculated from source code. Product metrics refer

to different features of the product such as design features, size, complexity, and

performance.

2.3 Classification

Classification consists of predicting a certain outcome based on a given input.

The objective of classification is to accurately predict the target class for each

case in the data. The classification algorithm processes a training set containing

a set of attributes and the respective outcome, usually called goal or prediction

attribute [Scandariato et al., 2014].

A classification task begins with a data set in which the class assignments

are known. The simplest type of classification problem is binary classification.

In binary classification, the target attribute has only two possible values: for

example, vulnerable or not. In building the prediction model, a classification
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test this model on a third project and evaluate the effectiveness of this model in

predicting the vulnerabilities of another project (cross-project prediction). Cross-

project vulnerability prediction models are trained on data from one or more

projects for which predictors (e.g., product metrics) and actual vulnerabilities

are available. Then, machine learning techniques (classifiers) are used to build

prediction models to foresee the vulnerabilities in the software files of a new

project.

4 Case Study

4.1 Dataset

In this study, we used a dataset collected and analyzed by Walden, Stuckman,

and Scandariato [Walden et al., 2014]. The data contain several software met-

rics and vulnerability information about their PHP files. The applications in the

dataset are Drupal, Moodle, and PHPMyAdmin. Drupal is a well-known con-

tent management system. Moodle is an open-source learning management sys-

tem. PHPMyAdmin is a web-based management tool for the MySQL database.

Regarding the software metrics in these datasets, the following metrics were col-

lected: lines of code, lines of code (non-HTML), number of functions, cyclomatic

complexity, maximum nesting complexity, Halsteads volume, total external calls,

fan-in, fan-out, internal functions or methods called, external functions or meth-

ods called, and external calls to functions or method. For more information

about these metrics and how they were collected, please consult Walden et al.

[Walden et al., 2014]. Table 1 shows descriptive statistics about the dataset.

Table 1: Descriptive Statistics about the Dataset

System Version Vulnerable Files Total Files

Drupal 6.0 62 202

Moodle 2.0.0 24 2942

PHPMyAdmin 3.3.0 27 322

4.2 Experimental Design

We applied five well-known and most-used classifiers for building the vulnerabil-

ity prediction models of the available dataset in terms of evaluation measures.

We further explored which of these systems would be a good candidate for the

training dataset.
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4.3 Classifiers

One of the methodologies used to automatically predict vulnerabilities is per-

forming data mining techniques on software metrics. The classification process

consists of two phases: the learning phase and the classification (prediction)

phase [Han et al., 2011]. The model learns through training data, and the clas-

sification is evaluated based on its ability to predict class labels for given data.

In this study, to build vulnerability prediction models, we used five pop-

ular data mining and statistical techniques (classifiers), namely, Nave Bayes

(NB), Logistic Regression (LR), Support Vector Machine (SVM), J48, and Ran-

dom Forest (RF). These classifiers classify software files as vulnerable or non-

vulnerable. All these classification algorithms are implemented in Weka. The

Weka default settings of these algorithms were used [Hall et al., 2009].

Naive Bayes (NB) is a probabilistic classifier that assumes that all features

are independent. It finds the class with maximum probability given a set of

feature values using the Bayes theorem [Lewis, 1998].

Logistic Regression (LR) is a probability model used to predict a response

based on one or more features. It is used as a function of the predictors, using a

logistic function to estimate the class label [Hilbe, 2009].

Support Vector Machine (SVM) is a classifier that finds the optimal hyper-

plane, which maximally separates samples in two different classes. SVM repre-

sents the examples as points in the space to divide them by a clear gap so the new

examples can be mapped into the same predicated category [Hearst et al., 1998].

J48 is an implementation of the decision tree algorithm in Weka. This algo-

rithm uses a divide-and-conquer approach to growing decision trees. It forms a

tree structure and decides the dependent value of a new sample based on diverse

attribute values of existing data [Quinlan, 2014].

Random Forests (RF) is an ensemble learning method that generates sev-

eral decision trees at training time. Each tree gives a class label. The Random

Forests classifier selects the class label that has the mode of the classes output

by individual trees [Chan and Paelinckx, 2008].

4.4 Evaluation Measures

We evaluate the classification algorithms based on Precision, Recall, and F-

measure. Precision measures how many of the vulnerable instances returned by

a model are actually vulnerable. The higher the precision is, the fewer false pos-

itives exist. Recall measures how many of the vulnerable instances are actually

returned by a model. The higher the recall is, the fewer false negatives exist

[Neuhaus et al., 2007]. F-Measure is the harmonic mean of Precision and Recall

[Powers, 2011]. In this study, we adopt a binary classifier, which makes two pos-

sible errors: false positive (FP) and false negative (FN). A correctly classified
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vulnerable class is a true positive (TP), and a correctly classified non-vulnerable

class is a true negative (TN). For the two-class problem (e.g., vulnerable or non-

vulnerable), these performance measures are explained using a confusion matrix,

shown in Table 2. There, the confusion matrix shows the actual vs. the predicted

results.

Table 2: Confusion Matrix

Actual
Predicted As

Non-vulnerable Vulnerable

Non-vulnerable TN=True Negatives FP = False Positives

Vulnerable FN = False Negatives TP = True Positives

The prediction performance measures used in our experiments are described

as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure = 2×
Precision× Recall

Precision + Recall

4.5 Results

Table 3 shows some interesting results where each row shows a classifier perfor-

mance, and each column depicts an evaluation metric. The J48 and RF classifiers

outperform the other classifiers as a whole, indicated by Precision, Recall, and F-

measure. Using the F-measure, RF achieves better results compared to the other

classifiers. However, J48 and RF classifiers achieve very similar results with very

little variations. For example, the F-measure value of the Drupal dataset in case

of J48 is 0.751; RF is 0.752, while LR is only 0.727. The F-measure value of

the Moodle dataset in case of J48 is 0.990, and RF is 0.991. NB is only 0.959.

The F-measure value of the PHPMyAdmin dataset in case of J48 is 0.898, and

RF is 0.913, while NB is only 0.866. We found that, in most cases, only J48 and

RF classifiers are the best-performing techniques based on Precision, Recall, and

F-measure, while the NB and LR classifiers are the worst.

To investigate whether the difference between J48 and RF in building predic-

tive models is significant, the Kruskal-Wallis test is executed. The Kruskal-Wallis
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machine-learning techniques to test whether one technique provides better pre-

diction accuracy than the others. We first computed precision, recall, and F-

measure metrics obtained by the different techniques. The five experimented

machine-learning techniques are not equivalent. RF in case of the F-measure in

all datasets obtained the best prediction performance. After a thorough analysis

and statistical tests, we found that the best classifiers in within-project predic-

tion are J48 and RF, which is completely consistent with the conclusions drawn

in the literature [Fernández-Delgado et al., 2014]. We tested the ability of these

two classifiers in cross-project prediction and found that J48 achieved better

than RF, but at a minimal margin.

Our experimental results show that, in the training data, it is better to have

data that have a reasonable vulnerability distribution, which will enable the

classifier to distinguish between vulnerable and non-vulnerable software compo-

nents.

As shown in figures 2 and 3, this paper focuses on how to use different project

vulnerability data in order to predict the vulnerabilities of a new project. The

marginal difference between within-project prediction and cross-project predic-

tion shows us the feasibility of cross-project vulnerability prediction.

6 Threats to Validity

In this section, we discuss the threats to construct, conclusion, and external

validity that affect the validity of our proposed approach.

Construct validity. This type of threat is primarily related to the dataset

explored in this study. The dataset were collected by [Walden et al., 2014]. Since

the dataset is publicly available, we believe that our results are credible and can

be reproduced. The impact of data preprocessing on prediction performance is

also an interesting problem that needs further investigation.

Conclusion validity. This type of threat considers issues that affect the valid-

ity of statistical inferences. We mitigate this threat by using standard techniques

for our statistics and modeling, and we used a well-recognized tool for these pur-

poses (Weka).

External validity. Since we only explored PHP web application, our results

might be specific to them. Even though, the selected applications are open source

and from different domains. Future studies with a broader set of web applica-

tions, including both commercial and open source applications, would be needed

to generalize the results to the entire class of PHP web applications. Moreover,

results could be generalized to other web applications written in other languages

or to other types of software, such as desktop or mobile applications should be

explored.

547Abunadi I., Alenezi M.: An Empirical Investigation ...



7 Related Work

This paper considers cross-project vulnerability prediction in web applications

using machine learning. Several researchers have explored vulnerability predic-

tion, but their studies suffered from several limitations, namely: they only re-

ported vulnerabilities to label vulnerable components, they used limited clas-

sification techniques, and all of them investigated within-project vulnerability

prediction.

An earlier work regarding vulnerability prediction for web applications was

done by Neuhaus et al. [Neuhaus et al., 2007]. Their work predicted vulnerabil-

ity in the Mozilla code base using only SVMs as a classifier. Recorded precision

was only 70%, while recall was only 45%. Yamaguchi, Lottmann, and Rieck

[Yamaguchi et al., 2012] determined structural patterns in abstract syntax trees

using natural processing techniques. Their results were validated using popu-

lar open-source projects such as Pidgin and FFmpeg. The approach used only

focused on program functions without an emphasis on a specific application.

Shin and Williams [Shin and Williams, 2008] studied the correlation between

complexity metrics and vulnerabilities. Their experimental analysis was based on

the Mozilla JavaScript Engine. Their results showed a weak correlation between

complexity metrics and security problems. They advised that their results are

weak because they designated as vulnerable any function that was changed to

fix vulnerability.

Nguyen and Tran [Nguyen and Tran, 2010] studied the dependency graphs as

predictors of software vulnerabilities. Their study was also based on the Mozilla

JavaScript Engine. The average precision of their study was 68%, which is lower

than the one found in this study.

Shin, Meneely, Williams, and Osborne [Shin et al., 2011] studied how useful

complexity, code churn, and developer activity metrics were in finding vulnerable

files. Their experimental analysis on Firefox and the Linux Kernel revealed that,

in the best cases, they were able to predict about 70% of vulnerable files with a

precision lower than 5%.

Chowdhury and Zulkernine [Chowdhury and Zulkernine, 2011] used several

source code metrics, such as complexity, coupling, and cohesion, to predict vul-

nerabilities. They conducted a study on 52 releases of Mozilla Firefox and built

vulnerability predictive models using C4.5 Decision Tree, Random Forests, Lo-

gistic Regression, and Nave Bayes. Their models were able to predict almost

75% of the vulnerable files, with a false positive rate of below 30% and an over-

all prediction accuracy of about 74%. They concluded that complexity, coupling,

and cohesion metrics are useful in vulnerability prediction.

Walden et al. [Walden et al., 2014] provided a public dataset that contains

223 vulnerabilities found in three PHP web applications and compared text min-

ing vulnerability prediction models with source code metrics prediction models.
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Shar and Tan [Shar and Tan, 2012] characterized input sanitization and val-

idation code patterns using static code vulnerability predictors. Although they

used multiple classifiers (Nave Bayes, C4.5, and MLP) and their prediction

achieved notable accuracies, they only targeted within-project vulnerability pre-

diction for three different cases.

Alenezi et al. [Alenezi and Abunadi, 2015] compared the performance of dif-

ferent classification techniques in predicting vulnerable PHP files and proposed

an application of these classification rules. They performed empirical studies

on three large open source web-projects in which they investigated which soft-

ware metrics are discriminative and predictive of vulnerable code, and can guide

actions for improvement of code and development team and can prioritize vali-

dation and verification efforts.

An alternative method [Medeiros et al., 2014] to that previously discussed,

which combines vulnerability detection and correction. They first considered de-

tect vulnerabilities in PHP web applications using four different classifiers (J48,

Nave Bayes, Logistic Regression, and MLP), then corrected these vulnerabili-

ties with different procedures that are outside the scope of this paper. Yet, they

mentioned that this approach was not optimal since it did not provide correct

results.

8 Conclusions and Future Work

Software vulnerability prediction is considered an important phase in enhancing

the software quality. These predictions help security engineers to forecast the

future, i.e. to identify the software components, which are likely to have flaws.

Data mining techniques were used to identify vulnerabilities in complete and

new projects with no enough data using machine learning. Detection techniques

using reliable classifiers were conducted for complete projects. As an outcome of

this phase vulnerability models were created and tested on incomplete projects

leading to accurately predicting vulnerability flaws in these inactive projects.

Overall, this provides a great help to the software project management team to

deal with those areas in the project on a timely basis and with sufficient effort.

This paper has shown and analyzed how cross project vulnerability predication

can be done.

Our future work will focus mainly on two aspects: collecting more open-source

projects vulnerabilities to validate the generality of the proposed approach and

considering these predictions in developing a rule-based firewall according the

classification rules to filter vulnerable requests. This firewall will be able to

distinguish vulnerable requests after evaluating some of the features of the PHP

file.
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