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Abstract: Mobile botnet phenomenon is gaining popularity among malware writers in order to 

exploit vulnerabilities in smartphones. In particular, mobile botnets enable illegal access to a 

victim’s smartphone, can compromise critical user data and launch a DDoS attack through 

Command and Control (C&C). In this article, we propose a static analysis approach, DeDroid, 

to investigate botnet-specific properties that can be used to detect mobile applications with 

botnet intensions. Initially, we identify critical features by observing code behavior of the few 

known malware binaries having C&C features. Then, we compare the identified features with 

the malicious and benign applications of Drebin dataset. The results show against the 

comparative analysis that, Drebin dataset has 35% malicious applications which qualify as 

botnets. Upon closer examination, 90% of the potential botnets are confirmed as botnets. 

Similarly, for comparative analysis against benign applications having C&C features, DeDroid 

has achieved adequate detection accuracy. In addition, DeDroid has achieved high accuracy 

with negligible false positive rate while making decision for state-of-the-art malicious 

applications. 
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1 Introduction  

While open source Android OS has benefited mobile application (app) developers, 

malware writers have also exploited the open source nature to target such devices 

[Karim, Shah et al. 2014, Damshenas, Dehghantanha et al. 2015].  For example, 

[Hyppönen 2013] states that, more than 97% of mobile malware families are targeting 

Android operating systems.  Estimations from antivirus (AV) vendors states that, 

Android malware is most rapidly evolving with diverse application logic. As an 

example, Sophos gathered in total of 650,000 distinct malware binaries, with 

everyday discovery of 2K new malware samples[Neugschwandtner, Lindorfer et al. 

2013]. In addition to that, MacAfee has reported over 700K distinct mobile malware 

samples in the first quarter of 2014 [Weafer 2014] alone.  A recent report [Data 2015] 

states that, Internet access on Android based smartphones and tablets has exceeded 

61% in the Q1 2015. Consequently, almost 60.85% of worldwide Android users have 

started using Internet on thir cell phones. The similar growth shown in malware 

programs, as 40,267 new malware variants are identified and analyzed by the security 

experts at the end of Q1 2015.  Another report [Shea 2015] states that, this mobile 

malware progression is three times more than that of found in previous quarter i.e Q4 

2014. Moreover, 97% of mobile malware targeted Android platform[Millman 2015].  

One common category of malware targeting mobile devices is bot malware. 

Similar to “traditional” botnets, mobile devices compromised by bot malware will be 

part of a botnet to carry out coordinated attacks upon the instructions of a botmaster, 

usually via a command and control (C&C) server [Choo 2007]. Such compromised 

devices can then be used to carry out distributed denial of service (DDoS) attacks and 

facilitate other cybercriminal activities, such as making premium number phone calls, 

sending of emails and text messages to others on the device’s contact lists which 

contain a hostile payload (that looks like it is being sent from someone they trust; 

thus, infecting more devices and extending the reach of the botnet).  

The first mobile bot malware, Yxes, targeted Symbian devices. Yxes was 

designed to collect private user information prior to sending the information to a C&C 

server under the remote control of the attacker. Currently, there are a large number of 

cross-platform mobile bot malware, such as ZeuS [IDC] which targets Android, 

Symbian, Blackberry and Windows devices, as well as bot malware that targets only 

specific devices (e.g. NotCompatible.C targets Android devices). Bot malware is 

getting more sophisticated. For example, to avoid the scrutiny of anti-malware 

companies, NotCompatible.C uses a peer-to-peer (P2P) C&C architecture. According 

to [Alcatel-Lucent 2015], NotCompatible.C is also the first Android bot malware to 

share a C&C infrastructure with a compromised Windows machine. Other examples 

of bot malware include IKee.B  designed to scan IP addresses on iPhones, and 

TigerBot and BMaster designed to target Android application frameworks.  

This is not surprising. Researchers [Choo 2011, Do, Martini et al. 2015, Nigam 

2015, Walls and Choo 2015] [Karim, Shah et al. 2015] have noted that as the 

capabilities of smartphones and mobile devices become more powerful, 

cybercriminals will seek to compromise such devices (e.g. bot malware) in order to 

target data stored on such devices, etc. In addition, it has been observed that newer 

generations of bot malware uses techniques such as encryption, obfuscation and 

cryptographic functions to avoid detection. As a result, existing anti-malware 
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solutions are far from effectiveness. For example, in a recent systematic evaluation of 

ten popular free cloud-based anti-malware apps [Walls and Choo 2015], it was 

determined that: 

 

“no single cloud anti-malware app can be solely relied upon to mitigate 

known malware. The findings were also concerning, particularly that 

malware threats are becoming more sophisticated and targeted, using 

various attack vectors to escalate permissions and exfiltrate data”. 

 

In this paper, we propose a mobile bot malware detection approach (hereafter 

referred to as DeDroid), designed to effectively identify C&C communication 

patterns in Android apps. This is an extension of our previous work [Ahmad Karim 

2015]. For this purpose, we study the properties of four known bot malware families, 

namely: DroidKungFu, Geinime, GoldDream, and Plangton. Then, we train our 

approach using 5,064 malware samples, a subset of the Drebin dataset [Daniel Arp], 

in our attempt to answer the following research questions: 

 

1. What are the features of a mobile botnet which are critical in initiating and 

sustaining an attack?  

2. How can we effectively detect bot malware characteristics in Android apps? 

3. How do we implement the detection mechanism to provide real-time 

detection for large scale datasets? 

 

Thus, the main aim of the research is to employ static analysis techniques for 

botware detection by identifying features that are most relevant to a botnet activity in 

smartphones. We define botware as a malware capable of communicating through 

C&C. 

The rest of the paper is organized as follows. Section 2 discusses related work. 

Sections 3 and 4 describe our proposed detection approach, and our research 

methodology, respectively. Section 5 presents our findings, and Section 6 concludes 

this paper. 

2 Related Work 

Mobile malware analysis tools can be broadly classified into two categories, namely: 

static analysis [Christodorescu and Jha 2006, Shabtai, Moskovitch et al. 2009] 

[Aswini and Vinod 2014] and dynamic analysis [Christodorescu, Jha et al. 2008, 

Shabtai, Tenenboim-Chekina et al. 2014]. However, majority of existing detection 

solutions are designed for mobile malware in general rather than mobile bot malware. 

The latter exhibits a somewhat different characteristic, due to the involvement of a 

C&C server (e.g. the need for the compromised device to “call home” to receive 

attack instructions). A cursory literature review suggests lack of studies focusing on 

identifying Android apps with bot malware capabilities.  

[Aswini and Vinod 2014] proposed a static analysis approach to detect Android 

malware by mining prominent permissions from AndroidManifest.xml file. After 

extracting permissions from 436 Android package files, the feature pruning was 

applied to examine the accuracy with respect to the feature length. However, the 
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proposed approach is unable to deeply investigate the application code for possible 

malicious behaviour. Another mobile botnet detection approach is presented in [Choi, 

Choi et al. 2013]. The authors investigated anomalies by observing communication 

flow characteristics (total # of bytes, total # of packets) by passing C&C traffic over a 

secure virtual private network (VPN). The main feature of this approach is to detect 

mobile apps with potential bot malware characteristics by comparing traffic flow with 

abnormal models, whitelists or predefined signatures. However, this approach is not 

effective against zero-day attacks. In contrast, DeDroid can detect new malicious apps 

with bot malware characteristics via static analysis (see Section 5.6).   

Recently, a hybrid multi-agent approach for the detection of SMS-based 

smartphone botnets was proposed in [Alzahrani and Ghorbani 2014]. The technique 

implements security services by combining signature-based and anomaly based 

approaches. Detection is achieved by performing behavioural analysis and correlating 

malicious SMS messages with already generated user profiles. However, the 

technique is still in the development phase. This approach complements our approach, 

as we focus on HTTP-based mobile botnet apps. 

3 De-Droid: An Overview 

Currently, DeDroid focuses on static code analysis considering permissions and API 

calls. The static analysis provides a lightweight approach as compared to the dynamic 

analysis. However, malware programmers can use different evasion techniques like 

reflections, code obfuscations or by dynamic code loading at runtime in order to 

hinder or bypass static analysis process. This code is shipped with the app itself or can 

be downloaded from external sources. These evasion techniques are not only 

deployed by malware writers but also benign applications often use these methods to 

secure premium features, application upgrades, copyright protection and statistical 

testing. We are dealing with this situation by relying on entry level structural 

information (AndroidMenifest.xml) where code obfuscation and other evasion 

techniques are impossible to apply. Similarly, the standard Java API classes may not 

be obfuscated. However, binary code can be effected by these approaches. Moreover, 

inducing reflection reduces the overall smartphone performance.  

In order to deal with the above mentioned issues, it is significant to deploy 

dynamic analysis approaches for large-scale evaluations. Moreover, dynamic analysis 

is able to acquire complete behaviour of an application otherwise missed by static 

code analysis. However, effective dynamic analysis systems require compute 

intensive resources, sandboxing and rich code coverage [Karim, Salleh et al. 2016]. 

Similarly, dynamic analysis systems can be defeated by malware writers by evading 

and detecting sandboxing environment.  

The DeDroid analysis approach used in this paper is shown in Figure 1. The first 

step examines the C&C features associated with the four well-known malware 

families including DroidKungFu [Lookout 2011], Plankton [Svajcer 2011], 

GoldDream [Jiang 2011], and Geinimi [Strazzere and Wyatt 2011]. After taking 5 

samples from each of malware family, a static analysis is performed by reverse 

engineering the applications. The feature set consists for permissions and API calls 

having close relation with botnet like features. As an example, the INTERNET 

permission is an elementary feature used to establish connection with outside world. 
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Similarly, the sendTextMessage() API call is suspicious that can send private 

information to remote host without user intervention. Along the same lines, we have 

highlighted forty potential botnet-specific features for static analysis. 

After identifying critical botware features in known-botnet applications, the 

systems repeats the process for 5064 malicious samples and compare the trends for 

malicious applications using botnet features. As an additional step of our previous 

work [Ahmad Karim 2015], we have also compared the botnet features with 14685 

benign application in order to prove our claim that many benign applications also 

have C&C features. A comparative analysis is then performed to validate our results, 

which we will discuss in section-5. 
 

Dataset of Malicious 

Applications

Reverse Engineer

Store in a Malicious_CSV

Extract Feature Vector

(Permissions and API calls)

Existing Mobile botnet 

samples

Reverse Engineer

Store in Botnet_CSV

Extract Feature Vector

(Permissions and API calls)

Dataset of Benign 

Applications

Reverse Engineer

Store in Benign_CSV

Extract Feature Vector

(Permissions and API calls)

Compare Results
 

Figure 1: DeDroid System Overview  

4 Methodology  

Here, we describe the mobile botnet detection approach. We studied the architecture 

of four malware families which are known for their bot related malware activities. 

Moreover, we have taken five samples from each malware family, reverse engineered 

them and observed the behavior with respect to botnet C&C properties. Table 1 

summarizes the properties of sample botnets. 

 

Botnet 

Applications 

Year 

Introduced 

C&C  Motivation Propagation 

Technique 

DroidKungFu 2011 HTTP Root exploits Games 

Plankton 2011 HTTP Received commands 

from C&C and acted 

accordingly 

Spam  

text  

messages 

Geinimi 2011 HTTP/ 

SMS 

Steal personal 

information 

Games 

GoldDream 2011 HTTP Financial 

loss  

Business 

Applications 

Table 1: Summary of Mobile Botnets 
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4.1 Dataset Used 

As a next step in DeDroid analysis, we took 5064 malicious binaries and 14865 

benign samples from Drebin  dataset. Drebin dataset is currently considered as the 

largest publically available dataset which was collected in the period of August 2010 

to October 2012. Therefore, we have chosen Drebin dataset in order to measure the 

effectiveness of our analysis approach. Table 2 shows the total number of used 

samples and the length of the feature set. 

 

Samples Source # of Samples Feature Set 

Botware Drebin/Third Party 20 40 

Malicious Drebin 5064 40 

Benign Drebin 14865 40 

Table 2: Dataset used 

4.2 Botware Feature Selection 

After manual inspection of 20 botware applications, we have observed the most 

important permissions and API calls which are of interest for botware writers. The 

permissions along-with their API calls and their rationale with respect to the botnet 

activity are mentioned in Table 3.  

After identifying critical features related to botware applications, we have reverse 

engineered all malicious applications from Drebin dataset. As an outcome, we have 

gathered static features (permissions) from Manifest file and function calls (API 

Calls) from .dex class, using Androguard [Desnos 2011] tool. To accomplish this task 

automatically, we applied a python script to Android binary code, and stored all 

extracted features into a CSV file for further analysis. The values of CSV file are 

binary numbered such that, “1” refers to applications with enabled features and “0” 

for disabled features. Formally: 

 

 
 

As an example, below is the format of CSV file of the Plankton botware. The file 

starts with hash function of the application and ends with the sum of all enabled 

features. The values “1” and “0” corresponds to enabled and disabled features 

respectively. We use the sum of enabled features (i.e. 30) to further classify our 

malicious dataset with respect to botware applications. We have observed from all 

samples of botware applications that the maximum number of accumulated features 

used by any application is 30, whereas the minimum number is 18. Thus, for our 

analysis we use (18) as a threshold such that malicious application having 

accumulated sum less than or equal to 18 are classified as malware/benign and 

botware otherwise.  
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Permissions API Calls Rationale 

INTERNET getContent() 

openConnection() 

connect() 

execute() 

HttpResponse 

HttpUriRequest 

getInputStream() 

Socket;-><init> 

openStream() 

Most network-connected Android 

apps use HTTP to send and receive 

data. Android includes two HTTP 

clients: (a) HttpURLConnection and 

(b) Apache HttpClient. Similarly, it 

can establish a remote connection 

and can execute commands 

accordingly. Moreover, TCP 

sockets can also be utilized to 

establish connections.  

READ_ 

PHONE_ 

STATE 

getDeviceId() 

getLine1Number() 

getDeviceId() 

getSimSerialNumber 

getSubscriberId() 

getDeviceSoftware 

Version 

This is a read-only permission 

which is used to get information 

with respect to current phone state. 

This permission is crucial in a way 

that it can send identity and location 

information of the effected mobile 

device (bot) to C&C. 

ACCESS_ 

NETWORK_ 

STATE 

getActiveNetworkInfo() 

getNetworkInfo() 

This feature is applied in 

conjunction with INTENET 

permission, and used to view the 

current status of the associated 

networks. 

SEND_ 

SMS 

getDefault() 

sendTextMessage() 

Application uses this feature to send 

SMS message to C&C servers 

without user intervention.  

ACCESS_ 

WIFI_ 

STATE 

getConnectionInfo() 

getWifiState() 

isWifiEnabled() 

To access information about Wi-Fi 

networks and send this information 

to remote site. 

ACCESS_ 

COARSE_ 

LOCATION 

getCellLocation() This permission allows an app to 

access estimated location identified 

from some network location sources 

i.e WiFi. 

ACCESS_ 

FINE_ 

LOCATION 

getLastKnownLocation() 

isProviderEnabled() 

requestLocationUpdates() 

This permission allows an 

application to retrieve a precise 

location from GPS, WIFI or cell 

towers.  

 

READ_ 

CONTACTS 

openOutputStream() 

openInputStream() 

openFileDescriptor() 

This feature allows an application to 

read user’s contact information. 

This information is then propagated 

to C&C to perform infection.  

READ_ 

LOGS 

exec() This feature allows an application to 

access system log files. 

Table 3: Selected Feature Set and Their Rationale 
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Plankton 

(D0C35F26B94F67D9AF189D3050541EC7971A88858913E52A334480CEA443408

5),<1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,1,30> 

 

Generally applications using more features pretend to have a malicious intension 

accompanied with them. Therefore, malware detection systems calculate score which 

is based on the accumulative number of static and dynamic features. For example, 

Andrubis’ [Technology 2012] malice sore calculation depends upon the relationship 

between total number of features and accumulative value of static and dynamic 

features. Therefore, for DeDroid, minimum threshold value is crucial to separate 

C&C specific applications from the rest. For this purpose, we have observed 

applications in our training dataset and considered minimum accumulative value as 

threshold value. 

Based on the above mentioned criteria, we have applied this logic to Drebin 

dataset and observed that out of 5064 malicious binaries 1795 binaries have C&C 

features, which are 35% of total malicious applications as shown in Figure 2. 

Similarly, the same logic has been applied to 14865 benign application set to 

strengthen our claim about the existence of bot behavior even in case of benign 

applications. The result for this comparative analysis which is shown in Figure 3, 

states that almost 8% of benign applications contain botware behavior. 

 

  

Figure 2: Botware vs Malware 

 

Figure 3: benign vs botware 

4.3 Feature Extraction 

For feature extraction, we applied the same python script on a dataset containing 5064 

applications and reverse enginered each application. From Manifest.xml file we have 

extracted Permissions and API calls are collected from .dex file. After extracting the 

required features, the malicious.CSV file is generated. The steps are highlighted in 

Figure 4. 
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Figure 4: Feature extraction Process 

As a proof of concept, we have analyzed the behavior of malicious as well as 

benign applications with respect to properties and features described in the previous 

section. Ultimately, the result of the evaluation process will confirm the applications 

with botnet motivations. As a matter of fact, Drebin dataset does not provide binaries 

for benign applications, however, it has provided rich feature set for each benign 

application. Further, we also have applied our python script to extract our required 

information which is related to permission requested and API calls from the benign 

dataset using regular expressions. Similar to as previous step, we have stored all 

gathered information to a CSV file for further analysis.  

5 Evaluation 

This section presents evaluation of experimental results and discusses them. Initially, 

we compare the attributes of trained dataset (botware dataset) with respect to 

malicious application set. The outcome of this method shows the number of 

applications having botnet behavior in a malicious dataset. Further, we have applied 

the same comparative analysis to 14865 benign application set to strengthen our claim 

about the existence of bot behavior even in case of benign applications. The ultimate 

aim of DeDroid analysis approach is to investigate the trends in malicious as well as 

benign applications with respect to botnet intensions.  

5.1 Botware vs Malicious Dataset 

Android security architecture heavily relies on permission-based system[Barrera, 

Kayacik et al. 2010, Felt, Greenwood et al. 2011]. At the time of writing, there are 

about 147 permission set available in Android platform that can allow access to 

various system and user resources. Whenever, a user installs some applications, he 
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would be prompted whether to allow these permissions prior to installation or not. 

However, in normal practice, users are unaware of the complexities and harmful 

affect associated with permissions which they are going to enable. The users should 

be given extra information to make correct decision.  

The Figure 5 shows the percentage of permissions used by botware and malware 

applications. The figure clearly indicates that applications having C&C features most 

often have access to the botware permissions than other types of malicious 

applications. The permissions used by botware are INTERNET, 

ACCESS_NETWORK_STATE, READ_PHONE_STATE, and 

ACCESS_FINE_LOCATION. These permissions are used by botware applications to 

establish a remote connection and to persist those connections in order to observe 

state of the device and the network. Another interesting fact we have observed is that, 

as our training dataset consists of malware samples that belong to botnets having 

HTTP based C&C mechanism. However, 70% of the malware applications using 

SEND_SMS which come as no surprise because sending SMS to premium numbers is 

a popular method of mobile malware programmers [59]. In contrast, botware 

applications utilize 37% SEND_SMS permission to periodically update bots for new 

instructions.  Botware applications try to utilize network connectivity to launch the 

attacks. For instance, in our observation, 82% of botware applications gain insight of 

WIFI state by initiating ACCESS_WIFI_STATE command. Whereas, only 26% 

malwares use this permission. Similarly, detecting the current state of cell phone is 

also an important point for botware programmers, in this way they can be well aware 

of the current status of the mobile device, if it is active then botmaster can start 

negotiating with cell phone.  In our observation, 98% botware applications use 

READ_PHONE_STATE and 85% of malware applications using this permission for 

their malicious intensions. On the same lines, 77% botware uses 

ACCESS_COARSE_LOCATION to be aware about the Internet but only 12% other 

malicious applications use this permission.  

In order to detect malicious code execution capabilities, DeDroid examines the 

API calls. Figure 6 shows the impact of malicious API calls on malware and botware 

applications. The results clearly indicate that botware applications most often have 

access to commands such as execute(), connect() and openConnection() in order to 

build and propagate bot network. Similarly, in order to get connected and to take 

network information of the devices, botware have used 

getConnectionInfo(),getNetworkInfor(),getActiveNetworkInfo(),locationListener(), 

requestLocationUpdates(),getLastKnownLocation(),getLine1Number()andgetDeviceI

D() API calls. In contrast, API calls having file transfer are least significant w.r.t 

botware and malware applications. Moreover, socket API is used 35% by botware 

applications, whereas usage for normal malicious applications is 6%.  Another 

important feature for botware applications is to get bot identification information and 

send it to remote host. This can be done through the following API calls: 

getSimSerialNumber() and getSubsriberID(). Botware applications utilize 

getSimSerialNumber() and getSubscriberID()47% and 56% respectively. Whereas, 

normal malicious applications use these API calls 11% and 35% respectively.  As we 

have already described, our training dataset is based on HTTP based botnets, 

therefore, sendTextMessage() is least utilized by botware applications as compared to 
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malware applications. For sendTextMessage() API, we have seen 33% usage by 

botware applications, in contrast to 45% in malwares.  

 

 

Figure 5: Permissions comparison between Botware and Malware  

 

Figure 6: API calls comparison b/w botware and malware 
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5.2 Botware vs Benign Dataset 

The results drawn by comparison of botware vs benign applications are shown in 

Figure 7 and Figure 8. Figure 7 depicts the permission usage (%) of benign 

applications and botware applications. Previous research work states that the 

frequency of permission requests in malware is much more than that in benign 

applications. However, malware writers write fewer explicit permission requests 

[Barrera, Kayacik et al. 2010, Felt, Greenwood et al. 2011, Aswini and Vinod 2014].  

Indeed, the logic behind requesting maximum permissions is that, malware writers are 

trying to evade detection as calling those permissions indirectly through other code of 

the program. This behavior can certainly hinder the detection of malicious codes. 

Therefore, our system focuses on requested permissions, which certainly show 

indication of botnet motivation in long run. 

It is interesting to note that, almost 100% of the benign and botware applications 

are exploiting the INTERNET permission. Therefore, we are not considering this 

permission for comparison for the purpose of botnet detection. Several other factors 

are of interest, for instance, ACESS_FINE_LOCATION and 

ACCESS_NETWORK_STATE are used by 96% and 90% of the botware applications 

while 34% and 48% of benign applications use these permissions.  For connection to 

be persistent, botware applications manage to send and receive commands to C&C 

using SEND_SMS and RECEIVE_SMS, and the trend shows that 24% and 12% are 

botware applications in benign dataset. However, this trend is almost negligible in 

terms of benign applications’ usage as depicting 5% and 3%. Similarly in malware 

dataset, ACCESS_COARSE_LOCATION permission is called by 70% of the botware 

applications. Whereas this trend is reduced to 20% of benign applications. Similarly, 

READ_CONTACTS and READ_LOGS is called by 46% and 59% of the botware 

applications. In contrast, 11% and 6% benign applications use this permission. 

 

 

Figure 7: Comparison of benign and botware permissions 
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The comparison of botware and benign application with respect to API call 

functions is shown in Figure 8. The results show that botware deployed execute(), 

connect and openConnection() commands 73%, 90% and 96% respectively for the 

sake of establishing a remote connection. Whereas, in order to recognize bot location 

and identity information, botware commonly deployed getDeviceID(), 

getLastKnownLocation(), getActiveNetworkInfo() and requestLocationUpdates(). 

Therefore, we have seen the same trend in botware application, where 89% of the 

applications use getDeviceID(), 84% of apps request getLastKnownLocation(), 88% 

of the apps use getActiveNetworkInfo() and 85% of apps call 

requestLocationUpdates() . In contrast, this trend is minimal in benign application i.e. 

17% of the applications use getDeviceID(), 14% of apps request 

getLastKnownLocation(), 23% of the apps use getActiveNetworkInfo() and 20% of 

apps call requestLocationUpdates(). Sending text message through GPRS service is 

accomplished by the function call sendTextMessage(). Around 21% of the 

applications call this function, while just 3% of benign applications invoke this 

method.   

 

 

Figure 8: Comparison of benign and botware API calls 

5.3 Performance Evaluation 

Feature extraction from large datasets can be time consuming. Therefore, we examine 

the time consumption of our program logic for feature extraction. The program logic 

is written in python language, which uses regular expressions to extract features from 

Manifest and .dex file simultaneously. We have performed tests on SANTUKO OS, a 

Linux distribution especially designed for mobile malware analysis. For efficiency, 

we have used Intel Xeon® server 3.50GHz with 16GB RAM. The feature extraction 

process for botnet training set requires 1.090 seconds to search through and generate 

comma separated file. Whereas, the same python script requires 230.35 seconds in 

processing of malicious dataset to extract features and generate file for further 

analysis. Since the benign dataset consists large set of applications as compared to 
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malware dataset, this process requires more time, i.e, 476.53 second to mine feature 

vector and generate CSV file. For our analysis, we have also extracted malware 

families with closure to botnet behavior. For malware families’ extraction, the script 

takes 114.94 seconds to find and store information to another CSV file. Table 4 shows 

the execution time elapsed against each data extraction process.  

 

Dataset Scanned and Store  

as comma separated values 

Time 

Taken(seconds) 

Feature set scanned from training dataset  

and store in Botnet.csv file. 

1.090 

Feature set scanned from malicious dataset  

and store in Malware.csv file. 

230.35 

Feature set scanned from benign dataset  

and store in Benign.csv file. 

476.53 

Families scanned and stored on Family.csv file 114.94 

Table 4: Execution Time Comparison 

5.4 Effectiveness 

We evaluate our analysis approach with VirusTotal[Nigam 2015], which provides a 

reliable malware scanning and detection service. It includes more than 50 off-the-

shelf antivirus software. As a matter of fact, to-date no benchmark (mobile botnet 

dataset) is available to compare our findings. In addition, the direct comparison 

between VT and DeDroid is infeasible, because VT’s detection criteria is based on 

various factors (static, dynamic) whereas DeDroid in particular is dealing with 

malware detection having C&C motivations. Thus, the only way to measure the 

effectiveness of our approach is – if a sample is detected by VT and the sample 

belongs to a particular malware family that is already proven as botnet family, 

DeDroid should mark that application as botware. However, many malware variants 

of a family may have accompanied C&C features in their following versions. 

Therefore, DeDroid’s decision is subject to the initiation of C&C features regardless 

of their families.   

During evaluation, all 5064 malware binaries which belong to 20 malware 

families [Daniel Arp] are effectively identified by VirusTotal. Among them, DeDroid 

detected 1795 malware samples having C&C features. To validate results, we have 

taken top 6 malware families with the highest detection ratio by DeDroid. The results 

affirm that, 5 out of top 6 malware families are known for their botnet related 

activities [Jiang 2011, Lookout 2011, Svajcer 2011, wyatt 2011]. Table 5 shows the 

top 6 malware families detected by DeDroid in malware dataset. From the table, we 

can observe the performance of DeDroid with respect to families having botnet C&C 

features. FakeRun family is 100% detected by DeDroid, whereas FakeDoc, 

DroidKungFu, Plankton, Geinimi and GoldDream are 98%, 78%, 84%, 90% and 80% 

detected by Dedroid respectively.  
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 Families # of malwares  

in each family 

Botwares  

Detected by  

DeDroid 

Detection  

Accuracy of 

DeDroid (%) 
F

ro
m

 M
a

lw
a

re
 

D
a

ta
se

t 
FakeRun 62 62 100 

FakeDoc 126 120 95 

Geinimi 88 79 90 

Plankton 581 493 84 

GoldDream 64 51 80 

DroidKungFu 629 493 78 

F
ro

m
 B

en
ig

n
 

D
a

ta
se

t 

FakeRun  7 7 100 

GingerBreak 2 2 100 

Geinimi 14 13 93 

GoldDream 9 8 89 

Plankton 89 73 82 

KungFu 83 65 78 

DroidKungFu 134 92 69 

Table 5: DeDroid detection accuracy of top 6 botware families for malware and 

benign applications 

An interesting fact we have observed while looking the results generated by 

DeDroid is that, although literature [AVGThreatLab 2012] states that, FakeRun acts 

as adware, yet our system has detected it with high accuracy. Therefore, we decided 

to take one step ahead by observing its runtime behavior. For the sake of clarity, we 

have performed behavioral analysis using DroidBox [Lantz, Desnos et al. 2012] on a 

subset of FakeRun applications. In order to evaluate the results obtained from 

dynamic analysis, we have chosen ten applications from each of benign, malware, and 

FakeRun datasets. We have considered the following feature vector for analysis: 

read/write operations, file leaks, started services, DNS queries and HTTP 

conversations. Figure 9 shows that, on average, FakeRun has highest values against 

each of the said features. Similarly, the majority of IP addresses collected during 

HTTP communication from all FakeRun applications are marked blacklisted by more 

than one servers in the blacklist databases [Karim 2016]. Thus, behavior of FakeRun 

shows certain C&C communication patterns. Due to its structural properties, which 

are also proven by behavioral analysis, DeDroid has detected FakeRun as botware.  

Therefore, we can conclude that, every malware family has certain number of 

applications that uses command and control (C&C) features. So, our system i.e 

DeDroid can effectively diagnose those applications as botware. 

Further, as a second step of evaluation, among 14864 of benign binaries, DeDroid 

has detected 1196 samples as having C&C features. For validation, from 1196 

binaries detected by DeDroid, we have taken top 7 malware families [Svajcer 2011, 

Xuxian 2012, Karim 2016]  and draw the same conclusion that all families are known 

for their C&C features. The detection ratio against each malware family from benign 

dataset is also presented in Table 5. It can be depicted from Table 5 that, Dedroid has 

deteted malware samples in FakeRun, and GingerBreak families with 100% acuracy. 

Similarly, Geinimi, GoldDream, Plankton, KungFu, and DroidKungFu have the 
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detection accuracy of 93%, 89%, 82%, 78% and 69% respectively on DeDroid 

system. 

 

 

Figure 9: Dynamic analysis result comparison b/w Fakerun, benign and malware 

samples 

5.5 Scalability 

As DeDroid system is an offline analysis framework based on static properties of 

applications, therefore, it can work for large scale market place. Currently, DeDroid is 

using Drebin dataset for its evaluation purpose. Instead of using 500 malicious and 

10,000 random binaries in a recent study [Spreitzenbarth, Freiling et al. 2013], our 

system consists of 5065 malware samples and 14865 benign binaries in order to 

effectively identify botware application. As a result of this large dataset, DeDroid 

system took almost 8 days to execute and collect all those features and stored in a 

database for further statistical analysis which is better than [Spreitzenbarth, Freiling et 

al. 2013]. Once the trace and log files has been obtained, the analysis process took 

few hours to analyze the results. As a future work, we are going to augment Andrubis 

[Technology 2012] by embedding the DeDroid logic into their system. Moreover, we 

can also deploy this “as a service” to Mobile Network Operator/ located in MNO core 

network, OS vendor market stores/ located in App Store, after market security product 

vendor/ located in device and or Cloud etc. 

5.6 Adaptability 

In order to measure the effectiveness of DeDroid approach according to growing 

sophistication in malware programs we need to observe its efficacy with state-of-the-

art malwares and botwares. For this purpose, we collected some malware and botware 

samples/families from [Parkour 2015] that are diagnosed during 2015. Table 6 shows 

the details of each malware/botware including Hash value, its actual class according 

to literature and DeDroid’s predicted class. The results affirm the adaptability of our 
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approach with evolving malware and botware samples. DeDroid achieves detection 

with 94% accuracy, 88% TPR (recall) and 0% FPR.  
 

File Name Hash Actual  
Class 

DeDroid  
Class 

Godwon  79309179DB63D2B505398ABCB4DD1AE0 Malware Malware 

FacebookOTP 021D55C415FF951C8E7B1CE3F94399BB Botware Botware 

Cajino B3814CA9E42681B32DAFE4A52E5BDA7A Botware Botware 

Gazon 4A56C7ABDC455C82E95753BDB1934285 Malware Malware 

HackingTeamRSC 904ED531D0B3B1979F1FDA7A9504C882 Botware Botware 

Cajino 39581735EE24D54F93C8C51D8C39B506 Botware Botware 

FBI_Ransom F836F5C6267F13BF9F6109A6B8D79175 Malware Malware 

Com.studio.proxy D05D3F579295CD5018318072ADF3B83D Malware Malware 

Podec 72ADCF52448B2F7BC8CADA8AF8657EEB Botware Botware 

Cajino 9342B4ECBB7EB045EDCDB6E0E339E415 Botware Botware 

Save_me 78835947CCA21BA42110A4F206A7A486 Botware Botware 

Android-Locker-qqmagic 735B4E78B334F6B9EB19E700A4C30966 Malware Malware 

Remote_control_smack 370FE3D8E9B40702B08A5F93003DE0D3 Botware Botware 

Hijack_Rat A21FAB634DC788CDD462D506458AF1E4 Botware Malware 

FakeApp.AL ACB66E858D54C61AA10E60276001C02B Malware Malware 

Table 6: DeDroid detection accuracy for contemporary malicious applications 

We have presented the TPR and FPR for 15 applications. However, in order to prove 

the effectiveness of DeDroid approach for large repositories, we need to perform 

more experiments. For this purpose, we have downloaded latest malware and benign 

binaries from recent published work [Kang, Jang et al. 2015] and botware 

applications from open repositories [Kadir, Stakhanova et al. 2015, Parkour 2015]. As 

a result, we gathered 4906 benign, 1084 malware and 100 botware samples.  We have 

taken 100 botware samples from each of the five botware families as shown in Figure 

10. It can be depicted that, from these 100 known botware binaries DeDroid can 

classify them with high accuracy, i.e 99% accuracy is achieved. Similarly, DeDroid’s 

performance was not hindered even in case of applications using native code, 

dynamic code loading, java reflection or cryptographic operations. Moreover, the 

average threshold value observed by each of the botware family is between 20 and 26.  

Likewise, the DeDroid performance with respect to contemporary malware (not 

having C&C) and benign applications is also acceptable which is shown in Table 7 

and Table 8 respectively. Among 1168 malware binaries, 98% of them found below 

the threshold value which endorses the efficacy of our logic behind DeDroid system. 

On average, the threshold value observed in malware samples is between 2.5 to 10. 

Similarly, 99% of benign samples are correctly classified from the latest mobile 

malware dataset [Kang, Jang et al. 2015] comprising of 4906 applications.  
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Figure 10: DeDroid detection with respect to contemporary mobile botware 

applications 

Malware Families 

[Kang, Jang et al. 2015] 

Total  

Samples 

Detected by  

DeDroid 

Threshold  

(avg) 

AdWo 100 86 10.24 

Airpush 35 34 9.14 

Boxer 28 28 2.46 

FakeInstaller 921 921 4.97 

FakeNotify 84 84 5.00 

Table 7: DeDroid detection with respect to contemporary Mobile Malware 

Applications 

 

 

Table 8: DeDroid detection with respect to contemporary Benign Applications 

6 Conclusion and future work 

Botnet phenomenon is migrating progressively from previous PC based platform 

generation to new emerging computational intensive mobile platform. Therefore, the 

urge is to devise some proactive mechanisms to avoid this hazard. In this paper we 

have introduced a novel approach, DeDroid, which can effectively detect botnet C&C 

communication features in malicious and benign Android binaries using static 

analysis. The feature selection is carried out by observing static behavior of known 

# of Benign Samples  

[Kang, Jang et al. 

2015] 

DeDroid  

detected  

as benign 

DeDroid  

detected  

as Botware 

Threshold  

(avg) 

4906 4835 71 3.8 
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mobile botnet applications where static feature vector comprises of permission 

modules and API calls from Android operating systems. After feature selection, 

feature extraction process is accomplished through a program logic written in python. 

For proof of concept, we used Drebin dataset (which is currently a largest Android 

malware dataset) to evaluate and compare our findings with malicious and benign 

applications. The results affirm that DeDroid provides a lightweight solution to 

effectively identify botnet capabilities in malicious and benign mobile applications. 

Moreover, DeDroid’s effectiveness is tested on large scale contemporary botnet and 

malware datasets and achived high accuracy in terms of detecting C&C enabled 

binaries. However, since the detection is solely based on static feature vectors; the 

detection accuracy can further be improved by analyzing the communication patterns 

at runtime. Therefore, as part of future work, we aim to expand this analysis to 

dynamic and network layer exploration, which will certainly enhance the botnet 

detection rate.  
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