
On the Analysis and Detection of Mobile Botnet

Applications1

Ahmad Karim
(University of Malaya, Kuala Lumpur, Malaysia

ahmadkarim@um.edu.my)

(Bahauddin Zakariya University, Multan, Pakistan

ahmadkarim@bzu.edu.pk)

Rosli Salleh
(University of Malaya, Kuala Lumpur, Malaysia

rosli_salleh@um.edu.my)

Muhammad Khurram Khan
(King Saud University, Riyadh, Saudi Arabia

mkhurram@ksu.edu.sa)

Aisha Siddiqa
(University of Malaya, Kuala Lumpur, Malaysia

aasiddiqa@gmail.com)

Kim-Kwang Raymond Choo
(University of South Australia, Adelaide, Australia

raymond.choo@fulbrightmail.org)

Abstract: Mobile botnet phenomenon is gaining popularity among malware writers in order to

exploit vulnerabilities in smartphones. In particular, mobile botnets enable illegal access to a

victim’s smartphone, can compromise critical user data and launch a DDoS attack through

Command and Control (C&C). In this article, we propose a static analysis approach, DeDroid,

to investigate botnet-specific properties that can be used to detect mobile applications with

botnet intensions. Initially, we identify critical features by observing code behavior of the few

known malware binaries having C&C features. Then, we compare the identified features with

the malicious and benign applications of Drebin dataset. The results show against the

comparative analysis that, Drebin dataset has 35% malicious applications which qualify as

botnets. Upon closer examination, 90% of the potential botnets are confirmed as botnets.

Similarly, for comparative analysis against benign applications having C&C features, DeDroid

has achieved adequate detection accuracy. In addition, DeDroid has achieved high accuracy

with negligible false positive rate while making decision for state-of-the-art malicious

applications.

Keywords: Mobile Botnet, Botnet Detection, Malware, Botware, Mobile malware detection.

Categories: D.4.6, K.6.5, L.4

1 This version extends our previous work (50% extension), which appeared in (UFirst2015), The 7th IEEE
International Symposium on UbiCom Frontiers - Innovative Research, Systems and Technologies August

10-14, 2015, Beijing, China.

Journal of Universal Computer Science, vol. 22, no. 4 (2016), 567-588
submitted: 1/10/15, accepted: 30/3/16, appeared: 1/4/16 J.UCS

1 Introduction

While open source Android OS has benefited mobile application (app) developers,

malware writers have also exploited the open source nature to target such devices

[Karim, Shah et al. 2014, Damshenas, Dehghantanha et al. 2015]. For example,

[Hyppönen 2013] states that, more than 97% of mobile malware families are targeting

Android operating systems. Estimations from antivirus (AV) vendors states that,

Android malware is most rapidly evolving with diverse application logic. As an

example, Sophos gathered in total of 650,000 distinct malware binaries, with

everyday discovery of 2K new malware samples[Neugschwandtner, Lindorfer et al.

2013]. In addition to that, MacAfee has reported over 700K distinct mobile malware

samples in the first quarter of 2014 [Weafer 2014] alone. A recent report [Data 2015]

states that, Internet access on Android based smartphones and tablets has exceeded

61% in the Q1 2015. Consequently, almost 60.85% of worldwide Android users have

started using Internet on thir cell phones. The similar growth shown in malware

programs, as 40,267 new malware variants are identified and analyzed by the security

experts at the end of Q1 2015. Another report [Shea 2015] states that, this mobile

malware progression is three times more than that of found in previous quarter i.e Q4

2014. Moreover, 97% of mobile malware targeted Android platform[Millman 2015].

One common category of malware targeting mobile devices is bot malware.

Similar to “traditional” botnets, mobile devices compromised by bot malware will be

part of a botnet to carry out coordinated attacks upon the instructions of a botmaster,

usually via a command and control (C&C) server [Choo 2007]. Such compromised

devices can then be used to carry out distributed denial of service (DDoS) attacks and

facilitate other cybercriminal activities, such as making premium number phone calls,

sending of emails and text messages to others on the device’s contact lists which

contain a hostile payload (that looks like it is being sent from someone they trust;

thus, infecting more devices and extending the reach of the botnet).

The first mobile bot malware, Yxes, targeted Symbian devices. Yxes was

designed to collect private user information prior to sending the information to a C&C

server under the remote control of the attacker. Currently, there are a large number of

cross-platform mobile bot malware, such as ZeuS [IDC] which targets Android,

Symbian, Blackberry and Windows devices, as well as bot malware that targets only

specific devices (e.g. NotCompatible.C targets Android devices). Bot malware is

getting more sophisticated. For example, to avoid the scrutiny of anti-malware

companies, NotCompatible.C uses a peer-to-peer (P2P) C&C architecture. According

to [Alcatel-Lucent 2015], NotCompatible.C is also the first Android bot malware to

share a C&C infrastructure with a compromised Windows machine. Other examples

of bot malware include IKee.B designed to scan IP addresses on iPhones, and

TigerBot and BMaster designed to target Android application frameworks.

This is not surprising. Researchers [Choo 2011, Do, Martini et al. 2015, Nigam

2015, Walls and Choo 2015] [Karim, Shah et al. 2015] have noted that as the

capabilities of smartphones and mobile devices become more powerful,

cybercriminals will seek to compromise such devices (e.g. bot malware) in order to

target data stored on such devices, etc. In addition, it has been observed that newer

generations of bot malware uses techniques such as encryption, obfuscation and

cryptographic functions to avoid detection. As a result, existing anti-malware

568 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

solutions are far from effectiveness. For example, in a recent systematic evaluation of

ten popular free cloud-based anti-malware apps [Walls and Choo 2015], it was

determined that:

“no single cloud anti-malware app can be solely relied upon to mitigate

known malware. The findings were also concerning, particularly that

malware threats are becoming more sophisticated and targeted, using

various attack vectors to escalate permissions and exfiltrate data”.

In this paper, we propose a mobile bot malware detection approach (hereafter

referred to as DeDroid), designed to effectively identify C&C communication

patterns in Android apps. This is an extension of our previous work [Ahmad Karim

2015]. For this purpose, we study the properties of four known bot malware families,

namely: DroidKungFu, Geinime, GoldDream, and Plangton. Then, we train our

approach using 5,064 malware samples, a subset of the Drebin dataset [Daniel Arp],

in our attempt to answer the following research questions:

1. What are the features of a mobile botnet which are critical in initiating and

sustaining an attack?

2. How can we effectively detect bot malware characteristics in Android apps?

3. How do we implement the detection mechanism to provide real-time

detection for large scale datasets?

Thus, the main aim of the research is to employ static analysis techniques for

botware detection by identifying features that are most relevant to a botnet activity in

smartphones. We define botware as a malware capable of communicating through

C&C.

The rest of the paper is organized as follows. Section 2 discusses related work.

Sections 3 and 4 describe our proposed detection approach, and our research

methodology, respectively. Section 5 presents our findings, and Section 6 concludes

this paper.

2 Related Work

Mobile malware analysis tools can be broadly classified into two categories, namely:

static analysis [Christodorescu and Jha 2006, Shabtai, Moskovitch et al. 2009]

[Aswini and Vinod 2014] and dynamic analysis [Christodorescu, Jha et al. 2008,

Shabtai, Tenenboim-Chekina et al. 2014]. However, majority of existing detection

solutions are designed for mobile malware in general rather than mobile bot malware.

The latter exhibits a somewhat different characteristic, due to the involvement of a

C&C server (e.g. the need for the compromised device to “call home” to receive

attack instructions). A cursory literature review suggests lack of studies focusing on

identifying Android apps with bot malware capabilities.

[Aswini and Vinod 2014] proposed a static analysis approach to detect Android

malware by mining prominent permissions from AndroidManifest.xml file. After

extracting permissions from 436 Android package files, the feature pruning was

applied to examine the accuracy with respect to the feature length. However, the

569Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

proposed approach is unable to deeply investigate the application code for possible

malicious behaviour. Another mobile botnet detection approach is presented in [Choi,

Choi et al. 2013]. The authors investigated anomalies by observing communication

flow characteristics (total # of bytes, total # of packets) by passing C&C traffic over a

secure virtual private network (VPN). The main feature of this approach is to detect

mobile apps with potential bot malware characteristics by comparing traffic flow with

abnormal models, whitelists or predefined signatures. However, this approach is not

effective against zero-day attacks. In contrast, DeDroid can detect new malicious apps

with bot malware characteristics via static analysis (see Section 5.6).

Recently, a hybrid multi-agent approach for the detection of SMS-based

smartphone botnets was proposed in [Alzahrani and Ghorbani 2014]. The technique

implements security services by combining signature-based and anomaly based

approaches. Detection is achieved by performing behavioural analysis and correlating

malicious SMS messages with already generated user profiles. However, the

technique is still in the development phase. This approach complements our approach,

as we focus on HTTP-based mobile botnet apps.

3 De-Droid: An Overview

Currently, DeDroid focuses on static code analysis considering permissions and API

calls. The static analysis provides a lightweight approach as compared to the dynamic

analysis. However, malware programmers can use different evasion techniques like

reflections, code obfuscations or by dynamic code loading at runtime in order to

hinder or bypass static analysis process. This code is shipped with the app itself or can

be downloaded from external sources. These evasion techniques are not only

deployed by malware writers but also benign applications often use these methods to

secure premium features, application upgrades, copyright protection and statistical

testing. We are dealing with this situation by relying on entry level structural

information (AndroidMenifest.xml) where code obfuscation and other evasion

techniques are impossible to apply. Similarly, the standard Java API classes may not

be obfuscated. However, binary code can be effected by these approaches. Moreover,

inducing reflection reduces the overall smartphone performance.

In order to deal with the above mentioned issues, it is significant to deploy

dynamic analysis approaches for large-scale evaluations. Moreover, dynamic analysis

is able to acquire complete behaviour of an application otherwise missed by static

code analysis. However, effective dynamic analysis systems require compute

intensive resources, sandboxing and rich code coverage [Karim, Salleh et al. 2016].

Similarly, dynamic analysis systems can be defeated by malware writers by evading

and detecting sandboxing environment.

The DeDroid analysis approach used in this paper is shown in Figure 1. The first

step examines the C&C features associated with the four well-known malware

families including DroidKungFu [Lookout 2011], Plankton [Svajcer 2011],

GoldDream [Jiang 2011], and Geinimi [Strazzere and Wyatt 2011]. After taking 5

samples from each of malware family, a static analysis is performed by reverse

engineering the applications. The feature set consists for permissions and API calls

having close relation with botnet like features. As an example, the INTERNET

permission is an elementary feature used to establish connection with outside world.

570 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

Similarly, the sendTextMessage() API call is suspicious that can send private

information to remote host without user intervention. Along the same lines, we have

highlighted forty potential botnet-specific features for static analysis.

After identifying critical botware features in known-botnet applications, the

systems repeats the process for 5064 malicious samples and compare the trends for

malicious applications using botnet features. As an additional step of our previous

work [Ahmad Karim 2015], we have also compared the botnet features with 14685

benign application in order to prove our claim that many benign applications also

have C&C features. A comparative analysis is then performed to validate our results,

which we will discuss in section-5.

Dataset of Malicious

Applications

Reverse Engineer

Store in a Malicious_CSV

Extract Feature Vector

(Permissions and API calls)

Existing Mobile botnet

samples

Reverse Engineer

Store in Botnet_CSV

Extract Feature Vector

(Permissions and API calls)

Dataset of Benign

Applications

Reverse Engineer

Store in Benign_CSV

Extract Feature Vector

(Permissions and API calls)

Compare Results

Figure 1: DeDroid System Overview

4 Methodology

Here, we describe the mobile botnet detection approach. We studied the architecture

of four malware families which are known for their bot related malware activities.

Moreover, we have taken five samples from each malware family, reverse engineered

them and observed the behavior with respect to botnet C&C properties. Table 1

summarizes the properties of sample botnets.

Botnet

Applications

Year

Introduced

C&C Motivation Propagation

Technique

DroidKungFu 2011 HTTP Root exploits Games

Plankton 2011 HTTP Received commands

from C&C and acted

accordingly

Spam

text

messages

Geinimi 2011 HTTP/

SMS

Steal personal

information

Games

GoldDream 2011 HTTP Financial

loss

Business

Applications

Table 1: Summary of Mobile Botnets

571Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

4.1 Dataset Used

As a next step in DeDroid analysis, we took 5064 malicious binaries and 14865

benign samples from Drebin dataset. Drebin dataset is currently considered as the

largest publically available dataset which was collected in the period of August 2010

to October 2012. Therefore, we have chosen Drebin dataset in order to measure the

effectiveness of our analysis approach. Table 2 shows the total number of used

samples and the length of the feature set.

Samples Source # of Samples Feature Set

Botware Drebin/Third Party 20 40

Malicious Drebin 5064 40

Benign Drebin 14865 40

Table 2: Dataset used

4.2 Botware Feature Selection

After manual inspection of 20 botware applications, we have observed the most

important permissions and API calls which are of interest for botware writers. The

permissions along-with their API calls and their rationale with respect to the botnet

activity are mentioned in Table 3.

After identifying critical features related to botware applications, we have reverse

engineered all malicious applications from Drebin dataset. As an outcome, we have

gathered static features (permissions) from Manifest file and function calls (API

Calls) from .dex class, using Androguard [Desnos 2011] tool. To accomplish this task

automatically, we applied a python script to Android binary code, and stored all

extracted features into a CSV file for further analysis. The values of CSV file are

binary numbered such that, “1” refers to applications with enabled features and “0”

for disabled features. Formally:

As an example, below is the format of CSV file of the Plankton botware. The file

starts with hash function of the application and ends with the sum of all enabled

features. The values “1” and “0” corresponds to enabled and disabled features

respectively. We use the sum of enabled features (i.e. 30) to further classify our

malicious dataset with respect to botware applications. We have observed from all

samples of botware applications that the maximum number of accumulated features

used by any application is 30, whereas the minimum number is 18. Thus, for our

analysis we use (18) as a threshold such that malicious application having

accumulated sum less than or equal to 18 are classified as malware/benign and

botware otherwise.

572 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

Permissions API Calls Rationale

INTERNET getContent()

openConnection()

connect()

execute()

HttpResponse

HttpUriRequest

getInputStream()

Socket;-><init>

openStream()

Most network-connected Android

apps use HTTP to send and receive

data. Android includes two HTTP

clients: (a) HttpURLConnection and

(b) Apache HttpClient. Similarly, it

can establish a remote connection

and can execute commands

accordingly. Moreover, TCP

sockets can also be utilized to

establish connections.

READ_

PHONE_

STATE

getDeviceId()

getLine1Number()

getDeviceId()

getSimSerialNumber

getSubscriberId()

getDeviceSoftware

Version

This is a read-only permission

which is used to get information

with respect to current phone state.

This permission is crucial in a way

that it can send identity and location

information of the effected mobile

device (bot) to C&C.

ACCESS_

NETWORK_

STATE

getActiveNetworkInfo()

getNetworkInfo()

This feature is applied in

conjunction with INTENET

permission, and used to view the

current status of the associated

networks.

SEND_

SMS

getDefault()

sendTextMessage()

Application uses this feature to send

SMS message to C&C servers

without user intervention.

ACCESS_

WIFI_

STATE

getConnectionInfo()

getWifiState()

isWifiEnabled()

To access information about Wi-Fi

networks and send this information

to remote site.

ACCESS_

COARSE_

LOCATION

getCellLocation() This permission allows an app to

access estimated location identified

from some network location sources

i.e WiFi.

ACCESS_

FINE_

LOCATION

getLastKnownLocation()

isProviderEnabled()

requestLocationUpdates()

This permission allows an

application to retrieve a precise

location from GPS, WIFI or cell

towers.

READ_

CONTACTS

openOutputStream()

openInputStream()

openFileDescriptor()

This feature allows an application to

read user’s contact information.

This information is then propagated

to C&C to perform infection.

READ_

LOGS

exec() This feature allows an application to

access system log files.

Table 3: Selected Feature Set and Their Rationale

573Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

Plankton

(D0C35F26B94F67D9AF189D3050541EC7971A88858913E52A334480CEA443408

5),<1,1,1,1,0,1,1,1,0,1,1,1,1,0,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,1,1,0,0,0,1,1,30>

Generally applications using more features pretend to have a malicious intension

accompanied with them. Therefore, malware detection systems calculate score which

is based on the accumulative number of static and dynamic features. For example,

Andrubis’ [Technology 2012] malice sore calculation depends upon the relationship

between total number of features and accumulative value of static and dynamic

features. Therefore, for DeDroid, minimum threshold value is crucial to separate

C&C specific applications from the rest. For this purpose, we have observed

applications in our training dataset and considered minimum accumulative value as

threshold value.

Based on the above mentioned criteria, we have applied this logic to Drebin

dataset and observed that out of 5064 malicious binaries 1795 binaries have C&C

features, which are 35% of total malicious applications as shown in Figure 2.

Similarly, the same logic has been applied to 14865 benign application set to

strengthen our claim about the existence of bot behavior even in case of benign

applications. The result for this comparative analysis which is shown in Figure 3,

states that almost 8% of benign applications contain botware behavior.

Figure 2: Botware vs Malware

Figure 3: benign vs botware

4.3 Feature Extraction

For feature extraction, we applied the same python script on a dataset containing 5064

applications and reverse enginered each application. From Manifest.xml file we have

extracted Permissions and API calls are collected from .dex file. After extracting the

required features, the malicious.CSV file is generated. The steps are highlighted in

Figure 4.

574 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

Figure 4: Feature extraction Process

As a proof of concept, we have analyzed the behavior of malicious as well as

benign applications with respect to properties and features described in the previous

section. Ultimately, the result of the evaluation process will confirm the applications

with botnet motivations. As a matter of fact, Drebin dataset does not provide binaries

for benign applications, however, it has provided rich feature set for each benign

application. Further, we also have applied our python script to extract our required

information which is related to permission requested and API calls from the benign

dataset using regular expressions. Similar to as previous step, we have stored all

gathered information to a CSV file for further analysis.

5 Evaluation

This section presents evaluation of experimental results and discusses them. Initially,

we compare the attributes of trained dataset (botware dataset) with respect to

malicious application set. The outcome of this method shows the number of

applications having botnet behavior in a malicious dataset. Further, we have applied

the same comparative analysis to 14865 benign application set to strengthen our claim

about the existence of bot behavior even in case of benign applications. The ultimate

aim of DeDroid analysis approach is to investigate the trends in malicious as well as

benign applications with respect to botnet intensions.

5.1 Botware vs Malicious Dataset

Android security architecture heavily relies on permission-based system[Barrera,

Kayacik et al. 2010, Felt, Greenwood et al. 2011]. At the time of writing, there are

about 147 permission set available in Android platform that can allow access to

various system and user resources. Whenever, a user installs some applications, he

575Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

would be prompted whether to allow these permissions prior to installation or not.

However, in normal practice, users are unaware of the complexities and harmful

affect associated with permissions which they are going to enable. The users should

be given extra information to make correct decision.

The Figure 5 shows the percentage of permissions used by botware and malware

applications. The figure clearly indicates that applications having C&C features most

often have access to the botware permissions than other types of malicious

applications. The permissions used by botware are INTERNET,

ACCESS_NETWORK_STATE, READ_PHONE_STATE, and

ACCESS_FINE_LOCATION. These permissions are used by botware applications to

establish a remote connection and to persist those connections in order to observe

state of the device and the network. Another interesting fact we have observed is that,

as our training dataset consists of malware samples that belong to botnets having

HTTP based C&C mechanism. However, 70% of the malware applications using

SEND_SMS which come as no surprise because sending SMS to premium numbers is

a popular method of mobile malware programmers [59]. In contrast, botware

applications utilize 37% SEND_SMS permission to periodically update bots for new

instructions. Botware applications try to utilize network connectivity to launch the

attacks. For instance, in our observation, 82% of botware applications gain insight of

WIFI state by initiating ACCESS_WIFI_STATE command. Whereas, only 26%

malwares use this permission. Similarly, detecting the current state of cell phone is

also an important point for botware programmers, in this way they can be well aware

of the current status of the mobile device, if it is active then botmaster can start

negotiating with cell phone. In our observation, 98% botware applications use

READ_PHONE_STATE and 85% of malware applications using this permission for

their malicious intensions. On the same lines, 77% botware uses

ACCESS_COARSE_LOCATION to be aware about the Internet but only 12% other

malicious applications use this permission.

In order to detect malicious code execution capabilities, DeDroid examines the

API calls. Figure 6 shows the impact of malicious API calls on malware and botware

applications. The results clearly indicate that botware applications most often have

access to commands such as execute(), connect() and openConnection() in order to

build and propagate bot network. Similarly, in order to get connected and to take

network information of the devices, botware have used

getConnectionInfo(),getNetworkInfor(),getActiveNetworkInfo(),locationListener(),

requestLocationUpdates(),getLastKnownLocation(),getLine1Number()andgetDeviceI

D() API calls. In contrast, API calls having file transfer are least significant w.r.t

botware and malware applications. Moreover, socket API is used 35% by botware

applications, whereas usage for normal malicious applications is 6%. Another

important feature for botware applications is to get bot identification information and

send it to remote host. This can be done through the following API calls:

getSimSerialNumber() and getSubsriberID(). Botware applications utilize

getSimSerialNumber() and getSubscriberID()47% and 56% respectively. Whereas,

normal malicious applications use these API calls 11% and 35% respectively. As we

have already described, our training dataset is based on HTTP based botnets,

therefore, sendTextMessage() is least utilized by botware applications as compared to

576 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

malware applications. For sendTextMessage() API, we have seen 33% usage by

botware applications, in contrast to 45% in malwares.

Figure 5: Permissions comparison between Botware and Malware

Figure 6: API calls comparison b/w botware and malware

577Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

5.2 Botware vs Benign Dataset

The results drawn by comparison of botware vs benign applications are shown in

Figure 7 and Figure 8. Figure 7 depicts the permission usage (%) of benign

applications and botware applications. Previous research work states that the

frequency of permission requests in malware is much more than that in benign

applications. However, malware writers write fewer explicit permission requests

[Barrera, Kayacik et al. 2010, Felt, Greenwood et al. 2011, Aswini and Vinod 2014].

Indeed, the logic behind requesting maximum permissions is that, malware writers are

trying to evade detection as calling those permissions indirectly through other code of

the program. This behavior can certainly hinder the detection of malicious codes.

Therefore, our system focuses on requested permissions, which certainly show

indication of botnet motivation in long run.

It is interesting to note that, almost 100% of the benign and botware applications

are exploiting the INTERNET permission. Therefore, we are not considering this

permission for comparison for the purpose of botnet detection. Several other factors

are of interest, for instance, ACESS_FINE_LOCATION and

ACCESS_NETWORK_STATE are used by 96% and 90% of the botware applications

while 34% and 48% of benign applications use these permissions. For connection to

be persistent, botware applications manage to send and receive commands to C&C

using SEND_SMS and RECEIVE_SMS, and the trend shows that 24% and 12% are

botware applications in benign dataset. However, this trend is almost negligible in

terms of benign applications’ usage as depicting 5% and 3%. Similarly in malware

dataset, ACCESS_COARSE_LOCATION permission is called by 70% of the botware

applications. Whereas this trend is reduced to 20% of benign applications. Similarly,

READ_CONTACTS and READ_LOGS is called by 46% and 59% of the botware

applications. In contrast, 11% and 6% benign applications use this permission.

Figure 7: Comparison of benign and botware permissions

578 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

The comparison of botware and benign application with respect to API call

functions is shown in Figure 8. The results show that botware deployed execute(),

connect and openConnection() commands 73%, 90% and 96% respectively for the

sake of establishing a remote connection. Whereas, in order to recognize bot location

and identity information, botware commonly deployed getDeviceID(),

getLastKnownLocation(), getActiveNetworkInfo() and requestLocationUpdates().

Therefore, we have seen the same trend in botware application, where 89% of the

applications use getDeviceID(), 84% of apps request getLastKnownLocation(), 88%

of the apps use getActiveNetworkInfo() and 85% of apps call

requestLocationUpdates() . In contrast, this trend is minimal in benign application i.e.

17% of the applications use getDeviceID(), 14% of apps request

getLastKnownLocation(), 23% of the apps use getActiveNetworkInfo() and 20% of

apps call requestLocationUpdates(). Sending text message through GPRS service is

accomplished by the function call sendTextMessage(). Around 21% of the

applications call this function, while just 3% of benign applications invoke this

method.

Figure 8: Comparison of benign and botware API calls

5.3 Performance Evaluation

Feature extraction from large datasets can be time consuming. Therefore, we examine

the time consumption of our program logic for feature extraction. The program logic

is written in python language, which uses regular expressions to extract features from

Manifest and .dex file simultaneously. We have performed tests on SANTUKO OS, a

Linux distribution especially designed for mobile malware analysis. For efficiency,

we have used Intel Xeon® server 3.50GHz with 16GB RAM. The feature extraction

process for botnet training set requires 1.090 seconds to search through and generate

comma separated file. Whereas, the same python script requires 230.35 seconds in

processing of malicious dataset to extract features and generate file for further

analysis. Since the benign dataset consists large set of applications as compared to

579Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

malware dataset, this process requires more time, i.e, 476.53 second to mine feature

vector and generate CSV file. For our analysis, we have also extracted malware

families with closure to botnet behavior. For malware families’ extraction, the script

takes 114.94 seconds to find and store information to another CSV file. Table 4 shows

the execution time elapsed against each data extraction process.

Dataset Scanned and Store

as comma separated values

Time

Taken(seconds)

Feature set scanned from training dataset

and store in Botnet.csv file.

1.090

Feature set scanned from malicious dataset

and store in Malware.csv file.

230.35

Feature set scanned from benign dataset

and store in Benign.csv file.

476.53

Families scanned and stored on Family.csv file 114.94

Table 4: Execution Time Comparison

5.4 Effectiveness

We evaluate our analysis approach with VirusTotal[Nigam 2015], which provides a

reliable malware scanning and detection service. It includes more than 50 off-the-

shelf antivirus software. As a matter of fact, to-date no benchmark (mobile botnet

dataset) is available to compare our findings. In addition, the direct comparison

between VT and DeDroid is infeasible, because VT’s detection criteria is based on

various factors (static, dynamic) whereas DeDroid in particular is dealing with

malware detection having C&C motivations. Thus, the only way to measure the

effectiveness of our approach is – if a sample is detected by VT and the sample

belongs to a particular malware family that is already proven as botnet family,

DeDroid should mark that application as botware. However, many malware variants

of a family may have accompanied C&C features in their following versions.

Therefore, DeDroid’s decision is subject to the initiation of C&C features regardless

of their families.

During evaluation, all 5064 malware binaries which belong to 20 malware

families [Daniel Arp] are effectively identified by VirusTotal. Among them, DeDroid

detected 1795 malware samples having C&C features. To validate results, we have

taken top 6 malware families with the highest detection ratio by DeDroid. The results

affirm that, 5 out of top 6 malware families are known for their botnet related

activities [Jiang 2011, Lookout 2011, Svajcer 2011, wyatt 2011]. Table 5 shows the

top 6 malware families detected by DeDroid in malware dataset. From the table, we

can observe the performance of DeDroid with respect to families having botnet C&C

features. FakeRun family is 100% detected by DeDroid, whereas FakeDoc,

DroidKungFu, Plankton, Geinimi and GoldDream are 98%, 78%, 84%, 90% and 80%

detected by Dedroid respectively.

580 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

 Families # of malwares

in each family

Botwares

Detected by

DeDroid

Detection

Accuracy of

DeDroid (%)
F

ro
m

 M
a

lw
a

re

D
a

ta
se

t
FakeRun 62 62 100

FakeDoc 126 120 95

Geinimi 88 79 90

Plankton 581 493 84

GoldDream 64 51 80

DroidKungFu 629 493 78

F
ro

m
 B

en
ig

n

D
a

ta
se

t

FakeRun 7 7 100

GingerBreak 2 2 100

Geinimi 14 13 93

GoldDream 9 8 89

Plankton 89 73 82

KungFu 83 65 78

DroidKungFu 134 92 69

Table 5: DeDroid detection accuracy of top 6 botware families for malware and

benign applications

An interesting fact we have observed while looking the results generated by

DeDroid is that, although literature [AVGThreatLab 2012] states that, FakeRun acts

as adware, yet our system has detected it with high accuracy. Therefore, we decided

to take one step ahead by observing its runtime behavior. For the sake of clarity, we

have performed behavioral analysis using DroidBox [Lantz, Desnos et al. 2012] on a

subset of FakeRun applications. In order to evaluate the results obtained from

dynamic analysis, we have chosen ten applications from each of benign, malware, and

FakeRun datasets. We have considered the following feature vector for analysis:

read/write operations, file leaks, started services, DNS queries and HTTP

conversations. Figure 9 shows that, on average, FakeRun has highest values against

each of the said features. Similarly, the majority of IP addresses collected during

HTTP communication from all FakeRun applications are marked blacklisted by more

than one servers in the blacklist databases [Karim 2016]. Thus, behavior of FakeRun

shows certain C&C communication patterns. Due to its structural properties, which

are also proven by behavioral analysis, DeDroid has detected FakeRun as botware.

Therefore, we can conclude that, every malware family has certain number of

applications that uses command and control (C&C) features. So, our system i.e

DeDroid can effectively diagnose those applications as botware.

Further, as a second step of evaluation, among 14864 of benign binaries, DeDroid

has detected 1196 samples as having C&C features. For validation, from 1196

binaries detected by DeDroid, we have taken top 7 malware families [Svajcer 2011,

Xuxian 2012, Karim 2016] and draw the same conclusion that all families are known

for their C&C features. The detection ratio against each malware family from benign

dataset is also presented in Table 5. It can be depicted from Table 5 that, Dedroid has

deteted malware samples in FakeRun, and GingerBreak families with 100% acuracy.

Similarly, Geinimi, GoldDream, Plankton, KungFu, and DroidKungFu have the

581Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

detection accuracy of 93%, 89%, 82%, 78% and 69% respectively on DeDroid

system.

Figure 9: Dynamic analysis result comparison b/w Fakerun, benign and malware

samples

5.5 Scalability

As DeDroid system is an offline analysis framework based on static properties of

applications, therefore, it can work for large scale market place. Currently, DeDroid is

using Drebin dataset for its evaluation purpose. Instead of using 500 malicious and

10,000 random binaries in a recent study [Spreitzenbarth, Freiling et al. 2013], our

system consists of 5065 malware samples and 14865 benign binaries in order to

effectively identify botware application. As a result of this large dataset, DeDroid

system took almost 8 days to execute and collect all those features and stored in a

database for further statistical analysis which is better than [Spreitzenbarth, Freiling et

al. 2013]. Once the trace and log files has been obtained, the analysis process took

few hours to analyze the results. As a future work, we are going to augment Andrubis

[Technology 2012] by embedding the DeDroid logic into their system. Moreover, we

can also deploy this “as a service” to Mobile Network Operator/ located in MNO core

network, OS vendor market stores/ located in App Store, after market security product

vendor/ located in device and or Cloud etc.

5.6 Adaptability

In order to measure the effectiveness of DeDroid approach according to growing

sophistication in malware programs we need to observe its efficacy with state-of-the-

art malwares and botwares. For this purpose, we collected some malware and botware

samples/families from [Parkour 2015] that are diagnosed during 2015. Table 6 shows

the details of each malware/botware including Hash value, its actual class according

to literature and DeDroid’s predicted class. The results affirm the adaptability of our

582 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

approach with evolving malware and botware samples. DeDroid achieves detection

with 94% accuracy, 88% TPR (recall) and 0% FPR.

File Name Hash Actual
Class

DeDroid
Class

Godwon 79309179DB63D2B505398ABCB4DD1AE0 Malware Malware

FacebookOTP 021D55C415FF951C8E7B1CE3F94399BB Botware Botware

Cajino B3814CA9E42681B32DAFE4A52E5BDA7A Botware Botware

Gazon 4A56C7ABDC455C82E95753BDB1934285 Malware Malware

HackingTeamRSC 904ED531D0B3B1979F1FDA7A9504C882 Botware Botware

Cajino 39581735EE24D54F93C8C51D8C39B506 Botware Botware

FBI_Ransom F836F5C6267F13BF9F6109A6B8D79175 Malware Malware

Com.studio.proxy D05D3F579295CD5018318072ADF3B83D Malware Malware

Podec 72ADCF52448B2F7BC8CADA8AF8657EEB Botware Botware

Cajino 9342B4ECBB7EB045EDCDB6E0E339E415 Botware Botware

Save_me 78835947CCA21BA42110A4F206A7A486 Botware Botware

Android-Locker-qqmagic 735B4E78B334F6B9EB19E700A4C30966 Malware Malware

Remote_control_smack 370FE3D8E9B40702B08A5F93003DE0D3 Botware Botware

Hijack_Rat A21FAB634DC788CDD462D506458AF1E4 Botware Malware

FakeApp.AL ACB66E858D54C61AA10E60276001C02B Malware Malware

Table 6: DeDroid detection accuracy for contemporary malicious applications

We have presented the TPR and FPR for 15 applications. However, in order to prove

the effectiveness of DeDroid approach for large repositories, we need to perform

more experiments. For this purpose, we have downloaded latest malware and benign

binaries from recent published work [Kang, Jang et al. 2015] and botware

applications from open repositories [Kadir, Stakhanova et al. 2015, Parkour 2015]. As

a result, we gathered 4906 benign, 1084 malware and 100 botware samples. We have

taken 100 botware samples from each of the five botware families as shown in Figure

10. It can be depicted that, from these 100 known botware binaries DeDroid can

classify them with high accuracy, i.e 99% accuracy is achieved. Similarly, DeDroid’s

performance was not hindered even in case of applications using native code,

dynamic code loading, java reflection or cryptographic operations. Moreover, the

average threshold value observed by each of the botware family is between 20 and 26.

Likewise, the DeDroid performance with respect to contemporary malware (not

having C&C) and benign applications is also acceptable which is shown in Table 7

and Table 8 respectively. Among 1168 malware binaries, 98% of them found below

the threshold value which endorses the efficacy of our logic behind DeDroid system.

On average, the threshold value observed in malware samples is between 2.5 to 10.

Similarly, 99% of benign samples are correctly classified from the latest mobile

malware dataset [Kang, Jang et al. 2015] comprising of 4906 applications.

583Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

Figure 10: DeDroid detection with respect to contemporary mobile botware

applications

Malware Families

[Kang, Jang et al. 2015]

Total

Samples

Detected by

DeDroid

Threshold

(avg)

AdWo 100 86 10.24

Airpush 35 34 9.14

Boxer 28 28 2.46

FakeInstaller 921 921 4.97

FakeNotify 84 84 5.00

Table 7: DeDroid detection with respect to contemporary Mobile Malware

Applications

Table 8: DeDroid detection with respect to contemporary Benign Applications

6 Conclusion and future work

Botnet phenomenon is migrating progressively from previous PC based platform

generation to new emerging computational intensive mobile platform. Therefore, the

urge is to devise some proactive mechanisms to avoid this hazard. In this paper we

have introduced a novel approach, DeDroid, which can effectively detect botnet C&C

communication features in malicious and benign Android binaries using static

analysis. The feature selection is carried out by observing static behavior of known

of Benign Samples

[Kang, Jang et al.

2015]

DeDroid

detected

as benign

DeDroid

detected

as Botware

Threshold

(avg)

4906 4835 71 3.8

584 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

mobile botnet applications where static feature vector comprises of permission

modules and API calls from Android operating systems. After feature selection,

feature extraction process is accomplished through a program logic written in python.

For proof of concept, we used Drebin dataset (which is currently a largest Android

malware dataset) to evaluate and compare our findings with malicious and benign

applications. The results affirm that DeDroid provides a lightweight solution to

effectively identify botnet capabilities in malicious and benign mobile applications.

Moreover, DeDroid’s effectiveness is tested on large scale contemporary botnet and

malware datasets and achived high accuracy in terms of detecting C&C enabled

binaries. However, since the detection is solely based on static feature vectors; the

detection accuracy can further be improved by analyzing the communication patterns

at runtime. Therefore, as part of future work, we aim to expand this analysis to

dynamic and network layer exploration, which will certainly enhance the botnet

detection rate.

Acknowledgements

This research was supported by a research grant from the R&D program (IPPP) of the

University of Malaya -- Project No. FP034-2012A. The authors also extend their

sincere appreciations to the Deanship of Scientific Research at King Saud University

for its funding this Prolific Research Group (PRG-1436-16).

References

[Ahmad Karim 2015] Ahmad Karim, R. S., Syed Adeel Ali Shah (2015). DeDroid: A Mobile

Botnet Detection Approach Based on Static Analysis. The 7th International Symposium on

UbiCom Frontiers - Innovative Research, Systems and Technologies. Beijing, China, IEEE.

[Alcatel-Lucent 2015] Alcatel-Lucent. (2015). "NotCompatible – Android Web Proxy Bot."

Retrieved June 15, 2015, from

http://www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2014/9594-

notcompatibleandroid-web-proxy-bot-malware-analysis-report.pdf.

[Alzahrani and Ghorbani 2014] Alzahrani, A. J. and A. A. Ghorbani (2014). SMS mobile

botnet detection using a multi-agent system: research in progress. Proceedings of the 1st

International Workshop on Agents and CyberSecurity, ACM.

[Aswini and Vinod 2014] Aswini, A. and P. Vinod (2014). Droid permission miner: Mining

prominent permissions for Android malware analysis. 2014 Fifth International Conference on

the Applications of Digital Information and Web Technologies (ICADIWT), IEEE.

[AVGThreatLab 2012] AVGThreatLab. (2012). "Android/Ev-trojan-fakerun." Retrieved

January 2014, 2014, from http://www.avgthreatlabs.com/ww-en/virus-and-malware-

information/info/android-ev-trojan-fakerun/.

[Barrera, Kayacik et al. 2010] Barrera, D., H. G. Kayacik, P. C. van Oorschot and A. Somayaji

(2010). A methodology for empirical analysis of permission-based security models and its

application to android. Proceedings of the 17th ACM conference on Computer and

communications security, ACM.

[Choi, Choi et al. 2013] Choi, B., S.-K. Choi and K. Cho (2013). Detection of Mobile Botnet

Using VPN. Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS), IEEE.

585Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

[Choo 2011] Choo, K.-K. R. (2011). "The cyber threat landscape: Challenges and future

research directions." Computers & Security 30(8): 719-731.

[Choo 2007] Choo, K. (2007). Zombies And Botnets. Trends And Issues In Crime And

Criminal Justice, Australian Institute of Criminology Canberra.

[Christodorescu and Jha 2006] Christodorescu, M. and S. Jha (2006). Static analysis of

executables to detect malicious patterns, DTIC Document.

[Christodorescu, Jha et al. 2008] Christodorescu, M., S. Jha and C. Kruegel (2008). Mining

specifications of malicious behavior. Proceedings of the 1st India software engineering

conference, ACM.

[Damshenas, Dehghantanha et al. 2015] Damshenas, M., A. Dehghantanha, K.-K. R. Choo and

R. Mahmud (2015). "M0droid: An android behavioral-based malware detection model."

Journal of Information Privacy and Security 11(3): 141-157.

[Daniel Arp 2013] Daniel Arp, M. S., Malte Huebner, Hugo Gascon, and Konrad Rieck.

(2013). "The Drebin Dataset." Retrieved Octobar 6, 2014, from http://user.informatik.uni-

goettingen.de/~darp/drebin/.

[Data 2015] Data, G. (2015). "MOBILE MALWARE REPORT." Retrieved September 2,

2015, from

https://public.gdatasoftware.com/Presse/Publikationen/Malware_Reports/G_DATA_MobileM

WR_Q1_2015_US.pdf.

[Desnos 2011] Desnos, A. (2011). "Androguard: Reverse engineering, malware and goodware

analysis of android applications... and more (ninja!)." Retrieved June 10, 2014, from

http://code.google.com/p/androguard/.

[Do, Martini et al. 2015] Do, Q., B. Martini and K.-K. R. Choo (2015). "Exfiltrating data from

Android devices." Computers & Security 48: 74-91.

[F-Secure 2009] F-Secure. (2009). "Threat Description Worm: ?iPhoneOS/Ikee.B." Retrieved

September 6, 2013, from http://www.f-secure.com/v-descs/worm_iphoneos_ikee_b.shtml

[Felt, Greenwood et al. 2011] Felt, A. P., K. Greenwood and D. Wagner (2011). The

effectiveness of application permissions. Proceedings of the 2nd USENIX conference on Web

application development.

[Hyppönen 2013] Hyppönen, M. (2013). "Threat Report H2 2013." Retrieved December 8,

2013, from

https://www.f-secure.com/documents/996508/1030743/Threat_Report_H2_2013.pdf.

[IDC 2014] IDC. (2014). "Android and iOS Continue to Dominate the Worldwide Smartphone

Market with Android Shipments Just Shy of 800 Million in 2013." Retrieved December 16,

2014, from http://www.idc.com/getdoc.jsp?containerId=prUS24676414.

[Jiang 2011] Jiang, X. (2011). "Security Alert: New Android Malware -- GoldDream -- Found

in Alternative App Markets." Retrieved June 17, 2013, from

http://www.csc.ncsu.edu/faculty/jiang/GoldDream/.

[Kadir, Stakhanova et al. 2015] Kadir, A. F. A., N. Stakhanova and A. A. Ghorbani (2015).

Android Botnets: What URLs are Telling Us. Network and System Security, Springer: 78-91.

[Kang, Jang et al. 2015] Kang, H., J.-w. Jang, A. Mohaisen and H. K. Kim (2015). "Detecting

and classifying android malware using static analysis along with creator information."

International Journal of Distributed Sensor Networks 2015: 7.

586 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

[Karim 2016] Karim, A. (2016). "FakeRun Blacklisted IP addresses." Retrieved December

2015, 2015, from

https://docs.google.com/document/d/1msfl0xO9DRFzIrqov1d925tnfILgjC3A8IRa42SaFgg/pub

[Karim, Salleh et al. 2016] Karim, A., R. Salleh and M. K. Khan (2016). "SMARTbot: A

Behavioral Analysis Framework Augmented with Machine Learning to Identify Mobile Botnet

Applications." PloS one 11(3): e0150077.

[Karim, Shah et al. 2014] Karim, A., S. A. A. Shah and R. Salleh (2014). Mobile Botnet

Attacks: A Thematic Taxonomy. New Perspectives in Information Systems and Technologies,

Volume 2, Springer: 153-164.

[Karim, Shah et al. 2015] Karim, A., S. A. A. Shah, R. B. Salleh, M. Arif, R. M. Noor and S.

Shamshirband (2015). "Mobile Botnet Attacks–an Emerging Threat: Classification, Review and

Open Issues."

[Lantz, Desnos et al. 2012] Lantz, P., A. Desnos and K. Yang (2012). DroidBox: Android

application sandbox.

[Lookout 2011] Lookout. (2011). "Security Alert: New Malware Found in Alternative Android

Markets: DroidKungFu." Retrieved May 4, 2013, from

https://blog.lookout.com/blog/2011/06/06/security-alert-new-malware-found-in-alternative-

android-markets-legacy/.

[Millman 2015] Millman, R. (2015). "Updated: 97% of malicious mobile malware targets

Android." Retrieved December 9, 2015, from http://www.scmagazineuk.com/updated-97-of-

malicious-mobile-malware-targets-android/article/422783/.

[Neugschwandtner, Lindorfer et al. 2013] Neugschwandtner, M., M. Lindorfer and C. Platzer

(2013). A View to a Kill: WebView Exploitation. LEET.

[Nigam 2015] Nigam, R. (2015). "A timeline of mobile botnets." Retrieved June 5, 2015, from

https://www.virusbtn.com/virusbulletin/archive/2015/03/vb201503-mobile-botnets.

[Nigam 2015] Nigam, R. (2015). "A timeline of mobile botnets,

https://www.virusbtn.com/virusbulletin/archive/2015/03/vb201503-mobile-botnets."

[Parkour 2015] Parkour, M. (2015). Contagio Mobile. Mobile malware mini dump.

[Shabtai, Moskovitch et al. 2009] Shabtai, A., R. Moskovitch, Y. Elovici and C. Glezer (2009).

"Detection of malicious code by applying machine learning classifiers on static features: A

state-of-the-art survey." Information Security Technical Report 14(1): 16-29.

[Shabtai, Tenenboim-Chekina et al. 2014] Shabtai, A., L. Tenenboim-Chekina, D. Mimran, L.

Rokach, B. Shapira and Y. Elovici (2014). "Mobile malware detection through analysis of

deviations in application network behavior." Computers & Security 43: 1-18.

[Shea 2015] Shea, S. (2015). "Mobile malware statistics highlight unknown state of mobile

threats." Retrieved December 10, 2015, from

http://searchsecurity.techtarget.com/news/4500245950/Mobile-malware-statistics-highlight-

unknown-state-of-mobile-threats.

[Spreitzenbarth, Freiling et al. 2013] Spreitzenbarth, M., F. Freiling, F. Echtler, T. Schreck and

J. Hoffmann (2013). Mobile-sandbox: Having a deeper look into android applications.

Proceedings of the 28th Annual ACM Symposium on Applied Computing, ACM.

[Strazzere and Wyatt 2011] Strazzere, T. and T. Wyatt. (2011). "Geinimi trojan technical

teardown." Lookout Mobile Security Retrieved June 20, 2013, from

https://blog.lookout.com/_media/Geinimi_Trojan_Teardown.pdf.

587Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

[Svajcer 2011] Svajcer, V. (2011). "Plankton malware drifts into Android Market." Retrieved

June 17, 2013, from https://nakedsecurity.sophos.com/2011/06/14/plankton-malware-drifts-

into-android-market/.

[Svajcer 2011] Svajcer, V. (2011). "Plankton malware drifts into Android Market."

[Technology 2012] Technology, V. U. o. (2012). "Andrubis-analysis of android apks."

Retrieved June 5, 2013, from http://anubis.iseclab.org.

[Walls and Choo 2015] Walls, J. and K.-K. R. Choo (2015). A Review of Free Cloud-Based

Anti-Malware Apps for Android. Trustcom/BigDataSE/ISPA, 2015 IEEE, IEEE.

[Weafer 2014] Weafer, V. (2014). "McAfee Labs Threats Report." Retrieved August 9, 2014,

from http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014.pdf.

[wyatt 2011] wyatt, t. (2011). "Security Alert: Geinimi, Sophisticated New Android Trojan

Found in Wild." Retrieved December 15, 2013, from

https://blog.lookout.com/blog/2010/12/29/geinimi_trojan/.

[Xuxian 2012] Xuxian, J. (2012). "Security Alert: New RootSmart Android Malware Utilizes

the GingerBreak Root Exploit." Retrieved January 8, 2015, from

http://www.csc.ncsu.edu/faculty/jiang/RootSmart/.

588 Karim A., Salleh R., Khan M.K., Siddiqa A., Choo K.-K. R.: On the Analysis ...

