
Parallel Fast Sort Algorithm for Secure Multiparty
Computation

Zbigniew Marszałek
(Silesian University of Technology, Gliwice, Poland

zbigniew.marszalek@polsl.pl)

Abstract: The use of encryption methods such as secure multiparty computation is an
important issue in applications. Applications that use encryption of information require special
algorithms of sorting data in order to preserve the secrecy of the information. This proposition
is composed for parallel architectures. Presented algorithm works with a number of logical
processors. Operations are flexibly distributed among them. Therefore sorting of data sets takes
less time. Results of the experimental tests confirm the effectiveness of the proposed flexible
division of tasks between logical processors and show that this proposition is a valuable method
that can find many practical applications in high performance computing.

Keywords: Privacy, parallel algorithm, algorithm design and analysis, data mining, secure
multi-party computation
Categories: F.2, E.1, E.4

1 Introduction

Secure multiparty computational has many practical application such as, for example
[Lindell, 09]. The privacy policy may prevent the disclosure of information provided
and the source of their origin. The technique for hiding data is secure multi-party
computation (MPC). One of the important elements of a safe survival in the
information system is to sort the data set. In [Bogdanov, 14], [Laud, 16], [Hamada,
12] describe the use sorting algorithms in secure multi-party computation. In this
work, it is proposed to use multiprocessor architecture for cryptographic
computations. Continues research on computer technology has allowed the design of
machines which are operating on multiple cores, where each of them has a number of
logical processors working independently. Powerful computers make possible
creation of an appropriate software for more efficient processing of information stored
in databases. Modern devices allow the use of intelligent software that helps
processing information for better data mining. Data managing techniques and
information storage systems need an order in the information to increase efficiency of
management and to improve performance. In this case sorting methods are very
helpful. Some of the classic propositions which are in the roots of computer
algorithms were presented in [Aho, 75], [Knuth, 98]. Initially three types of methods
were introduced: quick sort, heap sort and merge sort. Over the years we can find the
results of important research on performance of these sorting methods, where the use
of various computational approaches and improved computer architectures were
reported.

Journal of Universal Computer Science, vol. 24, no. 4 (2018), 488-514
submitted: 14/12/17, accepted:15/4/18, appeared: 28/4/18 © J.UCS

Quick sort is using divisions of the data stack for comparison and sorting of the
information in smaller portions. We can find many propositions to divide the
information in the most efficient way, what speed up sorting and prevent potential
deadlocks. This method in a version with devoted pivot mechanism for better data
stack management was presented in [Bing-Chao, 86]. In [Francis, 92] were discussed
possible variations in partitioning of the data for quick sort. A derivate of quick sort
based on calculation of a median value for each stack division was discussed in [Rauh,
10]. Performance tests for SUN machine were presented in [Tsigas, 03].

Heap sort instead of the classic data structure requires composition of the heap, in
which the order of the data depends on relations between subsequent levels.
Discussion on the efficiency of insertions of the new elements into this structure was
presented in [Doberkat, 83]. Propositions of changes between some heap levels were
proposed for external versions of this sorting method in [Lutz, 89], [Wegner, 89].
Mathematical properties of heap structures, which are also called trees were discussed
in [Ben-Or, 83], [Doberkat, 83]. A discussion of performance of the digital access to
the information stored in heap was presented in [Roura, 01] and parallel algorithms
for composition of heap were proposed in [Abrahamson, 87].

Merge sort is based on “divide and conquer” assumption, where we divide the
input data into smaller strings which are sorted during subsequent merges into one
final string. In [Carlsson, 90] was given a proposition of devoted sublinear merging.
Parallel version of merge was discussed in [Cole, 88]. In [Gubias, 06] was presented
how to use this method for partially sorted lists. Practical tests and implementations of
merge sort were discussed in [Huang, 89], while tests on memory usage for sorting by
this algorithm were discussed in [Huang, 89]. An idea of external version for reduced
input-output operations was presented in [Zhang, 96], and improvements in memory
usage by the dynamic assignments were proposed in [Zhang, 97]. A devoted
strategies for improved buffering and faster readings from the stack were presented in
[Zhang, 98].

From these classic methods various solutions and approaches for databases and
information management systems were developed. Tests on various features of virtual
memory assignments for sorting were presented in [Alanko, 84], and some interesting
strategies for memory management were discussed in [Larson, 98]. Benchmark tests
on method cash and its influence on fast sorting were discussed in [LaMarca, 97].
Data type and alignment are also demanding new methods, in [Cole, 88] was given a
proposition for skewed strings. A survey of adaptive sorting methods was presented in
[Estivill-Castro, 92]. A quality assessment for sorting rules was presented in
[Gedigaa, 02]. Due to permanent growing in the information new technologies are
necessary for further development. A study of enhanced information retrieval for big
data systems was presented in [Choi, 17]. In [Axtmann, 15] was presented practical
version of parallel approach for massive sorting to increase efficiency for big data
processing. Sorting and its various application are very important for information
management, e.g. an adaptation of chrological big data curation sorting on the
network was given in [Choi, 17].

489Marszalek Z.: Parallel Fast Sort Algorithm ...

1.1 Related works

Sorting algorithms are an integral part of modern information systems. They also find
application in the secure multi-party level security (MPC), and several MPC sorting
protocols have been proposed in many works. Analysis of the computational
complexity of quick sort and other sorting algorithms in the MPC protocol was
described in [Bogdanov, 14], [Hamada, 12]. Moreover, , there is a long list of works
to improve sorting in actively SMC private protocol, for example [Laud, 16]. During
our research on possible improvements in sorting methods we were working on two
aspects: faster sorting and easier data management by applied structures. Our
proposition to change the method of divisions in quick sort was presented in [Woźniak,
Gubias, 06]. In presented examinations we have shown that dynamic changes of the
division position can increase the speed of sorting and prevent the method from
deadlocks that are well known for the classic version. Results of our research on
various aspects of heap composition used in heap sort algorithm were presented in
[Woźniak, 13b]. We have shown that changes in the composition of the levels of the
heap can improve management of stored information and positively influence sorting.
Our examinations on merge sort were discussed in [Woźniak, 13a]. We have
proposed changes in merging to dynamically assign the “divide and conquer”
assumption what improved the speed of sorting and results in the implementation of
non-recursive merging. In [Marszałek, 15] we have shown some further
improvements to gain on speed. An efficient parallelization of designed by us
modified merge sort algorithm was discussed in [Marszałek 17]. The results of our
research were examined in practical applications designed for Hadoop systems
presented in [Czerwiński, 15]. Our research on efficient sorting algorithms gave an
introduction to work on the new method based on our previous results. The initial idea
for the method which we called Fast Sort Algorithm was presented in [Marszałek,
16].

Research on reducing computational complexity of sorting algorithms are carried
out for many years. Initially theoretical works have shown that there is the smallest
asymptotic complexity of sorting algorithms, which all the methods may try to
approach. Richard Cole [Cole, 88] described merge sort algorithm of complexity

 using processors, with very large time constant influencing sorting time.
Our article represents the approach for practical design capabilities of parallel
algorithms with the lowest computational complexity. In addition, the article [Cole,
88] used binary trees while we use the separation of concerns approach. Sorting
methods discussed in the works [Carlsson, 90], [Gubias, 06], [Huang, 89] have some
limitations to use in database applications with multi core processing units. We can
say that there is a large discrepancy between theoretical works and practical methods
in parallel computing processes. The authors of the recent work are trying to fill the
gap between theory and practice. In [Marszałek, 16] was described an introduction of
the Fast Sort Algorithm, and in [Marszałek 17] was presented a parallel version of our
modified merge algorithm. The results of our further research presented in this article
show the parallelization of sorting processes and reducing the time complexity
by the use of processors without any cross actions between logical processors.
The research on the efficient parallel sorting algorithm benefited in this new model

490 Marszalek Z.: Parallel Fast Sort Algorithm ...

with a very high performance. The difference between sorting by parallel merging
[Marszałek 17] and parallel fast sort algorithm described in this article is in the
method of merging of sorted strings. Parallel merge implements the real connection in
each iteration and pairs all sorted strings. The parallel fast sort algorithm only links
the data in each iteration by the use of the number of logical processors and as a result
three sorted strings are composed into one sorted string. This allowed the design of
the parallel fast sort algorithm. In each iteration the number of independently
operating processors cooperates on sorting what makes the actual size of the task.

In this article we present the parallel fast sort algorithm, applicable to any number
of logical processors. The method is composed for independent processors in that
way that during operations all of them work without any cross actions and any
interruptions between each other. The proposed design of the parallel fast sort
algorithm has time complexity .

2 Parallel Fast Sort Algorithm

For the analysis of parallel sorting algorithm it is convenient to use the parallel
machine model - the PRAM (Parallel Random Access Machine) shown in Fig. 1.
Depending on the method of access of the processors to the memory, we can specify
three types of PRAM machines:

 Exclusive Read Exclusive Write (EREW)

 Concurrent Read Exclusive Write (CREW)

 Concurrent Read Concurrent Write (CRCW)

The first type of PRAM allows to read/write memory using only one processor. The
second type provides reading memory by any number of processors, however
wringing at the same time can be run only by one processor. The third type allows to
access memory using any number of processors. The second one of presented PRAM
models reflects the architecture of the modern computer and practically makes it
possible to write efficient parallel implementations.

A very important issue for sorting of data sets is the possibility of parallelism
between sorting processes. The PRAM machine model can be used to model the
division of tasks with low time complexity. This idea was adopted by the EREW
PRAM model, which allowed to sort numbers in time . Suppose now we can use
the CREW PRAM model, which will be used to describe the parallel sorting
algorithm acting on n processors.

2.1 Parallel algorithms for merging two sorted strings

Suppose that we have two sorted strings containing n elements each that
 i . The merge algorithm performs

insertions of the elements from an array x or y into the output array
by the processor number as follows.

491Marszalek Z.: Parallel Fast Sort Algorithm ...

Processor number where computes the index of the element before
which the new element should be inserted to have . In this case the
insertion must be done after the last element of the array with the value of the index

. Processor performs insertion of the value of the element in the string under
index . Imagine, for instance, this way to merge two strings ,

 using processors , , , . The situation is shown in Fig. 2.

Figure 1: A sample schema of the Parallel Random Access Machine

Figure 2: The model of merging array x with array z by applied number of processors

Each of processors operates independently and determines the index
of the element in the array , before which the new element should be inserted. For
example, for the processor , the element is inserted prior to . Hence,
the index is calculated and the new inserted element is , which we put into the array
. This is equal to the sum of the indexes of elements , which in this

case is 3, see Fig 3.

492 Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 3: The method of inserting element into the array z by the processor 1

Processor number where computes the index of the element before
which the new element should be inserted to have . In this
case the insertion must be done after the last element of the array , with the value of
the index . Processor performs insertion of the value of the element into the
string under the index . Imagine, for instance, this way to merge two
strings , using processors , , , . This situation is
shown in Fig. 4.

Figure 4: The model of merging array y with array z by applied number of processors

Each of the processors operates independently and determines the
index of the element in the array x, before which the new element should be
inserted. For example, for the processor , the element is inserted prior to

. Hence, the index is calculated and the new inserted element is , which we
put into the array . This is equal to the sum of the indexes of elements

493Marszalek Z.: Parallel Fast Sort Algorithm ...

, and is , see Fig 5. The index of the processor is equal to the
sum of the indexes of the inserted element into the array y and the number of
elements in the array .

Figure 5: The method of inserting element into the array z by the processor 6

Similar model of calculations of the index of the element, before which to insert the
new element via one of the processors was used in the binary search algorithm [8].
That model had time complexity . Since we assume that used processors
operate independently in the machine model CREW PRAM with processors, the
whole algorithm for parallel merging of two strings will perform in much shorter
time.

In the next section we describe the newly proposed parallel fast sort algorithm,
which only links the data in each iteration using the number of available
independently working logical processors. All of them cooperate on the input
information to sort it without crossing or interruptions, and as a result the processed
strings are composed into one sorted output. The new method is developed for n
independent processors, what makes it more powerful with each new available
processor.

2.2 Improved parallel algorithm without core-crossing actions

Proposed Parallel Fast Sort Algorithm (PFSA) makes possible the division of tasks
between independently working logical processors without cross actions. To develop
it we have used the model of the machine CREW PRAM. We use a temporary array
to merge the first two strings. For the efficiency of the processing, the third string
remains to be rewritten into the temporary array. Due to applied model of the machine
CREW PRAM all the processors can read the data but at the same time write into the
cell which is not currently being reorganized by any other processor. The initial
method proposed in [23] for faster sorting strings could use only one processor.
Therefore the time complexity was , since the tasks could not be divided
between processors. Proposed PFSA method allows to independently use n processors
and therefore lower the time complexity to .

494 Marszalek Z.: Parallel Fast Sort Algorithm ...

An example of the first stage in proposed PFSA of two lines is shown in Fig. 6.
The PFSA merges the strings stored in a temporary array to the third string located in
the input array. The result of merge is stored in the input array. A sample schema of
parallelized process of merging n/3 strings is shown in Fig. 7.

Figure 6: Parallel merge of the first two numeric strings in the first step of the
proposed PFSA

Figure 7: Parallel merge of the temporary array into the third string located in the
input array of the proposed PFSA

In the next steps of the PFSA we merge strings enlarged each time three times, see
Fig. 8.

495Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 8: Sample schema of the Parallel Fast Sort Algorithm

THEOREM I. Presented improved version of the Parallel Fast Sort Algorithm using
processors working independently on the machine CREW PRAM has time
complexity .

Proof. We are limiting our deliberations to , where . Let us first
notice that sequences and of elements we can merge
into one sequence using processors. Therefore parallel merging of
these two sequences will make no more than comparisons of the
elements in sequences and . Thus, the time complexity of the parallel merge
algorithm for two strings on a CREW PRAM machine is .

At each step , in the beginning of the sorting algorithm we save
in the temporary array two strings and additional one as the third in a row. Next, we
merge these two strings of the temporary array and save united strings in the array of
the sorted elements. Because all processors work independently the thread
synchronization happens after each stage of merging of two strings from the

496 Marszalek Z.: Parallel Fast Sort Algorithm ...

temporary array. Therefore the maximum operating time of each step of the merge
process of three strings is

 (1)

again, for the processing time of each step, we get

 (2)

therefore when calculating

 (3)

so by substituting and taking into account , we get

 (4)

which was to prove.

This is an estimation of the indexes of the items being inserted. First, two strings are
merged and written to the auxiliary table and the third one is just rewritten as shown
in Fig 6. As stated above, the processing time of the longest operation is

. Then all the processors are waiting for the insertion of elements to be
finished, and start inserting new elements from this array into the array of output
ordered elements. The maximum running time for each processor is

. After completing the insertion, they proceed to the next step of
sorting and merge three times longer arrays. The time of each sort step by n
processors is estimated. If the merged string is divided among k processors, then we
get n/k merged substrings processed by the number of used processors. Each
subsequence according to the Theorem I is merged in time . All the
processors work independently and are equally efficient. Hence as the conclusion we
can get the final theorem.

THEOREM II. By using k processors for proposed PFSA method on CREW PRAM

machine, we can lower the time complexity to
Proof. The proof comes as a natural derivation from the proof of the Theorem 1.

497Marszalek Z.: Parallel Fast Sort Algorithm ...

2.3 Implementation of the method

Presented PFSA method was implemented in C# Visual Studio Enterprise 2015. The
algorithm uses a parallel loop, which takes as arguments the start index, the number
of iterations, and the action object for (Action object<int>) Loop Parallel. This
construction efficiently reduces created program code, because there is no need to
create separate tasks, run them and wait for them to be finished. The algorithm
presented in Algorithm 1 uses maximum number of processors available in the
system. Due to preservation of the order the insertion of the elements is integrated
within the loop. Therefore two functions are targeted to deliver the index of the
element before which we are about to insert the new element. The first function
returns an index to the next element in the string on the right side, see Algorithm 2.
The second function returns an index to the next element in the string on the left side,
see Algorithm 3. Sorting function uses the possibility of targeted delivery of an index
to the next element in correctly merged two strings. The block diagrams of
implemented algorithms are presented in Fig. 9 and Fig. 10.

Start
Load table a
Load dimension of table a into n
Create an array of b of dimension n
Set options for parallelism to use all
processors of the system
Remember 1 in t
While t is less than n then do
Begin
 Remember 2*tt in t_0
 Remember 3*tt in t_1
 Parallel for each processor at index i_1 greater
 or equal 0 and less than n do
 Begin parallel for
 Remember i_1 / t_1 in j
 Remember t_1 * j in i
 Remember i_1 % t_1 in iw
 Remember i + t in p_1
 If p_1 greater than n then do
 Begin
 Remember n in p_1
 End
 Remember i + t_0 in p_2
 If p_2 greater than n then do
 Begin
 Remember n in p_2
 End
 If i_1 less than p_1 then do
 Begin
 Proceed function index located in the right sting in array a and
remember found index in iz
 Remember a[i_1] in b[iz + i + iw]
 End
 Else

498 Marszalek Z.: Parallel Fast Sort Algorithm ...

 If i_1 less than p_2 then do
 Begin
 Proceed function index located in the left sting in array a and remember
found index in iz
 Remember a[i_1] in b[iz + i_1 - t]
 End
 Else
 Begin
 Remember a[i_1] in b[i_1]
 End
 End of the parallel for
 Parallel for each processor at index i_1 greater or equal 0 and
less than n do
 Begin parallel for
 Remember i_1 / t_1 in j
 Remember t_1 * j in i
 Remember i_1 % t_1 in iw

 Remember i + t_0 in p_2
 If p_2 greater than n then do
 Begin
 Remember n in p_2
 End
 Remember i + t_1 in p_3
 If p_3 greater than n then do
 Begin
 Remember n in p_3
 End
 If i_1 less than p_2 then do
 Begin
 Proceed function index located in the right sting in array b and
remember found index in iz
 Remember b[i_1] in a[iz + i + iw]
 End
 Else
 If i_1 less than p_2 then do
 Begin
 Proceed function index located in the left sting in array b and remember
found index in iz
 Remember b[i_1] in a[iz + i_1 - t_0]
 End
 End of the parallel for
 Multiply variable t by three
End
Stop

Algorithm 1 Implementation code of the Parallel Fast Sort Algorithm

499Marszalek Z.: Parallel Fast Sort Algorithm ...

Start
Load table a
Load dimension of table a into n
Load index up
Load index uk
Load variable ux
If up equals uk then do
Begin
 Return 0
End
Remember up in ud
Remember uk -1 in ug
While ug - ud greater than 1 then do
Begin
 Remember (ud + ug) / 2 in lup
 If ux less or equals a[lup] then do
 Begin
 Remember lup in ug
 End
 Else
 Begin
 Remember lup in ud
 End
End
If ux equals a[ug] then do
Begin
 Remember ug in it
 If it greater than up and a[it - 1] equals ux
 then do
 Begin
 Subtract one from it
 End
End
Else
If ux equals a[ud] then do
Begin
 Remember ud in it
End
Else
If ux less than a[up] then do
Begin
 Remember up in it
End
Else
If ux greater than a[uk - 1] then do
Begin

500 Marszalek Z.: Parallel Fast Sort Algorithm ...

 Remember uk in it
End
Else
Begin
 Remember ug in it
End
Return it – up
Stop

Algorithm 2 The function code which returns the index of the element located in the
right string

Start
Load table a
Load dimension of table a into n
Load index vp
Load index vk
Load variable vx
Remember vp in vd
Remember vk -1 in vg
While vg - vd greater than 1 then do
Begin
 Remember (vd + vg) / 2 in lvp
 If vx less than a[lvp] then do
 Begin
 Remember lvp in vg
 End
 Else
 Begin
 Remember lvp in vd
 End
End
If vx equals a[vg] then do
Begin
 Remember vg in it
 If it+1 less than vk and a[it + 1] equals vx
 then do
 Begin
 Add one to it
 End
 If it equals vk -1 than do
 Begin
 Add one to it
 End
End
Else

501Marszalek Z.: Parallel Fast Sort Algorithm ...

If vx equals a[vd] then do
Begin
 Remember vd in it
 If it+1 less than vk and a[it] equals vx
 then do
 Begin
 Add one to it
 End
End
Else
If vx less than a[vp] then do
Begin
 Remember vp in it
End
Else
If vx greater than a[vk - 1] then do
Begin
 Remember vk in it
End
Else
Begin
 Remember vg in it
End
Return it – vp
Stop

Algorithm 3 The function code which returns the index of the element located in the
left string

2.4 Secure Multiparty Computation

With the growth of information technology, there is a need to protect data privacy and
the need to disseminate information without compromising privacy. Many area may
be given of public life in which the distributed information should be encrypted in
order to preserve privacy, e.g. Medicine, economics, etc. Secure multi-party
computation (MPC) is a technique that enables the creation of such secure systems
[Bogdanov, 14], [Laud, 16]. In MPC protocols, parties evaluate a
function , where input and output values are in
secret-shared form. Accept the assumption that input and output values for the MPC
protocols belong to the field and denote a share for where a secret value
is . Let be a coalition of parties and denote a set of shares

. When represents all parties, a share value for convenience
denote as .

502 Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 9: The block diagram of the proposed Parallel Fast Sort Algorithm

503Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 10: The block diagrams of two functions used in PFSA code implementation to
calculate exact position of the insertion, from the left side and from the right side

Another important issue is the security model of information transfer. There is a
possibility that the Protocol will be partially damaged at the input and output. We can
say that the Protocol is secure if you can identify the broken part of the Protocol at the
input and the output, i.e. . denote the parties that are corrupted. The
formal definition of security model can be found [Shamir, 79].

In accordance with the Protocol MPC secret values becomes available to all
participants . The secret-shared values is input for each party and output in secret-
shared form. In the Protocol MPC, the following protocols are define:

1. Comparison Protocol – outputs a shared value of the comparison result of the

inputs two shared values [41]. Formally defining, the comparison protocol
takes as input two arguments and for each and returning
a compression result to the output for each [Hamada, 12].

2. Shuffling Protocol – performs uniform random permutation from the input
shared values []. Protocol execution is dented as

3. Reveal Protocol – the reveal algorithm in a multi-party setting. Protocol

execution is dented as

As always in processing the information, the same way in the processing of secret
sharing schemes play an important role sorting algorithms. Appropriately direct use of
the known sorting algorithms such as quick sort, heap sort and merge sort is
impossible, as the effect of these algorithms is based on comparison operations for
elements to be sorted. This problem can be solved in a simple way through execution

504 Marszalek Z.: Parallel Fast Sort Algorithm ...

shuffling before sorting and application of the method compared the sorted data.
Application of the method compared the sorted data, not leaking information, as the
ordinal information is randomized by the shuffling. In addition, the method that
compares the elements being sorted can be secured so that it is not possible to be a
leak in the information outside (in accordance with the principles of object-oriented
programming). The solution to the problem of applying known algorithms sorting
protocols MPC is simple and effective.

In this paper, it was proposed the method of parallel fast sorting. Parallel Fast
Sort Algorithm is a stable method behaved the order of the order of ascending sorted
string i.e. The original order of repeated values of the sorted string is preserved. The
stability of the method in the order of the duplicate values is a very important feature
in the MPC protocol sorting applications.

2.5 Performance Experimental study of the proposed Parallel Fast Sort
Algorithm

Performance analysis of the presented method is based on benchmark tests for the
algorithm implemented in C# in Visual Studio 2015 Enterprise on MS Windows
Server 2012. For tests were used 100 samples generated at random task size from 100
to 100000000 elements, increasing the size of sorted array by ten times each time.
Each sorting operation by examined method was measured in time [ms] and CPU
(Central Processing Unit) usage represented in tics of CPU clock [ti]. Tests were
carried out on quad core amd opteron processor 8356 8p. For the statistical tests and
comparisons were used methods as in [23]. We have measured statistical average of n
elements set of samples defined by the formula

. (5)

The standard deviation defined by the formula

, (6)

where n is the number of elements in sample, of random value variables,

 is the arithmetic mean of the sample.
In order to compare sorting algorithms we have done an analysis for large sets of data.
The analysis for sorting time was carried out in 100 benchmark tests for each of the
fixed dimensions of the task. Algorithm stability is described on basis of the
coefficient of variation. The coefficient of variation is a measure that allows
determining value of diversity in examined sample. It is determined by the formula

505Marszalek Z.: Parallel Fast Sort Algorithm ...

 (7)

where we use arithmetic mean (5) and standard deviation (6). The coefficient of
variation reflects the stability of the method in a statistical sense. Benchmark tests of
the newly proposed PFSA method were taken for 100, 1000, 10000, 100000,
1000000, 10000000 and 100000000 elements on the input. The results are presented
in tables and discussed in the following figures. The purpose of the analysis and
comparison is to verify how the newly proposed parallel processing can speed up
sorting of data sets. Presented results are averaged for 100 sorting samples.
Benchmark tests for PFSA are described in Tab. 1 - Tab. 4 and comparison of the
results to other sorting methods is presented in Tab. 5. For these comparisons we have
used three methods: quick sort [Woźniak, 15], heap sort [Woźniak, 13] and merge
sort [Marszałek, 15].

Table 1: The result of sorting for parallel fast sort algorithm in [ms]

From Tab. 1 we can see that sorting time is increasing with the number of sorted
elements. The results are presented in Fig. 11. However the time is lower with each
new processor used for sorting. The most visible difference is for the data sets above
10 000 000 elements. That shows a positive influence of proposed parallel processing,
since with the increasing number of used processing cores the PFSA method is able to
efficiently sort huge amounts of information.

Analyzing Tab. 2 we see how the number of calculations on each applied
processing architecture changes with additional cores. The results are presented in
Fig. 12. We can see the same situtation as for time. With increasing number of used
cores the number of calculations is lower. Since all the processors are working
independently the PFSA method can be very efficient even for large data sets. The
efficiency depends on the number of used processing units. Comparison of coefficient
of variation for PFSA is presented in Tab. 3 and Tab. 4, for time and calculations
respectively. Analyzing these values we can see that with increasing number of
processing units the proposed method is more stable in a statistical way. That shows a
positive impact of the proposed PFSA implementation with no cross-actions between

Elements
 1 –
 processor

 2 –
 processors

 4 –
 processors

 8 –
 processors

100 1 1 1 1

1 000 1 1 1 1

10 000 16 10 6 5

100 000 235 154 116 52

1 000 000 2999 1568 829 516

10 000 000 41766 21560 11300 6734

100 000 000 429462 278583 143647 82079

506 Marszalek Z.: Parallel Fast Sort Algorithm ...

processors. The algorithm for any number of CPUs used in sorting has very similar
stability in each class of input cardinality. Some variations in stability of the
algorithm are visible only for small inputs. These are due to the fact that operating
system automatically exceeds the sorting algorithm, what can cause some additional
operations.

Table 2: The results of sorting for parallel fast sort algorithm in [ti]

Table 3: Coefficient of variation for parallel fast sort algorithm in [ms]

Elements
 1 –
 processor

 2 –
 processors

 4 –
 processors

 8 –
 processors

100 1.1024162 1.1034171 1.0012263 1.1043141

1 000 0.7559289 0.9258200 0.9225771 0.9817180

10 000 0.1549049 0.1647508 0.1886751 0.2267786

100 000 0.1399457 0.1415474 0.1619496 0.1079664

1 000 000 0.0641322 0.0599950 0.0672706 0.0559623

10 000 000 0.0586108 0.0605951 0.0625390 0.0541402

100 000 000 0.0532901 0.0609835 0.0564864 0.0516798

Elements
 1 –
 processor

 2 –
 processors

 4 –
 processors

 8 –
 processors

100 3251 2523 2383 1397

1 000 3627 2752 2270 1958

10 000 52787 30685 20260 14290

100 000 755410 496632 371700 167045

1 000 000 9663086 5053206 2670337 1662674

10 000 000 134558726 69459912 36406762 21695164

100 000 000 1705779646 897515824 462790092 264436121

507Marszalek Z.: Parallel Fast Sort Algorithm ...

Table 4: Coefficient of variation for parallel fast sort algorithm in [ti]

The results of comparison are presented in Tab. 5. In Fig. 13 and Fig. 14 we can see a
comparison of sorting time and operations, respectively. The proposed method
becomes more efficient with each new processing core that can is used for sorting.
We can say that approximately each new core is able to speed up the process of
sorting of about 5% to 10%. This possibility is very important for large data sets,
where new computer architectures can efficiently support operations. This result is
possible due to the proposed implementation of the method. We have very efficient
separation of concerns for each applied processor, what results in a fact that we have
no cross-actions between processors.

Table 5: Comparisons of sorting time for examined methods in [ms]

Elements QS 3HS MS PFSA

100 1 1 1 1

1 000 1.95 1.6 1.95 1.95

10 000 6 4 6 4

100 000 75 51 55 47

1 000 000 933 629 576 368

10 000 000 10962 8087 6665 4795

100 000 000 125400 102071 75007 58957

Elements
 1 –
 processor

 2 –
 processors

 4 –
 processors

 8 –
 processors

100 1.4543798 1.3870293 1.2285883 1.1669990

1 000 0.2131656 0.1766220 0.1969925 0.1027110

10 000 0.1480054 0.1158681 0.1775589 0.1358741

100 000 0.1399730 0.1410735 0.1650359 0.1191470

1 000 000 0.0641393 0.0598660 0.1751595 0.0674605

10 000 000 0.0586089 0.0605900 0.1769479 0.0625266

100 000 000 0.0532901 0.0609837 0.1939433 0.0564883

508 Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 11: Comparison of benchmark sorting time [ms] for various number of used
processors

Figure 12: Comparison of benchmark sorting operations [ti] for various number of
used processors

509Marszalek Z.: Parallel Fast Sort Algorithm ...

Figure 13: Comparison of the method efficiency for various number of used
processors in terms of sorting time [ms]

Figure 14: Comparison of the method efficiency for various number of used
processors in terms of sorting operations [ti]

3 Analysis and comparison of sorting time

Analysis and comparison will help to estimate the PFSA efficiency for sorting. To
present the proposed method we have compared it with Quick Sort algorithm (QS)
presented in [29], Heap Sort algorithm for three divisions on each node in the levels

510 Marszalek Z.: Parallel Fast Sort Algorithm ...

of the heap (3HS) presented in [Woźniak, 13] and Merge Sort algorithm (MS)
presented in [Marszałek, 15]. Sample results are presented in Tab. 5 and comparison
of the results is visible in Fig. 15. The proposed method can be less efficient for data
sets of up to 1 000 000 elements. We can say that in this cardinality other methods
can show about 10% higher performance. But at the same time the study shows that
PFSA operates in shorter time measuring tasks for above 1 000 000 elements. This is
a very promising result. The method becomes more efficient with each new applied
core and it’s performance becomes more visible for large data sets. The proposed
method is effective when using a large number of processors available in modern

chipsets. It’s theoretical complexity is , where is the number of logical

processors that are used in calculations. As we can see from this analysis our tests
conducted on a limited number of processing units fully confirm the theoretical
results.

Figure 15: Comparison of the tested sorting methods in terms of sorting time [ms]

4 Final Remarks

The article presents a new method of distribution of tasks among processors in a
parallel method on the principle that all processors can read memory cells but only
one processor can write to the same memory cell. The implementation of the method
makes it work without any cross-actions, therefore all the processors are working
totally independently. Due to the design of the new method the sorting is performed
faster. The PFSA algorithm uses interaction features of modern processors and leads
to method working in time when using n logical processors.

Presented method of parallel sorting for large data sets may find practical
application in NoSQL databases but also in chipsets with large number of processing
units. The stability of the algorithm and it’s theoretical time complexity have been

511Marszalek Z.: Parallel Fast Sort Algorithm ...

confirmed during testing. As we have seen from the benchmark analysis, the
effectiveness of the proposed division of tasks between processors is displayed when
using a large number of logical processors available in modern computers. The
method performs better with increasing number of cores, that gives very promising
results for modern powerful chipsets. Further work will be done on the parallel
computing in the secure multi-party level security. In particular, security research will
be carried out on the sorting and active private protocol algorithms to ensure the full
security of sensitive applications.

References

[Abrahamson, 87] Abrahamson, K., Dadoun, N., Kirkpatrick, D., Przytycka, T.: A simple
parallel tree construction algorithm, Journal Algorithms, no.10, 1987, pp. 287–302.

[Aho, 75] Aho, I., Hopcroft, J., Ullman, J.: The design and analysis of computer algorithms,
Addison-Wesley Publishing Company, USA, 1975.

[Alanko, 84] Alanko, T., Erkio, H., Haikala I.: Virtual memory behavior of some sorting
algorithm, IEEE Transactions on Software Engineering, vol.10, no.4, 1984, pp. 422–431.

[Axtmann, 15] Axtmann, M., Bigmann, T., Schulz, C., Sanders, P.: Practical massively parallel
sorting, SPAA '15 Proceedings of the 27th ACM symposium on Parallelism in Algorithms and
Architectures, Portland, Oregon, USA — June 13 - 15, 2015, pp. 13-23, DOI:
10.1145/2755573.2755595

[Ben-Or, 83] Ben-Or, M.: Lower bounds for algebraic computation trees, Proceedings of 15th
ACM Symp. Theory of Computing, ACM Press, 1983, pp. 80–86.

[Bing-Chao, 86] Bing-Chao, H., Knuth, D.: A one-way, stack less quick sort algorithm, BIT,
vol. 26, pp. 127–130, 1986.

[Bogdanov, 14] Bogdanov, D., Laur, S., & Talviste, R.: A practical analysis of oblivious
sorting algorithms for secure multi-party computation. In Nordic Conference on Secure IT
Systems (pp. 59-74). Springer, Cham (2014, October).

[Carlsson, 90] Carlsson, S., Levcopoulos, C., Petersson O.: Sublinear merging and natural
merge sort, Lecture Notes on Computer Science - SIGAL’1990, vol. 450, pp. 251–260, 1990.
DOI: 10.1007/3-540-52921-7_74

[Cole, 88] Cole R.: Parallel merge sort, SIAM Journal on Computing vol. 17, no. 4, pp. 770–
785, 1988. DOI: 10.1137/0217049.

[Crescenzi, 03] Crescenzi, P., Grossi, R., Italiano, G.F.: Search data structures for skewed
strings, Lecture Notes in Computer Science, vol. 2647, Springer-Verlag Berlin Heidelberg,
2003, pp. 81–96.

[Czerwiński, 15] Czerwiński, D.: Digital filter implementation in Hadoop data mining system,
Communications in Computer and Information Sciences - CN’2015, vol. 522, pp. 410–420,
2015. DOI: 10.1007/978-3-319-19419-6 39.

[Choi, 17] Choi, S., Seo, J., Kim, M., Kang, S., Han, S.: Chrological Big data Curation: A
Study on the Enhanced Information Retrieval System, IEEE ACCESS, vol. 5, pp. 11269-
11277, 2017. DOI: 10.1109/ACCESS.2016.2642979

[Doberkat, 83] Doberkat, E.: Inserting a new element into a heap, BIT Numerical Mathematics,
vol.21, 1983, pp. 255–269.

512 Marszalek Z.: Parallel Fast Sort Algorithm ...

[Estivill-Castro, 92] Estivill-Castro, V., Wood, D.: A survey of adaptive sorting algorithms,
Computing Surveys, vol.24, no.4, 1992, pp. 441–476.

[Francis, 92] Francis, R., Pannan, L.: A parallel partition for enhanced parallel quick sort,
Parallel Comput, vol. 18, no. 5, pp. 543–550, 1992.

[Gubias, 06] Gubias, L.: Sorting unsorted and partially sorted lists using the natural merge sort,
Software Practice and Experience, vol. 11, no. 12, pp. 1339–1340, 2006. DOI:
10.1002/spe.4380111211.

[Gedigaa, 02] Gedigaa, G., Duntschb, I.: Approximation quality for sorting rules”, Comput.
Stat. Data Anal., vol 40, pp. 499–526, 2002.

[Hamada, 12] Hamada, K., Kikuchi, R., Ikarashi, D., Chida, K., Takahashi, K.: Practically
efficient multi-party sorting protocols from comparison sort algorithms. In International
Conference on Information Security and Cryptology (pp. 202-216). Springer, Berlin,
Heidelberg (2012, November).

[Huang, 89] Huang, B., Langston, M.: Merging sorted runs using main memory, Acta
Informatica, vol. 27, no. 3, pp. 195–215, 1989. DOI: 10.1007/BF00572988.

[Huang, 89] Huang, B., Langston, M.: Practical in-place merging, Communications of ACM,
vol. 31, no. 3, pp. 348–352, 1989. DOI: 10.1002/spe.4380111211.

[Knuth, 98] Knuth, D.: The art of computer programming Vol.3: Sorting and Searching,
Addison-Wesley, USA, 1998.

[LaMarca, 97] LaMarca, A., Ladner, R.: The influence of caches on the performance of sorting,
Proceedings of ACM-SIAM Symposium on Discrete Algorithms, pp. 370–379, 1997.

[Larson, 98] Larson, P., Graefe, G.: Memory management during run generation. External
Sorting, Proceedings of SIGMOD, 1998, pp. 472–483.

[Laud, 16] Laud, P., Pettai, M.: Secure multiparty sorting protocols with covert privacy. In
Nordic Conference on Secure IT Systems (pp. 216-231). Springer International Publishing
(2016, November).

[Lindell, 09] Lindell, Y., Pinkas, B.: Secure multiparty computation for privacy-preserving data
mining. Journal of Privacy and Confidentiality, 1(1), 5 (2009).

[Lutz, 89] Lutz, M., Wegner, L., Teuhola, J.: The external heap sort, IEEE Transactions on
Software Engineering, vol. 15, no. 7, pp. 917–925, 1989. DOI: 0098-5589/89/0700-0917.

[Marszałek, 16] Marszałek, Z.: Novel recursive fast sort algorithm, Communications in
Computer and Information Science ¬ ICIST’2016, vol. 639, pp. 344-355, 2016. DOI:
10.1007/978-3-319-46254-7_27

[Marszałek, 15] Marszałek, Z., Woźniak, M., Borowik, G., Wazirali, R., Napoli, C.,
Pappalardo, G., Tramontana, E.: Benchmark tests on improved merge for big data processing,
Asia-Pacific Conference on Computer Aided System Engineering APCASE’2015, IEEE, 14-16
July, Quito, Ecuador, pp. 96–101. DOI: 10.1109/APCASE.2015.24.

[Marszałek 17] Marszałek, Z.: Parallelization of Modified Merge Sort Algorithm, Symmetry,
vol. 9, no. 9, pp. 176:1-176:18. DOI: 10.3390/sym9090176

[Nishide, 07] Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and
comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007.
LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

513Marszalek Z.: Parallel Fast Sort Algorithm ...

[Rauh, 10] Rauh, A., Arce, G.: A fast weighted median algorithm based on quick select,
Proceedings of the IEEE 17th International Conference on Image Processing, IEEE, 26-29
September, 2010, Hong Kong, 2010, pp. 105–108.

[Roura, 01] Roura, S.: Digital access to comparison-based tree data structures and algorithms,
Journal Algorithms, vol.40, no.1, 2001, pp. 123–133.

[Shamir, 79] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

[Shen, 17] Shen, Z., Zhang, X., Zhang, M., Li, W., Yang, D.: Self-Sorting-Based MAC
Protocol for High-Density Vehicular Ad Hoc Networks, IEEE ACCESS, vol. 5, pp. 7350-7361,
2017. DOI: 10.1109/ACCESS.2017.2692254

[Wegner, 89] Wegner, L., Teuhola, J.: The external heap sort, IEEE Transactions on Software
Engineering, vol.15, no.7, 1989, pp. 917–925.

[Woźniak, 15] Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.: Preprocessing large data
sets by the use of quick sort algorithm, Advances in Intelligent Systems and Computing -
KICSS’2013, vol. 364, pp. 111–121, 2015. DOI: 10.1007/978-3-319-19090-7 9.

[Woźniak, 13a] Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.: Modified merge sort
algorithm for large scale data sets, Lecture Notes in Artificial Intelligence - ICAISC’2013, vol.
7895, 612–622, 2013. DOI: 10.1007/978-3642-38610-7 56

[Woźniak, 13b] Woźniak, M., Marszałek, Z., Gabryel, M., Nowicki, R.: Triple heap sort
algorithm for large data sets, in A. M. J. Skulimowski (Eds.), Looking into the Future of
Creativity and Decision Support Systems, Progress & Business Publishers, 7-9, November,
Cracow, Poland, pp. 657–665

[Tsigas, 03] Tsigas, P., Zhang, Y.: A simple, fast parallel implementation of quick sort and its
performance evaluation on SUN enterprise 10000. Proceedings of Euromicro Workshop on
Parallel, Distributed and Network-Based Processing, pp. 372–381, 2003.

[Zhang, 96] Zhang, W., Larson, P.: Speeding up external merge sort, IEEE Transactions on
Knowledge and Data Engineering, vol. 8, no. 2, pp. 322–332, 1996. DOI: 10.1109/69.494169.

[Zhang, 97] Zhang, W., Larson, P.: Dynamic memory adjustment for external merge sort,
Proceedings of Very Large Data Bases Conference, 1997, pp. 376–385.

[Zhang, 98] Zhang, W., Larson, P.: Buffering and read-ahead strategies for external merge sort,
Proceedings of Very Large Data Bases Conference, Morgan Kaufmann Publishers, New York,
August 24-27, 1998, pp. 523–533.

514 Marszalek Z.: Parallel Fast Sort Algorithm ...

