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Abstract: Peer-to-Peer (P2P) computing (also called ‘public-resource computing’) is an 
effective approach to perform computation of large tasks. Currently used P2P computing 
systems (e.g., BOINC) are most often centrally managed, i.e., the final result of computations is 
created at a central node using partial results – what may be not efficient in the case when 
numerous participants are willing to download the final result. In this paper, we propose a novel 
approach to P2P computing systems. We assume that results can be delivered to all peers in a 
distributed way using three types of network flows: unicast, Peer-to-Peer and anycast. We 
describe our concept of the system architecture with a special focus on the decision strategies 
developed for system participants. Using our discrete realtime simulator we evaluate the 
proposed strategies in various scenarios and present a comprehensive analysis of obtained 
results. According to obtained results, the Peer-to-Peer flow provides lower operational cost of 
the computing system compared to unicast and anycast flows. Moreover, an appropriate 
selection of decision strategy can significantly reduce the operational cost. 
  
Keywords: computing systems, P2P, unicast, anycast, networks, simulation 
Categories: C.2.1, C.2.3, C.2.4 

1 Introduction  

Nowadays, permanently growing need for data processing triggers development of 
various kinds of distributed computing systems. Peer-to-Peer (P2P) computing 
systems allow performing distributed computation of tasks, which requires huge 
processing power that is mostly not available on a single machine. Such tasks are 
divided into many uniform pieces, which are distributed to separate machines (peers), 
which perform computation and next send the result back to the central node. The 
most popular implementation of this idea is the BOINC framework [Anderson, 04], 
which is used to run projects such as Seti@Home [Anderson, 02], Einstein@Home 
[Einstein, 10] and many others. The elements of such systems are most often home 
computers (such as PCs, Apples, or even game consoles such as Sony Playstation). 
Therefore, these systems are called Peer-to-Peer computing or public-resource 
computing systems. It must be noted that there is also a different kind of distributed 
computing systems called Grids [Travostino, 06], [Wilkinson, 09] that consist of 
dedicated machines with high computing power, e.g., super-computers or clusters, 
owned by various institutions or corporations. Two mentioned kinds of computing 
systems (i.e., P2P and Grids) differ in the number of participants – P2P systems 
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contain many machines (even up to millions [BOINC, 10]), while Grids incorporate 
most often up to tens of participants [Wyrzykowski, 05], [EGI, 10]. The common 
feature of Grids and Peer-to-Peer computing systems is the rule, that participants 
provide their computing power and when they finish the computation – they send the 
obtained result back to the managing (central) node, where all partial results are 
combined/analyzed into the final result. The participant usually does not analyze 
her/his partial result – as she/he would have to examine other partial results to 
produce the final result. In the case when the system’s participant is interested in the 
final result – she/he simply downloads it from the central node. This schema may 
cause huge load at the central node and high network traffic leading to network 
congestion. Therefore, in this paper we focus on a novel P2P computation 
architecture, where participants both compute source blocks and distribute results to 
all other participants instead of sending them back to the central node. This way we 
model computation community, where all members are interested in final results. 
Note that the architecture was first time introduced in [Chmaj, 10a]. Today’s 
distribution computation systems suffer problems with delivery of the final results to 
a large number to requesting sites. Authors of Electric Sheep project [Draves, 04] use 
distributed computing to render artificial forms of life and pinpoint that their central 
node where partial results are combined into the final result is often overloaded due to 
many download requests. Our novelty is a distribution computation system, which 
will be able to perform efficient task processing together with efficient result delivery. 
To realize data delivery, we propose to use Peer-to-Peer flow and compare its 
efficiency with unicast and anycast flows. We show that the use of Peer-to-Peer flow 
can significantly decrease the operational cost of the system. Our approach partially 
takes inspiration from BitTorrent protocol [Cohen, 03] – we use a kind of a tracker 
service. The proposed P2P computing system is managed in a distributed manner. 
Each element of the system (participant or tracker) is to make several decisions to 
process and distribute data. The performance of the whole system strongly depends on 
these strategies. Therefore, we propose and examine several decision policies.  

To evaluate the proposed computing system and decision strategies we developed 
a simulator that enables to examine the following issues: simultaneous computing and 
the result distribution, influence of proposed decision strategies, impact of different 
kinds of network flows (unicast, anycast, Peer-to-Peer), effect of network parameters 
such as link speed and computation power. Note that existing simulators (e.g., ns-2, 
ns-3 and OPNET, [OPNET, 10]) do not provide all required functionality 
indispensable to analyze all mentioned issues. 

Since the data distribution has a significant impact on the performance of the 
whole system, we compare three kinds of network flows applied for data distribution: 
unicast, anycast and Peer-to-Peer. The unicast flow is a simple point-to-point transfer 
and it reflects classical client-server architecture. Data may be fetched only from one 
node (server). Moreover, the node that downloaded a particular file cannot upload it 
to any other node. The anycast approach uses special nodes called replicas, which 
provide data for other peers. The node downloading the file may select any replica to 
download the file. Anycast flow is a version of the client-server architecture. 
However, the novelty comparing to pure unicast flow is that the server node (source 
of data) is deployed in a distributed manner, i.e., the same content is placed in many 
replica servers spread over the network. Finally, the P2P flow – in contrast to the 
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client server architecture – assumes that the file can be downloaded from any other 
node that already possesses the required file. Thus, when using the P2P flow all nodes 
act both as servers and clients.  

The problem researched in this paper may be described as follows. We examine a 
distributed P2P computing system constructed to provide efficient computation and 
result dissemination – for more details on the architecture see the next section. The 
objective to minimize the operational (OPEX) cost of the system including two types 
of costs, i.e., computation costs and transmission costs. It is worth to notice that tasks 
computation and results dissemination are mutually influential and should be 
optimized jointly. Therefore, we propose and examine a set of decision strategies 
applied in the system as well as we analyze three types of network flows used for data 
delivery in order to find the best (in terms of the operational cost) configuration. The 
main motivation behind the research is the fact that currently used solutions do not 
reflect the computation and dissemination problems at the same time, what leads to 
inefficient system operation and high costs. Moreover, the centralized approach is the 
most common approach to manage the system, but as we show in [Chmaj, 10a], it is 
not an efficient method. 

The main contributions of this paper are as follows: (i) detailed discussion about 
decision strategies developed for the P2P computing system; (ii) experimental 
investigation considering the influence of decision policies and network flows on 
system efficiency; (iii) analysis of system’s behavior as a function of various network 
parameters. Note that in our previous paper [Chmaj, 10a], we have presented main 
concepts of a P2P computing system architecture and we have described the 
simulation system developed to examine the P2P computing system. We have also 
briefly presented the decision strategies, which we comprehensively analyze in this 
paper.  

In our previous papers, we have proposed and described ILP (Integer Linear 
Programming) models, offline heuristic algorithms and discussed their results [Chmaj, 
08a], [Chmaj, 08b]. We also analyzed various network flows for the same problem, 
including the random approaches [Chmaj, 10b].  

The remainder of this paper is organized as follows. In Section 2, we describe the 
proposed P2P computing system. Section 3 includes detailed description of decision 
strategies developed for the system. In Section 4, we report and discus simulation 
results. Section 5 presents the related work. Finally, the last section concludes this 
work. 

2 P2P Computing System 

The proposed P2P computing system uses the overlay network that provides direct 
connection between every two elements connected to this network. It is not important 
how the connections (in our case: between two IP addresses) are established, since the 
underlying network (e.g., Internet) is responsible for routing. The concept of overlay 
network is very common in the case of P2P systems [Buford, 09], [Shen, 09], 
[Steinmetz, 05]. The P2P computing system includes two types of elements: 

1. node – a regular machine (e.g., PC) that performs the computations and 
exchange results with other nodes; 
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2. tracker – a central element, which assigns source blocks to nodes. It is also 
used to provide information related to location of result blocks, what is 
similar to the BitTorrent tracker concept.  

Figure 1 presents the idea of the P2P computing system. There are many nodes 
and one tracker in the system. Each node is connected to the overlay network using a 
link having limited upload and download speeds. As nodes are usually private home 
computers, the network link can be asymmetric DSL connection, local LAN or 
wireless GSM/3G mobile connection. Thus, we have very wide range of speeds, 
where often the upload speed is lower than the download speed. Nodes perform both 
computation and the result distribution. The computation project to be calculated in 
the system is divided into uniform pieces of the same size called source blocks. After 
processing (of the source block) the obtained output data is called a result block. 
When a node wants to compute a source block, it may obtain it only from the tracker. 
Thus, a node sends source block request to the tracker. If there is at least one 
available block, the tracker sends the source block to the requesting node. This block 
is then marked as ‘sent to computation’ and is not transferred to other nodes.  
 

 

Figure 1: P2P computing system architecture 

We assume that system participants are highly interested in all results, so they 
stay connected when the system works. Failures, block resending and nodes reliability 
issues are considered as a future work. A node may compute many blocks at the same 
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time (depending on its CPU power), however we introduce a fairness rule, that states: 
every node has to compute at least one block to become the project participant. 
Moreover, each participant is interested to obtain all results. Therefore, each block 
must be transferred to each node (either as a source block or as a result block). The 
tracker keeps a database containing information about blocks’ locations. A node that 
wants to download the result computed by other node sends a block location request 
to the tracker, in order to obtain list of nodes that store the desired result block. The 
tracker answers with a block location list message including the current location list, 
which is then processed by the node. To keep the tracker’s location list up to date, 
nodes are to send tracker update messages every time the node obtains a new block 
available to others. This happens in two cases: (1) node has just finished computing 
the source block, (2) node has just finished downloading a result block from another 
node. As the tracker knows, which nodes are project’s participants (according to the 
source blocks assignment and messages about computation completion messages) it 
provides locations only to participants what guarantees the fairness. When a node 
wants to download a result block, it sends the download request message, which can 
be positively acknowledged by a download acknowledgement message. The system 
presented in this paper uses one tracker – what makes it the central element. However, 
the tracker service can be deployed in a distributed way, i.e., many trackers may be 
used and they may be responsible for the same or different data. Our system 
architecture can be easily modified to consider this case. Thus, the use of one tracker 
does not make our system central - we assume only one tracker due to simplicity 
reasons.  

Let us define remaining terms required to comprehensively describe the proposed 
system: 

 upload channel – a node divides its network upload bandwidth into several 
channels, to be able to manage many simultaneous uploads. Once the 
channel is reserved to one particular upload, it becomes busy until sending 
process is finished. The upload channel may be used to send result blocks 
and various requests. 

 download channel – like in the case of the upload channel, the download 
bandwidth is also divided into several channels used later for many 
concurrent downloads.  

 computation channel – node processing power is divided into logical 
channels. We decided to use this way of modeling of the processing power, 
to keep consistency with the idea of channels used in the context of upload 
and download bandwidth. One source block may be computed using one 
computation channel. This assumption we motivate by willingness of having 
computation performance factor capable to depict number of blocks possible 
to compute in a certain time. The number of blocks in the system can be 
large, so the situation when a node is computing a small number of blocks 
while having free computation channels will be rather rare.  

 message – nodes and the tracker may interact between each other by sending 
messages. We distinguish the following kinds of messages in our system: 

• source block request is sent from a node to the tracker to inform 
that the node wants to obtain a new source block for computing; 
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• tracker update is sent from a node to the tracker to inform that the 
node possesses a new result block available to be downloaded and 
this message updates the tracker’s location list; 

• block location request is sent from a node to the tracker to request 
the current list of nodes that possess result blocks; 

• download request is sent from a node that misses a result block to 
another node, which possesses the requested result block available 
for download. It must be confirmed by the download 
acknowledgement message; 

• download acknowledgement – this message is a positive reply to the 
download request message; 

• block location list is sent from the tracker to a node, requesting the 
current list of blocks’ location, this a reply to the block location 
request message. 

 message queue – messages are put in a queue from which they are later 
picked out for further processing. Queues are managed according to global 
policies described below. Each node has one message queue and one request 
queue.  

Distribution of the results can be performed using three kinds of flows: unicast, 
anycast and P2P. In the case of unicast flow, the result block can be downloaded only 
from the node that computed the block. Anycasting assumes that several peers are 
selected as replica nodes. Each result block is first delivered to all replicas and next 
other peers can fetch the block from any replica. Finally, in the P2P approach result 
blocks can be downloaded from any peer that possesses the requested block. 
Intuitively, we can guess that the P2P concept will provide the best performance in 
terms of the operating cost, while unicast is expected to yield the highest cost. This 
hypothesis is confirmed by simulations in Section 4. However, we should also 
enumerate potential drawbacks of proposed data distribution methods. First of all, 
anycast and especially P2P flows generate additional signaling traffic in the network. 
Nevertheless, since the result blocks are mostly much larger than signaling messages, 
the impact of signaling traffic can be neglected. Moreover, anycasting and P2P 
approaches require more complicated client software, however taking into account 
high computational power of current computers again this drawback is ignored. 
Finally, using anycast and P2P flows, peers are more involved in uploading, thus the 
upload capacity of access links is utilized. But, this aspect can be used to tackle the 
problem of fairness in the system. For more information on the system architecture of 
our system refer to [Chmaj, 10a]. 

3 Decision Strategies 

The proposed P2P computing uses a distributed management. Each participant makes 
decisions individually according to her/his own knowledge and local constraints. We 
identify the following three decisions of the system: 

 missing block selection (decision A) – a node indicates one block to be 
downloaded and this is selected among all missing blocks.  
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 source node selection (decision B) – a node specifies another node that 
possesses the selected missing block in order to send the download request. 

 request selection (decision C) – each node receives download requests from 
other nodes and queues these requests for later processing. The decision 
determines how such a queue is processed.  

In the case of decision A we propose the following strategies (Fig. 2): 
 First-Missing policy assumes that the first missing block is attempted to 

download. This works as in many P2P systems, where blocks are requested 
in order they combine into desired file.  

 Rarest-Missing policy – a node finds out the rarest result block of all its 
missing blocks. This block is requested to download. The accuracy of the 
selection is limited to knowledge available at the node at the time when the 
decision is made. This concept is widely discussed in the scope of various 
Peer-to-Peer systems [Buford, 09], [Shen, 09], [Steinmetz, 05]. 

 
 

First-Missing: 
Let Missing(v) return a set of blocks that are 
missing at node v. Let MinId(A) return an index 
of a block with a smallest value of the 
identification number included in set A. 
 
int First-Missing(int v) 
 { 
  return MinId(Missing(v)); 
 } 
 

Rarest-Missing: 
Let function RarestBlock(A) return the rarest 
block among blocks included in set A. This 
information is provided by the tracker, which 
has the global knowledge on the blocks' 
availability on each node.  
 
int Rarest-Missing(int v) 
 { 
  return RarestBlock(Missing(v)); 
 } 

Figure 2: Missing block selection decision strategies in a pseudocode 

In the decision B we apply the following strategies (Fig. 3): 
 First-on-the-List policy assumes that the first node on the list of desired 

block owners is selected. List of nodes having desired block is obtained from 
the tracker and it is not ordered.  

 Cheapest-Owner policy allows the node to analyze all nodes possessing a 
particular block and select the node according to a selected criterion, e.g., 
cost, link speed, number of hops, etc. This way we obtain a system, which 
works with regard to optimizing one of many criterion factors.  

Finally, in the case of the decision C we introduce the following policies: 
 First-Available is the implementation of the FIFO queue, where the first 

received request is processed first.  
 Cheapest-Available policy assumes that the node having sufficient resources 

(e.g., bandwidth) may select the request freely from all available in queue. 
Attractiveness is defined in the same way as for Cheapest-Owner policy. If 
we assume, that our criterion will be the amount of data sent by requesting 
node, then this policy will resemble the tit-for-tat algorithm used in 
BitTorrent [Cohen, 03], [Buford, 09], [Shen, 09]. 
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First-on-the-list: 
Let function GetOwners(b) return the set of nodes 
which own block b (thus may send this block to other 
node). This information is provided by tracker 
according to its knowledge. This set is not sorted and 
nodes are placed in order update messages arrive to 
tracker. Let FirstFromSet(A) return the first element 
from set A, and b denotes block which is to be 
download by node v.  
 
int First-on-the-list(int b) 
 { 
  return FirstFromSet(GetOwners(b)); 
 } 

Cheapest-owner: 
Let function MinCost(v, A) return the id of 
node, from which transfer cost is smallest to 
node v. Returned node id is selected among 
node set A.  
 
int Cheapest-Owner(int v, int b) 
 { 
  return MinCost(v, GetOwners(b)) 
 } 

Figure 3: Source node selection decision strategies in a pseudocode 

First-available: 
Let FirstRequest(v) return an index of a request 
which was put into the queue at the earliest time 
among all requests in the queue. Queue is owned 
by node v.  
 
int First-Available(int v) 
 { 
  return FirstRequest(v) 
 } 

Cheapest-available: 
Let MinRequest(v) return the id of a request, 
which was sent by a node having smallest 
transfer cost to node v. Request is chosen among 
requests present in the queue owned by node v.  
 
int Cheapest-Available(int v) 
 { 
  return MinRequest(v); 
 } 

Figure 4: Request selection decision strategies in a pseudocode 

Each participant of the system is configured to use the same set of decisions 
strategies. Since there are 2 strategies for each of 3 decisions, it makes 8 possible 
combinations of the system configuration. The simulation comparison of these 
scenarios is presented in the next section. 

4 Results 

To examine the decision strategies proposed above, we developed our own simulation 
system written using C++, STL and compiled using gcc (for Linux environment) and 
Visual Studio 2003 (for MS Windows environment). We did not apply any other 
simulator (e.g., ns-2, ns-3 or OPNET), since none of existing systems provides the 
required functionality that enables simulating of both computation and result 
distribution in overlay network with the use of various network flows (unicast, 
anycast and P2P) and a range of decision strategies. For a detailed description of the 
simulation system see [Chmaj, 10a]. 

As the main performance metric, we propose to use the operational (OPEX) cost 
of the computing system including two elements: computing cost and result 
distribution costs. Note that in the case of a P2P computing system created of 
individual machines, the OPEX cost is much more significant than the CAPEX. To 
observe the influence of proposed policies on the system performance, we run 
experiments using the simulation system. We use networks having various size in 
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terms of number of nodes number of blocks and number of iterations. Using the 
iteration parameter, we model the network operating time, in which all computations 
and transfers must be completed (we model our problem as time-constrained). Other 
parameters of the networks (access link capacity, processing power, transfer cost and 
processing cost) are selected randomly according to parameters of real overlay 
systems, , e.g. for the case of download speed, simulation values have been set to 10-
160 units, where 1 unit = 100kb/s, what gives us simulated network having download 
links from the range of 1MB/s to 16MB/s. This random value assignment reflects how 
real network is built – different machines have different parameters, but enclosed in 
some range. For example, the processing power, which may be different between 
machines influences the time of block computation in our system. Source block is the 
piece of data to be computed and we assume that some certain amount of processing 
work has to be done to compute the source block. Thus, in our simulations a machine 
with a higher computation power will compute the source block faster than a machine 
with worse processing ability. To model the cost of each operation, we use the values 
respective to real network parameters. Processing cost reflects the energy and 
hardware expenses, while the network costs we model as the price of transfer of one 
source block between two machines using the overlay network. Our model is 
universal and transfer cost may reflect many factors, such as: distance between two 
machines, provider’s network access cost and others. For the researched networks, we 
take cost values from a specified range to model various sizes of the network ranging 
from small systems developed within one small region to networks covering 
intercontinental area. 

The first goal of simulations is the comparison of decision strategies described in 
Section 3. Since there are 2 strategies for each of 3 decisions, it makes 8 possible 
combinations (Table 1). For each network and each combination of policies we 
investigate three types of network flows: unicast, P2P and anycast.  

 

Combination/
experiment 
identifier 

Strategies used 
Decision A 

missing block 
selection 

Decision B 
source node selection 

Decision C 
request selection  

P0 First-Missing First-on-the-List First-Available 
P1 Rarest-Missing First-on-the-List First-Available 
P2 First-Missing Cheapest-Owner First-Available 
P3 Rarest-Missing Cheapest-Owner First-Available 
P4 First-Missing First-on-the-List Cheapest-Available 
P5 Rarest-Missing First-on-the-List Cheapest-Available 
P6 First-Missing Cheapest-Owner Cheapest-Available 
P7 Rarest-Missing Cheapest-Owner Cheapest-Available 

Table 1: Combinations of decision strategies  

First, we report detailed results obtained for three selected networks, as general 
trends are very similar for other examined networks. The tested networks have the 
following sizes: 100 nodes and 200 blocks; 127 nodes and 254 blocks; 157 nodes and 
314 blocks. The number of iterations is set to 15. For each individual case in terms of 
the network, decision strategy and flow type, we repeated the experiment 10 times to 
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enable statistical analysis of the results. In Figs. 5-7, we present the average values of 
the OPEX cost as a function of decision strategy and network flow type for each 
network. Tables 2-4 include corresponding results showing lengths of 95% 
confidence intervals for each particular series of experiments. Note that a particular 
case (network, decision strategy and flow type) with no feasible solution is reported in 
the corresponding table cell as N/A. 

 

 

Figure 5: Operating cost as a function of decision strategies and network flows for 
network with 100 nodes 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

unicast 0 N/A 0 N/A 0 N/A 0 N/A 

P2P 3851 3585 1644 5357 694 973 583 445 

anycast 2159 2513 2018 1530 1295 2163 1111 2371 

Table 2: Length of 95% confidence intervals for the OPEX cost (network with 100 
nodes) 

Comparing pairs of experiments in Figs. 5-7, i.e., P0 vs. P1, P2 vs. P3, P4 vs. P5, 
P6 vs. P7 – we can see that the use of the Rarest-Missing policy instead of First-
Missing policy does not introduce significant difference for P2P and anycast flows. 
This observation holds for all examined networks. A combination of policies First-
on-the-List and First-Available (in practice: no optimization) causes (for some 
networks) slightly higher cost for the P2P flow comparing to unicast and anycast 
flows. The use of the Rarest-Missing policy for the  unicast flow most often leads to 
the lack of feasible results. 

Deep investigation of simulation results showed us that the Rarest-Missing policy 
creates the starvation effect [Mathieu, 06] – some nodes cannot gain all result blocks 
(see experiments P1, P3, P5 and P7 in Figs. 5-7). This happens because nodes obtain 
the same information about block location and thus, they request the same set of 
blocks. Therefore, they compete for the same small set of “rarest” blocks, what is 
most influential in unicast flow, where a block may be fetched only from a node, 
which computed it. In effect, starved nodes send many download requests at early 
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stage of simulation, but they do not receive requested blocks because these blocks are 
“popular” at this time and such blocks may be fetched from only one node. As 
download requests are without any reply – starved nodes do not make any transfers at 
early stage and even if they get “rare” blocks later – the queue is long and they cannot 
get all blocks. P2P flow is fully resistant for starvation effect caused by Rarest-
Missing policy – it does not occurred for all researched networks, and it rarely 
happened for anycast flow. Starvation effect was widely discussed in [Mathieu, 06]. 

 

 

Figure 6: Operating cost as a function of decision strategies and network flows 
for network with 127 nodes 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

unicast 0 N/A 0 N/A 0 N/A 0 N/A 

P2P 5094 5055 5389 3079 985 742 798 272 

anycast 2303 2142 3398 2611 1455 N/A 965 N/A 

Table 3: Length of 95% confidence intervals for the OPEX cost (network with 127 
nodes) 

Comparing Tables 2-4 against corresponding results presented in Figs. 5-7, we 
can notice that lengths of 95% confidence intervals are very short, i.e., our simulator 
provides stable results. Notice that in the case of unicast flows, the length of 95% 
confidence interval is always 0. This follows from the construct of the simulation 
systems. In more details, when the system starts each computing node is allocated 
with one source block to fulfill the fairness assumption of our system. Next, when a 
node processed its block (what is a function of the node processing power), it requests 
the next block. Therefore, the block allocation process is deterministic and generates 
always the same cost. In the case of unicast flows the result block distribution also 
generates always the same cost, since each requesting peer can download the result 
block only from the node that computed that block. 
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Figure 7: Operating cost as a function of decision strategies and network flows for 
network with 157 nodes 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

unicast 0 N/A 0 N/A 0 N/A 0 N/A 

P2P 5041 5729 4266 4572 1477 887 1071 559 

anycast 2762 N/A 3196 3176 3434 N/A 2077 N/A 

Table 4: Length of 95% confidence intervals for the OPEX cost (network with 157 
nodes) 

To make a more general comparison of strategies for a larger set of networks, we 
generated a set of 20 networks with the following parameters: number of nodes V is in 
range 50-107, number of blocks B in range 75-161. The number of iterations is set to 
15. We define a relative performance metric of an experiment (combination of 
decision strategies) as the ratio between the cost obtained for this particular 
experiment and the minimum cost yielded for the best set of decision strategies. For 
instance, if for a particular network and type of the network flow the experiment P0 
gives cost of 500 and the lowest cost value 400 is obtained for experiment P7, then 
the relative performance metric of P0 is 20% = (500 – 400) /500, while in the case of 
combination P7 the metric is 0%.  

However, not all experiments result in a feasible output, i.e., in some cases the 
selected decision strategies and the type of network flow do not allow performing the 
computation and data distribution in a given number of iterations. For instance, the 
use of Rarest-Missing policy (combinations P1, P3, P5 and P7) sometimes makes 
unicast and anycast flows unable to return a complete solution. This happens because 
of starvation effect explained above. Additional experiments showed that even 
significant increase of iterations parameters (i.e., the network operation time) did not 
fix this problem – so additional mechanisms are required in this case. Detailed results 
are shown in Table 5. For each type of the network flow we bold the best combination 
of decision polices. Note that for the P2P flow, in all cases a feasible result is 
obtained.  
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Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

unicast 20 3 20 1 20 3 20 4 

P2P 20 20 20 20 20 20 20 20 
anycast 20 20 20 13 20 19 20 1 

Table 5: Number of feasible results for various 
combinations of decision strategies and network flows 

In Table 6, we report the average results of the relative performance metric for 
each type of network flows. The best combination is bolded. To show statistical 
analysis of the results, Table 7 includes respective lengths of 95% confidence 
intervals. If the number of analyzed results (networks) is lower than 10 (see Table 3) 
we do not provide the length of 95% confidence interval. 

 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

Unicast 0.84% 1.86% 0.84% 1.49% 0.95% 0.71% 0.64% 2.01% 

P2P 38.37% 38.30% 4.86% 4.31% 30.19% 28.55% 1.85% 0.08% 
Anycast 16.92% 16.78% 1.90% 2.94% 8.68% 9.82% 0.05% 2.67% 

Table 6: Average values of relative performance metric as a function of  
network flows 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

Unicast 0.40% 0.36% 0.40% 0.33%  

P2P 2.11% 2.18% 0.67% 0.77% 2.09% 1.93% 0.59% 0.15% 

anycast 1.17% 1.33% 0.59% 0.92% 1.05% 0.97% 0.08%  

Table 7: Length of 95% confidence intervals for the relative performance metric  

Table 8 shows the average score of each experiment (combination of decision 
strategies) calculated in the following way. The combination that yields the lowest 
cost of a particular network gets the score 7, the second combination receives score 6, 
etc. If there is no feasible result, the score is 0.  

In the case of the unicast flow, the change of strategies does not have significant 
influence on the final result. The average value of the relative performance metric is 
always below 2.01%. For the P2P flow, selection of strategies is very influential – the 
differences between results reached even 44% for one of the networks. The best 
performance is achieved for experiment P7, where results are minimal in the case of 
19 networks comparing to other experiments, and average value is 0.08%. Thus, 
policies Cheapest-Owner and Cheapest-Available are the best for the P2P flow. The 
anycast flow is less sensitive to selected strategies – the largest value of the relative 
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performance metric is 21%. Analysis of results shows that in the case of anycast 
flows, the Rarest-Missing policy causes a lack of solution for some networks. The 
best result is achieved for experiments P6 and P2.  

 

Flow Experiment ID (Combination of decision strategies) 
P0 P1 P2 P3 P4 P5 P6 P7 

Unicast 5.4 0.7 5.3 0.2 4.9 0.8 5.7 0.8 

P2P 0.5 0.5 4.4 4.7 2.0 3.0 6.0 6.9 
Anycast 1.9 1.9 5.9 3.5 4.1 3.3 6.8 0.2 

Table 8: Average values of the experiment score  
as a function of network flows 

The next goal of experiments is to examine the system’s behavior as a function of 
various network parameters including link capacity, processing power, number of 
nodes, and number of blocks. We present results obtained using the best (cheapest) 
configuration of the system in terms of decision strategies and flow type, i.e., 
combination P7 (Rarest-Missing, Cheapest-Owner and Cheapest-Available) and the 
P2P flow. We present detailed results obtained for four exemplary (selected) networks 
(50 nodes and 75 blocks; 68 nodes and 102 blocks; 89 nodes and 134 blocks, 107 
nodes and 161 blocks). The number of iterations is set to 15. However, results yielded 
for other networks have shown similar trends. 

First, we focus on the upload capacity limit. The methodology of the experiment 
is as follows. We manipulate the upload capacity to find the minimal feasible values 
of the limits that enable to run the system (process all source blocks and distribute all 
results blocks). Next, starting from these feasible values, we increase the upload 
capacity of each node by 1 unit and repeat this procedure until a significant change is 
observed. Note that – as above – for each individual case we repeat the same unique 
experiment 10 times to enable statistical analysis of the results. In Fig. 8, we report 
average values of the cost as a function of the upload capacity increase for four tested 
networks.  

 

 

Figure 8: Operating cost as a function of upload capacity increase 
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Notice that all presented curves follow the same shape. Initially, we observe a 
slight growth of the cost. Next, the cost remains stable until a sharp decrease occurs. 
Finally, the cost converges to stable value. A little surprising is the initial slight 
growth of the cost. This can be explain as follows. At the beginning (i.e., small values 
of the upload capacity), only a relatively minor part of the solution space is feasible 
and the obtained OPEX cost reflects these limits. When the upload capacity grows, 
more possible transfers are available. Since the applied strategies use some stochastic 
elements, the OPEX cost slightly grows. Next for some time the cost remains stable. 
The significant drop of the cost and its stabilization at the low value occurs when the 
system have enough upload capacity that only the cheapest nodes participate in 
sending blocks and the optimization process is simple. 

Fig. 9 shows results with 95% confidence intervals obtained for a 68-node 
network. For other tested networks, the statistical analysis yields similar trend, i.e., 
the results are relatively stable in each repetition of the same experiment.  

 

Figure 9: Operating cost with lengths of 95% confidence intervals as a function of 
upload capacity for a network with 68 nodes 

The second analyzed parameter is the download capacity. The procedure is 
analogous to the upload capacity parameter, i.e., first we find minimal feasible values 
and next increase the capacity by 1 unit in each node. Obtained results show that the 
system performance (OPEX cost) generally does not depend on this parameter, i.e., 
increasing of this parameter starting from the feasible value does not change the 
OPEX cost.  

Similar observation as in the case of download capacity can be noticed for 
processing power limits. Again, increasing this parameter from the minimal feasible 
values does not influence the OPEX cost. This can be explained by the fact that above 
certain limits level, additional computing resources will not be consumed anyway. 
The system is designed to perform computations as soon as this is possible – to make 
computation results available early for upload and dissemination. Therefore, the 
uniform reduction of computing limits is changing the system from the one having 
more resources than it needs, almost directly to the one suffering lack of computing 
resources (infeasibility). Thus, we do not observe the OPEX change for computation 
limits manipulation. 
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The next examined parameter is the number of nodes. The procedure of the 
experiments is as follows. Starting from the original network, we increment the 
number of nodes by 2 until the system becomes infeasible, i.e., when the number of 
nodes exceeds the number of blocks, according to the fairness assumption 
guaranteeing that each node must compute at least one block to become the system 
participant. For each case, we repeat the same experiment 10 times. Fig. 10 shows 
average values of the cost obtained for all tested network, while Fig. 11 presents 
statistical analysis (lengths of 95% confidence intervals) for a network with 107 
nodes. We can observe that the OPEX cost slightly grows with the increase of the 
number of nodes. This mainly follows from two assumptions of the considered P2P 
system. First, each node is to receive all result blocks, therefore all blocks must be 
delivered to new added nodes, what causes the distribution cost growth. Second, due 
to the fairness constraint, each new node must be allocated with at least one block to 
be processed what in many cases increases the processing cost.  

 

 

Figure 10: Operating cost as a function of nodes number 

 

Figure 11: Operating cost with lengths of 95% confidence intervals as a function of 
nodes number for a network with 107 nodes 
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The last analyzed parameter is the number of blocks. The methodology of the 
experiment is analogous to the previous case (number of nodes), i.e., starting from 
original networks we generate a new network incrementing the number of blocks by 
5. In Fig. 12 the average results obtained for all tested network are reported. Fig. 13 
includes detailed results with statistical analysis yielded for a network with 89 nodes. 

 

 

Figure 12: Operating cost as a function of blocks number 

Notice that increasing the number of blocks (i.e., problem size) causes the growth 
of the OPEX cost. This intuitive observation can be explained by the fact that both 
kinds of costs (processing and transmission) grow with the increase of blocks, since 
new blocks must be processed and next delivered to all nodes. When the number of 
blocks exceeds a particular value, the network becomes infeasible, as there is not 
enough network capacity to serve increasing traffic and computing needs. Infeasibility 
occurs at various points according to parameters of examined networks.  

 

Figure 13: Operating cost with lengths of 95% confidence intervals as a function of 
blocks number for a network with 89 nodes 

Our research shows that the key issue for the OPEX cost optimization is to select 
the appropriate decision strategy and the network flow type. The most influential 
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network parameter is the upload capacity, while download capacity and processing 
limit do not have much impact on the cost. Also network architecture is influential, 
i.e., nodes with very bad network parameters (high network costs, weak network 
connections) make the OPEX high, as they cannot be excluded and must take part in 
the processing. Overall optimization is very complex and must include many 
parameters, which influence on OPEX is not straight.  

5 Related Work 

The authors of [Foster, 03] address issues related to Grids and P2P systems. Various 
aspects including common features and differences between both kinds of systems are 
discussed. Moreover, the authors propose a system based on these two architectures. 
Another approach to merge Grid and P2P concepts is described in [Subramanian, 05]. 
The authors propose a system called IBM Download Grid, which aims to optimize 
data delivery with the use of a Grid architecture. Also authors of [Uppluri, 05] 
propose to implement P2P as the transport layer for Grid systems. They propose their 
own implementation of Gnutella protocol without taking the computation part into the 
consideration.  

P2P systems are considered as an efficient way to transfer data in networks what 
is investigated in many papers. In [Wu, 05] various approaches to P2P algorithms are 
discussed. The authors propose CSFD (Centrally Scheduled File Distribution) 
protocol aiming to minimize total delivery time of a file, which is initially available at 
only one node (a file is to be delivered to all nodes of the P2P system). CSFD is also 
compared with the BitTorrent protocol. A similar approach is described in [Ganesan, 
05], where the authors propose an optimization model and solution algorithms 
including a random approach. The study of P2P applications’ efficiency is addressed 
in [Yang, 04]. The authors describe a deterministic model and provide an analytical 
discussion related to network delay, branching model and other aspects.  

Distributed computing is frequently considered in the context of task scheduling, 
since task scheduling is a vital issue for efficiency of distributed systems. Authors of 
[Nabrzyski, 04] take into consideration many scheduling criteria, however they 
pinpoint that their model uses many simplifications. Scheduling is widely described in 
the literature, e.g., economic algorithms are addressed in [Fujimoto, 04], relations 
between scheduling techniques and RMS (Resource Management Systems) are 
presented in [Buyya, 02], task allocation as the form of multidimensional knapsack 
algorithm is discussed in [Vanderster, 09]. Triana is the distributed computing 
problem solving system, used (among many things) for visualization of galaxies 
formation. It is based on decentralized (unlike centralized BOINC) network with 
Peer-to-Peer flow and inter-node direct communication (without using centralized 
messaging broker). Triana peer receives the task in the form of the script, and after 
computation sends the result to Triana client or to another node. This brings the 
opportunity to compute task using distributed system, but still lacks the possibility to 
deliver results to all system participants (or the large group of them). The advanced 
resource aggregation techniques are presented in [Moca, 10]. Authors described 
decision models for this task applied to distributed systems and propose two-
mechanism functionality: resource discovery and partner selection. Thanks to it, 
resources may be found in the structure and be aggregated at desired node. The 
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efficiency criterion is defined as resource aggregation efficiency across the network 
where nodes delivery some resources. Note that in our paper we consider one metric 
for task scheduling – the choice of a node, to which the computation task will be 
allocated. The novelty of our approach is to optimize the overall system at all stages 
of its work: from tasks allocation to result delivery, keeping the regard to OPEX cost 
at each stage.  

Currently, computer networks mostly use four types of network flows: unicast, 
Peer-to-Peer, anycast and multicast. The unicast approach is widely used in such 
protocols as IP, MPLS [Ahuja, 93], [Pióro, 04]. At early times of Internet unicast was 
the only network flow used in protocols like TCP, HTTP, SMTP, FTP and it still 
remains very popular, although sharing multimedia and popularity of streaming media 
force to look for another transmission approaches, such as anycast, multicast and 
Peer-to-Peer. Streaming strategies in Peer-to-Peer networks were described in [Liu, 
08]. Authors describe the following approaches: “client-server”, “random P2P 
streaming”, “smallest number of hops in P2P” and “maximum profit in P2P” together 
with research methodology and results. Issues of Peer-to-Peer streaming based on 
IPTV are presented in [Hei, 08], analysis of Joost Internet TV is described in 
[Moreira, 08]. The authors of [Conklin, 01] compare various methods of media 
streaming. Unicast flow is popular subject of network traffic optimization. The most 
of unicast problems presented in literature are classified as Linear Programming or 
Mixed Integer Programming [Pióro, 04], for which optimization techniques are 
proposed as solution (simplex, branch and bound, etc.). This approach allows getting 
optimal or feasible solution.  

P2P systems are not only devoted to file sharing – they can link resources of 
many kinds, like: processing power, sensors, inter-user communication, etc. However, 
exchange of files is the most popular application of P2P systems and there are many 
protocols and systems designed to meet this usage. The most popular of them are: 
Napster, Gnutella, Kazaa, eDonkey and BitTorrent [Buford, 09], [Shen, 09], 
[Steinmetz, 05], [Tarkoma, 10]. Another application of the P2P concept is distributed 
database systems – their main idea is to spread database over many machines [Tjoa, 
05]. Peer-to-Peer systems often implement strict rules of fairness – to avoid 
domination of the whole system by a single peer. Fasttrack protocol characterizes 
each node by a fairness ratio, which is computed as a relation of data sent by a node to 
amount of data downloaded by the node. Nodes, which do many downloads without 
uploading are treated as parasites – they are placed at the end of queue of nodes 
willing to download particular data piece. A popular model of fairness 
implementation is tit-for-tat strategy [DeFigueiredo, 07]. This approach assumes that 
the node may download data only while it is simultaneously uploading data. There are 
two kinds of tit-for-tat strategy: direct reciprocity – node v may download from node 
w only when v is sending to w; indirect reciprocity – node v may download from node 
w only when any node is sending to w. Strategies of cooperation between nodes in 
Peer-to-Peer network are described in [Schlosser, 06]. Random Chunk strategy (also 
used in eDonkey) is based on assumption that node does not request pieces of a 
desired file in any order – random choice is used. Moreover, nodes serving file pieces 
are queuing download requests using FCFS (First Come, First Served) schema. The 
same way of queuing is used in the Least-Shared-First strategy, but in this case node 
selects missing file piece according to its popularity in network, i.e., least popular 
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pieces are requested first. This approach minimizes the problem of unpopular pieces, 
which are hard to download. Authors of [Schlosser, 06] conclude, that the Random 
Chunk strategy performs well unless nodes with complete file do not disconnect 
shortly after completing download whole file – then least shared pieces become very 
hard to get. As the solution for this case authors propose the Least-Shared-First 
strategy, which works well with parasite scenarios, but introduces “last block 
problem” – solved by CygPriM strategy also suitable for parasite scenarios.  

The most popular P2P file sharing protocol is BitTorrent – it is widely used 
among private users as well in science, where it is considered as efficient way to solve 
data delivery problems [Cohen, 03], [Buford, 09], [Shen, 09], [Steinmetz, 05], 
[Tarkoma, 10]. It assumes a special tracker role assigned to one node, which acts then 
as a simple manager and knowledge base. This role may be assigned to any node from 
the given system. Fairness in BitTorrent protocol is implemented using the tit-for-tat 
policy. Files are divided into blocks having uniform size and act as basic data units in 
system – listed in special metadata .torrent files containing also control information. 
Tracker may be considered as central system node, but it is worth to notice that this 
role covers only given metadata file (of course one tracker may serve its role for many 
metadata files). This way one P2P system may contain many trackers managing 
different (or even the same) files, what makes BitTorrent a non-central architecture. 
Although popular BitTorrent trackers grouping many users – such as Demonoid or 
PublicBt face the problem of centrality – they are easy to be turned off by digital right 
management companies. This problem pushed owners of ThePirateBay to work on 
structured approach of tracker, which spreads knowledge base (concentrated at tracker 
in original approach) among many nodes. Note that in our concept of the computing 
system, we follow BitTorrent ideas, e.g., tracker idea, data in form of blocks, periodic 
update of knowledge base and tit-for-tat policy. These ideas more or less similar to 
pure BitTorrent implementation are also used in many P2P and distributed 
computation systems.  

A network applying the anycast flow contains nodes having special role – called 
replicas. Each replica provides the same content. A requesting node chooses one of 
the replica according to some criterion, e.g. network link speed, geographical 
distance, etc. Successful implementation of anycast flow is a sophisticated task and 
requires solving such problems as: replica localization, replica evaluation, data 
consistency, request routing, accounting and routing [Rabinovich, 98]. Authors of 
[Zhang, 04] propose ARMM protocol (Anycast Routing protocol based on Multi-
Metrics). In contrary of traditional approach, where metric is established in client-to-
replica direction, ARMM uses reverse direction: replica-to-client. This way the route 
is set as best path from replica to downloading node regarding transfer speed. 
Described research showed, that ARMM provides high efficiency, especially in 
networks transferring big amounts of data. An example of anycast based system is 
CDN (Content Delivery Network), which delivers data on behalf of original servers, 
e.g., Akamai. Original files are placed on replicas located across the network. For 
each download request, CDN tries to find closest location having desired data 
[Hofmann, 05]. The anycasting in IP networks is described in [Metz, 02] together 
with practical implementations – such as DNS address resolving and IPv4 to IPv6 
gate. Authors of [Sarat, 06] examine benefits following from the anycasting 
comparing to a traditional DNS implementation. Various configurations of anycasting 
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are reviewed and investigation shows that the use of anycast decreases time of DNS 
response and improves accessibility to nameservers. The author of [Walkowiak, 06] 
addresses problems related to static optimization of anycast flows and proposes an 
effective heuristic algorithm.  

Our problem could be also applied to sensor networks, in the case when sensors 
would require receiving results from other sensors. The most common form of the 
sensor network gathers the data and delivers it to a processing node (also including 
the data processing at the sensors). This resembles our problem, but we consider the 
optimization problem as more general, including the computing and disseminating 
processes at the same time, while sensor networks focus on data processing and 
delivering to managing node, without the optimization of inter-node 
processing/communication.  

6 Conclusions 

In this paper, we described our approach to P2P computing systems. The main 
novelty of our idea is that the system performs computation and the result distribution 
at the same time. We showed how to avoid network congestion that can be caused by 
distribution of results to system participants. Similarly as in pure P2P systems, the 
computing system uses various decisions, for which we proposed and investigated 
several strategies. The described system was implemented in a realtime discrete 
simulation system. Research experiments proved that suitable choice of a right 
strategy is fundamental for the system’s efficiency. The difference between 
investigated policies (expressed as operating cost) reached even 40%. In experiments 
we applied three network flows: unicast, Peer-to-Peer and anycast. The P2P flow 
together with suitable strategy selection yielded the best efficiency of the computing 
system (up to 60% better than the worst case). Moreover, some policies applied to 
unicast and anycast flows caused the starvation effect, leading to lack of final result. 
Thus, as future work, we propose to implement anti-starvation mechanisms for 
unicast and anycast flows. Moreover, other future directions are as follows: extend 
simulation system to handle dynamic change of replica status during simulations, 
dynamic join/leave of nodes and more sophisticated policies comparing to policies 
presented in this paper. 

Acknowledgements 

This work was supported by National Science Centre (NCN), Poland, under the grant, 
which is being realized in years 2010-2013. 

References 

[Ahuja, 93] Ahuja, R., Magnanti, J., Orlin, J.: Network Flows: Theory, Algorithms, and 
Applications, Prentice Hall, Englewoof Cliffs NJ, 1993  

[Anderson, 02] Anderson, D., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: 
SETI@home: An Experiment in Public-Resource Computing, Communications of the ACM,  
Vol. 45, No. 11, 2002  

619Chmaj G., Walkowiak K.: Decision Strategies ...



[Anderson, 04] Anderson, D.: BOINC: A System for Public-Resource Computing and Storage, 
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing, 2004 

[BOINC, 10] Statistics for projects based on BOINC: http://www.boincstats.com/  

[Buford, 09] Buford, J., Yu, H., Lua, E.: P2P Networking and Applications, Morgan 
Kaufmann, 2009. 

[Buyya, 02] Buyya, R.: Economic-based Distributed Resource Management and Scheduling for 
Grid Computing, School of Computer Science and Software Engineering, Monasch University, 
Melbourne, 2002 

[Chmaj, 08a] Chmaj, G., Walkowiak, K.: Heuristic Algorithm for Optimization of P2P-based 
Public-Resource Computing Systems, Lecture Notes in Computer Science, Vol. 5375, Springer 
Verlag, 180-187, 2008 

[Chmaj, 08b] Chmaj, G., Walkowiak, K.: Data Distribution in Public-Resource Computing: 
Modeling and Optimization, Polish Journal of Environmental Studies, Vol. 17, No. 2B, 11-20, 
2008 

[Chmaj, 10a] Chmaj, G., Walkowiak, K.: A P2P computing system for overlay networks, 
Future Generation Computer Systems, doi: 10.1016/j.future.2010.11.009, 2011 

[Chmaj, 10b] Chmaj, G., Walkowiak, K.: Random Approach to Optimization of Overlay 
Public-Resource Computing Systems, International Journal of Electronics and 
Telecommunications, No. 1, Vol. 56, 53-59, 2010 

[Cohen, 03] Cohen, B.: Incentives Build Robustness in BitTorrent. Proceedings of the 
Workshop on Economics of Peer-to-Peer Systems, 2003 

[Conklin, 01] Conklin, G. J., Greenbaum, G. S., Lillevold, K. O., Lippman, A. F., Reznik, Y. 
A.: Video coding for streaming media delivery on the Internet, IEEE Transactions  
on Circuits and Systems for Video Technology, Vol. 11,  No. 3, 2001 

[DeFigueiredo, 07] DeFigueiredo, D., Venkatachalam, B., Wu, S. F.: Bounds on the 
Performance of P2P Networks Using Tit-for-Tat Strategies, Seventh IEEE International 
Conference on Peer-to-Peer Computing, 2007 

[Draves, 04] Draves S.: The Interpretation of Dreams, An Explanation of the Electric Sheep 
Distributed Screen-Saver, 37H37H37Hhttp://electricsheep.org/ 

[EGI, 10] European Grid Initiative funded by European Comission’s Programme: 
http://web.eu-egi.eu 

[Einstein, 10] Einstein@home project homepage: http://www.einsteinathome.org  

[Foster, 03] Foster, I., Iamnitchi, A.: On Death, Taxes and Convergence of Peer-to-Peer and 
Grid Computing, Lecture Notes in Computer Science, Vol. 2735, 2003 

[Fujimoto, 04] Fujimoto, N., Hagihara, K.: A Comparison among Grid Scheduling Algorithms 
for Independent Coarse-Grained Tasks, Proceedings of the 2004 International Symposium on 
Applications and the Internet Workshops (SAINTW’04), 2004 

[Ganesan, 05] Ganesan, P., Seshadri, M.: On Cooperative Content Distribution and the Price  
of Barter, In Proceedings of the 25th IEEE International Conference on Distributed Computing 
Systems (ICDCS’05), 2005 

[Hei, 08] Xiaojun Hei, Yong Liu, K. W. Ross: IPTV over P2P streaming networks: the mesh-
pull approach, IEEE Communications Magazine, Vol. 46, No. 2, 2008 

620 Chmaj G., Walkowiak K.: Decision Strategies ...



[Hofmann, 05] Hofmann, M., Beaumont, L.: Content networking: architecture, protocols, and 
practice, Elsevier, 2005 

[Liu, 08] Bo Liu, Yansheng Lu, Yi Cui, Yuan Xue: A measurement study on AS-aware P2P 
streaming strategies, Third International Conference on Communications and Networking in 
China (ChinaCom 2008), 2008 

[Mathieu, 06] Mathieu, F., Reynier, J.: Missing Piece Issue and Upload Strategies in 
Flashcrowds and P2P-assisted Filesharing, Advanced International Conference  
on Telecommunications and International Conference on Internet and Web Applications and 
Services, 2006 

[Metz, 02] Metz, C.: IP anycast point-to-(any) point communication, IEEE Internet Computing, 
Vol. 6, No. 2, 2002 

[Moca, 10] Moca M., Silaghi G.: Decision Models for Resource Aggregation in Peer-to-Peer 
Architectures, Grids, P2P and Services Computing 2010, 105-117, DOI: 10.1007/978-1-4419-
6794-7_9 

[Moreira, 08] Moreira, J., Antonello, R., Fernandes, S., Kamienski, C., Sadok, D.: A step 
towards understanding Joost IPTV, Network Operations and Management Symposium 
(NOMS), 2008 

[Nabrzyski, 04] Nabrzyski, J., Schopf, J., Węglarz J.: (eds), Grid resource management: state of 
the art and future trends, Kluwer Academic Publishers, Boston, 2004 

[OPNET, 10] Webpage of OPNET project: http://www.opnet.com  

[Pióro, 04] Pióro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication  
and Computer Networks, Morgan Kaufman Publishers 2004 

[Rabinovich, 98] Rabinovich, M.: Issues in Web Content Replication, Data Engineering 
Bulletin, Vol. 21, No. 4, 1998 

[Sarat, 06] Sarat, S., Pappas, V., Terzis, A.: On the Use of anycast in DNS, Proceedings of 15th 
International Conference on Computer Communications and Networks (ICCCN), 2006 

[Schlosser, 06] Schlosser, D., Hobfeld, T., Tutschku, K.: Comparison of Robust Cooperation 
Strategies for P2P Content Distribution Networks with Multiple Source Download, Sixth IEEE 
International Conference on Peer-to-Peer Computing, 2006 

[Shen, 09] Shen, X., Yu, H., Buford J., Akon, M., (eds.): Handbook of Peer-to-Peer 
Networking, Springer 2009 

[Steinmetz, 05] Steinmetz, R., Wehrle K., (eds.): Peer-to-Peer Systems and Applications, 
Lecture Notes in Computer Science, Vol. 3485, 2005 

[Subramanian, 05] Subramanian, R., Goodman, B.: Peer to Peer Computing: The Evolution  
Of A Disruptive Technology, Idea Group Publishing, 2005 

[Tarkoma, 10] Tarkoma, S.: Overlay Networks: Toward Information Networking, Auerbach 
Publications, 2010 

[Taylor, 03] Taylor I., Shields M., Wang I., Philp R.: Distributed P2P Computing within 
Triana: A Galaxy Visualization Test Case, Proceedings of the 17th International Symposium on 
Parallel and Distributed Processing (IPDPS), 2003 

[Tjoa, 05] Tjoa, A. M., Andjomshoaa, A., Shayeganfar1, F., Wagner, R.: Semantic Web 
Challenges and New Requirements, Proceedings of the 16th International Workshop on 
Database and Expert Systems Applications, 2005 

621Chmaj G., Walkowiak K.: Decision Strategies ...



[Travostino, 06] Travostino, F., Mambretti, J., Karmous Edwards, G.: Grid Networks Enabling 
grids with advanced communication technology, Wiley, 2006 

[Uppluri, 05] Uppuluri P., Jabisetti N., Joshi U., Lee Y., P2P Grid: Service Oriented 
Framework for Distributed Resource Management, IEEE International Conference on Services 
Computing – IEEESCC, 2005 

[Vanderster, 09] Vanderster, D. C., Dimopoulos, N. J., Parra-Hernandez, R., Sobie, R. J.: 
Resource allocation on computational grids using a utility model and the knapsack problem, 
Elsevier Future Generation Computer Systems 25, 2009 

[Wal06] Walkowiak, K.: Lagrangean Heuristic for Anycast Flow Assignment in Connection-
Oriented Networks, Lecture Notes in Computer Science, Vol. 3991, Springer Verlag, 2006,  
618-625 

[Wilkinson, 09] Wilkinson, B.: Grid Computing: Techniques and Applications, Chapman & 
Hall/CRC Computational Science, 2009 

[Wu, 05] Wu, G., Tzi-Cker, C.: Peer to Peer File Download and Streaming, RPE report,  
TR-185, 2005 

[Wyrzykowski, 05] Wyrzykowski, R., Meyer, N., Stroinski, M.: CLUSTERIX: National 
Cluster of Linux Systems, Proceedings of International Conference on Linux Clusters, 2005 

[Yang, 04] Xiangying Yang, De Veciana, G.: Service Capacity of Peer to Peer Networks,  
In Proceedings of INFOCOM ‘04, Vol. 4, 2004 

[Zhang, 04] Li Zhang, Jia Weijia, Wei Yan, Xiao-Ming Li: An efficient anycast routing 
protocol based on multi-metrics, Proceedings of 7th International Symposium on Parallel 
Architectures, Algorithms and Networks, 2004 

622 Chmaj G., Walkowiak K.: Decision Strategies ...


