
Software Components, Architectures and Reuse:
Software Product Line Engineering and Source Code

Enhancements

J.UCS Special Issue

Marcelo Fantinato
(USP – University of São Paulo, Brazil

m.fantinato@usp.br)

Uirá Kulesza
(UFRN – Federal University of Rio Grande do Norte, Brazil

uira@dimap.ufrn.br)

Flavio Oquendo
(IRISA – University of South Brittany, France

flavio.oquendo@irisa.fr)

The aim of this Special Issue is to report the state of research and practice on the
theme of Software Components, Architectures and Reuse – Software Product Line
Engineering and Source Code Enhancements. This special issue is comprised of
selected papers drawn from submissions from an open international Call for Papers
and extended peer-reviewed versions of the best papers presented at the 6th Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS 2012),
held in Natal, RN, Brazil, September 24-25, 2012 (http://www.cbsoft.dimap.ufrn.br/
sbcars_apresentacao.php?lang=en) and at the 7th Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS 2013), held in Brasília, DF, Brazil,
September 30 and October 1, 2013 (http://cbsoft2013.unb.br/en/sbcars-en).

The call for this Special Issue received 27 submissions. The submissions
originated from co-authors of 13 countries (Austria, Brazil, Chile, China, France,
Germany, Iran, Japan, Portugal, Republic of Korea, Spain, Tunisia, and USA).

Each submission was reviewed by at least three reviewers. The reviewing process
was organized in two phases. First submissions were selected to provide revised
versions based on the reviewers’ recommendations or definitively rejected. The
revised versions were then checked by the reviewers, and a second selection carried
out out of which nine high-quality papers were finally accepted to be included in the
special issue. In total, 75 reviewers participated in the process.

The special issue is composed by nine accepted papers and presents high-quality
research carried out by co-authors from Austria, Brazil, France, Portugal, Spain and
USA.

Journal of Universal Computer Science, vol. 20, no. 5 (2014), 583-586
submitted: 15/4/14, accepted: 25/4/14, appeared: 1/5/14 © J.UCS

Contents of this Special Issue

The first paper, entitled “A Toolset for Checking SPL Refinements” (F. Ferreira, R.
Gheyi, P. Borba, G. Soares) proposes and implements four tools for software product
line (SPL) refinements that allow checking if refinement transformations preserve the
behavior of the original SPL products. The tools are founded on a formal notion of
SPL refinement, which guarantees that the observable behavior of products in the
original SPL is preserved by corresponding products in the evolved SPL. To evaluate
the proposed tools, the authors analyze 35 evolution scenarios of an SPL with 32
KLOC and compare the approaches with respect soundness, performance, and code
coverage.

The second paper, entitled “Comparing Two Black-box Testing Strategies for
Software Product Lines” (P. Accioly, P. Borba, R. Bonifácio) presents two controlled
experiments conducted to assessing two different approaches for software product
lines testing from the perspective of productivity and quality of the testing execution
activities. The two evaluated testing approaches are: the Generic Technique (GT) that
uses general test suites specifications without variability representation; and the
Specific Technique (ST) that adopts product customized test suites. The results of
both controlled experiments show that ST can improve the test execution process
productivity by reducing test execution time and invalid change request rates.

The third paper, entitled “Consistency Checking in Early Software Product Line
Specifications – The VCC Approach” (M. Alférez, R. E. Lopez-Herrejón, A. Moreira,
V. Amaral, A. Egyed) addresses the challenge of checking, in a Software Product Line
(SPL), that different models used in early SPL specification do not contain
inconsistent information that may be propagated and generate inconsistent products
that do not conform to its requirements. The approach proposed by these authors,
called Variability Consistency Checking (VCC), relates information inferred from the
relationships between features and from base models related to those features.
Validating if all products in an SPL satisfy user-defined consistency constraints is
based on searching for a satisfying assignment of each of the formulas generated by
VCC. Results of case studies to validate VCC are presented in their paper.

The fourth paper, entitled “Defining and Validating a Feature-Driven
Requirements Engineering Approach” (R. P. Oliveira, D. Blanes, J. Gonzalez-Huerta,
E. Insfran, S. Abrahão, S. Cohen, E. S. Almeida) describes the Feature-Driven
Requirements Engineering (FeDRE) approach, which provides support to the
requirements engineering of software product lines. The approach focuses mainly on
the specification of requirements at early stages of domain engineering, taking as
input the scoping artifacts. The authors also present a case study involving the
development of a mobile application for emergency notifications using the FeDRE
approach. The study results show that the analysts perceived the approach as easy to
use and useful for specifying the functional requirements for this particular SPL.

The fifth paper, entitled “Flexible Feature Binding with AspectJ-based Idioms”
(R. Andrade, H. Rebêlo, M. Ribeiro, P. Borba) proposes AspectJ-based idioms to
implement flexible feature binding, which address existing design deficiencies of
recent research work. To evaluate their idioms, the authors present an empirical study
that applies the proposed idioms to the extracted code of 16 features of five different
software product lines. The study then compares those idioms through of: (i) a

584 Fantinato M., Kulesza U., Oquendo F.: Software Components ...

quantitative analysis using cloning, scattering, and tangling metrics; and (ii) a
qualitative analysis discussing the code reusability, changeability, and instrumentation
overhead. The results of the study show that one of the proposed idioms brings
advantages with respect to both quantitative and qualitative assessments.

The sixth paper, entitled “Verification of Software Product Line Artefacts: A
Checklist to Support Feature Model Inspections” (R. M. Mello, E. N. Teixeira, M.
Schots, C. M. L. Werner, G. H. Travassos) presents the results of a quasi-systematic
review of the technical literature that point to a lack of techniques to support the
inspection of Software Product Line artifacts, including the feature models that are
largely used in domain modeling. As a result, these authors developed a checklist-
based inspection technique, called FMCheck, to support the detection of defects on
feature models. FMCheck is configurable and applicable to different feature model
notations. In their paper, authors present results of an empirical evaluation, comparing
FMCheck to ad-hoc techniques.

The seventh paper, entitled “A Catalogue of Refactorings to Remove Incomplete
Annotations” (F. Medeiros, M. Ribeiro, R. Gheyi, B. Fonseca) addresses the needs to
efficiently remove incomplete annotations used by developers. In this paper, the
authors propose a catalogue of refactorings that converts incomplete annotations into
complete ones without cloning code and hence without increasing Lines of Code
(LOC), differently from other existing solutions. They implemented an Eclipse plug-
in to support the proposed approach. To evaluate the proposed catalogue, the authors
performed a study to analyze questions related to code cloning, LOC, and number of
directives. And, to answer their research questions, they analyze releases of 12
program families of different domains ranging from 4.9 thousand to 1.5 million LOC.
The results of this study are presented in their paper.

The eighth paper, entitled “Thesaurus-Based Tag Clouds for Test-Driven Code
Search” (O. A. L. Lemos, A. C. Paula, G. Konishi, S. Bajracharya, J. Ossher, C.
Lopes) proposes the adoption of thesaurus-based tag clouds to improve test-driven
code search, which consists on the usage of code search and reuse that makes use of
more semantic information available on test cases. The thesaurus-based tag clouds
allow showing developers terms that are more frequently used in the code repository
to improve their search. Terms are generated by looking up words similar to the initial
keywords on a thesaurus. Tag clouds are then formed based on the frequency in which
these terms appear in the code base. The authors have implemented the approach as
an extension to CodeGenie – a Java-based test-driven code search tool. The paper also
presents the approach evaluation conducted through an applicability study and a
controlled experiment, which bring evidences of the approach’s benefits.

The ninth paper, entitled “What should I code now?” (L. L. N. Silva Jr, A.
Plastino, L. G. P. Murta) addresses the relevant knowledge that can be extracted from
the huge amount of data related to the documentation and to the source code during
software development. In their paper, they present a new approach for code
completion based on sequential patterns mined from previous developed source code.
Using data mining as tool, their approach can consider what is being coded to provide
suggestions of new code sequences based on the mined patterns. The proposed
approach was implemented as a plug-in for the Eclipse IDE, named Vertical Code
Completion, and applied over widely known open source systems. Their paper
presents the results of these studies.

585Fantinato M., Kulesza U., Oquendo F.: Software Components ...

Reviewers of the special issue

Adenilso Simao, Brazil Jobson Massollar, Brazil
Alberto Costa Neto, Brazil Johannes Koskinen, Finland
Alexandre Alvaro, Brazil John Grundy, Australia
Alexandre Correa, Brazil Jose Miguel Horcas, Spain
Aline Vasconcelos, Brazil José Pérez-Alcazar, Brazil
Andre Endo, Brazil Kecia Ferreira, Brazil
Andres Diaz-Pace, Argentina Kiev Gama, Brazil
Antonio Francisco Prado, Brazil Luciano Digiampietri, Brazil
Antony Tang, Australia Marcelo Eler, Brazil
Bedir Tekinerdogan, Turkey Márcio Barros, Brazil
Camila Nunes, Brazil Marco Antonio Pereira Araujo, Brazil
Carlos Cuesta, Spain Marco Tulio Valente, Brazil
Carlos da Silva, Brazil Martin Becker, Germany
Carlos Ramón López Paz, Cuba Maurizio Morisio, Italy
Cecilia Rubira, Brazil Mehdi Mirakhorli, USA
Claudia Werner, Brazil Nelio Cacho, Brazil
Cláudio Sant`Anna, Brazil Nelson Rosa, Brazil
Daniel Lucrédio, Brazil Oliver Hummel, Germany
Danny Weyns, Belgium Padraig O'Leary, Ireland
Darko Huljenic, Croatia Paris Avgeriou, The Netherlands
Edson Oliveira Junior, Brazil Patricia Machado, Brazil
Eduardo Almeida, Brazil Paulo Pires, Brazil
Elder Cirilo, Brazil Raffaela Mirandola, Italy
Elisa Yumi Nakagawa, Brazil Regina Braga, Brazil
Ellen Francine Barbosa, Brazil Rick Rabiser, Austria
Fernando Castor, Brazil Roberta Coelho, Brazil
Fernando Figueira Filho, Brazil Roberto Bittencourt, Brazil
Flavia Delicato, Brazil Roberto dos Santos Rocha, Brazil
Francisco Dantas, Brazil Rodrigo Bonifacio, Brazil
Frederico Durao, Brazil Rogerio de Lemos, Great Britain
Frederico Lopes, Brazil Rosana Braga, Brazil
Genaina Rodrigues, Brazil Sarajane Peres, Brazil
Gibeon Soares de Aquino Junior, Brazil Tiago da Silva, Brazil
Gledson Elias, Brazil Uwe Zdun, Austria
Henry Muccini, Italy Vander Alves, Brazil
Ingrid Nunes, Brazil Vanilson Buregio, Brazil
Isela Macía, Brazil Vinicius Garcia, Brazil
Ivica Crnkovic, Sweden

Marcelo Fantinato

Uirá Kulesza
Flavio Oquendo

Brazil/France, April 2014

586 Fantinato M., Kulesza U., Oquendo F.: Software Components ...

