
Verification of Software Product Line Artefacts: A
Checklist to Support Feature Model Inspections

Rafael Maiani de Mello
(COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

rmaiani@cos.ufrj.br)

Eldânae Nogueira Teixeira
(COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

danny@cos.ufrj.br)

Marcelo Schots
(COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

schots@cos.ufrj.br)

Cláudia Maria Lima Werner
(COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

werner@cos.ufrj.br)

Guilherme Horta Travassos
(COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, Brazil

ght@cos.ufrj.br)

Abstract: Software Product Line Engineering (SPL) should ensure the correctness,
completeness and consistency of its artefacts and related domain to prevent the propagation of
defects in derived products. Software inspection techniques are effective in detecting defects in
software artefacts and avoiding their propagation throughout the software development process.
However, the results of a quasi-systematic review of the technical literature reported in this
paper pointed to a lack of such techniques to support the inspection of SPL artefacts, including
techniques to support the inspection of feature models (FMs) that are largely used in domain
modelling. Therefore, a checklist-based inspection technique (FMCheck) has been developed to
support the detection of defects on FMs. FMCheck is configurable and can be applied to the
original feature model notation (the FODA approach) and its extensions, including the
Odyssey-FEX notation. The inspection technique was empirically evaluated, having indicated
its feasibility and effectiveness. It is possible to see that inspectors applying FMCheck to
inspect FMs can be more effective than those applying ad-hoc techniques, regarding four
distinct domains.

Keywords: Feature Model, Software Inspection, Domain Engineering, Software Reuse,
Software Product Line, Experimental Software Engineering.
Categories: D.2.1, D.2.2, D.2.4, D.2.13

1 Introduction

The systematic reuse of software artefacts has been used in the last decades, and
amongst its observed benefits, an increase of quality and productivity in the software

Journal of Universal Computer Science, vol. 20, no. 5 (2014), 720-745
submitted: 28/7/13, accepted: 15/2/14, appeared: 1/5/14 © J.UCS

development process seems to be produced by its use [Lung et al., 97] [Jones, 00]. In
this context, a Software Product Line (SPL) is a key approach to support software
reuse, aiming to support its systematic accomplishment in all software development
stages. SPL represents a group of software-intensive systems sharing a common,
managed set of features. Software products meet the specific needs of a particular
market or mission and are developed from a common set of core assets in a prescribed
way [Northrop, 02].

SPL Engineering can be divided into two stages: Domain Engineering (DE),
focused on the development for reuse, and Application Engineering (AE), focused on
the development with reuse. Software development for reuse includes a set of specific
activities aimed at converting knowledge into reusable components [Arango and
Prieto-Díaz, 91]. The DE stage consists of Domain Analysis, Domain Design, and
Domain Implementation [Atkinson et al., 02]. Both Domain Analysis and Domain
Design can be modelled by using different kinds of representations, which includes
UML models, architectural models [Gomaa and Shin, 07] (commonly using UML
component diagrams) and one of the representation techniques most used in SPL
approaches, i.e., feature models (FMs) [Kang et al., 90]. A FM intends to express
domain requirements as features, that can be specified as prominent or distinctive, and
user-visible aspects, qualities, or characteristics of a software system [Kang et al., 90].
Several notations have been derived to represent feature models based on the original
one (FODA), including the Odyssey-FEX notation [Blois et al., 06].

Although SPL Engineering can use conventional Software Engineering models,
the addition of a reuse perspective can expose SPL artefacts to a new range of
anomalies, including semantic defects which detection could be supported by
software inspections. IEEE [IEEE, 08] defines software inspection as the visual exam
of an artefact to find defects, a concept introduced by Fagan [Fagan, 72] and
considered an approach for performing software reviews [Wong, 06]. Inspections on
software artefacts can be supported by ad-hoc techniques or more elaborated ones
such as checklists [de Mello et al., 10] and reading techniques [Travassos et al., 99;
Shull et al., 00]. Through inspections, a considerable rework on software development
can be avoided, because defects can be identified and consequently fixed on early
stages of software development [Shull and Seaman, 08]. In this context, specialized
literature suggests that the inspection of SPL artefacts from a reuse perspective can
reduce the efforts in redundant verification of software products [Denger and Kolb,
06], benefiting all the products derived from it [McGregor, 01].

Thus, to better understand the state-of-the-art of SPL inspections, we carried out a
quasi-systematic review (secondary study) [Travassos et al., 08] of the technical
literature. Results indicated that there is a lack of technologies concerned with SPL
inspection. In particular, we could not identify any inspection technique to support the
semantic reading of FMs. Although some approaches for detecting anomalies in FMs
are common [Benavides et al., 10], their heuristics are typically based on syntactic
and automated model-checking, not supporting the identification of semantic defects.
These approaches are important to avoid the incorrect modelling of FMs and support
the development of SPLs, but are unable to support the verification of whether a given
FM, correctly modelled, is best suited to represent a particular domain. Thus, aiming
at filling this gap, we developed FMCheck, a checklist-based inspection technique to

721Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

support the semantic verification of FMs. Its feasibility and effectiveness in
comparison to ad-hoc inspections were empirically observed [de Mello, 12].

This paper is an extension of [de Mello et al., 12] that only described FMCheck
and its evaluation without presenting how the mentioned gap of inspection techniques
for supporting the verification of SPL artefacts, including FMs, was investigated.
Thus, this paper describes the quasi-systematic review conducted in 2011 before the
development of FMCheck, discussing its results and showing new information
produced in an additional search trial in 2013. Besides, the paper also brings
additional information regarding the checklist and its empirical evaluation that was
not completely described in [de Mello et al., 12]. Therefore, the paper is organized in
seven sections, including this introduction. Section 2 presents the planning and results
from the quasi-systematic review undertook to identify inspection techniques for SPL,
including new results acquired in a supplementary search trial. Section 3 discusses the
basis for establishing FMCheck, a checklist based inspection technique to support the
verification of FMs, which is presented in Section 4. Section 5 describes the planning
and results of the studies conducted to evaluate FMCheck, and Sections 6 and 7
present, respectively, our conclusions and some paths for future work.

2 The quasi-Systematic Review

The quasi-Systematic review aimed at identifying inspection technologies concerned
with SPL in the technical literature. Its research protocol was based in [Biolchini et
al., 05] and the used control paper was [Vasconcelos and Werner, 07].

Our research question was: ‘What are the existing techniques for inspecting
software artefacts developed for reuse?’ To conduct this review, we defined specific
criteria and procedures for article pre-selection (see Section 2.4) and selection (see
Section 2.5), involving four researchers from the Software Engineering Group at
COPPE/UFRJ. The PICO approach supported the definition of the search string (see
Section 2.1) based on the established research question:

 Population: articles describing inspection techniques concerned with
SPL artefacts.

 Intervention: techniques to support defect detection on reusable
artefacts and/or on their reuse.

 Comparison: none.
 Outcome: the techniques, their heuristics and applicability.
The next subsections describe the review plan and its results.

2.1 Search String (SCOPUS syntax)

TITLE-ABS-KEY (inspect* OR review* OR verif* OR validat* OR evaluat* OR
assess* OR read* OR check*) AND TITLE-ABS-KEY(“domain model” OR “domain
analysis” OR “domain design” OR “feature model” OR “architectural element” OR
“architectural model” OR “reusable component” OR “software component” OR
“variability model” OR “software architecture” OR “decision model”) AND TITLE-
ABS-KEY(“Domain Engineering” OR “software product line” OR “software product
family” OR SPL OR “software reuse” OR “variability management” OR “software

722 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

factory”)

2.2 Source Selection

For search tools, the following selection criteria were defined:
 The search tool should retrieve a unique result for a specific search

string;
 The search tool should allow the application of the search string only on

the title, abstract, and keywords;
 The search tool should support the whole search string in a single

query.
Three search engines were considered: SCOPUS (http://www.scopus.com/), EI

Compendex (http://www.engineeringvillage.com), and IEEEXplore
(http://ieeexplore.ieee.org). The intention on using such search engines was as regards
to the high coverage they offer. For instance, SCOPUS indexes articles from different
sources including ACM, IEEE and others, besides its well-known stability, reliability
and interoperability with different referencing systems. Additionally, we included the
proceedings of Brazilian Software Engineering conferences, available from
BDBComp (http://www.lbd.dcc.ufmg.br/bdbcomp/) as a source of knowledge for this
research. The three selection criteria were applied to the search engines. Based on
them, the IEEEXplore was discarded due to the third selection criterion. Theoretical
papers, reports of application in industry, experimental studies and/or combinations
between them would be accepted if they had been published in journals or
conferences.

2.3 Paper Selection Procedures (Experimental Design)

Two reviewers carried out the search and individually rated each returned paper as
“pre-selected”, “excluded” or “undefined”, following the pre-selection criteria
described in the section below. If a paper got rated as “undefined” by both reviewers,
it would be pre-selected. All the pre-selected papers were fully read by the first and
by a third reviewer, ranking each paper as “selected”, “excluded” or “undefined”,
after the selection criteria described in subsection 2.5.

2.4 Paper Pre-Selection Criteria

 The paper should meet the search string in its abstract, title, and keywords.
 The abstract should suggest the characterization and/or application of an

approach to evaluate artefacts related to software reuse, excluding explicit
citations to testing and measurement approaches.

 The full paper should preferably be available for download. If not, an email
for two of the authors should be sent with an answer expectation of 20 days,
after which the paper would be discarded.

 The title and abstract should be written in English or Portuguese due the
inclusion of BDBComp.

723Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

2.5 Selection Criteria

 Papers should be written in English or Portuguese;
 The full reading of the papers should allow the identification of at least one

approach to support the inspection of reusable artefacts;
 Papers that do not characterize (partially or totally) the inspection approach

used, without even citing an existing one, should be excluded;
 Papers describing approaches that do not present inspections as a visual

exam of an artefact (according to the definition of IEEE 1028 standard
[IEEE, 08]), such as approaches based on automated test tools, should be
excluded;

 Since we are looking for evaluating already developed inspection techniques,
papers that only mention rules or heuristics to identify software defects
without organizing it in a technique should be excluded, although they could
be considered to support the construction of a new inspection technique;

 Papers that do not present an approach to identify defects in software
artefacts should be excluded.

2.6 Execution

After two test rounds, the final search string as presented on subsection 2.1 was
executed on May, 2011 and re-executed on July, 2013 for the selected sources
(SCOPUS and EI Compendex). Some registers were discarded due to not being
papers, but only abstracts from proceedings. In the first search trial (2011), from the
350 distinct papers returned, 304 were referred to as “Computer Science” papers,
suggesting a good calibration of the search string. In its current re-execution (2013),
165 more distinct papers were returned, as shown in Table 1. Numbers in brackets
show the number of results found only for the second search trial and the numbers
outside brackets show the number of results only for the first search trial.

Search Tool #Registers #Papers #Distinct #Pre-Selected #Selected
SCOPUS 375(178) 348(165)

350(165) 100(34) 4(1)
EI Compendex 207(60) 193(0)

Table 1: Summary of returned publications by search tools.

At the end of the first search trial, it was a consensus amongst the reviewers that
only four papers, referring to three distinct inspection approaches, should be selected,
as summarized in Table 2. Also, by applying the same criteria to the BDBComp
proceedings, only one paper [Vasconcelos and Werner, 08] was found, having also
been mentioned in Table 2. Finally, after the second search trial (2013), only the
paper describing the Inspection Technique presented in Section 4 [de Mello et al., 12]
was added to the list of selected papers.

In [Ortega et al., 07], a small checklist is provided as an example of how to
inspect requirements in an approach to certify the quality of reusable components, but
it neither describes its application nor refers to any further study. The extended
ArqCheck [Vasconcelos and Werner, 07] consists of a configurable inspection

724 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

technique to support the detection of defects in architectural models, independent
from the modelling notation [Barcelos and Travassos, 06]. In the extended version of
ArqCheck, five evaluation items related to check the compliance between the
architectural model and non-functional requirements were added in a reusability
perspective, as shown in Table 3. The papers related to ArqCheck describe two quasi-
experiments conducted to evaluate it. The first one identified evidence on the
feasibility of ArqCheck as an inspection technique, and the second describes the
evaluation of the second and current version of ArqCheck.

Paper [Ortega et al., 07] [Kim et al., 08]
[Vasconcelos and
Werner, 07;08;11]

Approach
Name

No name No name
ArqCheck (extended

version)

Reference
describing

the approach

Own paper
(partially)

Own paper
(partially)

Own papers
(extended version)
and [Barcelos and

Travassos, 06]
Inspected
artefacts

Requirements
Specification

Architectural
models

Architectural models

Specific for
reuse?

Undefined Yes Yes

Type of
technique

Checklist Checklist Checklist

Review
Focus

Semantic Semantic Semantic

Reporting of
application?

No Proof of Concept Academic Projects

Approach
Evaluated?

Yes, specialists
evaluation

Yes, specialists
evaluation

Yes. quasi-
Experiments

Table 2: Summarized data extracted from the selected papers (first search trial).

The technique proposed in [Kim et al., 08] is based on the Families’ Evaluation
Framework (FEF) [Schimid and van der Linden, 07], a specific architectural
framework based on PuLSETM (the Product Line Software Engineering method)
[Schimid and Widen, 00] approach. This technique aims to verify if the practices
established in these frameworks are being applied to a model. The evaluation items of
this technique were grouped in four checklists, each one focusing on a desirable
architectural attribute of SPLs: commonality and variability; layered architecture;
abstraction mechanism; and default interface. Table 4 provides the checklist for
standard interface evaluation. At the end of this evaluation, the approach leads to the
counting of non-conformities for each checklist, aiming to establish a grade of
achievement for each attribute, as follows: not achieved (<25%), partially achieved
(between 25% and 50%), largely achieved (between 50% and 85%) and fully
achieved (>85%). Although the authors do not mention terms such as ‘inspection’ or
‘defects’, they present evaluation items for the detection of semantic defects in the
referred context.

725Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Items that evaluate consistency in the architectural representation
Do the responsibilities of the internal modules (i.e., classes) of a reusable element
belong to the same context, i.e., do they intend to achieve the same goal or are they
used in the same use case scenarios?
Is it possible to identify groups of reusable architectural elements with similar
responsibilities or that share some common implemented functionalities that
should be grouped to form a component?
From the point-of-view of the concept that the reusable architectural element
represents, are there modules (i.e., classes) that should be allocated in it,
considering their responsibilities or functionalities, but that are allocated in another
architectural element?
Are there couplings between a reusable architectural element and other elements
that hinder its reuse?
Considering the coupling amongst reusable architectural elements, are there
couplings that justify their clustering into one component?

Table 3: Excerpt from the extended ArqCheck [Vasconcelos and Werner, 07]

Classification Items
Definition of
standard interface

Are there standard interfaces defined between layers and
components?
Are there rules for interface standardization? For instance,
interface documenting guide and naming convention.

Design of standard
interface

Are inner functions and outer functions (interface) separated?
Are interface parts separated from their implementation parts?

Implementation of
standard interface

Are function calls between components made with only
standard interfaces (i.e., no direct access)?

Table 4: Checklist for Standard Interface Evaluation [Kim et al., 08].

So far, the data extracted from the selected papers suggest that only architectural
models had inspection techniques in the SPL context, whereas only one was
experimentally evaluated.

2.7 Threats to Validity

The search string used cannot be considered as complete, as the approaches for
product lines found in the technical literature may cite a specific artefact instead of
mentioning a generic term related to SPL. Also, we could not have previously know
all the distinct names that could be used to identify each stage of the SPL process and
used generic terms in the second part of the search string. However, as mentioned in
the previous subsection, we observed a good calibration of the search string in the
first trial, which also happened in the second search trial.

726 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

3 Developing an Inspection Technique for Feature Models

Considering the results of the quasi-systematic review described in Section 2, which
indicated the lack of inspection techniques focusing on artefacts produced for Domain
Engineering (DE), and our experience on developing reading techniques for different
problem domains, we assert the following research initiatives to start the organization
of a body of inspection techniques to support verification activities of SPL:

 Evolve the support for architectural model inspection, which can be done by
developing more specific heuristics for detecting defects based on [Kim et
al., 08] to the extended version of ArqCheck;

 As observed for ArqCheck, extend other inspection techniques such as
OORTs (Object Oriented Reading Techniques) [Travassos et al., 99] and
PBR (Perspective-Based Reading) [Shull et al., 00] to lead to reusability. For
example, OORTs deal with the inspection of UML models such as class
diagrams and state machine diagrams, both identified as models for DE
[Gomaa and Shin, 07];

 Develop an inspection technique to support defect detection in FMs, since
we did not find any inspection technique to support the detection of defects
for this relevant SPL artefact.

Overlooked defects are an unavoidable aspect of any software development. As
the SPL approach is used as the basis for deriving many products, the early detection
of defects is crucial to avoid their propagation in subsequent development stages to
different applications derived from them. The FM is created as a result of Domain
Analysis, the first step in the DE stage. Thus, considering the relevance of this
representation for DE and its high level of abstraction, we decided to follow the third
initiative, developing a checklist-based inspection technique. The following
subsections describe the body of concepts that represent the basis from which the
verification items of the checklist were derived. These include the common concepts
related to recent notations of a FM and the set of possible defects that can be detected
in a FM when it is compared to its respective domain description.

3.1 Feature Model Notations

One of the ways to specify the acquired domain knowledge (also known as variability
modelling) is by feature modelling, a high-level abstraction that aims to describe the
domain requirements based on the concept of features, gathering its commonality and
variability. Software variability is the ability of a software system or artefact to be
changed, customized, or configured for use in a particular context [Gurp et al., 01].
Variability can be defined as points in the core assets of the domain where it is
necessary to differentiate individual characteristics of software products, i.e.,
configuration points in the domain. This concept is represented in a FM using the
following elements: (1) variation points, which establish the need of decision-making
related to one feature, regarding which variants will be used; (2) variants, available
choices for a variation point; and (3) invariants, fixed elements that are not
configurable in the domain. Although variability could also be modelled by

727Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

conventional approaches such as extended UML models, the state-of-the-practice of
SPL shows that feature modelling is largely used due to its representational power
concerned with the aforementioned elements.

However, there are many notations in the technical literature for feature modelling
[Reibisch et al., 02] [Cechticky et al., 04] [Czarnecki et al., 04] [Gomaa, 04]
[Czarnecki et al., 05], all of them based on the original notation designed for the
Feature-Oriented Domain Analysis (FODA) method [Kang et al., 90]. The literature
also has some notations designed for specific approaches, such as FeatuRSEB [Griss
et al., 98], FORM [Kang et al., 02] [Lee et al., 02], and Odyssey-FEX [Blois et al.,
06]. Amongst these notations, some concepts have the same semantics, regardless of
the provided graphical representations or different nomenclatures, forming a set of
basic concepts from which each notation could be extended, including: optionality,
variability, and dependency relations. Thus, some notations present a richer structure
of components to support feature modelling, as it can be seen in the Odyssey-FEX
notation that offers a larger set of relationships and a more comprehensive taxonomy
of features when compared to other notations [Teixeira et al., 09], including its own
categorization of features, reflecting the different stages of the software product
lifecycle. In this notation, a feature can be categorized as a functional or conceptual
feature, categories of domain features, and entity feature, for domain analysis. Also, a
feature can be categorized as an operational environment, domain technology, or
implementation technique for domain design. Domain features are related to the core
domain functionalities and concepts. Entity features are the model actors. Operational
environment features represent attributes of an environment that a domain application
can use and operate. Domain technology features represent technologies used to
model or implement a specific domain requirement. Finally, implementation
techniques features represent technologies used to implement other features.

In addition to the alternative relationship, which is used among variation points
and their variants, features of an Odyssey-FEX model can be connected by UML
relationships, such as association, aggregation, and composition. The Odyssey-FEX
notation also supports relationships of dependencies between features and mutual
exclusion.

3.2 Discrepant Cases

Discrepant Case (DC) could be defined as a generic situation that can be found in
software artefacts configuring a discrepancy, i.e., where there could be a defect after
the inspection meeting [de Mello et al., 10]. By analysing components and examples
from FODA notation [Kang et al., 90] and other notations previously mentioned, we
tried to extract what could be considered discrepancies basically related to
consistency, clarity, correctness, and completeness of a FM in comparison to its
corresponding domain textual description. Thus, after the study of various FM
notations and analysis of models from DE projects, a first set of 48 discrepant cases
was identified. It is important to point that these discrepant cases are not meant to be
the unique possibilities of semantic defects that could be related to inspecting FMs.

The 48 DC identified for FMs were organized into the following groups:
A. Feature description: this category verifies the clarity of a feature description.

Five DC were related to this individual analysis of each feature. This category

728 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

also checks if the feature is considered to be inside the scope of the domain
according to the domain textual description (base document);

B. Feature Category: this category checks the proper classification of a feature
into one of the seven categories established by the Odyssey-FEX notation
[Blois et al., 06];

C. Optional/Mandatory features: this category checks if the optionality property
of each feature was correctly applied. Three DCs were defined, as related to
the classification of a feature as optional or mandatory, considering the whole
domain. This category also checks if the optionality/mandatory property of a
feature could actually be defined from the base document;

D. Variability and Association Relationships: this category checks if the
relationships specified in the base document were properly represented in the
model. Sixteen DCs were defined, as related to the establishment of
relationships between features. The classification of a feature into its
variability property is evaluated by the analysis of the relationship between
each variation point feature and its alternative configuration features. This
category also evaluates the relationships of aggregation, composition,
generalization and ‘implemented by’, when applied by the adopted notation;

E. Dependency and mutually exclusive relationships: this category includes six
DCs related to the possibility of the joint features selection (dependency) or the
unfeasibility of two or more features being selected together (mutual
exclusion) for product development;

F. Rationale and Composition Rules: five DCs related to the textual description
of logical definitions and model composition rules;

G. Overview of the model: six DCs related to the clarity and consistency of the
model as a whole. The features are evaluated to verify their pertinence to the
domain scope and to check their adequacy for the abstraction level used to
understand the model and future application in the domain implementation.

Each discrepant case, which shall be identified as defect or false positive in the
inspection meeting, is related to one of the following defect categories, according to
the classification adopted by Shull [Shull et al., 00] for defects in software
requirements and extended for UML models [Travassos et al., 01]: omission,
incorrect fact, inconsistency, ambiguity, and extraneous information. Thus, this
classification was adopted to guide the identification and categorization of discrepant
cases in feature models, as shown in Table 5.

4 FMCheck

Based on the discrepant cases mentioned in the last section and based on the
experience obtained with the development of ActCheck – an inspection technique for
UML activity diagrams [de Mello et al., 11], a feature model checklist (FMCheck)
was developed. FMCheck is a checklist-based inspection technique to support
individual inspectors to detect defects in feature models designed under notations
based on FODA, also including particular items related to Odyssey-FEX notation.
This technique was developed for software processes based on individual inspections.
The inspector does not need to have previous domain knowledge to apply FMCheck,
since some valid textual description, such as requirements specification or domain

729Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

specification, is defined as a pre-requisite (base document) to be used as basis for
comparison during the application of the technique.

Name Description

Omission
Some information from the domain was not properly included in
the feature model.

Incorrect Fact
Some information or behaviour from the feature model
contradicts its domain specification.

Inconsistency
Some feature model element is not consistent with another
element from the same feature model.

Ambiguity
Some Information from the feature model is not clear, allowing
multiple interpretations for the specified domain.

Extraneous
Information

Some Information in the feature model is outside the domain
scope.

Table 5: Defect Types, adapted from [Travassos et al., 01].

The application of FMCheck consists of three activities. First, the domain analyst
or the domain designer should fill a model characterization questionnaire. This
questionnaire aims to provide the basis for the checklist configuration, discarding
evaluation items from FMCheck that do not need to be applied in the specific
verification scenario. The main goal is to avoid the extra effort of checking
unnecessary verification items, as FMCheck provides items that could be applied in a
broader context, addressing multiple notations. The questions deal with several kinds
of information, such as the DE stage in which the model was designed (Domain
Analysis or Domain Design), the feature model notation chosen to represent the
model, the modelling capabilities provided by the applied notation, and so on. It is
important to point that the questionnaire should be filled based on what is provided by
the adopted FM notation, and not only on the characteristics presented in the model to
be inspected.

The second activity consists of the checklist configuration, to be done by the
inspection moderator, supported by a traceability table relating each answer from the
model characterization questionnaire to specific evaluation items from the checklist
(see Section 4.1). Finally, the third activity consists of conducting one or more
individual inspections, producing one or more discrepancy reports, describing each
discrepancy, its defect category and location.

4.1 The Checklist

In a checklist, an excessive amount of divisions can lead inspectors to massive
rework, as already observed in the development of ActCheck [de Mello et al., 11].
Thus, as the organization of an inspection technique should consider its practical
application, the 48 DCs originally divided into seven groups were analysed and
regrouped, allowing the construction of the checklist. Then, the verification items of
FMCheck were split into three verification groups: individual verification of each
feature; verification of relationships between features; and verification of composition
rules. As a result the first version of FMCheck, consisting of 34 verification items

730 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

organized into the mentioned verification groups, was established. For each
verification item, there are three possible answers: “Yes”, “No” or “N.A.” (not
applicable). The “N.A.” option means that the item is not applied to the inspected
model, although it could be when adopting the same feature modelling notation for
other models.

4.1.1 Individual Verification of Features

The 13 verification items from this group (see Table 6) aim to ensure that each feature
has a correct, clear and objective description. They also check if a feature belongs to
the domain. These evaluation items were designed based on the DC categories (A, B,
C, and G) described in Section 3.2.

Verification Items

1 Are all the features clearly and correctly described?

2
Is the described optionality of each feature (optional/ mandatory classification)
in accordance with the domain specification?

3 Is it possible to identify the feature category by its description on the domain?

4
Are the features representing conceptual aspects of the domain properly
classified as Conceptual Features?

5
Are the features representing functional aspects of the domain properly
classified as Functional Features?

6
Are the features representing a real entity (actor) of the domain properly
classified as Entity Features?

7
Are the features representing attributes of an environment related to the
domain properly classified as Operational Environment features?

8
Are the features representing some technology used to model or implement the
domain properly classified as Domain Technology features?

9
Are the features representing some technology used to implement other
domain features properly classified as Implementation features?

10
Are the features that do not have a concrete relation with the domain, but help
in its understanding, represented as organizational features?

11
Is there some feature in the model that, although correct, is out of the domain
scope?

12
Are there different features in the model that represent the same domain
concept?

13 Is there any domain concept that has been omitted from the model?

Table 6: Verification items for each model feature.

4.1.2 Verification of Relationships between Features

The 16 verification items from this group guide the inspector in the verification of the
relationships between features (see Table 7). These items aim to verify how the
representation of the relations between features renders the model understandable,
deployable, and compliant with the domain. The DC categories (D and F) mentioned
in Section 3.2 were the basis for the definition of these items.

731Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

4.1.3 Verification of Composition Rules

The five items from this group (see Table 8), guide the inspector in checking the
clarity, completeness, correctness, relevance, and consistency of the model
composition rules as established in FODA [Kang et. 90]. This set of items was based
on the F category of discrepant cases, as described in Section 3.2.

Verification Items

14
Are the variabilities of the domain adequately represented as groups of
alternatives (variation point and its variants)?

15 Are the cardinalities of the variation points correct?

16
Are the variation points clearly described, reflecting the meaning of their
variants?

17
Are there two or more features having a relationship in the model without
defining this relationship in the domain?

18
Is there some relationship described in the domain that has not been informed
in the model?

19 Is the established hierarchy between each feature compliant with the domain?

20
Is there some feature in the model that has been incorrectly classified as a
generalization of another feature?

21
Are the features identified in the model as implemented by another feature
present this relationship in the domain?

22
Are the aggregation and composition relationships between domain features in
the model consistent with the reality of this domain?

23
Is there any dependency or mutually exclusive relation between features that is
not applied to the described domain?

24
Is there any dependency or mutually exclusive relation between features that is
not represented in the model?

25 Is there any feature in the model contradicting other features?

26 Does the root feature help to understand the meaning of the domain?

27
From a general perspective, is it possible to understand the domain from the
features represented in the model?

28
Does the model describe the domain in an appropriate level of detail to be
understood from the intended perspective?

29
Does the model have the sufficient features to guide the domain
implementation?

Table 7: Verification of the relationships between the features from a model.

732 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Verification Items

30
Are all the composition rules clearly and objectively described, being in
compliance with the domain description?

31 Is there any composition rule that contradicts another one in the same model?

32
Is there any composition rule that is not applied to this domain, although it is
correct?

33 Are all domain composition rules adequately represented in the model?

34
Does the model present sufficient composition rules to guide its
implementation?

Table 8: Verification items for composition rules between model features.

5 Evaluation of FMCheck

The Evaluation of FMCheck feasibility was made of two activities: a proof of concept
and a first experimental study. After the development of the first version of FMCheck,
two developers (one Doctoral student – P1, more experienced and one Master student
– P2, less experienced) from the Reuse Group at COPPE/UFRJ were invited to apply
the technique in a specific domain (i.e., mobile devices). FMCheck was presented to
these participants, but they did not have access to the feature models before their
inspection. Each participant received an email containing the necessary artefacts for
the inspection, including a spreadsheet containing the checklist. As the FM of this
domain was modelled using the Odyssey-FEX notation, the checklist for these
inspections was set-up to contain all the 34 items proposed by FMCheck.

Table 9 shows the results for each participant. Effectiveness was defined as the
ratio between the number of defects found by an inspector and the total amount of
defects, whereas efficiency indicated the average time (in minutes) the inspector
needed to detect a single defect. Comparing the results of the two inspections, it was
observed that the most experienced inspector (P1) found more defects than the less
experienced participant (P2), although P1 needed much more time to accomplish the
same task. Moreover, one can see the low incidence of false positives and the high
incidence of identical defects found by the two participants.

Part. #Defects
#Repeated

Defects
#False

Positives
Time
(min.)

Effectiveness Efficiency

P1 12
6

2 80 92.31% 6,67
P2 7 1 12 53.85% 1,71

Table 9: Summarized Proof of Concept results.

Positive comments on the completeness of FMCheck and its applicability for the
intended activity were made by the two participants concerning the support provided
by the inspection technique. Also, P1 mentioned a possible negative influence factor
on performance: the limited technical resources of the environment used to perform
the whole activity (both participants used a desktop with a single and small screen)

733Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

may have made it difficult for both the completion of the spreadsheet and the artefacts
analysis. Despite this, as the focus of this pilot study was to observe the feasibility of
using the technique, issues related to a possible automated or semi-automated support
were left out for future investigations.

5.1 The quasi-Experiment

The positive results observed in the proof of concept led to the submission of the first
version of FMCheck to an experimental study aimed at increasing the capacity of
observation of its feasibility. Thus, a quasi-experiment was planned to be analysed
under two perspectives, quantitative and qualitative. The following subsections
present a summary of the study planning, its results, and the analysis performed.

5.1.1 Specific Goals

Based on the GQM template [Basili et al., 94], the goal of this study was defined as
follows:

Analyse: the conducting of feature model inspections by using ad-hoc techniques
and FMCheck

In order to: characterize
With respect to: its effectiveness (defects identified/ total existing defects) and

efficiency (identified defects/ time) in identifying defects and the opinion of
the inspectors

From the perspective of: Software Engineering researchers
In the context of: undergraduate and graduate students from a Software Reuse

course at PESC-COPPE/UFRJ (representing as much as possible software
developers) inspecting feature models in four different application domains
(i.e., mobile devices, hospitality, context-aware mobile applications and
library).

5.1.2 Questions and Metrics

 Question: How much time was dedicated to the inspections?
 Metrics: time dedicated to the inspection (in minutes), and efficiency of each

inspection (as defined in the previous study).
 Question: Which inspection technique (FMCheck or ad-hoc) allows the

inspectors to detect more defects?
 Metrics: number of defects detected, effectiveness of the inspection (as

defined in the previous study).

734 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

5.1.3 Hypotheses

H01: There is no difference between the efficiency of feature model inspections
conducted with FMCheck and with ad-hoc inspections.

HA1: The efficiency of feature model inspections conducted with FMCheck is
greater than the efficiency of ad-hoc ones.

H02: There is no difference between the effectiveness of feature model
inspections conducted with FMCheck and ad-hoc inspections.

HA2: The effectiveness of feature model inspections conducted with FMCheck is
greater than that of ad-hoc ones.

5.1.4 Variables

 Independent variables: application domains textually described and
represented through feature models using the Odyssey-FEX notation,
participant’s experience in inspections, participant’s previous knowledge of
the domains used in the study.

 Dependent variables: Amount of defects and false positives, time spent in
performing the inspection, efficiency, and effectiveness.

5.1.5 Experimental Design

The study participants consisted of 14 students (four undergraduate students and 10
graduate students) from a Software Reuse course at COPPE/UFRJ, who signed a
consent form and filled in a characterization form. These participants were organized
into three groups (A, B and C), based on the following criteria: (i) academic and
industrial experience with Software Engineering; (ii) academic degree
(undergraduate, master, doctoral student); and (iii) previous experience with software
inspections in general and experience with inspection of feature models. In this study,
considering the sample, only the first criterion was needed to group the participants.
Thus, Group A had four participants with greater experience in the industry, group B
had six participants with some experience in the industry and group C had four
participants with only academic experience.

For the first round, the participants were trained in software inspection and
domain description through feature models, to prepare them for the execution of two
ad-hoc inspections. After that, in the second round, the participants were first trained
in the application of FMCheck; then, each participant performed inspections of two
other artefacts (that had not been inspected by them in the first round) applying
FMCheck. In the first round, due to the absence of the training session, two
participants were withdrawn from the study. In the second round, three participants
dropped out the study. Thus, only nine participants participated in both rounds.

5.1.6 Instrumentation

For the inspections, the domain specification and feature model artefacts from four
different domains were selected. Figure 1 shows an excerpt from the feature model
concerning the hospitality domain.

735Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Figure 1: Excerpt (translated) of the Hospitality Domain (Odyssey-FEX notation).

Besides hospitality, the other three domains selected were: mobile devices,
context aware mobile applications, and library. Every round had each participant
inspecting two distinct domains, which were assigned according to: (i) the complexity
of each feature model, (ii) the sample size and its groups (A, B, or C).

In order to establish the complexity of each feature model, we did a comparative
analysis between the four models, applying the following criteria: number of features,
maximum depth between features, and amount of variability. Thus, two domains were
considered simplest – mobile devices and library (S01 and S02, respectively), with
the other two models considered more complex, i.e., context-aware mobile
applications and hospitality (C01 and C02, respectively). The final distribution of the
models among the participants over both rounds can be seen in Table 10. Also, a
follow-up questionnaire sent by email to all participants collected their impressions
about FMCheck, including possible contributions to streamline it.

5.1.7 Analysis Mechanism

To undertake the quasi-experiment, the following analysis mechanisms for the
collected data were adopted:

 Comparison between results from ad-hoc and FMCheck inspections.
 Comparison between the performance of each participant in both rounds.
 Calculation of defects’ variance and standard deviation.
 Calculation of the time spent with the inspections.
 Elimination of outliers and verification of data normality (Shapiro-Wilk) and

homoscedasticity (Levene).
 Application of a nonparametric test (Wilcoxon) or a parametric test

(Student’s t), according to each case.

736 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Group Participant Round 1 (ad-hoc) Round 2 (FMCheck)

A

P1 C01 C02 S01 S02
P2 S01 S02 C01 C02
P3 S01 C01 S02 C02
P4 S02 C02 S01 C01

B

P5 S01 C02 S02 C01
P6 S02 C01 S01 C02
P7 S01 S02 C01 C02
P8 C01 C02 S01 S02
P9 S01 C01 S02 C02

P10 S02 C02 S01 C01

C

P11 S01 C02 S02 C01
P12 S02 C01 S01 C02
P13 S01 S02 C01 C02
P14 C01 C02 S01 S02

Table 10: Planned distribution of inspectors and artefacts for the two rounds.

5.1.8 Execution

The study was executed in April/ May 2012, starting with the completion of the
consent form and the characterization form by 14 participants. Then, participants were
trained in feature modelling and in the Odyssey-FEX notation. Also, an introductory
training (one hour) in software inspection was done, including the guidelines for the
execution of the first round. Each participant received an email containing an
inspection package, and 12 participants answered until the given deadline, reporting
the defects detected in each inspection.

Then, the participants were trained (one hour) in FMCheck, by presenting and
explaining each evaluation item and examples of defects that could be detected with
these items. In the second round, as mentioned earlier, only nine participants
maintained their participation in the study, answering to the forwarded packages.

Table 11 summarizes the results obtained in the first round, and Table 12
summarizes the results obtained in the second round. To calculate the efficiency (ratio
between defects detected and the total of defects), the total of defects corresponds to
the sum of distinct defects detected in a FM in both rounds. The sum of defects for
each FM is shown in Table 13.

737Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Group Part. Domain Time (min.) # Defects Efficiency Effectiveness

A

P2
S01 31 3 10.33 23.08%
S02 19 3 6.33 6.98%

P3
C01 50 8 6.25 18.18%
S01 50 6 8.33 46.15%

P4
C02 40 2 20.00 6.90%
S02 32 3 10.67 6.98%

B

P5
C02 138 15 9.20 51.72%
S01 43 9 4.78 69.23%

P6
C01 44 11 4.00 25.00%
S02 50 6 8.33 13.95%

P7
S01 34 6 5.67 46.15%
S02 41 6 6.83 13.95%

P8
C01 32 4 8.00 9.09%
C02 43 2 21.50 6.90%

P9
C01 25 5 5.00 11.36%
S01 30 3 10.00 23.08%

C

P11
C02 94 16 5.88 55.17%
S01 65 3 21.67 23.08%

P12
C01 50 8 6.25 18.18%
S02 35 14 2.50 32.56%

P13
S01 30 1 30.00 7.69%
S02 30 4 7.50 9.30%

P14
C01 65 6 10.83 13.64%
C02 45 6 7.50 20.69%

Table 11: Results for the first round: Ad-hoc inspections.

5.1.9 Quantitative Analysis

The results obtained were analysed from several perspectives, including time,
discrepancies, defects, efficiency, and effectiveness. In addition, differences in these
perspectives among groups and their inspected artefacts in each distribution were also
observed. Statistical tests were performed with the support of the JMP 4.0 tool
(http://www.jmp.com/), using α=0.05. All distributions were normally distributed
after the removal of 14 outliers (11 ad-hoc inspections and three inspections applying
FMCheck). Table 14 shows the behaviour of the distributions and test results,
considering 13 observations for ad-hoc samples and 15 for FMCheck samples.

738 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

Group Part. Domain Time (min.) # Defects Efficiency Effectiveness

A
P2

C01 83 25 6.92 27.27%
C02 78 21 9.75 27.59%

P3
C02 60 12 6.00 34.48%
S02 60 19 4.00 34.88%

B

P5
C01 142 32 6.17 52.27%
S02 138 31 4.76 67.44%

P6
C02 55 12 6.11 31.03%
S01 36 6 9.00 30.77%

P7
C01 63 20 4.50 31.82%
C02 54 16 4.15 44.83%

P8
S01 20 2 10.00 15.38%
S02 45 5 22.50 4.65%

C

P11
C01 104 21 6.12 38.64%
S02 90 23 5.63 37.21%

P12
C02 85 16 7.73 37.93%
S01 50 11 7.14 53.85%

P13
C01 60 7 10.00 13.64%
C02 60 9 8.57 24.14%

Table 12: Results for the second round: inspections applying FMCheck.

Domain C01 C02 S01 S02
#Defects 44 29 13 43

Table 13: Total of distinct defects detected in each domain.

Distribution
Normality(Shapiro-Wilk, p-value) Homoscedasticity

(Levene, p-value) Ad-hoc FMCheck
Time 0.3966 0.6756 0.2078
Discrepancies 0.1225 0.7162 0.0021
Defects 0.0606 0.9247 0.0047
Efficiency 0.2683 0.3128 0.7176
Effectiveness 0.3056 0.7809 0.1833

Table 14: Normality and homoscedasticity of the distributions.

Only in Time, Efficiency and Effectiveness distributions homoscedasticity was
observed. Over the normal and homoscedastic distributions, the Student’s t test was
applied. Distributions that did not show homoscedasticity were submitted to the
Wilcoxon nonparametric test. Table 15 summarizes the results of both tests, in which
it can be seen that it was not possible to reject the null hypothesis regarding
efficiency. However, the null hypothesis regarding effectiveness was refuted. In fact,
according to the results, the time required to undertake inspections with FMCheck is
greater than with ad-hoc. Even so, it was observed that, although having similar
efficiency, FMCheck inspections identified 51.3% more defects than ad-hoc ones,

739Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

which can be seen through the boxplots shown in Figure 2, showing that the first
quartile of effectiveness with FMCheck are up to the third quartile of ad-hoc
effectiveness, suggesting a significant difference between the samples. Also, Figure 2
shows that the distribution of time spent to detect a defect (efficiency) with FMCheck
inspections is more diverse than ad-hoc.

Distribution Analysis Result
Statistic test(p-value)

t-test Wilcoxon
Time ad-hoc <FMCheck 0.0008 -
Discrepancies ad-hoc <FMCheck - 0.0118
Defects ad-hoc <FMCheck - 0.0018
Efficiency ad-hoc = FMCheck 0.2229 -
Effectiveness ad-hoc <FMCheck 0.0001 -

Table 15: Statistical test for each distribution.

Figure 2: Distribution of number of defects for each sample and distribution of
Effectiveness for each distribution and corresponding Student’s t test.

Aiming to better understand the behaviour seen in both samples, the performance
of each group (A, B and C) was analysed individually. The individual analysis
showed that all three groups presented a significant increase in their effectiveness
when applying FMCheck (α = 0.05). The efficiency analysis of each group also
produced the same conclusion from the sample as a whole, i.e., the groups performed
inspections with FMCheck as efficiently as when undertaking ad-hoc inspections.

Statistical tests were also applied to observe the influence of each inspected
domain (S01, S02, C01 and C02) over the sample as a whole. In this sense, it was
seen that none of the four domains represented any confounding factor for the
conclusion on effectiveness. Also, FMCheck inspections had a more homogeneous
behaviour (less variation) in effectiveness than ad-hoc inspections for all the domains.
Looking at the individual performance of the nine participants who acted in both
rounds, it was seen that seven of them had an increase in their effectiveness by
applying FMCheck, and six of them (i.e., two thirds of the participants in both
rounds) showed greater than 40% improvement of their effectiveness.

740 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

In total, the inspections with FMCheck were able to detect 118 distinct defects,
while ad-hoc inspections detected only 76 defects. It is important to emphasize that
this advantage for FMCheck was observed with a sample that was 25% lower. It is
also important to point out that FMCheck detected 53 distinct defects not detected by
ad-hoc inspections, while ad-hoc inspections were able to detect only 11 distinct
defects that were not captured by FMCheck (as shown in Figure 3). However, it was
found that FMCheck verification items covered 10 out of 11 defects reported only in
ad-hoc inspections, suggesting a large coverage of the checklist for the scope of this
study. As regards to the category of defects, it was observed that FMCheck
contributed mainly to detect more omissions, incorrect facts, and ambiguities.

Figure 3: Number of distinct defects detected for both inspection rounds and distinct
defects detected in each single round.

5.1.10 Qualitative Analysis

All the nine subjects that took part in the second round were invited by email to
answer a follow-up questionnaire on the study, but only six participants replied. We
found that the participants agreed (partially or totally) that the training sections helped
them to conduct inspections with FMCheck, although, in their comments, some
participants presented suggestions to improve future training sections and the material
shared with the inspectors. In fact, due to time limitation of the subjects we believe
that the training has been prejudiced. In addition, we are looking for more systematic
ways to share packages of studies and to improve them, including video lessons as a
training alternative that could be retrieved anytime by the subjects.

As regards to the technique, answers show that all respondents agreed (partially or
totally) that the FMCheck verification items are well-described and the checklist is
useful to detect defects. However, some disagreed that their time was better spent
using FMCheck. Still, both previous observations are consistent with effectiveness
and efficiency results. Finally, participants would use FMCheck in future inspections.

5.1.11 Threats to Validity

As threats to validity of this quasi-experiment, we should point the small number of
subjects and the limited number of inspected domains. For instance, the statistical
analysis of each group was limited. Moreover, the small number of participants also
limited the combination of groups, which may cause some bias. However, it is worth
noting that no participant inspected the same domain more than once. The absence of
a prior list of known defects can also be considered as a threat to validity, which

FMCheck

53
Both

65

ad-hoc
11

741Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

directly affects the calculation of the coverage of inspections. The defects considered
as ‘known defects’ were only those detected during this quasi-experiment.

Internally, we emphasize the bias regarding the fact that FMCheck was evaluated
by the same group that developed it, even based on experimental practices. It is also
important to note that this in vitro study was performed asynchronously, without the
control of environment variables. Thus, the resources used by the participants to
conduct their inspections (screen size, printed artefacts) may have positively or
negatively influenced the results. We also emphasize the external threats to validity
concerned with the population defined by convenience and non-random sampling,
which is typical in quasi-experiments [de Mello and Travassos, 13]. Also, one can see
that, in order to conduct the second round, applying FMCheck, each inspector may
have brought some learning bias from the first round (ad-hoc inspections).

6 Conclusions

This paper showed, through the results of a quasi-systematic review, that there are
few approaches to support the inspection of SPL, suggesting a set of alternatives to
improve this scenario. Based on the findings, we proposed FMCheck, a checklist-
based inspection technique designed to support inspectors in detecting defects in
feature models. FMCheck was first presented in [de Mello et al., 12]. With FMCheck,
we intend to contribute to the quality assurance in Domain Engineering, helping to
prevent the dissemination of domain defects until product development. The
inspection technique presented was subjected to a proof of concept and a quasi-
experiment, which suggested its feasibility by showing superior effectiveness and
roughly equivalent efficiency when compared to ad-hoc inspections.

7 Future Work

In the near future, we intend to evolve FMCheck based on the findings of the
experimental study, re-applying this study to reinforce our conclusions. To avoid
external threats to validity, we intend to conduct a large-scale experiment based on
the approach for systematic population establishment and randomly sampling on SE
quantitative studies using social networks as source of recruitment, an ongoing
research of two authors of this paper [de Mello and Travassos, 13b].

We also intend to evolve the Odyssey environment [Werner et al., 99] by
integrating inspection activities based on FMCheck. Other future works are related to
other opportunities to improve the whole SPL inspection context, including better
support for verifying the textual domain description, which can be served by an
extension of the perspective-based reading (PBR) inspection technique [Shull et al.,
00], including the new perspective of the domain analyst.

Acknowledgements

We would like to thank Breno França and Karen Nakazato for their support to the
systematic review, and the students of the 2011 Special Topics in Software
Engineering IV course, and the students of the 2012 Software Reuse course, both at

742 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

PESC/COPPE/UFRJ, especially the collaboration of Marcelo Palmieri. We would
also like to thank researcher Jobson Massollar for his contributions. Professors
Werner and Travassos are CNPq research scholars and Eldânae Teixeira and Marcelo
Schots are scholarship grantees from CNPq.

References

[Arango and Prieto-Díaz, 91] Arango, G, Prieto-Díaz, R., “Part 1: Introduction and Overview-
Domain Analysis Concepts and Research Directions”. Domain Analysis and Software Systems
Modelling. IEEE Computer Society Press, 1991.

[Atkinson et al., 02] Atkinson, C. et al. “Component-based product line engineering with
UML”. Boston, Addison-Wesley Longman Publishing Co., Inc., 2002.

[Barcelos and Travassos, 06] Barcelos, R. F.; Travassos, G. H. “Uma abordagem para inspeção
de documentos arquiteturais baseada em checklist”. Simpósio Brasileiro de Qualidade de
Software (SBQS), 2006, Vila Velha, Brazil, 2006.

[Basili et al., 94] Basili, V., Caldiera, G., Rombach, H., 1994, “Goal Question Metric
Paradigm”, Encyclopaedia of Software Engineering, v. 1, John Wiley & Sons, pp. 528-532.

[Benavides et al., 10] Benavides, D., Segura, S., Ruiz-Cortés, A. “Automated Analysis of
Feature Models 20 Years Later: A Literature Review”. Inf. Syst., vl. 35(6), pp. 615-636, 2010.

[Biolchini et al., 05] J. Biolchini, P. G. Mian, A. C. C. Natali, G. H. Travassos, “Systematic
Review in Software Engineering”. Technical Report RT-ES 679/5, PESC-COPPE/UFRJ, 2005.

[Blois et al., 06] Blois, A. P. T. B., Oliveira, R. F., Maia, N., Werner, C., and Becker, K.,
“Variability modeling in a component-based Domain Engineering process”. In: Reuse of Off-
the-Shelf Components, Springer Berlin Heidelberg (2006), 395-398.

[Cechticky et al., 04] Cechticky, V., Pasetti, A., Rohlik, O., et al., “XML-based feature
modeling”. In: Software Reuse: Methods, Techniques and Tools, 8th International Conference
on Software Reuse (ICSR), Proceedings, v. 3107, pp. 101–114, Madrid, Spain, July, 2004.

[Czarnecki et al., 04] Czarnecki, K., Helsen, S., Eisenecker, U., “Staged Configuration using
feature models”. In: Proceedings of the 3rd International Software Product Line Conference,
SPLC 2004, v. 3154, pp. 266-283, Boston, MA, USA, August 30-September 2, 2004.

[Czarnecki et al., 05] Czarnecki, K., Helsen, S., Eisenecker, U. W., “Formalizing cardinality
based feature models and their specialization”, Software Process: Improvement and Practice, v.
10, n. 1 (March), pp. 7-29, 2005.

[de Mello et al., 10] de Mello, R. M., Pereira, W. M., Travassos, G. H. “Activity Diagram
Inspection on Requirements Specification”. XXIV Simpósio Brasileiro de Engenharia de
Software, 2010.

[de Mello et al., 11] de Mello, R. M., Massollar, J. L., Travassos. G. H., “Técnica de Inspeção
Baseada em Checklist para Identificação de Defeitos em Diagramas de Atividades”. XX
Simpósio Brasileiro de Qualidade de Software, 2011.

[de Mello et al., 12] de Mello, R. M., Teixeira, E. N., Schots, M., Werner, C. M., & Travassos,
G. H. “Checklist-based Inspection Technique for Feature Models Review”. In 6th Brazilian
Symposium on Software Components, Architectures and Reuse (SBCARS), pp. 140-149, 2012.

743Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

[de Mello and Travassos, 13] de Mello, R. M., & Travassos, G. H. “An ecological perspective
towards the evolution of quantitative studies in Software Engineering”. In 17th Intl. Conf. on
Evaluation and Assessment in Software Engineering (EASE), pp. 216-219, 2013.

[de Mello and Travassos, 13] de Mello, R. M., & Travassos, G. H. “Would Sociable Software
Engineers Observe Better?”. In Proceedings of the 7th ESEM, 2013.

[Denger and Kolb, 06] Denger, C., Kolb, R. “Testing and inspecting reusable product line
components: First empirical results”. Proceedings of the 5th ACM-IEEE International
Symposium on Empirical Software Engineering, pp. 184-193, 2006.

[Fagan, 76] Fagan, M. E., “Design and Code inspections to reduce errors in program
development”. IBM Systems Journal 15 (3): pp. 182–211, 1976.

[Gomaa, 04] Gomaa, H., “Designing Software Product Lines with UML: From Use Cases to
Pattern-Based Software Architectures”, Addison-Wesley, 2004.

[Gomaa and Shin, 07] Gomaa, H. A., Shin, M. E. B., “Automated Software Product Line
Engineering and Product Derivation”. Proceedings of the 40th Hawaii International Conference
on System Sciences, pp. 285a, 2007.

[Griss et al., 98] Griss, M. L., Favaro, J., D'Alessandro, M., “Integrating feature modelling with
the RSEB”. In: Proceedings of the 5th International Conference on Software Reuse (ICSR), pp.
76-85 Victoria, British Columbia, Canada, 1998.

[Gurp et al., 01] Gurp, J., Bosch, J., and Svahnberg, M., “On the Notion of Variability in
Software Product Lines”. In: Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA 2001), 45-55.

[IEEE, 08] IEEE. “STD 1028-2008: IEEE Standard for Software Reviews and Audit”, 2008.

[Jones, 00] Jones, C. “Software assessments, benchmarks, and best practices”. Addison-
Wesley, Reading, MA, USA Chung-Horng Lung, Joseph E. Urban, 2000.

[Kang et al., 90] Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A. S.
“Feature-Oriented Domain Analysis (FODA) Feasibility Study”. Technical Report CMU/SEI-
90-TR-21/ ESD-90-TR-222, 1990.

[Kang et al., 02] Kang, K. C., Lee, J., Donohoe, P., “Feature-Oriented Product Line
Engineering”, IEEE Software, v. 9, n. 4 (July/August 2002), pp 58-65.

[Kim et al., 08] Kim, K. Kim, H., Kim, S., Chang, G. “A case study on SW product line
architecture evaluation: experience in the consumer electronics domain”. 3rd International
Conference on Software Engineering Advances, pp. 192-197, 2008.

[Lee et al., 02] Lee, K., Kang, K. C., Lee, J., “Concepts and Guidelines of Feature Modelling
for Product Line Software Engineering”. In: Software Reuse: Methods, Techniques, and Tools:
7th International Conference on Software Reuse (ICSR), pp. 62-77, Austin, USA, April, 2002.

[Lung et al., 97] Lung, C. H., Bot, S., Kalaichelvan, K., Kazman, R. “An Approach to Software
Architecture Analysis for Evolution and Reusability”. Proc. of CASCON, 1997.

[McGregor, 01] McGregor, J. D. “Testing a Software Product Line. Carnegie Mellon, Software
Engineering Institute”, ESC-TR-2001-022, 2001.

[Northrop, 02] Northrop, L. M. “SEI’s Software Product Line Tenets”. IEEE Software July/
August 2002. IEEE Computer Society Press, 2002.

744 Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

[Ortega et al., 07] Ortega, M., Grimán, A., Pérez, M., Mendoza, L. E., “Reuse strategy based on
quality certification of reusable components”. IEEE International Conference on Information
Reuse and Integration, pp. 140-145, 2007.

[Riebisch et al., 02] Riebisch, M., Böllert, K., Streitferdt, D., et al., “Extending Feature
Diagrams with UML Multiplicities”. In: Proceedings of 6th Conference on Integrated Design &
Process Technology, pp. 1-7, Pasadena, California, USA, June, 2002

[Schimid and Widen, 00] Schmid K., Widen, T. “Customizing the PuLSETM Product Line
Approach to the Demands of an Organization”. Proceedings of the 7th European Workshop on
Software Process Technology, pp.221-238, 2000.

[Schimid and van der Linden, 07] Schmid, K., van der Linden, F. “Improving product line
development with the families evaluation framework (FEF)”. Proceedings of the 11th

International Software Product Line Conference, Japan, pp. 15-16, 2007.

[Shull et al. 00] Shull, F., Rus I., Basili, V. “How Perspective-Based Reading can Improve
Requirements Inspections”, IEEE Computer, 33(7), 73-79, 2000.

[Shull and Seaman, 08] Shull, F., Seaman, C. “Inspecting the history of inspections: An
example of evidence-based technology diffusion”, IEEE Software, v. 25, n. 1, pp. 88-90, 2008.

[Teixeira et al., 09] Teixeira, E., Vasconcelos, A., Werner, C., “An Approach to Support a
Flexible Feature Modelling”. III Brazilian Symposium on Software Components, Architectures
and Reuse (SBCARS), 2009, Natal, Brazil, pp. 81-94.

[Travassos et al., 99] Travassos, G. H., Shull, F., Fredericks, M, Basili, V. R. “Detecting
Defects in Object-Oriented Designs: Using Reading Techniques to Increase Software Quality”
Proceedings of the Intl. Conf. on OOPSLA, pp. 47-56, 1999.

[Travassos et al., 01] Travassos, G. H. In Rocha, A. R. C., Maldonado, J. C., Weber, K. C.,
“Qualidade de Software – Teoria e Prática”. Prentice Hall, 2001.

[Travassos et al., 08] Travassos, G. H.; Santos, P. S. M.; Mian, P.; Dias Neto, A. C; Biolchini,
J. An Environment to Support Large Scale Experimentation in Software Engineering. In: IEEE
Intl. Conf. on Engineering of Complex Computing Systems. Belfast. pp. 193-202, 2008.

[Vasconcelos and Werner, 07] Vasconcelos, A. and Werner, C. “Architecture Recovery and
Evaluation Aiming at Program Understanding and Reuse”. LNCS 4880, pp. 72-89, 2007.

[Vasconcelos and Werner, 08] Vasconcelos A. and Werner, C. “Refining the Architecture
Recovery Approach ArchMine by Incrementally Performing Evaluation Studies”. XXII
Simpósio Brasileiro de Engenharia de Software, pp. 172-187, 2008.

[Vasconcelos and Werner, 11] Vasconcelos, A. and Werner, C. “Evaluating reuse and program
understanding in ArchMine architecture recovery approach”. Inf. Sci., pp. 2761-2786, 2011.

[Werner et al., 99] Werner, C. M. L., Mattoso, M., Braga, R, “Odyssey: Infraestrutura de
Reutilização Baseada em Modelos de Domínio”. In: Seção de Ferramentas do XIII Simpósio
Brasileiro de Engenharia de Software, pp. 17-20, 1999.

[Wong, 06] Wong, Y. K. “Modern Software Review – Techniques and Technologies”. IRM
Press, 2006.

745Maiani de Mello R., Nogueira Teixeira E., Schots M., Lima Werner C.M. ...

