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Abstract: The rapid growth of Internet of Things(IoT) has reached all the facets of life
including critical infrastructures. It has become the foundation for most of the critical
infrastructures. The increased connectivity and the heterogeneity in IoT have widened
the attack surface of critical infrastructures for attackers to exploit. Certain cyber-
attacks in critical infrastructures can lead to catastrophe and hence the attack has to
be identified as early as possible to stop or reduce its impact by activating suitable
responses. Therefore, the critical infrastructures require an intelligent security mecha-
nism which can intelligently interpret the attacks from the IoT traffic and efficiently
handle the attack scenario by activating appropriate response at faster rate. In this
work, an autonomic security system with intelligent self-protect mechanism has been
proposed for critical infrastructures. The autonomic security system can autonomously
detect known attacks using Extreme Learning Machine, predict the unknown attacks
using Gaussian process regression, and select suitable response for handling the attack
using fuzzy logic. This intelligence of self-protect mechanism is incorporated in the
distributed fog nodes to handle the attack scenario at faster rate and protect the criti-
cal infrastructures with minimal human intervention. The experimental analysis of the
proposed autonomic security system proves to be efficient in detecting and defending
the cyber-attacks with high accuracy and success rate. The results on network load
and response time indicates the effectiveness of fog computing in proposed system.
Key Words: Critical infrastructure, Internet of Things, Autonomic system, Fog com-
puting, Gaussian process regression, Extreme Learning Machine.
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1 Introduction

The advances in emerging Internet of Things (IoT) have influenced its involve-
ment in critical infrastructure[Rinaldi et al. 2001]. IoT interconnects numerous
heterogeneous cyber physical devices ranging from simple sensors to high end
servers using Internet as core technology [Whitmore et al. 2015]. A variety of
cutting-edge technologies such as cloud computing, software defined network-
ing, big data analysis and intelligent sensors. have been developed to utilize
the complete power of IoT. However, most of these technologies of IoT are in
the developing stage and is subject to increase the technical implications of
IoT [Atzori et al. 2010]. Thus, the heterogeneity and nonstandard technologies
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of IoT create the potential for increasing threat vectors and new vulnerabili-
ties in critical infrastructures in addition to the known vulnerabilities of critical
infrastructures.

The critical infrastructures link the multiple networks which lead to vulner-
abilities from multiple domains. The increased communication complexity also
increases the attack surface for the potential attackers. Moreover, critical infras-
tructure involves more number of devices with more interconnections leading
to more entry points for adversaries to exploit [Ng et al. 2006]. The complex-
ity and heterogeneity in critical infrastructure IoT make the centralized secu-
rity methodologies unsuitable for large-scale deployment. Therefore, distributed
security approach is necessary to protect the critical infrastructure IoT from
increasing number of cyber-attacks.

Various methodologies, such as intrusion detection system (IDS), firewall, an-
tivirus, intrusion prevention system (IPS) and intrusion response system (IRS)
are utilized to prevent, detect and respond to cyber-attacks in critical infrastruc-
ture [Locasto et al. 2005, Marchetti et al. 2009, Keromytis et al. 2004]. However,
the involvement of IoT in critical infrastructure increases the complexity of ex-
isting security approaches for critical infrastructure. Moreover, IoT enabled criti-
cal infrastructure allows multi domain communication and connectivity through
handheld devices which widen the attack surface for the attackers to exploit.
Security of critical infrastructure involving IoT has drawn increased attention
in recent years due to the rapid usage of IoT devices in critical infrastructures
[Sandor et al. 2017, Ghani et al. 2014]. The security mechanism of critical in-
frastructure should intelligently interpret both the known attacks and zero day
attacks from the voluminous data traffic generated by the IoT devices which are
incorporated in it. Learning from these massive data is essential to identify the
security events and their associations by correlating the internal and external
information to identify the attacks and to view a wider picture of threats in
critical infrastructure.

Autonomic computing technology has got growing attention in the era of
ToT. It facilitates the computing system with Self-* properties such as self-
configure, self-protect, self-heal to mention a few [Kephart et al. 2003]. Since
IoT devices are deployed both in managed and unmanaged environments, the
autonomic computing supports IoT for performing its functions with less or no
human intervention. The self-protect functionality of autonomic computing can
be adopted by the security methodology in critical infrastructure to predict,
detect and respond to cyber-attacks. Another major factor that influences the
need for self-protect characteristics is increasing number of IoT devices in criti-
cal infrastructure, increases the attack surface exponentially. Hence, the devices
have to protect themselves from cyber-attack by using their own capability. The
self-protect capability is proved to be efficient in detecting and mitigating the
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attack with minimal human intervention [Wailly et al. 2012, Hariri et al. 2005].
However, the devices in critical infrastructure range from simple sensors to high
computational system, so highly complex security mechanisms and algorithms
cannot be employed in resource constrained devices.

Most of the IoT applications process the data from the end devices at the
cloud. The cloud based security methodologies have trade off between offloading
processing and latency and it is unsuitable for critical infrastructure. Fog com-
puting is an efficient technology to fulfill the requirement of autonomic security
system for critical infrastructure. Fog computing is a paradigm developed by
CISCO that shifts the data and services to the edge of the network from cloud.
It provides fast and actionable decisions from vast amount of real-time data
streams generated from IoT environment [Bonomi et al. 2014]. The distributed
intelligence of fog computing can be used for providing self-protect mechanism
in critical infrastructure IoT by offloading computations and data from critical
infrastructure devices to fog nodes instead of cloud server for providing a faster
security mechanism which is highly required in critical infrastructure.

The aim of the proposed work is to design an autonomic security system with
intelligent self-protect mechanism at distributed fog nodes to predict, detect and
respond to cyber-attacks in critical infrastructures.

— Designing self-protect mechanism to predict, detect and respond to cyber-
attacks in critical infrastructure.

— Incorporating intelligence in distributed fog nodes for providing self-protect
functionality in critical infrastructures.

The rest of the paper has been organized as follows. Section 2 provides the exist-
ing research performed so far in this domain. In Section 3, the brief introduction
about the proposed system is presented. Section 4 presents the detection mod-
ule, Section 5 details the forecasting module and Section 6 presents the response
module. Section 7 depicts the experimental setup and the results to evaluate the
performance of the proposed work. Finally, the conclusion is given in Section 8.

2 Related Work

Various research works have been performed on designing an autonomic com-
puting with self-protection capability. A distributed self-protection system was
proposed to automatically isolate malicious nodes by [Claudelet al. 2006]. In this
system, various sensors are used to detect the malicious nodes and they also iso-
late the malicious nodes as defense mechanism. Similarly, a self-protection system
for cloud infrastructure has been proposed and it uses self-organizing map to per-
form behavior analysis for identifying the unknown anomalies[Dean et al. 2012].
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A self-configuration system along with self-protection capability was pro-
posed to detect Denial-of-Service (DoS) attacks [Qu et al. 2010]. This system
uses automated online monitoring tools along with feature selection mechanism
for anomaly detection and protection. The major drawback of this system is
that, it can protect only from limited type of DoS attacks. A self-protection ar-
chitecture for detecting and handling the cyber attacks in cloud environment was
proposed [Wailly et al. 2012]. This architecture protects the virtual environment
using variety of control structures and by providing adaptable security policies.

The attacking flows from the compromised nodes are traced to identify
and act against DoS attack was proposed by [Gelenbe et al. 2007]. This self-
protection system autonomously detects and filters the malicious packets from
the upstream using traceback of attack flows and free the resources in down-
stream. A self-defense framework has been proposed to detect the anomaly by
using Quality of Service (QoS) parameter of network flows [Hariri et al. 2005].
It has online monitoring capability and it has been designed by using Hotelling
T2 methodology to detect the malicious data by analyzing the distance be-
tween QoS parameters of the normal network flows . A self-protect approach
has been proposed for static wireless sensor networks [Wang et al. 2008]. In this
approach, a sensor is monitored by other active sensors involved in the same net-
work. This approach is suitable only for static networks. However, none of these
works is specific to IoT applications which involve heterogeneous devices and
multiple technologies. A framework for self-protect mechanism was designed for
IoT ecosystem [Chen et al. 2014]. It is based on centralized control mechanism
which is not suitable for critical infrastructure with heterogeneous IoT devices
connecting multiple domains in dynamic environment. Hence, the critical infras-
tructure needs a distributed autonomic approach which can learn and adapt to
dynamic environment of IoT applications.

The novelty of the proposed system is the self-protect mechanism imple-
mented at fog nodes to detect and defend the cyber-attacks in critical infras-
tructure at faster rate with minimal human intervention.

3 Proposed System

The proposed system uses fog computing to deploy the autonomic security
system. Fog computing is based on distributed computing in which data pro-
cessing, storage and services are handled at the edge devices of the network
[Bonomi et al. 2014]. The emerging IoT generates voluminous data from mil-
lions of connected devices and it requires analysis with minimum latency. This
requirement can be satisfied by fog computing. Fog nodes have abstraction layer
which hides the heterogeneity among the devices and provides uniform pro-
grammable interface by virtualization. Fog computing requires orchestration to



Prabavathy S., Sundarakantham K., Shalinie SM.: Design ... 581

manage the services and resources among the fog nodes. The IoT application
architecture based on fog computing is considered to have 3-tiers: end device,
fog and cloud as shown in Figure 1. The end device tier contains the IoT sensing
devices from simple sensors to all kinds of devices that can be connected to the
Internet. The main purpose of this tier is to collect the data from its environment
and pass them to fog tier. Fog tier is based on distributed computing in which
data processing, storage and services are handled at the edge devices of the net-
work such as access point, gateway and routers. The cloud tier receives the data
from the fog nodes and performs global data management. It also provides final
presentation of data based on the requirement IoT application.
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Figure 1: Fog computing based IoT application architecture

In the proposed system, group of IoT devices forms an IoT virtual cluster.
These clusters are connected to the fog nodes which in turn is connected to
the cloud server. The fog nodes in Figure 1 are incorporated with the proposed
self-protect mechanism containing forecasting module, detection module and re-
sponse module as shown in Figure 2. The IoT devices send and receive data to
and from the cloud server through the fog nodes. These data may contain mali-
cious packets that can disrupt the normal operation of critical infrastructure. To
protect the critical infrastructure from cyber-attacks, the fog node implements
the self-protect mechanism to predict, detect and react to attacks. The detection
module detects the known attacks using OS-ELM. The forecasting module pre-
dicts the unknown attacks at early stage by using Gaussian process regression.
If an attack is predicted or detected by forecasting module or detection module,
an alert is generated and sent to the response module. Based on the type of
alert message, the response module selects suitable response using fuzzy logic.
The orchestration services of fog nodes provide stability for the proposed secu-
rity system by enabling resilience through resource sharing and load balancing
among the fog nodes [Wen et al. 2017, Bonomi et al. 2014]. In the following sec-
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tions, the detection, forecasting and response modules of the proposed system
are discussed in detail.
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Figure 2: Architecture of autonomic security system

4 Detection Module

Critical infrastructure IoT dynamically connects heterogeneous devices across
multiple domains. Therefore, the security mechanism should be a faster learn-
ing approach which learns the environment quickly and adapts to changes for
detecting the security threats at faster rate. The streaming nature of critical in-
frastructure IoT traffic favors the need for Online Sequential Extreme Learning
Machine (OS-ELM). OS-ELM is the online variant of basic ELM for handling
online applications [Liang et al. 2005]. Extreme Learning Machine (ELM) is a
single hidden layer feed forward neural network (SLFN). It is a faster learning
algorithm which analytically computes the output weights using randomly cho-
sen input weights and biases unlike the traditional gradient based learning which
involves many iterations in parameter tuning [Zhu et al. 2006].

The basic ELM is modeled from the given training set with N arbitrary
samples containing n attributes and m classes such that (z;,¢;) where input
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vector z; = (x;1...7;,) 7 € R™ and the expected output vectors t; = (t;1...t;m) €
R™. The SLFN with N hidden neurons and g(x) activation function can be
mathematically formulated as

N
fN(xj) = Zﬁig(wi-xj +b;) = 05,5 = 1..N (1)

i=1
where w; is the n-dimensional weight vector connecting i*” hidden neuron with
input neurons, f3; is the n-dimensional weight vector connecting i** hidden neu-
ron with output neurons and b; is the n-dimensional threshold of ** hidden
neuron. w;.x; is the inner product of w; and x;. If NV samples are approximated
with zero error, then there exist 3;, w; and b; such that

N
fn(s) =Y Biglwsw; +b;) = 5,5 = 1..N )
i=1

The equation 2 can be rewritten as
HB=T (3)

where H is the hidden layer output matrix as in equation 4, g is the output
weight matrix as in equation 5 and 7' is target output matrix as in equation 6.

glwr.z1 +b1) ... glwg.z1 +bg)
H= : : (4)

(wi.xn +b1) ... g(wg.an +bg) NXN

T

f=1: (5)
*BIZG— NXm
1]

T=|: (6)
Iy NXm

The training phase is performed in online manner by streaming the data
sequentially delivered from IoT devices. OS-ELM provides fast learning model
which can adapt to new data from IoT devices quickly along with a good gen-
eralization power.The intrusion detection system at fog nodes uses OS-ELM to
identify the attacks in incoming traffic from IoT clusters. The OS-ELM algo-
rithm classifies the incoming packet as normal or attack based on the training
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data. The OS-ELM is trained using the training data along with the initial pa-
rameters containing the number of neurons at each layer, random input weights,
biases and the activation function. The basic ELM is modified in matrix H of
equation 3 and rank(H) = N is considered as the rank of hidden neurons. The
pseudo inverse of H is derived as

H' = (H"H)"'HT (7)

using the fact HTH = I.

The estimation is calculated as
B=HTH)'HTT (8)

which is the least-square solution to HS = T. The sequential implementation
of the least-square of equation 8 is referred as recursive least square algorithm
which provides the solution of OS-ELM.

The learning in OS-ELM involves two phases: initialization and sequential
learning . The initialization phase is similar to training in basic ELM but with
small amount of data. For the initial training data Ny = (z;, ti)f\fl, weights w;
and bias b; are randomly assigned. The initial hidden layer matrix is computed
as

T
Hy = [hl...hN] (9)

Using the hidden layer matrix values, the initial output weights are calculated
as
Bo = (Hy Ho) *HI'T, (10)

The initial training data are replaced with chunk by chunk online data

Ny = (x4, tz)fvz(’;ff\j:l for continuous online training. The latest hidden layer out-

put matrix is computed in the sequential learning phase as

(11)

The recursive least square algorithm is used to compute the output weights for

Hipr = [l hy]"

new training data as

Mhi1hE M,
M1 = My — — kTJrl L (12)
L+ hjy Mihia
where My, = (H} Hy,)~1. The generalized output weights are computed as
Bit1 = Br + Mys1hyi1 (t] — hipy1Br) (13)

Algorithm 1 gives the steps involved in the intrusion detection at the fog
nodes using OS-ELM algorithm.
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Algorithm 1 Cyber-attacks detection at fog node.

Input:
Activation function g(x)
Number of hidden layer neurons N ¥
Chunk size
Initialization:
For the initial training data Nyo = (xf,%;)
randomly assign weights w¢; and bias by;
Calculate the initial hidden layer matrix:
Hyo=[hs1.. hyn]"
Calculate the initial output weights:
Bro = (Hg Hyo) " Hf Tro

Sequential Learning:

Nyo
fi=1

For next chunk of data Ny = (2, tfl)fvzfﬁ,;fi’cf

Calculate the latest hidden layer matrix
T
Hyppa = [hg1.. hyn]
Calculate the latest output weight based on
recursive least square algorithm
Bri1r = Bk + Mprpahgra (6] — b1 Brx)
Detection:
Based on the learning, the attacks are identified and

classified from the incoming traffic data

5 Forecasting Module

The forecasting method for IoT should consider the uncertainty prevailing in the
critical infrastructure IoT. A Gaussian process is a collection of random variables
and any finite number of these random variables has a joint Gaussian distribu-
tion [Rasmussen et al. 2006]. It works well in high uncertainty. Gaussian process
regression identifies the relationship between the input and output and also pro-
vides predictions with associated uncertainty measure based on the Bayesian
inference [Shumway et al. 2000]. The fog nodes use Gaussian process regression
to forecast the cyber-attack locally for the IoT cluster under its control. It is
performed by predicting the IoT traffic characteristics and they are represented
as a latent function f

yi = f(@:) +ei (14)

where x; are the traffic parameters of the IoT application and f(x;) is the learn-
ing function to transform input x; to the target y and ¢; is the Gaussian noise.
The learning function f(x;) is Gaussian process which is fully specified by the
mean and covariance function. To make the prediction for the new traffic x, the
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joint distribution of the observed target of the predicted function is

) e

Based on the conditional probability,
p(y|X, k) = N(0, K + oy 1) (16)

the joint Gaussian distribution gives predicted mean f, and variance V[z,] of
ToT traffic as in equations 17 and 18

f. =kI(k+o2D) 1y (17)

Vie.] = k(. z.) — KT (k+ 021) 'k, (18)

where k., = k(X,z,) and K = K(X, X).

The choice of covariance function and its corresponding parameter are impor-
tant to accurately model the cyber-attack forecasting using the Gaussian process
regression. The parameters of covariance function are called hyperparameters.
To model the given problem efficiently, the covariance function should reflect the
traffic characteristics in the IoT application. In the proposed system to model
the covariance function, three basic traffic characteristics of IoT are considered:
fluctuation in the traffic, dependency within the traffic and periodicity of the
traffic . A composite covariance function i.e. combination of covariance func-
tions is used. The stationary covariance functions are considered for modeling
the IoT traffic characteristics. Based on the definition, stationary process in the
input domain T is a function of r = ¢ — ¢ where t € T and ¢ € T. There-
fore, the covariance function is denoted by k(r;6). IoT traffic has fluctuations,
due to large number of heterogeneous devices with or without synchronization.
To model the fluctuation of the IoT traffic, the rational quadratic covariance
function Kgq, is used as given in equation 19.

2 —
Fluctuation : Krg(ri;li, @) = o} (1 + 7412) (19)
203

where [; is the length scale parameter, « is the shape parameter and oy is
the variance.

The IoT application also exhibits both long term and short term dependencies
in the network traffic. As a result, sum of two isotropic squared exponential
covariance functions Kgp are used as given in equation 20.

Dependency : Ksg(r2;l2) + Ksp(rs;l3)

r2 r2 (20)
A(-5) (- 5)
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where [5 and [3 are the length scale parameters and o5 and o3 are the variances.
To model the periodicity and the cyclic behavior of IoT traffic, product of peri-
odic covariance function K periogic and isotropic squared exponential covariance
Ksg are used as shown in equation 21.

Periodicity : Kperoidic(T4;14,0) * Ksp(rs;l5)

2sin? (224) 2 (21)
2 5
= 04— li L ) 05(_2l§)

where 4 and [5 are the length scale parameters, p is periodic parameter, o4
and oy are the corresponding variances.

Thus, the composite covariance function used for the proposed Gaussian
process regression modeling at the fog node of the IoT application traffic is
given in equation 22 which is the combination of equations from 19 to 21.

Kroa = Fluctuation + Dependency + Periodicity
Kroc = Krq(r1;11, @) + (Kse(re;la) + Ksp(rs;(3)) (22)
+(Kperiodic(ra;la) * Ksp(rs;ls))

The accuracy of the proposed Gaussian process regression model depends on
the values of the parameters involved in the above covariance function. These set
of values of the covariance function, that influences the accuracy of the model, are
called hyperparameters §. By maximizing the log marginal likelihood function
give in equation 23, the optimal parameters for 6 are estimated.

1 1
log(p(Yls, 6)) = iYT(K +02I)Y — 3 log |(K + ¢21)|
. (23)
—5 log(2n)

The local forecasting of the cyber-attack is performed by comparing the pre-
dicted traffic values with the predefined threshold. The threshold values are se-
lected under normal conditions of IoT application. The local forecasting is used
to alert the IoT application prior to the attack and it can initiate a response
mechanism to prevent the attack. Algorithm 2 gives the steps involved in the
forecasting of cyber-attacks in fog node.

6 Response Module

The critical infrastructure IoT needs an efficient automated response mecha-
nism to act fast against attack incidents and to reduce the attack impacts. The
existing traditional response selection techniques are not suitable for critical in-
frastructure which are equipped with heterogeneous technologies and increased
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Algorithm 2 Cyber-attack forecasting.

Given:
Covariance function: Krpog
Hyperparameter 6
Training data: D = {z;,y; }1—;
At each Fog nodes:

1. Apply the identified covariance function Krog and Hyperparameter 6 for
training with IoT traffic data.

2. Perform local Gaussian process regression to predict the posterior mean
and variance using the prior values from the training data
f.=kI(k+o21)" 1y
Vir.] = k(zs, 24) — kI'(k + 021) "k,

3. Compare the predicted value with defined thresholds of the IoT traffic
parameters to identify the possibility of attack.

4. If the posterior values violate the defined traffic thresholds, then the fog
node declares it as attack and sends alert message to response module.

number of resource constrained devices deployed in a large-scale providing data
with uncertainty. Hence, it needs an intelligent distributed response selection
mechanism to handle attack by using the imprecise data from the uncertain
environment. Fuzzy logic is used to handle the imprecise information from the
critical infrastructure IoT devices, during the attack for decision making about
selecting the suitable response. When an attack or anomaly is detected by detec-
tion module or forecasting module, it generates alerts. On receiving the alerts,
the response module, first identifies the set of candidate responses to handle the
attack. The candidate responses are selected from the response pool by matching
the generated alerts. From the candidate responses, fuzzy logic based decision
module selects the appropriate response based on the response selection metrics
using fuzzy logic.

6.1 Response Selection Metrics

The response selection metrics are used to identify the most appropriate response
for the generated alert. The metrics have been defined based on the IoT device
characteristics, attack severity, the cost induced by implementing the response
and the success rate of the response. Hence, the intervention of selected response
does not cause harmful negative impact in critical infrastructure. These metrics
are obtained at the fog nodes which are closer to the end devices.
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6.1.1 IoT device importance

This metric provides the importance of victim IoT device in terms of : the value of
data generated by the device, the criticality of the function it performs and device
failure effect scalability. The fog node maintains profiles of all the devices under
its control and stores all the details required to calculate the device importance.
The IoT device importance is calculated based on the general weighted average
equation. The aforementioned IoT device characteristic x is weighted by the
following criteria
0.1, ifo<z <ty
w(z) =405, if ty<z< by (24)
1, ift<z<1

where t; and to are the thresholds to decide the weights for the specified de-
vice characteristics. 0.1 gives low weight for specifying the minimum criticality
value, 0.5 for moderate criticality value and 1 for high criticality. These thresh-
olds are decided based on the IoT application in which the devices are involved.
The function to calculate the device importance of the victim device d is given
as

2o (w(v) x v)(w(f) x f)(w(s) x s))
2 w(w) xw(f) x w(s)
where v is the data value generated from the device, f is the criticality of
function that the device performs and s is the device failure effect scalability.
The value of DI is computed on a scale from 0 to 1. The DI value 0 indicates
that the device has low importance and the values nearer to 1 indicates that the
device has higher importance.

DI(d) =

(25)

6.1.2 Severity score

The severity score is used to measure the impact of the exploit. There are var-
ious standard sources such as Common Vulnerability Scoring System, MITRE,
NIST,Secunia and so on to provide this measure for the existing attacks. In the
proposed system, this score is calculated based on the Common Vulnerability
Scoring System (CVSS). The CVSS contains three metric groups: Base metric,
Temporal metric and Environmental metric. The base metric represents the fun-
damental characteristics of a vulnerability and they are constant with the time.
Likewise, the temporal metric represents the characteristic that varies with time
and the environmental metric represents the characteristics that are relevant to
environment. All the three metrics are considered to calculate the severity score
of the IoT application. A trust value « is added to the severity score because
the severity of the attack will change based on the network and application.
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Therefore, based on the application in which the device works, the trust value
is assigned from 0 to 10, with 10 as the highest trust value. The severity score
SS of attack z is calculated at the fog node as

vs(x) + a(x)
2
where vs is the vulnerability score calculated from CVSS database and « is the
trust value. The value of SS is computed on a range from 0 to 10. The SS value
0 indicate that the attack has low impact and the values nearer to 10 indicate

that the attack has high impact on the IoT.

SS(x) = (26)

6.1.3 Response cost

This metric measures the cost for implementing the response for the identified at-
tack. In IoT environment, most of the devices involved are resource constrained
devices and so the response cost considered is the amount of resources addi-
tionally utilized for deploying the response. The major resources considered to
measure the response cost in the IoT environment are amount of energy, RAM
and CPU which are utilized for deploying the response. The response cost RC
for response r is given as

RC(r)=>_ <W> x 10 (27)

where F is the percentage of energy , M is the percentage of memory and P is
the percentage CPU required to deploy the response. The response cost RC' is
scaled from 0 to 10, where response with lower values of RC' is more preferable
in resource constrained IoT environment.

6.1.4 Success Rate

This metric provides adaptability to the response selection by adjusting the
selection based on the dynamic environment of IoT. The response selection is
made based on the success of previously selected response. Each response is
associated with success counter maintained in the response pool. If the selected
response successfully reduces the impact of the attack, then the success counter
is incremented automatically. If the selected response does not block the attack
then the success factor remains unchanged. The success rate SR of response r
is calculated as

n

SR(r) = <5> x 100 (28)

where s is the value in the success counter which gives the number of times the
selected response is successful and n is the total number of times the response
is selected.
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6.2 Fuzzy Inference System

Unlike the classical logic system, fuzzy logic does not require complete data
for understanding of system. It provides a conceptual framework for solving the
problems in an environment of uncertainty and imprecision. This ability of fuzzy
logic is used by the proposed response selection model to identify the accurate
response in uncertain IoT environment by calculating the response score. The
output of the fuzzy inference system is the response score of the given candidate
response. The response model selects the response with high response score to
handle the attack scenario.

In general, the fuzzy inference system consists of four steps. First, the fuzzi-
fication step converts the crisp inputs into fuzzy set using the fuzzification func-
tion. In the proposed system, triangular membership functions are used to repre-
sent the inputs. The triangular membership functions are used for their simplicity
in representation by specifying only the lower and upper bounds and yield opti-
mal solution for imprecise information in IoT environment. The fuzzy inference
engine in the proposed system is modeled with four input parameters: device
importance DI, severity score S5, response cost RC and success rate SR with
three linguistics states: low, medium and high to describe the input parameters
as given in Table 1. Three linguistic states varying from low, medium and high
have been chosen to describe the characteristics of critical infrastructure namely
criticality of device, attacks and their impacts. The trapezoidal membership
function is used to represent the output Response Score (RS) in the proposed
system. The randomness and uncertainty of the input in IoT environment pro-
duce output with high randomness and it can be efficiently modeled using the
trapezoidal membership function with two linguistics states: Not selected and
Selected. Their ranges are given in Table 2.

Table 1: Input variables and the ranges of membership function

Input Low |Medium| High

Device Importance (DI)[0 — 0.3[0.25— 0.7] 0.65—1.0
Severity Score (SS) 0—3.5/30—-75][7.0—10.0
Response Cost (RC) 0—3.5[3.0—-7.5[7.0—10.0
Success Rate (SR) 0—30| 25— 70 |65 — 100

Table 2: Output variable and the ranges of membership function

Output Not-Selected |Selected
Response Score (RS) 0 —5.5 4.5— 10

Next, the fuzzy rules are applied on these values to generate output values
for every rule in the rule base. The fuzzy rules contain the condition to map the
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input values to output values using IF-THEN rules. The number of rules in the
rule base depends on the number of input and number of fuzzy set of each input.
In the proposed model, there are four inputs with 3 members in each fuzzy set.
Hence, the total number of rules in the rule base is

Number of Rules = IT]. ; fi =3 x3x3x3=281 (29)

where f is the number of input and n is the number of fuzzy set of each input.
The sample set of fuzzy rules defined for the proposed response selection model
is given Table 3.

Table 3: Sample Fuzzy rule set of the proposed model

DI SS RC SR Output

High High Medium|High Selected
Low Low High Low Not Selected
High Low High Medium Selected
Medium|Medium|High Low Not Selected
Low High Low Medium Selected
Medium|Medium|Medium |Medium |Selected

The proposed system uses Mamdani inference mechanism which uses simple
min-max method to generate the fuzzified output. These output values are av-
eraged to generate a single fuzzy output. Finally, the defuzzification is applied
on the averaged output value to generate the final crisp output. The proposed
system uses centroid or center of gravity method for defuzzification. The final
response score is computed using the centroid defuzzification method based on
the equation 30.

Response Score (RS) = M (30)
J ()
where p(z;) is the membership function and z; is the fuzzy value assigned to
that membership function.

7 Experiments and Results

In this section, the proposed system is evaluated and the performance is mea-
sured for each module i.e. detection, prediction and response modules. Finally,
the effectiveness of fog computing is measured by implementing the autonomic
security system in cloud server.

7.1 Simulation setup

As a Proof-of-concept, the fog based IoT architecture is implemented using Net-
work Simulator 2.34 (NS 2.34) simulation tool, Azure cloud service along with
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Table 4: Criticality level setup for sensors

Sensor Type Low Medium High
Pressure Sensor Hospital Bed Blood Analyzer Anesthesia Delivery Machine
Temperature Sensor| Room Monitoring |[Digital Thermometer|Kindney Dialysis Machine
Bio Sensors Drug Abuse Testing|Blood Analyzer Cancer Diagnosis
Position Sensor Hospital Bed Surgical equipment |Heart Pacemaker
Flow Sensor Room Monitoring |Oxygen concentrator | Respiratory monitoring

Table 5: Simulated network parameters of wireless nodes

Parameter Value

Routing Protocol DSR

Size of the Packets |[512 Bytes
Transmission Pattern|Constant Bit Rate
Bandwidth 10 Mbps

Matlab, AWK and python scripts. In this experiment, 150 wireless sensor nodes
of healthcare system are simulated using NS 2.34. Five types of health care ap-
plication sensor nodes are simulated by considering the criticality of the devices
applied at various scenarios of healthcare system as shown in Table 4. The sensor
nodes are simulated on three environments each containing 50 nodes such that
10 sensors of each type are provided in Table 4. Three sink nodes are simulated
and each connects 50 wireless nodes by forming an IoT cluster. The simulation
parameters of the network are given in Table 5. The sink nodes are treated as fog
nodes and they are emulated on three computers with the configuration of Quad
core, AMD Opteron 2354, 2.20GHz, 32GB RAM, 2 x 500GB HDD. These com-
puters are connected to the Azure cloud service with the computing resource
4 x Dual Core AMD Opteron 2218, 2.6GHz, 32GB RAM, 6 x 146GB HDD.
Scripts are coded to generate the required values by the sensors to simulate the
healthcare infrastructure. Figure 3 shows the simulation setup to evaluate the
proposed technique.

7.2 Performance of Detection Module

The detection module is evaluated at the fog nodes and the experimental results
are viewed in terms of accuracy, response time and network load. NSL-KDD
benchmark dataset is used for intrusion detection to evaluate the proposed sys-
tem. This dataset contains 24 types of attacks and they are grouped under
four categories: Denial of Service (DoS), Remote to User (R2L), User to Root
(U2R) and probing attack [Tavallaee et al. 2009]. The DoS attacks make the
resource unavailable for the legitimate users. The attacks under DoS category
are Land, Neptune, Smurf, Ping to death, Tear drop and Back. In U2R, the
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Figure 3: Simulation setup

attackers aim to gain the root access of the target system. The U2R includes
Buffer overflow, Rootkit, Load module and Pearl attacks. In R2L, the goal of
the attacker is to gain access to the target system or network by gaining the le-
gitimate user’s remote access. The attacks included in it are Warezclient, Guess
password, Warezmaster, Imap, Ftp write, Multihop, Phf, and Spy. In Probing
category, the attacker aims to gather information about the target machine or
network and the attacks included in this category are Satan, Ipsweep, Portsweep
and Nmap.

From the experimental results, it is observed that to efficiently model the
OS-ELM, higher number of hidden layer neurons and smaller chunk size are
needed. Therefore, 35 hidden layer neurons and 1000 chunk size with sigmoid
as activation function are used to model the OS-ELM in the proposed method
to yield best result. The detection accuracy of the OS-ELM is measured based
on accuracy, detection rate and false alarm rate as given in equations 31 to
33 by using the following confusion matrix containing False Positive (FP),False
Negative (FN), True Positive (TP) and True Negative (TN) values. Table 6
shows the accuracy measurement of binary classification and Table 7 shows the
accuracy measurement of multi-class classification.

Predicted

Attack | Normal

£
- = TN FP
5| 8
3 2 FN TP
% |
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A TP+TN (31)
ceuracy =
Y TPYTIN+FP+FN
TP
DetectionRate = ———— 32
TP+ FN (32)
FP
FalseAlarmRate = ————— 33
TN+ FP (33)
Table 6: Accuracy measurement for binary classification
Overall Accuracy|Detection Rate|False Alarm Rate| TPR|FPR
97.36 96.92 1.53 97.72| 0.37
Table 7: Accuracy measurement for Multi-class classification
Detection Rate| Normal Probe DoS U2R R2L Overall Accuracy‘
TPR|FPR|TPR|FPR|TPR|FPR|TPR |FPR|TPR|FPR
96.08 98.63|4.74|84.20.81(96.61|2.32(23.81|0.52 |71.87|0.20 96.54 ‘

The detection module achieves 97.36% of accuracy with reduced false alarm
rate of 0.37% in approximately 13 seconds of training time.

7.3 Performance of Forecasting Module

In this section, the forecasting module is evaluated by simulating new kind of
flooding attack that does not have pattern in NSL-KDD dataset. To validate
the prediction module, flooding attack is generated. The test case considered
in the experiment uses the routing based flooding attack in Dynamic Source
Routing (DSR) protocol. The route recovery mechanism is used by the attackers
to generate flooding attack as shown in Figure 4.

@ vietim

======r  Error Route
———+ RREQ

Figure 4: Flooding attack

The attacker node adds unavailable node to the route and sends Route error
(RRER) message in the network. When the intermediate node cannot find the
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node in the specified route, it generates Route request (RREQ). Likewise, the
attacker sends messages to the multiple error routes and makes other nodes as
puppets to flood the network with RREQ for unavailable nodes. This type of
flooding attack is also called as puppet attack. The effect of puppet attack is more
and difficult to detect compared to the conventional flooding attack because it
uses the legitimate nodes to generate attack.

To generate this attack scenario, one node in each of the three simulation
environment is made malicious to make 5,10,15 and 20 nodes as puppet to flood
the network with 50 RREQ packets per second. The simulation time is 200
seconds. The attack can be identified by measuring the packet delivery rate,
which is the ratio of successfully received packets by the destination to the
packets generated by the source. The packet delivery rate is measured for 30
simulation runs and the average is used to plot the data in the graph.
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Figure 5: PDR for varying number of puppets

The performance of the network is measured by varying the number of pup-
pets in the generated flooding attack as shown in Figure 5. The packet delivery
rate (PDR) falls down with the increase in number of puppets. From the exper-
iment, for 5 puppets, PDR drops to 30 percent and for 10 puppets, it falls to
19 percent. From the simulation results, it is found that for 15 puppets and 20
puppets, the PDR slightly increases because the attacking packets will not reach
the puppet nodes, due to many RREQ flood from the puppets.

To evaluate the prediction module, 10 puppets for each IoT cluster is con-
sidered. The 10 puppets flooding attack reduces the PDR to 19%, which is
equivalent to the effect of higher number of puppets. For this case, the simula-
tion result of the proposed prediction algorithm at single fog node is shown in
Figure 6. To predict the attack based on PDR, the training time of 40 seconds is
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Figure 6: Prediction at fog node

considered because PDR is reduced to below 60%, during this time as shown in
Figure 5. From the simulation results of Figure 5, it is inferred that PDR drops
to below 40%, during the attack occurrence and therefore, the threshold of PDR
is assigned as 40% to predict the attack. The training data and the test data
are shown in different colors in Figure 6. The highlighted area in the Figure 6
shows the predicted result of the simulated training data by applying the pro-
posed prediction algorithm. The highlighted area demonstrates the probabilistic
prediction of the PDR during the occurrence of attack. The graph shows that
the average of predicted range matches well with the test data.

7.4 Performance of Response Module

The response module is evaluated for the generated flooding attack in the fore-
casting module. The candidate set of responses for handling the generated flood-
ing attack is given in the Table 8. The proposed response selection metric values
are varied at all ranges to consider the different cases of IoT scenario and to
fully evaluate the proposed response selection technique.

Table 8: Response action for flooding attack

Response Action Detail
Packet Filtering Attack packets are filtered out and dropped based on IP address.
Rate Limiting Allow a router to control the transmission rate of specific flows.
Port Changing The port is changed and informed only to legitimate users.
Network Disconnection|The attacker node is disconnected from the network.
Process Termination |Current process is terminated.
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Figure 8: Success rate versus Response cost

To evaluate the efficiency of the response module, the proposed system in fog
node is compared by implementing them in Azure cloud service as centralized
system. The efficiency of the implementing proposed fuzzy inference for response
is measured in terms of success rate for each defined metric. Figures 7-9 shows
that the change in metric values (low or high or medium) i.e., change in the
IoT environment does not show large variations in the success rate. The major
inference from Figures 7-9 is that the success rate of the response is high, when
the proposed fuzzy inference is performed at the fog compared to the cloud.
The fog nodes, which are closer to the end, activate the response faster than the
cloud. The delay between the detection and the response is high in cloud based
implementation. Hence the severity of the attack would increase and complicates
the attack scenario by making the selected response inefficient. In the fog based
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Figure 9: Success rate versus Severity score

implementation, the delay is less by making the success rate of the response
higher than the cloud based implementation.

7.5 Performance Evaluation of Fog Computing

The performance of the proposed fog based autonomic security system is mea-
sured by comparing it with the cloud based implementation in terms of response
time and network load.

7.5.1 Response Time

The latencies of the proposed fog based system and cloud based system are
measured to show the impact of the self-protection mechanism in fog comput-
ing. The response time of the proposed system is compared with the cloud based
implementation with varying network bandwidths as shown in Figure 10. The
response time to identify and handle cyber-attack is nearly 25% less in the pro-
posed fog based approach compared to the cloud based implementation because
fog nodes are closer to the IoT end devices.

7.5.2 Network Load

As the number of devices increases in the IoT application, the amount of data
generated also increases which in turn increases the network load. In the case of
fog based approach, the load is shared by distributed fog nodes and hence, the
network usage is considerably reduced compared to the centralized cloud based
approach. As the amount of data increases, the network load is also reduced
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Figure 10: Response time comparison between fog based and cloud based imple-
mentation.
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Figure 11: Network usage comparison between fog based and cloud based imple-
mentation.

significantly as shown in Figure 11 for the fog based system compared to the
cloud based system.

At the outset, the proposed cognitive fog based self-protection mechanism
efficiently predict, detect and react to cyber-attack with reduced response time
and network load

8 Conclusion

In this paper, an autonomic security system with self-protect mechanism incor-
porated on fog nodes has been proposed for critical infrastructure involving IoT
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devices. The proposed system predicts, detects and reacts to cyber-attack intel-
ligently at faster rate with less human intervention which is highly required for
critical infrastructures. The experimental results emphasize that the proposed
system predicts and detects the cyber-attack with high accuracy and also learns
the new attacks from the voluminous IoT traffic. Moreover, the fog nodes in-
crease the success rate of selected response for the attack scenario and overall
latency of the self-protect mechanism is reduced compared to the cloud based
implementation.

The proposed work provides an initial step for designing an autonomous
security system based on fog computing for critical infrastructure. The future
work is to enhance the proposed system by implementing and testing in the
real-time critical infrastructure.
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