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Abstract: In the last few years appeared pedagogical propositional natural deduction
systems. In these systems one must satisfy the pedagogical constraint : the user must give
an example of any introduced notion. In formal terms, for instance in the propositional
case, the main modification is that we replace the usual rule (hyp) by the rule (p-hyp)

F ∈ Γ
(hyp)

Γ � F

F ∈ Γ � σ · Γ
(p-hyp)

Γ � F

where σ denotes a substitution which replaces variables of Γ with an example. This
substitution σ is called the motivation of Γ .

First we expose the reasons of such a constraint and properties of these “pedagogical”
calculi: the absence of negation at logical side, and the “usefulness” feature of terms at
computational side (through the Curry-Howard correspondence). Then we construct a
simple pedagogical restriction of the calculus of constructions (CC) called CCr. We es-
tablish logical limitations of this system, and compare its computational expressiveness
to Gödel system T.

Finally, guided by the logical limitations of CCr, we give a formal and general definition
of a “pedagogical calculus of constructions”.

Key Words: mathematical logic, negationless mathematics, constructive mathemat-
ics, typed lambda-calculus, calculus of constructions, pedagogical system.
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1 Introduction and Motivations

1.1 The pedagogical constraint

Recently the articles [Colson and Michel(2007), Colson and Michel(2008), Colson

and Michel(2009)] appeared in print, introducing pedagogical natural deduction

systems and pedagogical typed λ-calculi. The main feature about these systems is

that any proof (or any program)must satisfy the so named pedagogical constraint:

in natural deduction systems (for instance) the rule (hyp) is replaced by (p-hyp)

F ∈ Γ
(hyp)

Γ � F

F ∈ Γ � σ · Γ
(p-hyp)

Γ � F
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where σ denotes a substitution which replaces propositional variables of Γ

with an example, and � σ · Γ stands for the derivations of those substituted

formulas.

The idea of such a constraint is that, in order to assume a set Γ of hypotheses,

one must first provide a “motivation” (the substitution σ under consideration)

in which the set of hypotheses is fulfilled. In doing so, we can always exemplify

introduced hypotheses: if Γ � F holds then there exists a substitution σ such

that � σ ·Γ holds. This is the formal counterpart of the usual informal teaching

practice, consisting in giving examples of objects satisfying the assumed prop-

erties. This last point is a justification of the terminology pedagogical systems,

and the necessity of such a constraint was already observed by [Poincaré(1913)]

[Sect. 3.1].

1.2 The pedagogical minimal propositional calculus

In [Colson and Michel(2007)], the minimal propositional calculus over→, ∨ and

∧ (MPC) has been constrained on the (hyp) rule as previously explained. It is

shown in the article that the resulting calculus (P-MPC) is equivalent to the

original one: a judgment Γ � F is derivable in the usual system (MPC) if and

only if it is derivable in its pedagogical version (P-MPC).

1.3 The pedagogical second-order propositional calculi

The second-order propositional calculus (Prop2) is considered in [Colson and

Michel(2008)]. By constraining only the rule of hypothesis as above, one is led

to a weakly pedagogical second-order calculus (Ps-Prop
2), where rules dealing

with quantification are the usual ones:

Γ � F α �∈ V(F )
(∀i)

Γ � ∀α.F
Γ � ∀α.F

(∀e)
Γ � F [α← U ]

This calculus is weakly pedagogical since even if used sets of hypotheses can

be exemplified, it is not stable by normalization of proofs. Indeed, it is shown

that ⊥ → ⊥ is derivable in Ps-Prop
2 (where ⊥ stands for ∀α.α):

1. β � β (β is motivable)

2.� β → β (→i 1)

3.� ∀β.β → β (∀i 2)
4.� ⊥ → ⊥ (∀e 3)

But a normal form of this proof must end with a (→i) rule of⊥ then assuming

⊥ as hypothesis, which is impossible since ⊥ is not motivable. Hence the normal

form of this proof is not a proof of Ps-Prop
2.
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This motivates the more constrained system P-Prop2 where the (∀e) rule has
been replaced by

Γ � ∀α.F � σ · U
(P-∀e)

Γ � F [α← U ]

It is shown about this last system that the usual second-order encoding of

connectives ∨ and ∧ essentially works but it must be observed that the ∨i (at
right for instance) becomes:

Γ � A � σ · B
(∨ir)

Γ � A ∨B

The main result concerning P-Prop2 is that there exists a translation F �→ F γ

inspired by the A-translation of [Friedman(1978)] such that: Γ � F is derivable

in Prop2 if and only if Γ γ � F γ is derivable in P-Prop2.

1.4 The pedagogical second-order λ-calculus

Through the Curry-Howard isomorphism, previous work about second-order

propositional calculus is extended in [Colson and Michel(2009)] to the second-

order λ-calculus. The system is shown to be stable by reduction (i.e. enjoys the

so-called subject reduction property). Also, an important feature for a λ-calculus

is observed: the usefulness of functions/programs. It means that every typable

function in this pedagogical λ-calculus can be applied to a term: if � f : A→ B

with A closed, then A is inhabited by a closed term. Indeed, pedagogical λ-calculi

do not allow one to write useless programs, which are not needed.

1.5 The calculus of constructions

The calculus of constructions (CC) has been first introduced in [Coquand and

Huet(1984), Coquand(1985)]: it is a λ-calculus which encompasses higher-order

λ-calculi and calculi with dependent types. It is then natural to extend previous

works on “pedagogization” to CC in the aim of obtaining a uniform treatment

of pedagogical λ-calculi, and a first step toward a possible generalization to pure

type systems (PTS).

1.6 Negationless mathematics

In the middle of the last century, Griss expressed the negationless mathematics as

a step further of the intuitionistic philosophy of Brouwer. Indeed, in intuitionistic

mathematics, a proof of a negative statement ¬A impose to assume A in order

to obtain a contradiction. But assuming A is no intuitive method for Griss since

it will reveal to be an impossible construction.
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Works of [Griss(1946), Griss(1950), Griss(1951a), Griss(1951b)] constitute

an informal outline of a geometry, an arithmetic, a set theory and an analysis

without negation. [Heyting(1955), Franchella(1994)] summarize differences of

viewpoint about intuitionism of Brouwer and that of Griss.

Some formal developments of the Griss desiderata has been proposed, from

which we can cite those of [Vredenduin(1953), Gilmore(1953), Valpola(1955)],

[Nelson(1966), Nelson(1973), Minichiello(1969)], [López-Escobar(1972), López-

Escobar(1974), Mezhlumbekova(1975)] and more recently of [Krivtsov(2000a),

Krivtsov(2000b)], dealing with negationless predicate logic and arithmetic in

natural deduction systems, or in sequent calculus. [Mints(2006)] provides an

overview of those works.

The pedagogical constraint in an intuitionistic framework, by requiring for-

mulas to be exemplified, leads naturally to negationless calculi.

1.7 Organization of the article

The paper is organized as follows: in section 2 we recall usual notations, def-

initions and results about the calculus of constructions (CC); in section 3 we

introduce the main criterion for a subsystem of CC to be pedagogical, we dis-

cuss about the impossibility of a straightforward modification of CC, and we

propose a better one (CCr); then in section 4 we show that this restriction CCr

meets this criterion; we present some limitations of it at logical and computa-

tional side in sections 5 and 6; finally we conclude by stating the first formal

definition of a pedagogical subsystem of CC.

2 Background and Notations

In this section, we briefly recall usual notations, definitions and results about

the calculus of constructions CC.

2.1 Definitions and notations

We try to use x, y, . . . as symbols for variables, u, v, w, t, . . . to denote terms,

A,B, . . . for types and formulas, Γ, Γ ′, . . . for environments and [ ] for the empty

environment.

≡ is the syntactical equality of terms 1. We note by �β the usual beta-

reduction relation between terms;
∗�β its reflexive and transitive closure; and

=β its equivalence closure. A term u is in normal form if it is not reducible, i.e.

1 As in [Coquand(1989)], we assume De Bruijn indexes for bound variables and iden-
tifiers for free variables. So there is no need for α-conversion notion.
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(env1)
[ ] wf

Γ � A : κ x �∈ V(Γ )
(env2)

Γ, x : A wf

Γ wf
(ax)

Γ � Prop : Type

Γ, x : A,Γ ′ wf
(var)

Γ, x : A,Γ ′ � x : A

Γ, x : A � u : B : κ
(abs)

Γ � λxA.u : ∀xA.B

Γ, x : A � B : κ
(prod)

Γ � ∀xA.B : κ

Γ � u : ∀xA.B Γ � v : A
(app)

Γ � u v : B[x← v ]

Γ � t : A Γ � A′ : κ A =β A′
(conv)

Γ � t : A′

where κ stands for Prop or for Type.

Figure 1: Inference rules of CC.

there is no term t such that u�β t. If all possible reductions from a term u lead

to a normal form, then the term u is said to be strongly normalizing.

V(t) is the set of free variables of t. If V(t) = ∅ then t is said to be closed.

The usual capture avoiding substitution of u for x in t is noted t[x ← u ]; and

t[x1, . . . , xn ← u1, . . . , un ] is the simultaneous substitution of u1 for x1, u2 for

x2, etc. in t.

To shorten notations, we use a vector symbolism: �t denotes the sequence of

terms t1, . . . , tn; and ∀�x �A.B denotes ∀xA1
1 . . . ∀xAn

n .B (the notation xA means

that A is the type of the variable x). As usual, A → B is a shortcut for ∀xA.B

when x does not appear in V(B).

In CC there are two kinds of judgments: Γ wf means that the environment

Γ is syntactically well-formed, and Γ � t : A expresses that the term t is of type

A in the environment Γ .

Implicitly, Γ � A : κ signifies that there exists κ ∈ {Prop,Type} such that

this previous statement holds. Γ � A : B : C is the contraction of Γ � A : B

and Γ � B : C: appearing as premise of a rule it denotes two premises, and as a

conclusion of a rule it expands to two possibles conclusions (i.e. two rules).

Rules of CC are presented in [Fig. 1]: close presentations can be found in

[Coquand(1986)], with well formed judgments; in [Bunder and Seldin(2004)],

avoiding weakening rule; or [Barendregt(1992)], presenting usual properties of

CC.
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2.2 Properties of CC

In the sequel we shall need the following well-known results (proofs can be found

in [Barendregt(1992)]):

Property 1 (Church-Rosser).

If u =β v then there exists a term w such that u
∗�β w and v

∗�β w.

Property 2 (Church numerals).

Let us define the following abbreviations for Church numbers:

N := ∀AProp.A→ (A→ A)→ A

0 := λAProp.λxA.λfA→A.x

S(n) := λAProp.λxA.λfA→A.f (n A x f)

Then the following rules are derivable:

Γ wf

Γ � 0 : N : Prop

Γ � n : N

Γ � S(n) : N

Property 3. The constant Type never appears in any well-formed environment:

if Γ wf then Type �∈ Γ ; and if Γ � t : A then Type �∈ Γ ∪ {t}.
Property 4. If x1 : A1, . . . , xn : An wf or x1 : A1, . . . , xn : An � v : C then

x1 : A1, . . . , xi : Ai wf and x1 : A1, . . . , xi : Ai � Ai+1 : κ are sub-derivations.

Property 5. If Γ � t : A then A ≡ Type or Γ � A : κ.

Property 6 (weakening). If Γ � u : A and Γ ′ wf with Γ ⊆ Γ ′ then Γ ′ � u : A.

Property 7 (generation). If Γ � ∀xA.B : T then there exists κ such that

T =β κ and Γ, x : A � B : κ is a sub-derivation.

Property 8 (substitution lemma). If Γ � u : A then:

(i) if Γ, x : A,Γ ′ wf then Γ, Γ ′[x← u ] wf;

(ii) if Γ, x : A,Γ ′ � t : B then Γ, Γ ′[x← u ] � t[x← u ] : B[x← u ].

Property 9 (subject reduction). If Γ � u : A and u�β u′ then Γ � u′ : A.

Property 10 (∀-telescope). If Γ � A : B then: A ≡ ∀�y �C .Prop if and only if

B ≡ Type.

Proof. By simple induction on the first derivation (using Church-Rosser and

subject reduction).

Property 11 (strong normalization). If Γ � u : A then u and A are strongly

normalizing.
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3 Pedagogizing CC

3.1 The Poincaré criterion

Let us recall the origin of the pedagogical constraint —here in the case of defi-

nitions by postulate— by the following quotation:

A definition by postulate has value only when the existence of the

object defined has been proved. In mathematical language, this means

that the postulate does not imply a contradiction, we do not have the right

to neglect this condition. Either it is necessary to admit the absence of

contradiction as an intuitive truth, as an axiom, by a kind of act of faith

—but then it is necessary to realize what we are doing and to remember

that we have extended the list of indemonstrable axioms— or else it is

necessary to construct a formal proof, either by means of examples or by

the use of reasoning by recurrence. Not that this proof is less necessary

when a direct definition is involved, but it is generally easier.

Henri Poincaré – Last thoughts [Poincaré(1913)]

In CC, a definition by postulate of an object xmay be seen as an environment

containing x followed by hypotheses about x. For instance,

Let x be a natural number verifying P (x) and Q(x).

is formally represented in CC by the following environment

x : N, H1 : P (x), H2 : Q(x)

Poincaré pointed out that such a set of hypotheses is an admissible definition

by postulate of x only if we are able to exhibit a natural satisfying both predicates

P and Q. In other words, types P (x) and Q(x) must be inhabited for a given x

(say n) in CC. Namely the following statements must hold:

� n : N � t1 : P (n) � t2 : Q(n)

If this is not possible (i.e. there is no such n, t1 or t2) then the definition is

meaningless and should be avoided.

Since every environment can be seen as a set of definitions by postulate, let

us generalize to any environment:

Definition 1 (Poincaré criterion). The environment x1 : A1, .., xn : An is

respectful of the Poincaré criterion if there are terms t1, .., tn such that:

� t1 : A1

� t2 : A2[x1 ← t1 ]
...

� tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1 ]
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�n σ · Γ
(axn)

Γ �n o : � : Prop : Type

�n σ · (Γ, x : A,Γ ′)
(varn)

Γ, x : A,Γ ′ �n x : A

Γ, x : A �n u : B : κ
(absn)

Γ �n λxA.u : ∀xA.B

Γ, x : A �n B : κ
(prodn)

Γ �n ∀xA.B : κ

Γ �n u : ∀xA.B Γ �n v : A
(appn)

Γ �n u v : B[x← v ]

Γ �n t : A Γ �n A′ : κ A =β A′
(convn)

Γ �n t : A′

where:

– κ stands for Prop or for Type;

– �n σ · (x1 : A1, . . . , xn : An) denotes the derivations �n σ(xi) : σ(Ai);

– o and � are two constants added to the calculus to start derivations.

Figure 2: Inference rules of CCn, a too naive adaptation of CC.

A formal system is said to meet the Poincaré criterion if every well-formed

environments are respectful of the Poincaré criterion.

3.2 On the naive extension of previous work

In the previous works on pedagogization [Sect. 1], each environment is motivated

by an example (the substitution σ) before being used:

F ∈ Γ � σ · Γ
(p-hyp)

Γ � F

It follows that each used environment can be exemplified, hence such a system

trivially satisfies the Poincaré criterion. Unfortunately such a simple adjustment

can not be performed into CC: take the naive system CCn [Fig. 2] in which we

have replaced the notion of well-formed environment by the simple fact that it

is motivable.

Those modifications of CC are comparable in all respect to those made by

[Colson and Michel(2009)] for their pedagogical second-order λ-calculus. Unfor-

tunately, short-circuiting rules of well-formed environments and types, CCn is

not even a subsystem of CC:
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Lemma2. The following derivations hold in CCn but not in CC:

(a) x1 : Type �n Prop : Type

(b) x1 : Prop, x2 : (λH�→x1 .�) (λy�.y) �n Prop : Type

(c) x1 : N, x2 : (λHx1=0.�) (λPN→Prop.λHP 0.H) �n Prop : Type

Proof. Proofs are trivial as soon as one exhibits a motivation:

(a) σ1 := [x1 �→ Prop]

(b) σ2 := [x1 �→ �;x2 �→ o]

(c) σ3 := [x1 �→ 0;x2 �→ o]

And it is easy to see that they are not derivable in CC:

(a) Type appears into an environment, which is forbidden in CC [Prop. 3];

(b) (λH�→x1 .�) (λy�.y) is ill-typed since the function is waiting for an element

of type � → x1, but an element of type � → � is given instead;

(c) same reason as for (b): the function is waiting for a proof of x1 = 0, whereas

a proof of 0 = 0 is provided.

��

Remark. The first case can be avoided by enforcing the Ai to be of type Prop

or Type in the definition of σ · Γ .

CC has the advantage that well-formed types are built into the system. So

we just need to find which rules need to be constrained and how in order to

avoid non exemplifiable types (and especially empty types) as soon as possible.

3.3 A simple attempt: CCr

In CC, we are able to introduce ⊥ := ∀AProp.A as an hypothesis if we have been

able to derive ⊥ as a type, which is allowed by the (prod) rule. Actually, the

(prod) rule is the only one able to create vacuity, since other rules construct

type and an inhabitant of it simultaneously. We then impose products to always

be inhabited by replacing the usual (prod) rule of CC by the following more

restrictive (prodr) in CCr [Fig. 3]:

Γ, x : A �r t : B : κ
(prodr)

Γ �r ∀xA.B : κ

Remark. This rule may be condensed together with (absr) to obtain a rule with

two conclusions. So CCr can be viewed as CC without the (prod) rule.
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(env1r)
[ ] wfr

Γ �r A : κ x �∈ V(Γ )
(env2r)

Γ, x : A wfr

Γ wfr
(axr)

Γ �r Prop : Type

Γ, x : A,Γ ′ wfr
(varr)

Γ, x : A,Γ ′ �r x : A

Γ, x : A �r u : B : κ
(absr)

Γ �r λxA.u : ∀xA.B

Γ, x : A �r t : B : κ
(prodr)

Γ �r ∀xA.B : κ

Γ �r u : ∀xA.B Γ �r v : A
(appr)

Γ �r u v : B[x← v ]

Γ �r t : A Γ �r A′ : κ A =β A′
(convr)

Γ �r t : A′

where κ stands for Prop or for Type.

Figure 3: Inference rules of CCr, a Poincarean calculus.

Lemma3. CCr is a subsystem of CC: if Γ �r u : A then Γ � u : A.

Proof. Immediate by induction on the derivation.

Usual properties of CC [Sect. 2.2] still hold for CCr, especially substitution

lemma [Prop. 8], weakening [Prop. 6], subject reduction [Prop. 9] and strong

normalization [Prop. 11]. They were formally checked in the Coq proof assistant 2

by straightforward adaptation of the work of [Barras(1996)].

3.4 Example of derivation in CCr

Lemma4. The following rule is derivable:

Γ wfr

Γ �r id : True : Prop

where id := λAProp.λxA.x and True := ∀AProp.A→ A.

2 Sources can be found at http://lita.sciences.univ-metz.fr/~demange/
publications/sources/CoqR.tar.gz
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Proof.

1. Γ wfr (hypr)

2. Γ �r Prop : Type (axr 1)

3. Γ, A : Prop wfr (env2r 2)

4. Γ, A : Prop �r A : Prop (varr 3)

5. Γ, A : Prop, x : A wfr (env2r 4)

6. Γ, A : Prop, x : A �r x : A : Prop (varr 5)

7. Γ, A : Prop �r λxA.x : A→ A : Prop (absr+prodr 6)

8. Γ �r λAProp.λxA.x : ∀AProp.A→ A : Prop (absr+prodr 7)

Remark. id and True play the role of the constants o and � that needed to be

added in the pedagogical second-order λ-calculus of [Colson and Michel(2009)].

4 CCr meets the Poincaré criterion

In this section we show that every type (term of sort Prop or Type) in a well-

formed environment of CCr is inhabited. The sketch of the proof is as follows: we

first notice that in CCr every product is inhabited, then because each closed type

reduces to a product we can inhabit every type of a well-formed environment,

beginning by its leftmost type which is closed and continuing for the whole

environment using substitution lemma.

Lemma5 (generation). If Γ �r ∀xA.B : T then there exist κ and a term t

such that T =β κ and Γ, x : A �r t : B : κ.

Proof. Immediate by induction on the derivation. ��

Lemma6. If Γ �r C : Type then there is a term t such that Γ �r t : C.

Proof. By cases on the last applied rule; (axr) case is dealt with [Lem. 4]; (varr),

(appr) and (convr) cases are eliminated using [Prop. 3] and [Prop. 5]; (prodr)

case is trivial using (absr) rule. ��

Remark. Indeed every element of type Type is a ∀-telescope [Prop. 10], i.e. syn-
tactically of the form ∀�x �A.Prop, and then trivially inhabited by λ�x

�A.True.

Lemma7. If Γ � C : ∀�y �D.Prop with C closed, then for all closed terms

w1, . . . , wn verifying

Γ � w1 : D1

Γ � w2 : D2[y1 ← w1 ]
...

Γ � wn : Dn[y1, . . . , yn−1 ← w1, . . . , wn−1 ]
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there are terms E and F such that

C �w
∗�β ∀zE .F

Proof. Let us define by ‖t‖ the length of the longest path of reduction from

the term t to its normal form (which exists because terms of CC are strongly

normalizing [Prop. 11]).

We proceed by induction on the lexicographical order of ‖C �w‖ and the

height of the derivation of Γ � C : ∀�y �D.Prop.

Let us deal with non-trivial cases (others being mostly eliminated by [Prop. 3]

and [Prop. 5]):

(abs) If the last rule of the derivation is

Γ, y1 : D1 � u : ∀yD2
2 . . . ∀yDn

n .Prop : Type

Γ � λyD1
1 .u : ∀yD1

1 .∀yD2
2 . . . ∀yDn

n .Prop

Substituting w1 for y1 in the premise [Prop. 8], we obtain

Γ � u[y1 ← w1 ] : ∀yD2[y1←w1 ]
2 . . .∀yDn[y1←w1 ]

n .Prop

As we have ‖u[y1 ← w1 ] w2 . . . wn‖ < ‖(λyD1
1 .u) w1 w2 . . . wn‖ and

also u[y1 ← w1 ] is closed (since λy1
D1 .u and w1 are), we can apply induction

hypothesis to w2, . . . , wn and get

(λyD1
1 .u) w1 w2 . . . wn �β u[y1 ← w1 ] w2 . . . wn

∗�β ∀zE .F

(app) If the last rule of the derivation looks like

Γ � u : ∀xA.∀y1G1 . . . ∀ynGn .Prop Γ � v : A

Γ � u v : ∀y1G1[x←v ] . . . ∀ynGn[x←v ].Prop

where Di ≡ Gi[x← v ] and C ≡ u v.

Since for every i yi �∈ V(v) then

Gi[x← v ][y1, . . . , yi−1 ← w1, . . . , wi−1 ] ≡ Gi[x, y1, . . . , yi−1 ← v, w1, . . . , wi−1 ]

Noticing we have ‖u v �w‖ = ‖(u v) �w‖, we can then apply induction hypothesis

on the first premise and terms v, �w (v is closed since C ≡ u v is) to finally obtain

(u v) �w
∗�β ∀zE.F

(conv)

Γ � u : A Γ � ∀�y �D.Prop : Type A =β ∀�y �D.Prop

Γ � u : ∀�y �D.Prop

First, by Church-Rosser [Prop. 1] on the third premise and the definition of

beta-reduction, we have A
∗�β ∀�y �G.Prop and ∀�y �D.Prop

∗�β ∀�y �G.Prop.
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We have three possible cases [Prop. 5]:

– A ≡ Type which is impossible by definition of �β ;

– Γ � A : Prop which is also impossible by subject reduction [Prop. 9] since A

reduces to a ∀-telescope [Prop. 10];

– Γ � A : Type implying that A ≡ ∀�y �H .Prop and then also Hi =β Di.

In order to apply induction hypothesis on the first premise, it is necessary to

first show that

Γ � w1 : H1

Γ � w2 : H2[y1 ← w1 ]
...

Γ � wn : Hn[y1, . . . , yn−1 ← w1, . . . , wn−1 ]

which can be proved by (strong) induction on n:

For all i, since Di =β Hi then

Di[y1, . . . , yi−1 ← w1, . . . , wi−1 ] =β Hi[y1, . . . , yi−1 ← w1, . . . , wi−1 ]

Also from Γ � ∀y1H1 . . . . .∀yHn
n .Prop : Type we have by generation

[Prop. 7] Γ, y1 : H1, . . . , yn : Hn � Prop : Type and then it follows

[Prop. 4] Γ, y1 : H1, . . . , yi−1 : Hi−1 � Hi : κi.

By induction hypothesis on the (wk)k<i and after substitutions [Prop. 8]

we get

Γ � Hi[y1, . . . , yi−1 ← w1, . . . , wi−1 ] : κi

and then by (conv) on Γ � wi : Di[y1, . . . , yi−1 ← w1, . . . , wi−1 ] we

obtain

Γ � wi : Hi[y1, . . . , yi−1 ← w1, . . . , wi−1 ]

The wi being well-typed, we can apply induction hypothesis on the first

premise to conclude:

u �w
∗�β ∀zE .F

��

Lemma8.

If Γ �r C : Prop with C closed, then there is a term t such that Γ �r t : C.

Proof. Since Γ �r C : Prop then Γ � C : Prop [Lem. 3], and C closed implies that

it reduces to a product ∀zE.F [Lem. 7]. Hence by subject reduction [Prop. 9] in

CCr: Γ �r ∀zE .F : Prop.
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By generation [Lem. 5] there is a term u such that Γ, z : E �r u : F : Prop

and by (absr) Γ �r λzE .u : ∀zE.F . Finally (convr) gives that Γ �r t : C with

t := λzE .u.

The two previous lemmas about CCr can be summed up by the following

statement:

Corollary 9.

If Γ �r C : κ with C closed, then there is a term t such that Γ �r t : C.

So the pedagogical character of the calculus follows, every type of a well-

formed environment is inhabited:

Theorem 10 (Poincaré criterion). If x1 : A1, . . . , xn : An wfr then there are

terms t1, . . . , tn such that

�r t1 : A1

�r t2 : A2[x1 ← t1 ]
...

�r tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1 ]

Proof. By induction on the size of the environment n.

From the derivation x1 : A1, . . . , xn : An wfr, we have �r A1 : κ as a sub-

derivation [Prop. 4] where A1 is closed. We then have t1 [Cor. 9] such that

�r t1 : A1

then by substitution [Prop. 8] we have

x2 : A2[x1 ← t1 ], . . . , xn : An[x1 ← t1 ] wfr

Following the same pattern, we build terms t2, . . . , tn verifying

�r t2 : A2[x1 ← t1 ]
...

�r tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1 ]

��
This exemplification can be transmitted to the conclusion of judgments:

Corollary 11. If x1 : A1, . . . , xn : An �r u : B then there are terms t1, . . . , tn
such that

�r t1 : A1

�r t2 : A2[x1 ← t1 ]
...

�r tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1 ]
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and

�r u[�x← �t ] : B[�x← �t ]

Proof. Immediate by applying n times the substitution lemma [Prop. 8] to the

terms obtained from the theorem. ��

Theorem 12 (usefulness).

If �r f : ∀xA.B then there is a term u such that �r u : A.

Proof. From �r f : ∀xA.B we have �r ∀xA.B : κ [Prop. 5], then by generation

[Lem. 5] x : A �r B : κ which implies that x : A wf [Prop. 4], and finally by

Poincaré criterion [Thm. 10] we construct u. ��

5 Limitations of the logical power of CCr

To introduce an hypothesis (which is not a variable) in an environment, it is

necessary to first inhabit it. For instance, defining Leibniz equality over a type

A by

x =A y := ∀QA→Prop.Q x→ Q y

it is not possible to prove nor symmetry nor transitivity of this relation over

A (whatever this type is). Indeed, we are not permitted to add x =A y as an

hypothesis because we can not derive A : Prop, x : A, y : A �r x =A y : Prop

since x =A y is not inhabited in this environment.

Theorem 13.

There is no term u such that �r u : ∀AProp.∀xA.∀yA.x =A y → y =A x.

Proof. Let us suppose such a term u exists. We then have a sort κ such that

A : Prop, x : A, y : A �r x =A y : κ [Lem. 5], [Prop. 4] and [Prop. 5]. And

because x =A y is a product, it is inhabited [Lem. 5], say by t. But since CCr

is a subsystem of CC [Lem. 3], A : Prop, x : A, y : A � t : x =A y also holds

in CC. Then applying it to N and 0 and 1 by substitution lemma [Prop. 8], we

get a proof of 0 =N 1 in the empty environment in CC, which is known to be

impossible (by a simple combinatoric discussion about the normal form of such

a proof). ��

In fact, this calculus does not even natively contain simply typed λ-calculus:

Theorem 14. There is no term u such that

A B C : Prop �r u : (A→ B)→ (B → C)→ (A→ C)
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Proof. Similarly as above, assuming such a u then [Lem. 5], [Prop. 4], [Prop. 5]

A : Prop, B : Prop, C : Prop �r A→ B : Prop

so there is an inhabitant t of the product type A→ B in CCr [Lem. 5] and hence

in CC, implying by (absr) rule that

� λABCProp.t : ∀ABCProp.A→ B

which can be specialized to True and ⊥ to obtain a proof of True → ⊥ and

finally a proof of ⊥ in the empty environment, which is impossible since CC is

consistent. ��
Actually, every instances of the types in CCr must be inhabited:

Theorem 15.

If x1 : A1, .., xn : An �r B : κ then for all terms w1, . . . , wn verifying

�r w1 : A1

�r w2 : A2[x1 ← w1 ]
...

�r wn : An[x1, . . . , xn−1 ← w1, . . . , wn−1 ]

there is a term t such that

�r t : B[�x← �w ]

Proof. The proof is trivial by applying n times the substitution lemma [Prop. 8]

to obtain �r B[�x← �w ] : κ which is closed and hence inhabited [Cor. 9]. ��
It is hard to precisely determine the logical expressiveness of CCr. We have

at least natively simply typed λ-calculus on closed (and then inhabited) types

of CCr (e.g. �, N, etc.). The proof is the same as the one of [Lem. 20] below.

6 Computational expressivity of CCr

Although the logical strength of CCr seems quite poor, its computational power

is at least that of the system T of [Gödel(1958)]. We use the usual well-known way

to define terms, types (except cartesian product), and recursor (from iterator)

of system T in lambda-calculus (see[Girard et al.(1990)]).

Definition 16 (Church numerals and iterator).

N := ∀AProp.A→ (A→ A)→ A

0 := λAProp.λxA.λfA→A.x

S(n) := λAProp.λxA.λfA→A.f (n A x f)

itT (n, b, (y
T )step) := n T b (λyT .step)
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Lemma17. The following rules are derivable:

Γ wfr

Γ �r 0 : N : Prop

Γ �r n : N

Γ �r S(n) : N
Γ �r T : Prop Γ �r n : N Γ �r b : T Γ, y : T �r step : T

Γ �r itT (n, b, (yT )step) : T
Lemma18. The following reductions hold:

itT (0, b, (y
T )step)

∗�β b

itT (S(n), b, (y
T )step)

∗�β step[y ← itT (n, b, (y
T )step) ]

Definition 19 (simple types on N).

Simple types on N are those obtained from N and →.

Lemma20. If Γ wfr and T is a simple type on N, then there is a term t such

that Γ �r t : T : Prop.

Proof. By induction on T (as a simple type on N):

– If T is N, then 0 fits.

– If T is A → B where A and B are simple types on N then by induction

hypothesis on A we get Γ �r A : Prop, hence Γ, x : A wfr by (env2r) rule.

By induction hypothesis on B, we get Γ �r b : B : Prop, and weakening it

[Prop. 6] we have Γ, x : A �r b : B : Prop and finally (absr) and (prodr) rules

give Γ �r λxA.b : A→ B : Prop.

��

CCr does not allow us to derive the usual cartesian product defined by

A×B := ∀CProp.(A→ B → C)→ C

To simulate recursor from iterator we define a restricted cartesian product N×T

for each T , simple type on N, by encoding a natural into T .

Lemma21. If Γ wfr and T is a simple type on N then there are two terms encT
and decT such that Γ �r encT : N → T and Γ �r decT : T → N and for every

term n we have decT (encT n)
∗�β n.

Proof. By induction on T (as a simple type on N):

– If T is N, then we take the identity on N for encT and decT .
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– If T is A→ B, we take

encA→B := λxN.λzA. encB x

decA→B := λfA→B . decB (f a)

where a is a term of type A obtained from [Lem. 20].

��

Definition 22. We define the following abbreviations for couples

N× T := (T → T → T )→ T

〈n, t〉T := λfT→T→T .f (encT n) t

π1(c) := decT (c (λxT .λyT .x))

π2(c) := c (λxT .λyT .y)

Lemma23. The following rules are derivable:

Γ wfr

Γ �r N× T : Prop

Γ �r n : N Γ �r t : T
Γ �r 〈n, t〉T : N× T

Γ �r c : N× T

Γ �r π1(c) : N

Γ �r c : N× T

Γ �r π2(c) : T

Lemma24. The following reductions hold:

π1(〈n, t〉T ) ∗�β n

π2(〈n, t〉T ) ∗�β t

Definition 25. We define recursor from iterator by

recT (n, b, (x
N, yT )step) := π2

[
itT×T (n, 〈0, b〉T , (zT×T )step′)

]

where

step′ := 〈S(π1(z)), step[x, y ← π1(z), π2(z) ]〉T×T

Lemma26. The following rule is derivable:

Γ �r T : Prop Γ �r n : N Γ �r b : T Γ, x : N, y : T �r step : T

Γ �r recT (n, b, (xN, yT )step) : T

Lemma27. The following reductions hold:

recT (0, b, (x
N, yT )step)

∗�β b

recT (S(n), b, (x
N, yT )step)

∗�β step[x, y ← n, recT (n, b, (x
N, yT )step) ]
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7 Conclusions and direction for further work

We have seen a simple attempt to pedagogize the calculus of constructions.

It has a good computational power —at least Gödel system T— but lacks of

logical expressivity —does not even natively contain simply typed λ-calculus. A

pleasant aspect is the simplicity of the added constraint, which also emphasizes

that the (prod) rule is responsible for vacuity in CC.

Logical limitations of our calculus CCr suggest a more precise definition for a

calculus of constructions to be pedagogical: in a pedagogical calculus, we should

be able to prove the symmetry of the Leibniz equality, because the non-emptiness

of x =A y can be justified by substituting N to A and 0 to x and y. It means

that we not only need that a well-formed environment can be exemplified (i.e.

meets the Poincaré criterion), but the converse should hold too.

However we must be careful in stating the converse of the Poincaré criterion:

we already noticed that “all exemplifiable environments are well-formed” does

not hold [Sect. 3.2]. We then propose the following definition:

Definition (converse of the Poincaré criterion). A subsystem CCp of CC

meets the converse of the Poincaré criterion if whenever there are terms t1, . . . , tn
verifying

�p t1 : A1

�p t2 : A2[x1 ← t1 ]
...

�p tn : An[x1, . . . , xn−1 ← t1, . . . , tn−1 ]

and

x1 : A1, . . . , xn : An wf

then

x1 : A1, . . . , xn : An wfp

In this definition we refer explicitly to CC as a base system that we need to

constrain: it then prevents from escaping of CC, as it was unfortunately the case

in our naive attempt CCn [Sect. 3.2].

We can then express what we wait exactly for a subsystem of CC to be called

pedagogical:

Definition (pedagogical subsystem of CC).

CCp is a pedagogical subsystem of CC if:

1. CCp is a subsystem of CC;

2. CCp verifies the subject reduction property;
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3. CCp meets the Poincaré criterion and its converse.

The subject reduction property must be explicitly stated here: [Colson and

Michel(2008)] defined a weakly pedagogical second-order calculus (Ps-Prop
2) sat-

isfying 1 and 3 but not 2. While in this paper we give a system satisfying 1, 2

and only one direction of 3.

There are strong indications on the possibility to construct a second-order

pedagogical λ-calculus in the new sense just defined: indeed the work has been

initiated by [Colson and Michel(2009)] in a slightly different formalism with their

Ps-Prop
2 system [Sect. 1]. It would be a great advance to express it in the formal-

ism of CC since it would lead to a first step toward a “full” pedagogical Calculus

of Constructions. Moreover it would raise the question of formally characterizing

a maximally expressive pedagogical restriction of CC.
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