Journal of Universal Computer Science, vol. 19, no. 6 (2013), 750-770
submitted: 25/4/12, accepted: 25/3/13, appeared: 28/3/13 © J.UCS

The Riesz Representation Operator on the Dual of C[0;1]
is Computable

Tahereh Jafarikhah
(University of Tarbiat Modares, Tehran, Iran
t.jafarikhah@modares.ac.ir)

Klaus Weihrauch
(University of Hagen, Hagen, Germany
Klaus.Weihrauch@FernUni-Hagen.de)

Abstract: By the Riesz representation theorem, for every linear functional F : C[0; 1]
— R there is a function g : [0; 1] — R of bounded variation such that

F(h):/hdg (heCl0;1]).

A computable version is proved in [Lu and Weihrauch(2007)]: a function g can be
computed from F' and its norm, and F' can be computed from g and an upper bound
of its total variation. In this article we present a much more transparent proof. We
first give a new proof of the classical theorem from which we then can derive the
computable version easily. As in [Lu and Weihrauch(2007)] we use the framework of
TTE, the representation approach for computable analysis, which allows to define
natural concepts of computability for the operators under consideration.
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1 Introduction

The Riesz representation theorem for continuous functionals on C|0;1], the Ba-
nach space of continuous functions h : [0;1] — R endowed with the supremum
norm, can be stated as follows

[Goffman and Pedrick(1965), Heuser(2006)]:

Theorem 1 (Riesz representation theorem). For every continuous linear
operator F : C[0;1] — R there is a function g : [0;1] — R of bounded varia-
tion such that

F(h) = /hdg (h e C[0: 1))

and

Vig) = IFl.

Here, [ hdg is the Riemann-Stieltjes integral [Schechter(1997)]. The reversal of
this theorem is almost trivial: the operator h — f hdg is continuous and linear.
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A computable version of the Riesz representation theorem has been proved in
[Lu and Weihrauch(2007)]: a function g can be computed from F' and its norm,
and F' can be computed from g and an upper bound of its total variation. This
proof, however, is complicated and partly intransparent. In this article we present
a simpler and much more transparent proof which starts with a new proof of the
classical theorem from which the computable version can be derived easily.

The classical Riesz representation theorem can be proved as follows
[Goffman and Pedrick(1965), Heuser(2006)]: By the Hahn-Banach theorem, the
operator F' has a continuous extension F to the Banach space B[0; 1] of bounded
functions & : [0; 1] — R such that ||F|| = ||F||. Then define g by g(x) := F(X[02]);
where X[o,4) is the characteristic function of [0;z]. In our proof, from F' and || F|
we define a dense set of points x in which g will be continuous. For these points
x we can compute I’ to X|o;,], then we define g(z) := F(X[O;w])'

In Section 2 we extend the definition of the Variation and the Riemann-
Stieltjes integral to partial functions g : C [0;1] — R the domains of which are
dense in the unit interval. We observe that [ hdg can be defined already from
any restriction of g to a countable dense subset of it domain.

In Section 3 we introduce the set PCp of the points  which do not contribute
to ||[F|| and define F'(xjo;;]) as the limit of F'(h;) where (h;); is a sequence of
continuous functons ”converging” to x[o,,- We prove that g is continuous with
no continuous proper extension, and that its total variation is || F'||. Furthermore,
F(h) = [ hdgr for all continuous functions f : [0;1] — R.

In Section 4 we shortly summarize the computability concepts used in the fol-
lowing. In particular we define our representation of the functions with countable
dense domain and finite variation.

Finally, in Section 5 we prove that from F and || F|| a restriction g of gr can
be computed (a function of bounded variation representing F'), and that F can
be computed from g and a upper bound of Var(g).

2 The Riemann-Stieltjes integral

We recall the definition of the Riemann-Stieltjes integral. We study only the
special case of functions on the unit interval [0; 1]. Results for arbitrary intervals
[a;b] can be derived easily from the special case. In our context it seems to be
appropriate to generalize the definitions to partial functions g : C [0;1] — R of
bounded variation.

A partition of the real interval [0; 1] is a sequence Z = (xg,Z1,...,Zn), 1 > 1,
of real numbers such that 0 = z¢9 < x1... < z, = 1. The partition Z has
precision k, if x; — x;_1 < 27F for 1 <i < n. A partition Z' = (z{,2},...,2},),
is finer than Z, if {xo, 21, ..., {2, 21, ..., 2},}. Z is a partition for g : C
[0:1] = R if {xg,21,...,2,}Cdom(g). For a partition Z for g define
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S(9.2) = _lg(w:) — g(wi—1)|- (1)
=1

The wvariation of g is defined by
V(g) :=sup{S(g, Z)|Z is a partition for g}. (2)
The function g is of bounded variation if its variation V' (g) is finite.

Definition 2. Let BV be the set of (partial) functions g : C [0;1] — R of
bounded variation such that {0,1}Cdom(g) and dom(g) is dense in [0; 1].

The relation to the usual definitions with total functions g is given by the
following lemma.

Lemma 3.
1. Let g,g' € BV such that g is a restriction of g'. Then V(g) < V(g').
2. For every function g € BV the extension g : [0;1] — R defined by

(z) = gly)  for x ¢ dom(g) (3)

Q|

im
y€dom(g), vy, 'z

is of bounded variation such that V(g) = V(q).

Proof: (1) Obvious.

(2) Suppose this limit from below does not exist. Then there is an increasing
sequence (y;); converging to x such that the sequence (g(y;)); does not converge,
hence there is some ¢ > 0 such that (Vi)(3j7 > ) |g(vi) — g(y;)| > €. Therefore,
for every n there is some partition Z, = (0, ¥y, Yiy,---»¥i,, 1) for g such that
S(g,Zy) > n-e. But g is of bounded variation, hence g(z) exists.

Since dom(g)Cdom(g), V(g) < V(g). On the other hand suppose X := (0 =
Z1,%2,...,&, = 1) is a partition for g and let ¢ > 0. For 1 < ¢ < n there
are y; € dom(g) such that z;,_1 < y; < x; and |g(y;) — g(z:)| < €/(2n), hence
for Y := (0,91,y25- - Yn, 1), |S(g, X)—S(g,Y)| < e. Therefore, V(g) < V(g). O

On the space C0;1] of continuous functions h : [0;1] — R the norm is
defined by ||A[| := sup,¢jo,1] [2()]. On the space C’[0; 1] of the linear continuous
operators I : C[0;1] — R the norm is defined by ||F'[| := supy, < [F'(h)]-

In the following let A : [0;1] — R be a continuous function and let g € BV.
For any partition Z = (zg, 1, ...,xy) of [0;1] for g define

S(g.h, Z) =3 h(wi)(g(x:) — g(wi-1)). (4)
i=1
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Since h is continuous and its domain is compact, it has a (uniform) modulus
of continuity, i.e., a function m : N — N such that |h(z) — h(y)| < 27F if
|z —y| < 2-7(k)  We may assume that the function m is non-decreasing,.

Lemma4 [Lu and Weihrauch(2007)]. Let h : [0;1] — R be a continuous
function with modulus of continuity m : N — N and let g € BV. Then there is a
unique number I € R such that

1= S(g.h, Z)| < 27"V (g)
for every partition Z for g with precision m(k + 1).

A proof is given in [Lu and Weihrauch(2007)]. A revised proof is given in the
appendix.

Definition 5. The number I from Lemma 4 is called the Riemann-Stieltjes in-
tegral and is denoted by [ hdg.

Notice that by Lemma 4 the integral [ fdg is determined already by the
values of the function g on an arbitrary set X that is dense in dom(g), since

there are partitions of arbitrary precision that contain of points only from the
set X.

Corollary 6. Let g,¢9' € BV. Suppose ACdom(g) N dom(g’) is dense in [0;1]
such that {0,1}CA and (Vz € A)g(x) = ¢'(z). Then [hdg = hdg’ for every
h € C[0;1].

Proof: Obvious. O

3 Another proof of the classical theorem

In this section we present a proof of the (non-computable) Riesz representation
theorem which we will effectivize in Section 5. Let Pg be the (countable) set of
of polygon functions h : [0;1] — R with rational vertices and let RI := {(a;b) |
a,b € Q, 0 <a<b< 1} be the set of open rational subintervals of (0;1). By
the Weierstrafl approximation theorem Pg is dense in C[0;1]. In the following
let F: C[0;1] — R be a linear continuous functional.

Definition 7. For h € C[0;1], YC[0;1] , and = € (0;1) define NZ(h), || F|ly and
PCrC(0;1) as follows:

NZ(h) = {ze[0;1]|h(z) # 0}, ()
[Flly == sup{[F(h)| [ h e C[0;1], |[h] <1, NZ(R)CY}, (6)
x € PCp: < mf{||F|s|x€JeRI} =0. (7)
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NZ(h) is the non-zero region of the function h, || F||y is the contribution of
the set Y to ||F||, and x € PCp means that the contribution of z € (0;1) to
||F'|| is 0. The points from PCg will be the points of continuity of the associated
function gr of bounded variation.

Lemma8. 1. |Flly <||F|z i YCZ,
2. |Fllsy + -+ |F s, < |\|F) if the J; are pairwise disjoint.
3. NE(h)|+. ..+ |F(hn)| < ||F|l if |hil]l <1 fori=1,...,n and the sets NZ(h;)

are pairwise disjoint.

Proof: (1) Obvious.

(2) Let € > 0. For 4 = 1,...n there is a continuous functions h; such that
lhill < 1, NZ(h;)CJ; and |F(h;)| > ||F|ls, — . We may assume F(h;) > 0
(if F(h;) < 0, replace h; by —h;). Since the sets NZ(h;) are pairwise disjoint,
| > hill < 1. We obtain

STNFs <ne+ > |[F(hi)| =ne+ Y F(hi) =ne+ F()_ hi) < ne+||F|.

This is true for all € > 0, hence ), ||[F||;, < || F].
(3)This follows from (2). O

At most countably many points can have a positive contribution to ||F||.
Lemma 9. The complement (0;1) \ PCr of PCp is at most countable.

Proof: For n € N let T, be the set of all z € (0;1) such that inf{||F|; |
x € J} > 27" Suppose, card(T,) > N > 2" .|| F||. Then there are N points
T1,...,xy € T, and pairwise disjoint intervals Jip,...,Jy such that x; € J;.
Since ||F||;, > 27" for all 4, >, ||F|ls, > N -27" > ||F||. But this is false by
Lemma 8. Therefore, T}, is finite for every n and (0;1)\PCp = {J,, T, is at most
countable. o

We define slanted step functions (Figure 2) as approximations of character-
istic functions x[oz] -

Definition 10. For I = (a;b) € RI let s; € Pg, the slanted step function at I,
be the polygon function whose graph has the vertices (0,1), (a,1), (b,0), and
(1,0).

Suppose J, KCL. Then NZ(s; — sx)CL and ||s; — sk|| < 1, hence |F(sy) —
F(sk)| =|F(ss — sk)| <||F||L, therefore

|F(sy) — F(sk)| <||F||rif J, KCL. (8)
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In the classical proof (Section 1) g(z) can be defined as F(x(o]), where F is
the Hahn-Banach extension of F' to the bounded real functions. We replace this
definition as follows considering only points of continuity:

Definition 11. Define a function gr : CR — R as follows: dom(gr) := {0,1} U
PCp, ¢g(0) := 0, g(1) := F(1). For x € PCp let (J,)nen be a sequence of
rational intervals such that z € J,,11CJ, and lim,_, length(J,,) = 0. Then let
gr(x) :=lim, o F(s7,).

Since € PCp, lim,, o || F|l;, = 0 by monotonicity in J of || F||;. We show
that gr(x) exists and does not depend on the specific sequence(J,, )nen.

Lemma12. The function gr is well-defined.

Proof: For every ¢ > 0 there is some n such that || F||;, < e. By (8) for k > n,
|F(sg,) — F(syp )| < |Flls, <e, hence lim, o F(sy,) exists.

Let (Ly,)nen be another sequence of rational intervals such that « € L, 11CL,
and lim,, o0 [|[F||r, = 0. Then lim, . F(sp,) exists accordingly. Let K, :=
Jn O L. By (8), |F(s,) = F(sk, )| < [|Fll5, and [F(sL,) = F(sk,)| < [Fllz,,
hence |F(sy,) — F(sp,)| < ||Flls, + [|F|L,- Therefore,

lim, |F(sy,) — F(sz,)| = 0 and finally lim,, F(s;,) = lim, F(sz,). i

Lemma 13. Suppose J, K, L € RI, J,KCL and z,y € PCrN L. Then

|[F(s) = F(s)| <[ F|L, 9)
[F(ss) —gr()| < | FL, (10)
l9r(z) — gr(y)| < [ FlL . (11)
Proof:
(9): By (8).

(10): For every ¢ > 0 there is some KCL such that y € K and |F(sk) —
gr(y)| < e Then by (9), [F(ss) —gr(y)| < |F(ss) = F(sk)|+|F(sk) —gr(y)] <
|F|l + &. Therefore |F(s;) — gr(y)| < |F||L.

(11): For every € > 0 there is some JCL such that z € J and |F(sy) —
gr(x)| < e. Then by (10), |gr(2) —gr(Y)| < |gr(x) — F(s))|[+[F(ss) — gr(y)
| Pl + &. Therefore |gr(2) — gr(y)| < | F| L.

We will prove some further properties of the function gr. In the following,
limy, ~, gr(y) abbreviates limycqom(gr), y 7= 97 (y) and lim,~ . gr(y) abbreviates
limyedom(gp), YN\ gF(y)

O IA

Lemma 14. For all x € (0;1),
1. limy », gr(y) and limy . gr(y) exist,

2. |limy ; gr(y) — limys o gr(y)| = infees ||F|-
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Proof:

(1) Suppose that lim, ~, gr(y) does not exist. Then there is an increasing se-
quence (y;); from PCg converging to 2 such that the sequence (gr(y;)); does not
converge, hence there is some € > 0 such that (VN)(3i,j > N) |gr(vi)—gr(y;)| >
€. Therefore, for every N we can find y;, < ... < y;,, from the sequence
(yi)i such that |gr(Yiy,) — 97 (Yia,_, )| > €, for 1 < k < N. Hence there are
pairwise disjoint rational intervals Ji, Ja, ...,y such that yi,, ., ¥i,, € Ji for
1 < k < N. Then by (11), ||F||ls, > € for each 1 < k < N. By Lemma 8,
||| > Z,iv:l |E|ls. > N - e. Since this is true for all numbers N, ||F|| is un-
bounded. Contradiction.

(2) Let a = inf,ey || F|ls and § > 0. There is some J € RI such that

xedJ and |||F|ls—al<$d. (12)

“<”: By (11) and (12) for y1,y2 € JNPCp, |gr(y1) —gr(y2)| < [|F]ls < a+d,
hence |limy »; gr(y) — limy~ 2 g7 (y)| < a + d. Since this is true for all § > 0,
“<” is true.

“>": An example of the functions, intervals etc. defined in the following is
shown in Figure 1. There is a rational polygon h such that

NZ(h)CJ, |k <1 and [F(h) = ||F|[;] <.
The function A can be chosen such that
KCJ; zeKand (Vye K)h(y)=c (13)

for some K € RI and some ¢ such that 0 < |¢| < 1. We may assume 0 < ¢ < 1
(if ¢ < 0 replace h by —h). There are y<,y~ € KNPCpr, y« < x < y~ such that

| lim gr(y) — gr(y<)| <6 and |lim gr(y) — gr(y>)| <6. (14)
y 'z YN\
There are L, R € RI such that L, RCK, L <x < R, y« € L, y~ € R and
|F||, <3 and ||F|r<3d. (15)

Let my, and mp be the center of L and R respectively. Let ¢y, : [0;1] — R be the
rational polygon whose graph has the vertices (0, 0), (inf L, 0), (mz, ¢), (sup L, 0),
(1,0) and let tg : [0;1] — R be the rational polygon whose graph has the
vertices (0,0), (inf R, 0), (mg, ¢), (sup R, 0), (1,0). Then |F(t)| < ||F|lr < ¢ and
IF(tr)| < 1F]ln < 6.

Let ' := h —t;, —tg. Then

[F(h') = F(h)| = [F(tr) + F(tr)| < 20. (16)

Let N be the interval (mp;mg). Let ho be the polygon function whose graph
has the vertices (0,0), (mr,0), (sup L, ¢), (inf R, ¢), (mg,0), (1,0). Let h := h’ —
ho.
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Figure 1: The functions h,hg and h’

We will show that |F(R)| is small and |F(ho)| =~ a. There is some rational
polygon function hj, such that ||hy|| = 1, NZ(h()CN and

HFllx = F(ho)l < 6. (17

~—

There are o, 8 € {1,—1} such that |F(h})| + |F(h)| = F(ahy) + F(Bh) =
F(ah{y+Bh). Since NZ(hy) \NZ(h) = 0, [|ahy+Bh|| < 1, hence [F(hg)|+|F(R)| <
IFl; < a+4. Since ||Fx| < |F(h{)| + 6 and ||F||x > a because of zz € N,

[E(W) = F(ho)l = |[F(h)| < a+6—|F(ho)l <a+06 —||Fllx+6 < 26.
Therefore F(h) is small. From the above estimations,
lal < la=[1F[ls[+ [Nl = FR)]+[F(R) = F(R)[+[F(R) = F(ho)| + [F(ho)],
hence a <6 46 + 20 + 20 + |F(ho)|, that is,
a < 68+ |F(ho)|.

Therefore, |F(ho)| is big. By construction, 0 < ¢ = ||ho|| < 1. Let b= ho/c.
Then a < 66 + |F(h)|.
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Since ||h|| =1, h = sy — sg where S = (mp;sup L) and T = (inf R; mp). By
Lemma 13,

9r(y<) — Fss) < Ik and |gp(ys) — F(sr)] < IFllx
hence by Lemma 13,
a <65+ |F(h)|
=60+ |F(sr) — F(s9)
<66+ |F(sr) — gr(y>)| + gr(y>) — J@JQF(?/N
+[ lim gr(y) — lim gr(y)| + [ lim gr(y) — gr(y<)| + l9r(y<) — F(ss)|
Y\ y, y 'z
<66+ |Fllr + 6+ [ lim gp(y) — lim gp(y)| + 0+ [|F|L
RN y/
<|lim — lim + 109
< |y\w9F(3/) y/ng(y)\
Since this is true for all § > 0, “>” has been proved. O
Theorem 15.
1. gF is continuous on (0;1) Ndom(gr) = PCp,
2. no proper extension g of gr is continuous on (0;1) N dom(g),
3. Var(g) = ||F|| for every restriction g € BV of g,
4. Var(gr) = |IF]|.

Proof: 1. If x € PCp then limy\ , gr(y) = limy », gr(y) by Lemma 14. There-
fore gr is continuous in .

2. Let g be an extension of gr and let g be continuous in € dom(g). Then
limy\ o gr(y) = limy », gr(y), hence inf,c; | F||; = 0 by Lemma 14, that is,
z € PCp.

3. Var(g) < | F||: Let X := (xo,21,...,%,) be a partition for g. Let € > 0.
By the definition of g for every 0 < ¢ < n there is an interval K; € RI such
that z; € K;, sup K; < inf K;11, |F| k, < e. Furthermore, for 0 < ¢ < n there
are intervals L;, R; € RI such that L;, R;CK; and sup L; < z; < inf R;. Figure 2
shows the intervals and some corresponding slanted step functions. By Lemma 8
and Lemma 13,

S(g,X) = lg(z1)] + i l9(zi) = g(zi-1)[ + 19(1) = g(zn—1)]

n—1
< ‘F(SL1)| +e+ Z(‘F(SLL - SR171)| +25)
=2
HE =R, ) +¢
<2ne+||F|.
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Figure 2: The intervals K;, L;, R; and corresponding slanted step functions.

Since this is true for all € > 0, S(g, X) < || F||. Since this is true for all partitions
X for g, Var(g) < |IF]|.

3. ||F|| < Var(g): First we show that for every rational polygon function
ho € Pg there are a partition X = (0 = zg,21,...,Zn-1,2Zn = 1) and intervals
K;, L;, R; such that for the function hy (see Figure 3), F(hg) is close to F(hs)
if (z; — x;—1) and || F| k, are sufficiently small for all 1 < ¢ < n. By Lemma 13
F(h2) can be related to S(g, X) (and to S(g, ho, X) in the proof of Theorem 16).

Let hop € Pg and k € N. Let m : N — N be a modulus of continuity of hg.
Let n := 2™®+1 4 1. Since dom(g) is dense, there is a partition X = (0 =
0y &1y.. .y Tn_1,Tn = 1) for g such that z; — z,_1 < 2-m(k)=1 Gince all the
xz; € PCp, for every 0 < i < n there are rational intervals K;, L;, R; such that

z; € K;y, 0<inf Ky, supK; <inf K;11, supK,_1 <1,
IFllk; <27%/n,
inf L; = inf K;, supl; < x; < inf R; sup R; = sup K; .

Figure 3 shows an example of the left end of the unit interval with the function
ho and the intervals.
For 1 <4 < n define

¢; = max{hg(z) |supRi—1 <z <infL;},

(where sup Rp := 0 and inf L,, := 1). Define a rational polygon function h; by
the following sequence of vertices:
(sup Ry, c1), (inf L1, ¢1), (sup Ry, ¢2), (inf Lo, ¢a), ..., (sup Rp—1, ¢n), (inf Ly, ¢y,)
(see Figure 3, notice that ¢; may be negative).

Suppose 1 < i < nand supR;_ 1 < x < infL;. Then z; ;1 < z < x; and
hi(z) = ¢; = ho(y) for some y with z;_1 < y < x;. Then |z —y| < 27™*) hence
7 (x) = ho(z)] = |ho(y) — ho(x)| < 27%.
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Figure 3: The functions hg, hy and hs..

Suppose 0 < ¢ < n and z € K;. Then hi(z) = ho(y) for some y such
that z;_1 < y < xip1. Since 2,1 < = < Tiy1, |z —y| < 27" and hence
71 (x) = ho(z)] = |ho(y) — ho(x)| < 27%.

Therefore, ||h1 — ho|| < 27% and hence |F(h1) — F(ho)| < || F|| - 27F.

Let 1 < i < n. Then ¢; = ho(y) for some z;_1 < y < z;. Since |z; — y| <
278 ho(xi) — cil = |ho(x:) — ho(y)| < 27F.

From h; we construct a third function he by replacing for every 0 < i < n
the line segment from (inf L;,¢;) to (sup R;,c;11) in the graph of h; by the
polygon (inf L;,¢;), (sup L;,0), (inf R;,0), (sup R;,ci+1) (see Figure 3). Then
by Definition 10,

n—1

ho = cisp, + ) cilst, = sriy) +call = 5R, ).
i=2
For 0 < i < n let d; be the polygon function defined by the sequence of vertices
(0,0), (inf L;,0), (sup L;, hy(sup L;)), (inf Ry, hq(inf Ry)), (sup R;,0), (1,0).

Then hy = hy — 37" d;. Since NZ(d;)CK; and ||d;]| < |[ho,

n—1 n—1
|F(h2) — F(ha)| <> |F(di)| <Y IFlk, - [holl < [lholl - 27"
=1 i=1

We prove ||F|| < Var(g). There is some hg € Pg such that ||ho|| < 1 and
| F|| < |F(ho)| +27F. Since |¢;| < 1 and by Lemma 13,
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IF|| < |F(ho = ko)l + |F(hy = ha)| + | F(ha)| + 27"
<IFN-27F + lholl - 278 + [F(ha)| + 27"

< V(0,4 3 Flon, —sm ) + 1F(1 = sm,.)
(1) +2) 27
< o)l + 27+ 3 (lei) — gl )| +2-274/m)

+g(1) = g(an—1)| + 27" /n+ (|F|| +2)-27"

(i) — g(@im1)|+2-27% + (| F||+2)-27F

M=

1
(9, X) + (IF|| +4) - 27"
ar(g) + (| F|| +4)-27".

I
< @y

<

Since this is true for all k, ||F|| < Var(g).
4. This follows from 3. |

Theorem 16. Let g € BV be a restriction of gr. Then for every h € C|0;1],
F(h) = [ hdg.

Proof: Let h € C[0;1] and k € N. There is a function hy € Pg such that
|h — ho| < 27F. Let m,n, X, K;, L;, Ri, c;, h1, ho be the objects introduced in
the proof of Theorem 15.3. We prove that |F(h) — S(g, h, X)| is small. By the
results that we have already shown,

[F'(h) = F(ho)| <[F(h) = F(ho)| + [F(ho) = F(h1)[ + [F(h1) — F(hs)|
<FN-27F + Bl - 278 + [[hol - 27F
= 2IFl + lholl) -27*

Since |F(sg;) + B| < |g(z;) + B| + ||F||k, etc. by Lemma 13, ¢; < |ho||, and
lho(x;) — i <27°F,

|F'(h2) = 5(9, ho, X)|
n—1

< |erFlse) + Y- eilFlse) = Fsny)) + ea(F(1) = Flsr, )
=2

=D ho(e:)(g(i) ~ glai))



762 Jafarikhah T., Weihrauch K.: The Riesz Representation Operator ...

n—1

< leg(an) + Z ci(g(xi) — g(zi-1)) + enlg(1) — g(zn-1))
= D" hoe) (i) — glxinn))|
+ el [[1F]| &, + i el (1F &, + 1E | kiy) + lenl [1F]| ks
=2

IN

‘ > (e = ho(:))(g(w:) — g(xifl))’ +2|[hol - 27%

—

;i — ho(xi)| - |9(xi) — g(zi—1)| + ||hol - 277

NE

i=1

27%-5(g, X) + [|ho| - 27
277 Var(g) + [|ho| - 27+
= (IFl +2hol)) - 27"

IN A

Furthermore,

1S(g,ho, X) = S(g, 0, X)| = | Y (ho(w:) = h(x))(g(x:) = glai-1))]

=1
< 27Ky " g(a) — g(wioa)|
=1

=27".5(g,X)
< 27% . Var(g)
=27"|F|.
Combining these results we obtain
[F'(h) = S(g, b, X))
< [F(h) = F(h2)| + [F(h2) = 5(g, ho, X)| +S(g, ho, X) = S(g, b, X)|
< CIFI+llholl) - 275 + (IF N + 2 lholl) - 27% + 277 | F|
< (1] + [1a] + 1) - 2752
Since X has precision m(k), | [hdg — S(g,h,X)| < Var(g) - 27%! by

Lemma 4. Therefore, |F(h) — [hdg| < (3||F|| + 2||h| + 2) - 27**+1. Since this
is true for all k, F'(h) = [ hdg. 0

4 Concepts from Computable Analysis

For studying computability we use the representation approach (TTE) for Com-
putable Analysis [Weihrauch(2000), Brattka et al.(2008)]. Let X be a finite al-
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phabet. Computable functions on X* (the set of finite sequences over X') and
X% (the set of infinite sequences over X) are defined by Turing machines which
map sequences to sequences (finite or infinite). On X* and X* finite or countable
tupling will be denoted by ( ) [Weihrauch(2000)]. The tupling functions and the
projections of their inverses are computable.

In TTE, sequences from X* or X* are used as “names” of abstract objects
such as rational numbers, real numbers, real functions or points of a metric
space. We consider computability of multi-functions w.r.t. multi-representations
[Weihrauch(2000)], [Brattka et al.(2008)], [Weihrauch(2008), Sections 3,6,8,9].

A representation of a set X is a function § : C C — X where C = X* or
C =X 1Tfé6(p) =z we call p a §-name of z. If f: X =Y is a multi-function
(on represented sets) then f(z) is the set of y € Y which are accepted as a result
of f applied to z. (Example: f: R = Q, f(z) := {a € Q| z < a}, we may say:
“the multi-function f finds some rational upper bound of z”.)

For representations v : CY — M and vy : C Yy — My, a function h: CY —
Yy is a (7, 70)-realization of a multi-function f : C M = M,, iff for all p € ¥
and r € M,

V(p) = z € dom(f) = 7o 0 h(p) € f(x). (18)

Fig. 4 illustrates the definition.

p h h(p)
Y Yo
x f Yo o h(p) € f(x)

Figure 4: h(p) is a name of some y € f(z), if p is a name of x € dom(f).

The multi-function f is called (7,70)-computable, if it has a computable
(7, v0)-realization and (,7o)-continuous if it has a continuous realization. The
definitions can be generalized straightforwardly to multi-functions f : M7 x...x
M,, = M, for represented sets M;.
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For two representations ¢; : C X — M; (i = 1,2) the canonical representa-
tion [d1, d2] of the product My x Ms is defined by

[61,62](p1,p2) = (01(P1),0(p2)) - (19)

For two representations 6;CX“ = M; (1 = 1,2), §; < d2 (07 is reducible to ds) iff
there is a computable function h : CX* — X such that (V p € dom(d1)) d1(p) =
d2h(p). (If p is a d;-name of x then h(p) is a da-name of x.)

‘We use various canonical notations v : C X* — X: vy for the natural num-
bers, v for the rational numbers, vpg for the polygon functions on [0;1] whose
graphs have rational vertices, and v; for the set RI open subintervals (a; b)C(0;1)
with rational endpoints. For functions m : N — N we use the canonical repre-
sentation dp : C X% — B = {m | m : N — N} defined by dg(p) = m if
p = 170011120 . ... For the real numbers we use the Cauchy represen-
tation p : C X% — R, p(p) = z if p is (encodes) a sequence (a;);cn of rational
numbers such that for all i, |z —a;| < 27% By the Weierstral approximation theo-
rem the countable set of Pg of polygon functions with rational vertices is dense in
C|0; 1]. Therefore, C[0; 1] with notation vpg of the set Pg is a computable metric
space [Weihrauch(2000)] for which we use the Cauchy representation d¢ defined
as follows: ¢ (p) = h if p is (encodes) a sequence (h;);en of polygons h; € Pgsuch
that for all 4, ||h—h;|| < 27% [Weihrauch(2000)]. For the space C(C|0; 1], R) of the
continuous (not necessarily linear) functions F': C[0;1] — R we use the canon-
ical representation [0c — p] [Weihrauch(2000), Weihrauch and Grubba(2009)].
It is determined uniquely up to equivalence by (U) and (S):

(U) the function APPLY : (F,h) — F(h) is ([0c — p], dc, p)-computable,

(S) if for some representation § of a subset of C(CI0;1],R), APPLY is
(6,0¢, p)-computable then § < [6c — p).

(U) corresponds to the “universal Turing machine theorem” and (S) to the
“smn-theorem” from computability theory. Roughly speaking, [0c — p] is the
“poorest” representation of the set C'(C[0; 1], R) for which the APPLY function
becomes computable.

For converting the classical proof mentioned in Section 2 we needed a repre-
sentation of the set B[0;1] of bounded functions g : [0;1] — R. Since it has a
cardinality bigger than that of X“, it has no representation. To overcome this
difficulty it would suffice to extend F' to the Banach space B1[0;1] generated by
the continuous functions and all the characteristic function X[z, 0 < ¢ < 1.
However, since this space is not separable we do not know any reasonable rep-
resentation of it. We solve the problem by (implicitly) extending F' only to
functions x[o,;] from a countable dense set of points = in which g is continuous
and for which we can compute g(x) := F(X[0;z)) from F and ||F|. Remember
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that every function of bounded variation has at most countably many points of
discontinuity.

Finally, for formulating a computable version of the Riesz representation
theorem we need a representation for functions of bounded variation. In our
context the only application of a function g of bounded variation is to compute
the Riemann-Stieltjes integral [ hdg for continuous functions h. By Corollary 6,
it suffices to know g on a countable dense set containing 0 and 1. Therefore it
will suffice to consider only functions from BV with countable domain.

Definition17. Let BVC := {g € BV | dom(g) is countable}. Define a repre-
sentation dgyvc : € X% — BVC as follows: dpyc(p) = g iff there are sequences
P0,90,P1,q1, - - - € X such that p = ((po, q0), (P1,q1), - - ), p(Po) =0, p(p1) =1
and graph(g) = {(p(p:), p(¢:)) | i € N}.

Informally, a dpyc-name of g is a list of its graph. For proving computability
of multi-functions on represented sets we use “generalized Turing machines”
(GTMs) [Tavana and Weihrauch(2011)]. We call a generalized Turing machine
M on represented sets computable, if all multi-functions on the represented sets
occurring in M are computable. We use the following result: the multi-function
far computed by a computable GTM M on represented sets is computable.

For a representation 6 : C X — Z a subset YCZ is d-r.e., iff there is a
Type-2 machine N such that for all p € dom(9),

N halts on input p <= §(p) €Y.

And YCZ is d-decidable, iff Y and Z \ Y are d-r.e. [Weihrauch(2000)]. As an
example, x < y for real numbers is [p, p]-r.e.

5 The computable Riesz representation theorem

In the following “computable”, “recursively enumerable” and “decidable” means
computable, recursively enumerable and decidable, respectively, w.r.t. the nota-
tions and multi-representations mentioned in Section 4.

First, from F and ||F| we will compute some g € BVC such that F(h) =
J hdg. By the next lemma for every rational interval I we can compute subin-
tervals J with arbitrarily small | F|| .

Lemma18. There is a computable multi-function
e: (Foz,I,n)=J

that maps every continuous linear functional F : C[0;1] — R, its norm z, every
open rational interval I = (a;b)C[0;1] and every n € N to some open rational
interval J such that JCI , length(J) < 27" and ||F||; < 27"
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Precisely speaking, the multi-function e is ([0 — pl, p, v1, VN, V1) - cOm-
putable.

Proof: By Lemma 9 there is some z € I such that x € PCp. By Definition 7
there is some J, z € J € RI, such that JCI , length(J) < 27" and ||F||; <27
We show that the multi-function e is ([6¢ — pl, p, v1, vn, v1)-computable.

For F, z = ||F||, I = (a;b),n € N, J € Rl and f € Pg consider the conditions

JCI, length(J) < 27", (20)
flx)=0forxz e J, (21)
Ifl <1, (22)

[E(HI > 1P| -2 (23)

Conditions (20-22) are decidable (relative to their representations). Since x < y
is [p, p]-r.e. and (F, f) — F(f) is computable, (23) is r.e. Therefore, here is a
Type 2-machine M that halts on input (p1, pa, us, w4, us, ug) iff

(F7 ”FH?I?n’ J’T) = ([JC - p]apa VlaVN’VI’VI’VPg)(plvp%uSau4au5’u6)
satisfies (20-23). From M a Type-2 machine N can be constructed which on
input (p1,p2, us, us) (by the usual step counting technique) searches for (us, ug)
such that M halts on input (p1, p2, us, u4, us, ug).

First we show that J = vr(us) and f = vpg(ug) exist.

Since Pg is dense in C[0; 1], || F'|| = sup{|F (k)| | h € Pg, ||h|| < 1}. Therefore,
there is a function h € Pg with ||| < 1 such that |F(h)| > |F|| —27""1. As we
have shown (replace above n by n + 1) there is a rational interval LCI such that
length(L) < 27" and ||F|| < 27" ! Let (ag;b2)CL such that h has no vertex
in (ag;bg). Let a1 :=as + (b2 - (12)/3, by = by — (b2 — ag)/?)) and J := (al;bl).
Define a function fy € Pg by its vertices as follows:

(070)’ (aQ’ 0)7 (a17 h(al))7 (bl’ h(bl))’ (b270)’ (170)

and let f := h — fo. Then ||fo|| < 1 and |F(fo)| < 27! since NZ(fo)CL. Since
h and fo have no vertex in the interval (as;a1), |h(z) — fo(z)] < |h(a2)] <1
for aa < x < aq, correspondingly |h(z) — fo(z)| < 1 for by < x < by, and
|h(z) — fo(x)| = 0 for a; <z < by. We obtain || f|| < 1. Furthermore,

() =1F(h = fo)l = [F(h)] = |F(fo)l = |IF|| - 27"

Therefore, J and f exist.
It remains to show that J has the properties requested in the lemma. Obvi-
ously, JCI and length(J) < 27™. Suppose h € C[0;1], ||h]| < 1 and NZ(h)CJ.

Since NZ(h) and NZ(f) are disjoint and of norm < 1, by Lemma 8, |F'(h)| +

[F(F)| < | F| hence |[F(h)| < | F|| = |[F(F)] < 2~". Therefore, [F|l; <27 . O
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By iterating the function e from Lemma 18 in every open rational interval
we can find some point € PCp and the value gp(x).

Lemma 19. The multi-function G : (F,||F|,I) 2 (z,gr(x)) mapping F, its
norm and an interval I € RI to (x,gpr(x)) for some x € INPCr is computable.

Proof: Let J_; := I. For every n € N let J, be a result of applying the
multi-function e from Lemma 18 to (F, || F||, Jn—1,n). Then (Jp)nen is a prop-
erly nested sequence of intervals with length(J,) < 27". It converges to some
point = € I. Since for all n, x € J, and ||F|;, < 27", € PCp. Furthermore,
by Lemma 13, |gr(z) — F(s,)| < 27™. Therefore (F(sy,))nen converges fast to
gr(z).

Let M; be a computable GTM computing the multi-function e from
Lemma 18. From M; we can construct a computable GTM that on input
(E,||F||,I,n) computes in turn some Jo, Ji, ..., J, and then (J,, F(sy,)) as its
result.

By [Weihrauch(2008), Theorem 35] the multi-function (F,||F||, )=
(Jns F(87,))nen is computable (where the canonical representation considered
for sequences [Weihrauch(2000)]). Since the limit operations for nested sequences
of intervals converging to a point and for fast converging Cauchy sequences of
real numbers are computable [Weihrauch(2000)], (z,gr(x)) can be computed
from (J,, F(s1,))nen. Therefore, the multi-function G is computable. |

We can now prove our computable version of the Riesz representation theorem.

Theorem 20 (computable Riesz representation).

The multi-function RRT : (F, || F||) B g mapping every functional F : C[0;1] —
R and its norm to some function g € BVC such that

— F(h) = [ hdg (for all h € C[0;1]),

— g 1is continuous on dom(g) \ {0,1},

— 4(0) = 0 and | F]| = Var(g)

is ([0c — pl, p, dBvC)-computable.

Proof: Let Ly, L1, ... be a canonical numbering of the set RI of open rational
intervals. By Lemma 19 there is a computable function G’ mapping (F, || F||,n)
to some (7, yn) € R? where (z9,90) = (0,0), (x1,y1) = (1, F(1)) and (2, y»)) €
G(f,||F||, Ly) ifn > 2. Since z,, € PCp and y,, = gp(zy) for alln > 2, {(zn, yn) |
n € N} is the graph of a restriction g of gp. Since {z,, | n € N} is dense, g € BVC.
By Theorem 15, g is continuous on dom(g)\{0, 1} and Var(g) = ||F||. Obviously,
g(0) = 0. By Theorem 16, F(h) = [ hdg (for all h € C[0;1]).

By the type conversion theorem [Weihrauch(2008), Theorem 33], the multi-
function (F, [|F||) 2 ((zn, yn))nen is ([6c — pl,p, [vn — [p, p]]) - computable.
From a [vy — [p, p]]-name of the sequence ((Zn, yn))nen = ((Zo,%0), (X1,91),-..)
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we can compute a [p, p|“- name [Weihrauch(2000), Lemma 3.3.16] which is a
dpyc-name of g. O

Finally, we prove that a reverse of the Riesz representation theorem is com-
putable.

Theorem 21. The operator T : (g,1) — F, mapping every g € BVC and every
| € N with Var(g) < 2' to the functional F defined by F(h) = [hdg for all
h € C[0;1], is computable.

Proof: First we show that (G,l,h) — [ hdg is computable. By Theorem 6.2.7
in [Weihrauch(2000)] a modulus m : N — N of continuity of h can be com-
puted from h. let vg be a canonical notation of the finite sequences of natural
numbers. The set of all (g, (¢1,...,9n—1),7) such that (0,z;,,...,2;, _,,1) is a
partition for g of precision j is (dpvc, Vss, vn)-T.e. There is computable GTM on
represented sets which on input (g,j) finds a sequence (i1, ...,4,—1) such that
(0,24, @i, ,,1) is a partition for g of precision j. Therefore from (g, h, k, 1)
we can compute a sequence (i1, ...,4,—1) such that X := (0,2;,,...,2;,_,,1) is
a partition for g of precision m(k +1+ 1). By Lemma 4, | [ hdg — S(g,h, X)| <
271=FV(g) < 27*. The function (g, h, X) — S(g, h, X) is computable (by a com-
putable GTM). Therefore, from (g, 1, h, k) a number y; can be computed (multi-
valued) such that | [ hdg — yx| < 27%. By [Weihrauch(2008), Theorem 33] the
multi-function (g, 1, h) = (yx)ken is computable. By [Weihrauch(2000), Theorem
4.3.7), (9,1, h) = [hdg is (éBvc, vn, dc, p)-computable. By [Weihrauch(2000),
Theorem 3.3.15], (¢,1) — F such that F(h) = [hdg is (dsvc, v, [0c — p])-
computable. O

By Theorem 20, from F and ||F’|| we can compute g such that Var(g) = || F||,
and by Theorem 21, from g and an upper bound of Var(g) we can compute F.

References

[Brattka et al.(2008)] Brattka, V., Hertling, P., Weihrauch, K.: “A tutorial on com-
putable analysis”; S. B. Cooper, B. Léwe, A. Sorbi, eds., New Computational
Paradigms: Changing Conceptions of What is Computable; 425-491; Springer, New
York, 2008.

[Goffman and Pedrick(1965)] Goffman, C., Pedrick, G.: First Course in Functional
Analysis; Prentice-Hall, Englewood Cliffs, 1965.

[Heuser(2006)] Heuser, H.: Funktionalanalysis; B.G. Teubner, Stuttgart, 2006; 4. edi-
tion.

[Lu and Weihrauch(2007)] Lu, H., Weihrauch, K.: “Computable Riesz representation
for the dual of C[0;1]”; Mathematical Logic Quarterly; 53 (2007), 4-5, 415-430.
[Schechter(1997)] Schechter, E.: Handbook of Analysis and Its Foundations; Academic

Press, San Diego, 1997.



Jafarikhah T., Weihrauch K.: The Riesz Representation Operator ... 769

[Tavana and Weihrauch(2011)] Tavana, N., Weihrauch, K.: “Turing machines on rep-
resented sets, a model of computation for analysis”; Logical Methods in Computer
Science; 7 (2011), 2, 1-21.

[Weihrauch(2000)] Weihrauch, K.: Computable Analysis; Springer, Berlin, 2000.

[Weihrauch(2008)] Weihrauch, K.: “The computable multi-functions on multi-
represented sets are closed under programming”; Journal of Universal Computer
Science; 14 (2008), 6, 801-844.

[Weihrauch and Grubba(2009)] Weihrauch, K., Grubba, T.: “Elementary computable
topology”; Journal of Universal Computer Science; 15 (2009), 6, 1381-1422.

Appendix

Proof of Lemma 4
Since there are partitions for g of arbitrary precision, I is unique if it exists.
Next, we prove

for any two partitions Z;, Z, for g with precision m(k + 1).
Let Zy = (xg,21,...,%,) and let Z’ be a refinement of Z;. Z’' can be written
as
Zo :y(]j7y%7"'7y;l =1 :y87y%7"'7y]2'2 =T2... ... = yg)l>y?>"‘>y?n = Tn

(jlw"ajﬂ > 1) Then

‘S(g7h>Z1) - S(g7h>Zl)|

= Z h(a) (g(x:) = g(xima)) = D2 D h(wd) (9(h) — 9(vi-1))

n o Ji ‘
=1 =1

Ji

= Z W)Y (9wi) —gwion) = Z h(yi) (9(ui) — 9(yi-1)) ’

=1 i=1 [=1

- Z (h(x:) — h(y) (9(ui) — 9(yi_1)) ‘

=1 =1
n - Ji
<IN (i) = hly))| |9wi) — 9wy
=1 1=1
noJi
<2753 N g — 9| since [a; —yj| < 27D
i=1 =1
<2771V (g)

Now let Z' be a common refinement of Z; and Z;. Then [S(g,h,Z1) —
S(g7h>Z2)| < |S(g>h7 Zl) - S(g>h7 Z/)‘ + |S(g>h7 Z/) - S(g>h7 ZZ)‘ < 27’6‘/(9)
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There is a sequence (Zi)y of partitions for g such that Zj has precision
m(k +1). By (24) for j > k, |S(g, h, Zi) — S(g, h, Z;)| < 27%V (g). Let I be the
limit of the Cauchy sequence (S(g,h,Zy))x. Let Z be a partition of precision
m(k + 1). Then for every i > k by (24),

<27V (g) +27"V(g),

hence |1 — S(g, . Z)| < 27V (g). -



