The Riesz Representation Operator on the Dual of C[0; 1]is Computable

Tahereh Jafarikhah

(University of Tarbiat Modares, Tehran, Iran t.jafarikhah@modares.ac.ir)

Klaus Weihrauch

(University of Hagen, Hagen, Germany Klaus.Weihrauch@FernUni-Hagen.de)

Abstract: By the Riesz representation theorem, for every linear functional $F: C[0; 1] \to \mathbb{R}$ there is a function $g: [0; 1] \to \mathbb{R}$ of bounded variation such that

$$F(h) = \int h \,\mathrm{d}g \quad (h \in C[0;1]) \,.$$

A computable version is proved in [Lu and Weihrauch(2007)]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. In this article we present a much more transparent proof. We first give a new proof of the classical theorem from which we then can derive the computable version easily. As in [Lu and Weihrauch(2007)] we use the framework of TTE, the representation approach for computable analysis, which allows to define natural concepts of computability for the operators under consideration.

Key Words: computable analysis, Riesz representation theorem **Category:** F.0, F.1.1

1 Introduction

The Riesz representation theorem for continuous functionals on C[0; 1], the Banach space of continuous functions $h : [0; 1] \to \mathbb{R}$ endowed with the supremum norm, can be stated as follows

[Goffman and Pedrick(1965), Heuser(2006)]:

Theorem 1 (Riesz representation theorem). For every continuous linear operator $F : C[0;1] \to \mathbb{R}$ there is a function $g : [0;1] \to \mathbb{R}$ of bounded variation such that

$$F(h) = \int h \, \mathrm{d}g \quad (h \in C[0;1])$$

and

$$V(g) = \|F\|.$$

Here, $\int h \, dg$ is the Riemann-Stieltjes integral [Schechter(1997)]. The reversal of this theorem is almost trivial: the operator $h \mapsto \int h \, dg$ is continuous and linear.

A computable version of the Riesz representation theorem has been proved in [Lu and Weihrauch(2007)]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. This proof, however, is complicated and partly intransparent. In this article we present a simpler and much more transparent proof which starts with a new proof of the classical theorem from which the computable version can be derived easily.

The classical Riesz representation theorem can be proved as follows [Goffman and Pedrick(1965), Heuser(2006)]: By the Hahn-Banach theorem, the operator F has a continuous extension \overline{F} to the Banach space B[0; 1] of bounded functions $h: [0; 1] \to \mathbb{R}$ such that $||F|| = ||\overline{F}||$. Then define g by $g(x) := \overline{F}(\chi_{[0;x]})$, where $\chi_{[0;x]}$ is the characteristic function of [0; x]. In our proof, from F and ||F||we define a dense set of points x in which g will be continuous. For these points x we can compute F to $\chi_{[0;x]}$, then we define $g(x) := \overline{F}(\chi_{[0;x]})$.

In Section 2 we extend the definition of the Variation and the Riemann-Stieltjes integral to partial functions $g : \subseteq [0;1] \to \mathbb{R}$ the domains of which are dense in the unit interval. We observe that $\int h dg$ can be defined already from any restriction of g to a countable dense subset of it domain.

In Section 3 we introduce the set PC_F of the points x which do not contribute to ||F|| and define $F(\chi_{[0;x]})$ as the limit of $F(h_i)$ where $(h_i)_i$ is a sequence of continuous functons "converging" to $\chi_{[0;x]}$. We prove that g_F is continuous with no continuous proper extension, and that its total variation is ||F||. Furthermore, $F(h) = \int hdg_F$ for all continuous functions $f: [0;1] \to \mathbb{R}$.

In Section 4 we shortly summarize the computability concepts used in the following. In particular we define our representation of the functions with countable dense domain and finite variation.

Finally, in Section 5 we prove that from F and ||F|| a restriction g of g_F can be *computed* (a function of bounded variation representing F), and that F can be computed from g and a upper bound of Var(g).

2 The Riemann-Stieltjes integral

We recall the definition of the Riemann-Stieltjes integral. We study only the special case of functions on the unit interval [0; 1]. Results for arbitrary intervals [a; b] can be derived easily from the special case. In our context it seems to be appropriate to generalize the definitions to partial functions $g : \subseteq [0; 1] \to \mathbb{R}$ of bounded variation.

A partition of the real interval [0;1] is a sequence $Z = (x_0, x_1, \ldots, x_n), n \ge 1$, of real numbers such that $0 = x_0 < x_1 \ldots < x_n = 1$. The partition Z has precision k, if $x_i - x_{i-1} < 2^{-k}$ for $1 \le i \le n$. A partition $Z' = (x'_0, x'_1, \ldots, x'_m)$, is finer than Z, if $\{x_0, x_1, \ldots, x_n\} \subseteq \{x'_0, x'_1, \ldots, x'_m\}$. Z is a partition for $g : \subseteq$ $[0:1] \to \mathbb{R}$ if $\{x_0, x_1, \ldots, x_n\} \subseteq \text{dom}(g)$. For a partition Z for g define

$$S(g,Z) := \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|.$$
(1)

The variation of g is defined by

$$V(g) := \sup\{S(g, Z) | Z \text{ is a partition for } g\}.$$
(2)

The function g is of bounded variation if its variation V(g) is finite.

Definition 2. Let BV be the set of (partial) functions $g :\subseteq [0;1] \to \mathbb{R}$ of bounded variation such that $\{0,1\}\subseteq \text{dom}(g)$ and dom(g) is dense in [0;1].

The relation to the usual definitions with total functions g is given by the following lemma.

Lemma 3.

- 1. Let $g, g' \in BV$ such that g is a restriction of g'. Then $V(g) \leq V(g')$.
- 2. For every function $g \in BV$ the extension $\overline{g}: [0;1] \to \mathbb{R}$ defined by

$$\overline{g}(x) := \lim_{y \in \operatorname{dom}(g), \ y \nearrow x} g(y) \quad \text{for } x \notin \operatorname{dom}(g) \tag{3}$$

is of bounded variation such that $V(g) = V(\overline{g})$.

Proof: (1) Obvious.

(2) Suppose this limit from below does not exist. Then there is an increasing sequence $(y_i)_i$ converging to x such that the sequence $(g(y_i))_i$ does not converge, hence there is some $\varepsilon > 0$ such that $(\forall i)(\exists j > i) |g(y_i) - g(y_j)| > \varepsilon$. Therefore, for every n there is some partition $Z_n = (0, y_{i_0}, y_{i_1}, \ldots, y_{i_n}, 1)$ for g such that $S(g, Z_n) > n \cdot \varepsilon$. But g is of bounded variation, hence $\overline{g}(x)$ exists.

Since dom(g) \subseteq dom(\overline{g}), $V(g) \leq V(\overline{g})$. On the other hand suppose $X := (0 = x_1, x_2, \ldots, x_n = 1)$ is a partition for \overline{g} and let $\varepsilon > 0$. For $1 \leq i \leq n$ there are $y_i \in$ dom(g) such that $x_{i-1} < y_i < x_i$ and $|g(y_i) - \overline{g}(x_i)| < \varepsilon/(2n)$, hence for $Y := (0, y_1, y_2, \ldots, y_n, 1), |S(\overline{g}, X) - S(g, Y)| < \varepsilon$. Therefore, $V(\overline{g}) \leq V(g)$. \Box

On the space C[0;1] of continuous functions $h : [0;1] \to \mathbb{R}$ the norm is defined by $||h|| := \sup_{x \in [0;1]} |h(x)|$. On the space C'[0;1] of the linear continuous operators $F : C[0;1] \to \mathbb{R}$ the norm is defined by $||F|| := \sup_{||h|| < 1} |F(h)|$.

In the following let $h: [0;1] \to \mathbb{R}$ be a continuous function and let $g \in BV$. For any partition $Z = (x_0, x_1, \dots, x_n)$ of [0;1] for g define

$$S(g,h,Z) := \sum_{i=1}^{n} h(x_i)(g(x_i) - g(x_{i-1})).$$
(4)

Since h is continuous and its domain is compact, it has a (uniform) modulus of continuity, i.e., a function $m : \mathbb{N} \to \mathbb{N}$ such that $|h(x) - h(y)| \leq 2^{-k}$ if $|x - y| \leq 2^{-m(k)}$. We may assume that the function m is non-decreasing.

Lemma 4 [Lu and Weihrauch(2007)]. Let $h : [0;1] \to \mathbb{R}$ be a continuous function with modulus of continuity $m : \mathbb{N} \to \mathbb{N}$ and let $g \in BV$. Then there is a unique number $I \in \mathbb{R}$ such that

$$|I - S(g, h, Z)| \le 2^{-k} V(g)$$

for every partition Z for g with precision m(k+1).

A proof is given in [Lu and Weihrauch(2007)]. A revised proof is given in the appendix.

Definition 5. The number I from Lemma 4 is called the *Riemann-Stieltjes integral* and is denoted by $\int h \, dg$.

Notice that by Lemma 4 the integral $\int f \, dg$ is determined already by the values of the function g on an arbitrary set X that is dense in dom(g), since there are partitions of arbitrary precision that contain of points only from the set X.

Corollary 6. Let $g, g' \in BV$. Suppose $A \subseteq dom(g) \cap dom(g')$ is dense in [0, 1] such that $\{0,1\}\subseteq A$ and $(\forall x \in A)g(x) = g'(x)$. Then $\int h \, dg = h \, dg'$ for every $h \in C[0,1]$.

Proof: Obvious.

3 Another proof of the classical theorem

In this section we present a proof of the (non-computable) Riesz representation theorem which we will effectivize in Section 5. Let Pg be the (countable) set of of polygon functions $h : [0;1] \to \mathbb{R}$ with rational vertices and let $\mathrm{RI} := \{(a;b) \mid a, b \in \mathbb{Q}, 0 \le a < b \le 1\}$ be the set of open rational subintervals of (0;1). By the Weierstraß approximation theorem Pg is dense in C[0;1]. In the following let $F : C[0;1] \to \mathbb{R}$ be a linear continuous functional.

Definition 7. For $h \in C[0; 1]$, $Y \subseteq [0; 1]$, and $x \in (0; 1)$ define NZ(h), $||F||_Y$ and $PC_F \subseteq (0; 1)$ as follows:

$$NZ(h) := \{x \in [0;1] \mid h(x) \neq 0\},$$
(5)

$$||F||_Y := \sup\{|F(h)| \mid h \in C[0;1], ||h|| \le 1, \text{ NZ}(h) \subseteq Y\}, \qquad (6)$$

$$x \in \mathrm{PC}_F : \iff \inf\{ \|F\|_J \mid x \in J \in \mathrm{RI} \} = 0.$$

$$\tag{7}$$

NZ(h) is the non-zero region of the function h, $||F||_Y$ is the contribution of the set Y to ||F||, and $x \in PC_F$ means that the contribution of $x \in (0; 1)$ to ||F|| is 0. The points from PC_F will be the points of continuity of the associated function g_F of bounded variation.

Lemma 8. 1. $||F||_Y \leq ||F||_Z$ if $Y \subseteq Z$,

- 2. $||F||_{J_1} + \ldots + ||F||_{J_n} \leq ||F||$ if the J_i are pairwise disjoint.
- 3. $|F(h_1)| + \ldots + |F(h_n)| \le ||F||$ if $||h_i|| \le 1$ for $i = 1, \ldots, n$ and the sets NZ(h_i) are pairwise disjoint.

Proof: (1) Obvious.

(2) Let $\varepsilon > 0$. For i = 1, ..., n there is a continuous functions h_i such that $||h_i|| \leq 1$, $\operatorname{NZ}(h_i) \subseteq J_i$ and $|F(h_i)| \geq ||F||_{J_i} - \varepsilon$. We may assume $F(h_i) \geq 0$ (if $F(h_i) < 0$, replace h_i by $-h_i$). Since the sets $\operatorname{NZ}(h_i)$ are pairwise disjoint, $||\sum_i h_i|| \leq 1$. We obtain

$$\sum_{i} \|F\|_{J_{i}} \le n\varepsilon + \sum_{i} |F(h_{i})| = n\varepsilon + \sum_{i} F(h_{i}) = n\varepsilon + F(\sum_{i} h_{i}) \le n\varepsilon + \|F\|.$$

This is true for all $\varepsilon > 0$, hence $\sum_i ||F||_{J_i} \le ||F||$.

(3)This follows from (2).

At most countably many points can have a positive contribution to ||F||.

Lemma 9. The complement $(0; 1) \setminus PC_F$ of PC_F is at most countable.

Proof: For $n \in \mathbb{N}$ let T_n be the set of all $x \in (0;1)$ such that $\inf\{||F||_J \mid x \in J\} > 2^{-n}$. Suppose, $\operatorname{card}(T_n) \ge N > 2^n \cdot ||F||$. Then there are N points $x_1, \ldots, x_N \in T_n$ and pairwise disjoint intervals J_1, \ldots, J_N such that $x_i \in J_i$. Since $||F||_{J_i} > 2^{-n}$ for all $i, \sum_i ||F||_{J_i} > N \cdot 2^{-n} > ||F||$. But this is false by Lemma 8. Therefore, T_n is finite for every n and $(0;1) \setminus \operatorname{PC}_F = \bigcup_n T_n$ is at most countable.

We define *slanted step functions* (Figure 2) as approximations of characteristic functions $\chi_{[0;x]}$.

Definition 10. For $I = (a; b) \in \text{RI}$ let $s_I \in \text{Pg}$, the slanted step function at I, be the polygon function whose graph has the vertices (0, 1), (a, 1), (b, 0), and (1, 0).

Suppose $J, K \subseteq L$. Then $NZ(s_J - s_K) \subseteq L$ and $||s_J - s_K|| \leq 1$, hence $|F(s_J) - F(s_K)| = |F(s_J - s_K)| \leq ||F||_L$, therefore

$$|F(s_J) - F(s_K)| \le ||F||_L \text{ if } J, K \subseteq L.$$
(8)

In the classical proof (Section 1) g(x) can be defined as $\overline{F}(\chi_{[0;x]})$, where \overline{F} is the Hahn-Banach extension of F to the bounded real functions. We replace this definition as follows considering only points of continuity:

Definition 11. Define a function $g_F : \subseteq \mathbb{R} \to \mathbb{R}$ as follows: dom $(g_F) := \{0, 1\} \cup \mathbb{PC}_F$, g(0) := 0, g(1) := F(1). For $x \in \mathbb{PC}_F$ let $(J_n)_{n \in \mathbb{N}}$ be a sequence of rational intervals such that $x \in J_{n+1} \subseteq J_n$ and $\lim_{n\to\infty} \operatorname{length}(J_n) = 0$. Then let $g_F(x) := \lim_{n\to\infty} F(s_{J_n})$.

Since $x \in PC_F$, $\lim_{n\to\infty} ||F||_{J_n} = 0$ by monotonicity in J of $||F||_J$. We show that $g_F(x)$ exists and does not depend on the specific sequence $(J_n)_{n\in\mathbb{N}}$.

Lemma 12. The function g_F is well-defined.

Proof: For every $\varepsilon > 0$ there is some *n* such that $||F||_{J_n} < \varepsilon$. By (8) for k > n, $|F(s_{J_n}) - F(s_{J_k})| \le ||F||_{J_n} < \varepsilon$, hence $\lim_{n\to\infty} F(s_{J_n})$ exists.

Let $(L_n)_{n\in\mathbb{N}}$ be another sequence of rational intervals such that $x \in L_{n+1}\subseteq L_n$ and $\lim_{n\to\infty} ||F||_{L_n} = 0$. Then $\lim_{n\to\infty} F(s_{L_n})$ exists accordingly. Let $K_n := J_n \cap L_n$. By (8), $|F(s_{J_n}) - F(s_{K_n})| \leq ||F||_{J_n}$ and $|F(s_{L_n}) - F(s_{K_n})| \leq ||F||_{L_n}$, hence $|F(s_{J_n}) - F(s_{L_n})| \leq ||F||_{J_n} + ||F||_{L_n}$. Therefore,

 $\lim_{n} |F(s_{J_n}) - F(s_{L_n})| = 0 \text{ and finally } \lim_{n} F(s_{J_n}) = \lim_{n} F(s_{L_n}). \square$

Lemma 13. Suppose $J, K, L \in \mathbb{RI}, J, K \subseteq L$ and $x, y \in \mathbb{PC}_F \cap L$. Then

$$|F(s_J) - F(s_K)| \le ||F||_L,$$
(9)

$$|F(s_J) - g_F(y)| \le ||F||_L,$$
(10)

$$|g_F(x) - g_F(y)| \le ||F||_L.$$
(11)

Proof:

(9): By (8).

(10): For every $\varepsilon > 0$ there is some $K \subseteq L$ such that $y \in K$ and $|F(s_K) - g_F(y)| \le \varepsilon$. Then by (9), $|F(s_J) - g_F(y)| \le |F(s_J) - F(s_K)| + |F(s_K) - g_F(y)| \le ||F||_L + \varepsilon$. Therefore $|F(s_J) - g_F(y)| \le ||F||_L$.

(11): For every $\varepsilon > 0$ there is some $J \subseteq L$ such that $x \in J$ and $|F(s_J) - g_F(x)| \le \varepsilon$. Then by (10), $|g_F(x) - g_F(y)| \le |g_F(x) - F(s_J)| + |F(s_J) - g_F(y)| \le ||F||_L + \varepsilon$. Therefore $|g_F(x) - g_F(y)| \le ||F||_L$. \Box

We will prove some further properties of the function g_F . In the following, $\lim_{y \nearrow x} g_F(y)$ abbreviates $\lim_{y \in \text{dom}(g_F), y \nearrow x} g_F(y)$ and $\lim_{y \searrow x} g_F(y)$ abbreviates $\lim_{y \in \text{dom}(g_F), y \searrow x} g_F(y)$.

Lemma 14. For all $x \in (0; 1)$,

1. $\lim_{y \nearrow x} g_F(y)$ and $\lim_{y \searrow x} g_F(y)$ exist,

2. $|\lim_{y \nearrow x} g_F(y) - \lim_{y \searrow x} g_F(y)| = \inf_{x \in J} ||F||_J$.

Proof:

(1) Suppose that $\lim_{y \nearrow x} g_F(y)$ does not exist. Then there is an increasing sequence $(y_i)_i$ from PC_F converging to x such that the sequence $(g_F(y_i))_i$ does not converge, hence there is some $\varepsilon > 0$ such that $(\forall N)(\exists i, j > N) |g_F(y_i) - g_F(y_j)| > \varepsilon$. Therefore, for every N we can find $y_{i_0} < \ldots < y_{i_{2N}}$ from the sequence $(y_i)_i$ such that $|g_F(y_{i_{2k}}) - g_F(y_{i_{2k-1}})| > \varepsilon$, for $1 \le k \le N$. Hence there are pairwise disjoint rational intervals J_1, J_2, \ldots, J_N such that $y_{i_{2k-1}}, y_{i_{2k}} \in J_k$ for $1 \le k \le N$. Then by (11), $||F||_{J_k} > \varepsilon$ for each $1 \le k \le N$. By Lemma 8, $||F|| \ge \sum_{k=1}^N ||F||_{J_k} > N \cdot \varepsilon$. Since this is true for all numbers N, ||F|| is unbounded. Contradiction.

(2) Let $a = \inf_{x \in J} ||F||_J$ and $\delta > 0$. There is some $J \in RI$ such that

$$x \in J$$
 and $||F||_J - a| < \delta$. (12)

"≤": By (11) and (12) for $y_1, y_2 \in J \cap \mathrm{PC}_F$, $|g_F(y_1) - g_F(y_2)| \leq ||F||_J < a + \delta$, hence $|\lim_{y \nearrow x} g_F(y) - \lim_{y \searrow x} g_F(y)| \leq a + \delta$. Since this is true for all $\delta > 0$, "≤" is true.

" \geq ": An example of the functions, intervals etc. defined in the following is shown in Figure 1. There is a rational polygon h such that

$$NZ(h) \subseteq J, ||h|| \le 1 \text{ and } |F(h) - ||F||_J| < \delta.$$

The function h can be chosen such that

$$K \subseteq J; \quad x \in K \text{ and } (\forall y \in K) \ h(y) = c$$

$$(13)$$

for some $K \in \text{RI}$ and some c such that $0 < |c| \le 1$. We may assume $0 < c \le 1$ (if c < 0 replace h by -h). There are $y_{<}, y_{>} \in K \cap \text{PC}_{F}, y_{<} < x < y_{>}$ such that

$$\left|\lim_{y \nearrow x} g_F(y) - g_F(y_{<})\right| < \delta \quad \text{and} \quad \left|\lim_{y \searrow x} g_F(y) - g_F(y_{>})\right| < \delta.$$
(14)

There are $L, R \in \text{RI}$ such that $L, R \subseteq K, L < x < R, y_{<} \in L, y_{>} \in R$ and

$$||F||_L < \delta \quad \text{and} \quad ||F||_R < \delta \,. \tag{15}$$

Let m_L and m_R be the center of L and R respectively. Let $t_L : [0;1] \to \mathbb{R}$ be the rational polygon whose graph has the vertices (0,0), $(\inf L,0)$, (m_L,c) , $(\sup L,0)$, (1,0) and let $t_R : [0;1] \to \mathbb{R}$ be the rational polygon whose graph has the vertices (0,0), $(\inf R,0)$, (m_R,c) , $(\sup R,0)$, (1,0). Then $|F(t_L)| \le ||F||_L < \delta$ and $|F(t_R)| \le ||F||_R < \delta$.

Let $h' := h - t_L - t_R$. Then

$$|F(h') - F(h)| = |F(t_L) + F(t_R)| \le 2\delta.$$
(16)

Let N be the interval $(m_L; m_R)$. Let h_0 be the polygon function whose graph has the vertices $(0,0), (m_L,0), (\sup L, c), (\inf R, c), (m_R,0), (1,0)$. Let $\overline{h} := h' - h_0$.

Figure 1: The functions h,h_0 and h'

We will show that $|F(\overline{h})|$ is small and $|F(h_0)| \approx a$. There is some rational polygon function h'_0 such that $||h'_0|| = 1$, $NZ(h'_0) \subseteq N$ and

$$|\|F\|_N - F(h'_0)| < \delta.$$
(17)

There are $\alpha, \beta \in \{1, -1\}$ such that $|F(h'_0)| + |F(\overline{h})| = F(\alpha h'_0) + F(\beta \overline{h}) = F(\alpha h'_0 + \beta \overline{h})$. Since $\operatorname{NZ}(h'_0) \cap \operatorname{NZ}(\overline{h}) = \emptyset$, $\|\alpha h'_0 + \beta \overline{h}\| \le 1$, hence $|F(h'_0)| + |F(\overline{h})| \le \|F\|_J \le a + \delta$. Since $\|F_N\| \le |F(h'_0)| + \delta$ and $\|F\|_N \ge a$ because of $x \in N$,

$$|F(h') - F(h_0)| = |F(\overline{h})| \le a + \delta - |F(h'_0)| \le a + \delta - |F||_N + \delta \le 2\delta.$$

Therefore $F(\overline{h})$ is small. From the above estimations, $|a| \leq |a - ||F||_J| + ||F||_J - F(h)| + |F(h) - F(h')| + |F(h') - F(h_0)| + |F(h_0)|$, hence $a \leq \delta + \delta + 2\delta + 2\delta + |F(h_0)|$, that is,

$$a \le 6\delta + |F(h_0)|.$$

Therefore, $|F(h_0)|$ is big. By construction, $0 < c = ||h_0|| \le 1$. Let $\hat{h} := h_0/c$. Then $a \le 6\delta + |F(\hat{h})|$.

Since $\|\hat{h}\| = 1$, $\hat{h} = s_T - s_S$ where $S = (m_L; \sup L)$ and $T = (\inf R; m_R)$. By Lemma 13,

$$|g_F(y_{\leq}) - F(s_S)| \le ||F||_K$$
 and $|g_F(y_{\geq}) - F(s_T)| \le ||F||_K$,

hence by Lemma 13,

$$\begin{aligned} a &\leq 6\delta + |F(\hat{h})| \\ &= 6\delta + |F(s_T) - F(s_S)| \\ &\leq 6\delta + |F(s_T) - g_F(y_S)| + |g_F(y_S) - \lim_{y \searrow x} g_F(y)| \\ &+ |\lim_{y \searrow x} g_F(y) - \lim_{y \nearrow x} g_F(y)| + |\lim_{y \nearrow x} g_F(y) - g_F(y_S)| + |g_F(y_S) - F(s_S)| \\ &\leq 6\delta + ||F||_R + \delta + |\lim_{y \searrow x} g_F(y) - \lim_{y \nearrow x} g_F(y)| + \delta + ||F||_L \\ &\leq |\lim_{y \searrow x} g_F(y) - \lim_{y \nearrow x} g_F(y)| + 10\delta \end{aligned}$$

Since this is true for all $\delta > 0$, " \geq " has been proved.

Theorem 15.

- 1. g_F is continuous on $(0; 1) \cap \operatorname{dom}(g_F) = \operatorname{PC}_F$,
- 2. no proper extension g of g_F is continuous on $(0; 1) \cap \operatorname{dom}(g)$,
- 3. $\operatorname{Var}(g) = ||F||$ for every restriction $g \in \operatorname{BV}$ of g_F ,
- 4. $\operatorname{Var}(g_F) = ||F||.$

Proof: 1. If $x \in PC_F$ then $\lim_{y \searrow x} g_F(y) = \lim_{y \nearrow x} g_F(y)$ by Lemma 14. Therefore g_F is continuous in x.

2. Let g be an extension of g_F and let g be continuous in $x \in \text{dom}(g)$. Then $\lim_{y \searrow x} g_F(y) = \lim_{y \nearrow x} g_F(y)$, hence $\inf_{x \in J} ||F||_J = 0$ by Lemma 14, that is, $x \in \text{PC}_F$.

3. Var $(g) \leq ||F||$: Let $X := (x_0, x_1, \ldots, x_n)$ be a partition for g. Let $\varepsilon > 0$. By the definition of g_F for every 0 < i < n there is an interval $K_i \in \text{RI}$ such that $x_i \in K_i$, $\sup K_i < \inf K_{i+1}$, $||F||_{K_i} < \varepsilon$. Furthermore, for 0 < i < n there are intervals $L_i, R_i \in \text{RI}$ such that $L_i, R_i \subseteq K_i$ and $\sup L_i < x_i < \inf R_i$. Figure 2 shows the intervals and some corresponding slanted step functions. By Lemma 8 and Lemma 13,

$$S(g, X) = |g(x_1)| + \sum_{i=2}^{n-1} |g(x_i) - g(x_{i-1})| + |g(1) - g(x_{n-1})|$$

$$\leq |F(s_{L_1})| + \varepsilon + \sum_{i=2}^{n-1} (|F(s_{L_i} - s_{R_{i-1}})| + 2\varepsilon)$$

$$+ |F(1 - s_{R_{n-1}})| + \varepsilon$$

$$\leq 2n\varepsilon + ||F||.$$

Figure 2: The intervals K_i, L_i, R_i and corresponding slanted step functions.

Since this is true for all $\varepsilon > 0$, $S(g, X) \le ||F||$. Since this is true for all partitions X for g, $Var(g) \le ||F||$.

3. $\|F\| \leq \operatorname{Var}(g)$: First we show that for every rational polygon function $h_0 \in \operatorname{Pg}$ there are a partition $X = (0 = x_0, x_1, \dots, x_{n-1}, x_n = 1)$ and intervals K_i, L_i, R_i such that for the function h_2 (see Figure 3), $F(h_0)$ is close to $F(h_2)$ if $(x_i - x_{i-1})$ and $\|F\|_{K_i}$ are sufficiently small for all $1 < i \leq n$. By Lemma 13 $F(h_2)$ can be related to S(g, X) (and to $S(g, h_0, X)$ in the proof of Theorem 16).

Let $h_0 \in \operatorname{Pg}$ and $k \in \mathbb{N}$. Let $m : \mathbb{N} \to \mathbb{N}$ be a modulus of continuity of h_0 . Let $n := 2^{m(k)+1} + 1$. Since dom(g) is dense, there is a partition $X = (0 = x_0, x_1, \ldots, x_{n-1}, x_n = 1)$ for g such that $x_i - x_{i-1} < 2^{-m(k)-1}$. Since all the $x_i \in \operatorname{PC}_F$, for every 0 < i < n there are rational intervals K_i, L_i, R_i such that

$$\begin{split} x_i \in K_i, & 0 < \inf K_1, \quad \sup K_i < \inf K_{i+1}, \quad \sup K_{n-1} < 1, \\ & \|F\|_{K_i} < 2^{-k}/n , \\ & \inf L_i = \inf K_i, \quad \sup L_i < x_i < \inf R_i \quad \sup R_i = \sup K_i . \end{split}$$

Figure 3 shows an example of the left end of the unit interval with the function h_0 and the intervals.

For $1 \leq i \leq n$ define

$$c_i := \max\{h_0(x) \mid \sup R_{i-1} \le x \le \inf L_i\},\$$

(where $\sup R_0 := 0$ and $\inf L_n := 1$). Define a rational polygon function h_1 by the following sequence of vertices:

 $(\sup R_0, c_1), (\inf L_1, c_1), (\sup R_1, c_2), (\inf L_2, c_2), \dots, (\sup R_{n-1}, c_n), (\inf L_n, c_n)$ (see Figure 3, notice that c_i may be negative).

Suppose $1 \le i \le n$ and $\sup R_{i-1} \le x \le \inf L_i$. Then $x_{i-1} \le x \le x_i$ and $h_1(x) = c_i = h_0(y)$ for some y with $x_{i-1} \le y \le x_i$. Then $|x - y| < 2^{-m(k)}$, hence $|h_1(x) - h_0(x)| = |h_0(y) - h_0(x)| < 2^{-k}$.

Figure 3: The functions h_0, h_1 and h_2 ...

Suppose 0 < i < n and $x \in K_i$. Then $h_1(x) = h_0(y)$ for some y such that $x_{i-1} < y < x_{i+1}$. Since $x_{i-1} < x < x_{i+1}$, $|x - y| < 2^{-m(k)}$ and hence $|h_1(x) - h_0(x)| = |h_0(y) - h_0(x)| < 2^{-k}$. Therefore, $||h_1 - h_0|| < 2^{-k}$ and hence $|F(h_1) - F(h_0)| \le ||F|| \cdot 2^{-k}$.

Let $1 \leq i \leq n$. Then $c_i = h_0(y)$ for some $x_{i-1} \leq y \leq x_i$. Since $|x_i - y| < \sum_{i=1}^{n} |x_i| < |x_i|$

 $2^{-m(k)}$, $|h_0(x_i) - c_i| = |h_0(x_i) - h_0(y)| \le 2^{-k}$. From h_1 we construct a third function h_2 by replacing for every 0 < i < n the line segment from $(\inf L_i, c_i)$ to $(\sup R_i, c_{i+1})$ in the graph of h_1 by the polygon $(\inf L_i, c_i)$, $(\sup L_i, 0)$, $(\inf R_i, 0)$, $(\sup R_i, c_{i+1})$ (see Figure 3). Then by Definition 10,

$$h_2 = c_1 s_{L_1} + \sum_{i=2}^{n-1} c_i (s_{L_i} - s_{R_{i-1}}) + c_n (1 - s_{R_{n-1}}).$$

For 0 < i < n let d_i be the polygon function defined by the sequence of vertices

 $(0,0), (\inf L_i, 0), (\sup L_i, h_1(\sup L_i)), (\inf R_1, h_1(\inf R_1)), (\sup R_i, 0), (1,0).$

Then $h_2 = h_1 - \sum_{i=1}^{n-1} d_i$. Since $NZ(d_i) \subseteq K_i$ and $||d_i|| \le ||h_0||$,

$$|F(h_2) - F(h_1)| \le \sum_{i=1}^{n-1} |F(d_i)| \le \sum_{i=1}^{n-1} ||F||_{K_i} \cdot ||h_0|| \le ||h_0|| \cdot 2^{-k}.$$

We prove $||F|| \leq \operatorname{Var}(g)$. There is some $h_0 \in \operatorname{Pg}$ such that $||h_0|| \leq 1$ and $||F|| \leq |F(h_0)| + 2^{-k}$. Since $|c_i| \leq 1$ and by Lemma 13,

$$\begin{split} \|F\| &\leq |F(h_0 - h_1)| + |F(h_1 - h_2)| + |F(h_2)| + 2^{-k} \\ &\leq \|F\| \cdot 2^{-k} + \|h_0\| \cdot 2^{-k} + |F(h_2)| + 2^{-k} \\ &\leq |F(s_{L_1})| + \sum_{i=2}^{n-1} |F(s_{L_i} - s_{R_{i-1}})| + |F(1 - s_{R_{n-1}})| \\ &+ (\|F\| + 2) \cdot 2^{-k} \\ &\leq |g(x_1)| + 2^{-k}/n + \sum_{i=2}^{n-1} (|g(x_i) - g(x_{i-1})| + 2 \cdot 2^{-k}/n) \\ &+ |g(1) - g(x_{n-1})| + 2^{-k}/n + (\|F\| + 2) \cdot 2^{-k} \\ &\leq \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})| + 2 \cdot 2^{-k} + (\|F\| + 2) \cdot 2^{-k} \\ &\leq S(g, X) + (\|F\| + 4) \cdot 2^{-k} \\ &\leq \operatorname{Var}(g) + (\|F\| + 4) \cdot 2^{-k} \,. \end{split}$$

Since this is true for all k, $||F|| \leq \operatorname{Var}(g)$.

4. This follows from 3.

Theorem 16. Let $g \in BV$ be a restriction of g_F . Then for every $h \in C[0; 1]$, $F(h) = \int h \, dg$.

Proof: Let $h \in C[0;1]$ and $k \in \mathbb{N}$. There is a function $h_0 \in Pg$ such that $||h - h_0|| \leq 2^{-k}$. Let $m, n, X, K_i, L_i, R_i, c_i, h_1, h_2$ be the objects introduced in the proof of Theorem 15.3. We prove that |F(h) - S(g, h, X)| is small. By the results that we have already shown,

$$|F(h) - F(h_2)| \le |F(h) - F(h_0)| + |F(h_0) - F(h_1)| + |F(h_1) - F(h_2)|$$

$$\le ||F|| \cdot 2^{-k} + ||F|| \cdot 2^{-k} + ||h_0|| \cdot 2^{-k}$$

$$= (2||F|| + ||h_0||) \cdot 2^{-k}$$

Since $|F(s_{R_i}) + B| \le |g(x_i) + B| + ||F||_{K_i}$ etc. by Lemma 13, $c_i \le ||h_0||$, and $|h_0(x_i) - c_i| \le 2^{-k}$,

$$|F(h_2) - S(g, h_0, X)| \le |c_1 F(s_{L_1}) + \sum_{i=2}^{n-1} c_i (F(s_{L_i}) - F(s_{R_{i-1}})) + c_n (F(1) - F(s_{R_{n-1}})) - \sum_{i=1}^n h_0(x_i) (g(x_i) - g(x_{i-1}))|$$

Jafarikhah T., Weihrauch K.: The Riesz Representation Operator ...

$$\leq \left| c_{1}g(x_{1}) + \sum_{i=2}^{n-1} c_{i}(g(x_{i}) - g(x_{i-1})) + c_{n}(g(1) - g(x_{n-1})) \right|$$

$$- \sum_{i=1}^{n} h_{0}(x_{i})(g(x_{i}) - g(x_{i-1})) \right|$$

$$+ \left| c_{1} \right| \left\| F \right\|_{K_{1}} + \sum_{i=2}^{n-1} \left| c_{i} \right| (\left\| F \right\|_{K_{i}} + \left\| F \right\|_{K_{i-1}}) + \left| c_{n} \right| \left\| F \right\|_{K_{n-1}}$$

$$\leq \left| \sum_{i=1}^{n} (c_{i} - h_{0}(x_{i}))(g(x_{i}) - g(x_{i-1})) \right| + 2 \left\| h_{0} \right\| \cdot 2^{-k}$$

$$\leq \sum_{i=1}^{n} \left| c_{i} - h_{0}(x_{i}) \right| \cdot \left| g(x_{i}) - g(x_{i-1}) \right| + \left\| h_{0} \right\| \cdot 2^{-k+1}$$

$$\leq 2^{-k} \cdot S(g, X) + \left\| h_{0} \right\| \cdot 2^{-k+1}$$

$$= \left(\left\| F \right\| + 2 \left\| h_{0} \right\| \right) \cdot 2^{-k}$$

Furthermore,

$$|S(g, h_0, X) - S(g, h, X)| = |\sum_{i=1}^n (h_0(x_i) - h(x_i))(g(x_i) - g(x_{i-1}))|$$

$$\leq 2^{-k-} \sum_{i=1}^n |g(x_i) - g(x_{i-1})|$$

$$= 2^{-k} \cdot S(g, X)$$

$$\leq 2^{-k} \cdot \operatorname{Var}(g)$$

$$= 2^{-k} \cdot ||F||.$$

Combining these results we obtain

$$\begin{aligned} |F(h) - S(g, h, X)| \\ &\leq |F(h) - F(h_2)| + |F(h_2) - S(g, h_0, X)| + |S(g, h_0, X) - S(g, h, X)| \\ &\leq (2||F|| + ||h_0||) \cdot 2^{-k} + (||F|| + 2 ||h_0||) \cdot 2^{-k} + 2^{-k} \cdot ||F|| \\ &\leq (||F|| + ||h|| + 1) \cdot 2^{-k+2} \end{aligned}$$

Since X has precision m(k), $|\int h \, dg - S(g, h, X)| \leq \operatorname{Var}(g) \cdot 2^{-k+1}$ by Lemma 4. Therefore, $|F(h) - \int h \, dg| \leq (3||F|| + 2||h|| + 2) \cdot 2^{-k+1}$. Since this is true for all $k, F(h) = \int h \, dg$. \Box

4 Concepts from Computable Analysis

For studying computability we use the representation approach (TTE) for Computable Analysis [Weihrauch(2000), Brattka et al.(2008)]. Let Σ be a finite al-

phabet. Computable functions on Σ^* (the set of finite sequences over Σ) and Σ^{ω} (the set of infinite sequences over Σ) are defined by Turing machines which map sequences to sequences (finite or infinite). On Σ^* and Σ^{ω} finite or countable tupling will be denoted by $\langle \rangle$ [Weihrauch(2000)]. The tupling functions and the projections of their inverses are computable.

In TTE, sequences from Σ^* or Σ^{ω} are used as "names" of abstract objects such as rational numbers, real numbers, real functions or points of a metric space. We consider computability of multi-functions w.r.t. multi-representations [Weihrauch(2000)], [Brattka et al.(2008)], [Weihrauch(2008), Sections 3,6,8,9].

A representation of a set X is a function $\delta :\subseteq C \to X$ where $C = \Sigma^*$ or $C = \Sigma^{\omega}$. If $\delta(p) = x$ we call p a δ -name of x. If $f : X \rightrightarrows Y$ is a multi-function (on represented sets) then f(x) is the set of $y \in Y$ which are accepted as a result of f applied to x. (Example: $f : \mathbb{R} \rightrightarrows \mathbb{Q}$, $f(x) := \{a \in \mathbb{Q} \mid x < a\}$, we may say: "the multi-function f finds some rational upper bound of x".)

For representations $\gamma : \subseteq Y \to M$ and $\gamma_0 : \subseteq Y_0 \to M_0$, a function $h : \subseteq Y \to Y_0$ is a (γ, γ_0) -realization of a multi-function $f : \subseteq M \rightrightarrows M_0$, iff for all $p \in Y$ and $x \in M$,

$$\gamma(p) = x \in \operatorname{dom}(f) \Longrightarrow \gamma_0 \circ h(p) \in f(x) \,. \tag{18}$$

Fig. 4 illustrates the definition.

Figure 4: h(p) is a name of some $y \in f(x)$, if p is a name of $x \in \text{dom}(f)$.

The multi-function f is called (γ, γ_0) -computable, if it has a computable (γ, γ_0) -realization and (γ, γ_0) -continuous if it has a continuous realization. The definitions can be generalized straightforwardly to multi-functions $f: M_1 \times \ldots \times M_n \rightrightarrows M_0$ for represented sets M_i .

For two representations $\delta_i : \subseteq \Sigma^{\omega} \to M_i$ (i = 1, 2) the canonical representation $[\delta_1, \delta_2]$ of the product $M_1 \times M_2$ is defined by

$$[\delta_1, \delta_2] \langle p_1, p_2 \rangle = (\delta_1(p_1), \delta(p_2)).$$
⁽¹⁹⁾

For two representations $\delta_i \subseteq \Sigma^{\omega} \Rightarrow M_i$ $(i = 1, 2), \delta_1 \leq \delta_2$ $(\delta_1$ is reducible to δ_2) iff there is a computable function $h : \subseteq \Sigma^{\omega} \to \Sigma^{\omega}$ such that $(\forall p \in \text{dom}(\delta_1)) \delta_1(p) = \delta_2 h(p)$. (If p is a δ_1 -name of x then h(p) is a δ_2 -name of x.)

We use various canonical notations $\nu :\subseteq \Sigma^* \to X$: $\nu_{\mathbb{N}}$ for the natural numbers, $\nu_{\mathbb{Q}}$ for the rational numbers, ν_{Pg} for the polygon functions on [0; 1] whose graphs have rational vertices, and ν_I for the set RI open subintervals $(a; b) \subseteq (0; 1)$ with rational endpoints. For functions $m: \mathbb{N} \to \mathbb{N}$ we use the canonical representation $\delta_{\mathbb{B}} :\subseteq \Sigma^{\omega} \to \mathbb{B} = \{m \mid m : \mathbb{N} \to \mathbb{N}\}$ defined by $\delta_{\mathbb{B}}(p) = m$ if $p = 1^{m(0)} 0 1^{m(1)} 0 1^{m(2)} 0 \dots$ For the real numbers we use the Cauchy representation tation $\rho :\subseteq \Sigma^{\omega} \to \mathbb{R}, \, \rho(p) = x$ if p is (encodes) a sequence $(a_i)_{i \in \mathbb{N}}$ of rational numbers such that for all $i, |x-a_i| \leq 2^{-i}$. By the Weierstraß approximation theorem the countable set of Pg of polygon functions with rational vertices is dense in C[0;1]. Therefore, C[0;1] with notation ν_{Pg} of the set Pg is a computable metric space [Weihrauch(2000)] for which we use the Cauchy representation δ_C defined as follows: $\delta_C(p) = h$ if p is (encodes) a sequence $(h_i)_{i \in \mathbb{N}}$ of polygons $h_i \in Pg$ such that for all $i, ||h-h_i|| \leq 2^{-i}$ [Weihrauch(2000)]. For the space $C(C[0; 1], \mathbb{R})$ of the continuous (not necessarily linear) functions $F: C[0;1] \to \mathbb{R}$ we use the canonical representation $[\delta_C \rightarrow \rho]$ [Weihrauch(2000), Weihrauch and Grubba(2009)]. It is determined uniquely up to equivalence by (\mathbf{U}) and (\mathbf{S}) :

- (U) the function APPLY : $(F, h) \mapsto F(h)$ is $([\delta_C \to \rho], \delta_C, \rho)$ -computable,
- (S) if for some representation δ of a subset of $C(C[0;1],\mathbb{R})$, APPLY is (δ, δ_C, ρ) -computable then $\delta \leq [\delta_C \to \rho]$.

(U) corresponds to the "universal Turing machine theorem" and (S) to the "smn-theorem" from computability theory. Roughly speaking, $[\delta_C \rightarrow \rho]$ is the "poorest" representation of the set $C(C[0;1],\mathbb{R})$ for which the APPLY function becomes computable.

For converting the classical proof mentioned in Section 2 we needed a representation of the set B[0;1] of bounded functions $g:[0;1] \to \mathbb{R}$. Since it has a cardinality bigger than that of Σ^{ω} , it has no representation. To overcome this difficulty it would suffice to extend F to the Banach space $B_1[0;1]$ generated by the continuous functions and all the characteristic function $\chi_{[0;x]}$, $0 \le x \le 1$. However, since this space is not separable we do not know any reasonable representation of it. We solve the problem by (implicitly) extending F only to functions $\chi_{[0;x]}$ from a countable dense set of points x in which g is continuous and for which we can compute $g(x) := \overline{F}(\chi_{[0;x]})$ from F and ||F||. Remember that every function of bounded variation has at most countably many points of discontinuity.

Finally, for formulating a computable version of the Riesz representation theorem we need a representation for functions of bounded variation. In our context the only application of a function g of bounded variation is to compute the Riemann-Stieltjes integral $\int h \, dg$ for continuous functions h. By Corollary 6, it suffices to know g on a countable dense set containing 0 and 1. Therefore it will suffice to consider only functions from BV with countable domain.

Definition 17. Let BVC := $\{g \in BV \mid \text{dom}(g) \text{ is countable}\}$. Define a representation $\delta_{BVC} : \subseteq \Sigma^{\omega} \to BVC$ as follows: $\delta_{BVC}(p) = g$ iff there are sequences $p_0, q_0, p_1, q_1, \ldots \in \Sigma^{\omega}$ such that $p = \langle \langle p_0, q_0 \rangle, \langle p_1, q_1 \rangle, \ldots \rangle, \rho(p_0) = 0, \rho(p_1) = 1$ and $\operatorname{graph}(g) = \{(\rho(p_i), \rho(q_i)) \mid i \in \mathbb{N}\}.$

Informally, a δ_{BVC} -name of g is a list of its graph. For proving computability of multi-functions on represented sets we use "generalized Turing machines" (GTMs) [Tavana and Weihrauch(2011)]. We call a generalized Turing machine M on represented sets *computable*, if all multi-functions on the represented sets occurring in M are computable. We use the following result: the multi-function f_M computed by a computable GTM M on represented sets is computable.

For a representation $\delta :\subseteq \Sigma^{\omega} \to Z$ a subset $Y \subseteq Z$ is δ -r.e., iff there is a Type-2 machine N such that for all $p \in \text{dom}(\delta)$,

N halts on input
$$p \iff \delta(p) \in Y$$
.

And $Y \subseteq Z$ is δ -decidable, iff Y and $Z \setminus Y$ are δ -r.e. [Weihrauch(2000)]. As an example, x < y for real numbers is $[\rho, \rho]$ -r.e.

5 The computable Riesz representation theorem

In the following "computable", "recursively enumerable" and "decidable" means computable, recursively enumerable and decidable, respectively, w.r.t. the notations and multi-representations mentioned in Section 4.

First, from F and ||F|| we will compute some $g \in BVC$ such that $F(h) = \int h dg$. By the next lemma for every rational interval I we can compute subintervals J with arbitrarily small $||F||_J$.

Lemma 18. There is a computable multi-function

$$e: (F, z, I, n) \vDash J$$

that maps every continuous linear functional $F: C[0;1] \to \mathbb{R}$, its norm z, every open rational interval $I = (a;b) \subseteq [0;1]$ and every $n \in \mathbb{N}$ to some open rational interval J such that $\overline{J} \subseteq I$, length $(J) \leq 2^{-n}$ and $\|F\|_J \leq 2^{-n}$. Precisely speaking, the multi-function e is $([\delta_C \rightarrow \rho], \rho, \nu_I, \nu_{\mathbb{N}}, \nu_I)$ - computable.

Proof: By Lemma 9 there is some $x \in I$ such that $x \in PC_F$. By Definition 7 there is some $J, x \in J \in RI$, such that $\overline{J} \subseteq I$, length $(J) \leq 2^{-n}$ and $||F||_J \leq 2^{-n}$. We show that the multi-function e is $([\delta_C \to \rho], \rho, \nu_I, \nu_N, \nu_I)$ -computable.

For $F, z = ||F||, I = (a; b), n \in \mathbb{N}, J \in \mathbb{R}$ and $\overline{f} \in \mathbb{P}$ consider the conditions

$$\overline{J} \subseteq I$$
, length $(J) \le 2^{-n}$, (20)

$$\overline{f}(x) = 0 \text{ for } x \in J, \qquad (21)$$

$$\|\overline{f}\| \le 1, \tag{22}$$

$$|F(\overline{f})| > ||F|| - 2^{-n}.$$
(23)

Conditions (20-22) are decidable (relative to their representations). Since x < y is $[\rho, \rho]$ -r.e. and $(F, \overline{f}) \mapsto F(\overline{f})$ is computable, (23) is r.e. Therefore, here is a Type 2-machine M that halts on input $(p_1, p_2, u_3, u_4, u_5, u_6)$ iff

 $(F, ||F||, I, n, J, \overline{f}) := ([\delta_C \to \rho], \rho, \nu_I, \nu_N, \nu_I, \nu_I, \nu_{Pg})(p_1, p_2, u_3, u_4, u_5, u_6)$ satisfies (20-23). From M a Type-2 machine N can be constructed which on input (p_1, p_2, u_3, u_4) (by the usual step counting technique) searches for (u_5, u_6) such that M halts on input $(p_1, p_2, u_3, u_4, u_5, u_6)$.

First we show that $J = \nu_I(u_5)$ and $\overline{f} = \nu_{\text{Pg}}(u_6)$ exist.

Since Pg is dense in C[0; 1], $||F|| = \sup\{|F(h)| \mid h \in \text{Pg}, ||h|| \leq 1\}$. Therefore, there is a function $h \in \text{Pg}$ with $||h|| \leq 1$ such that $|F(h)| > ||F|| - 2^{-n-1}$. As we have shown (replace above n by n+1) there is a rational interval $L \subseteq I$ such that length $(L) \leq 2^{-n}$ and $||F||_L \leq 2^{-n-1}$. Let $(a_2; b_2) \subseteq L$ such that h has no vertex in $(a_2; b_2)$. Let $a_1 := a_2 + (b_2 - a_2)/3$, $b_1 := b_2 - (b_2 - a_2)/3$) and $J := (a_1; b_1)$. Define a function $f_0 \in \text{Pg}$ by its vertices as follows:

$$(0,0), (a_2,0), (a_1, h(a_1)), (b_1, h(b_1)), (b_2,0), (1,0)$$

and let $\overline{f} := h - f_0$. Then $||f_0|| \le 1$ and $|F(f_0)| \le 2^{-n-1}$ since NZ $(f_0) \subseteq L$. Since h and f_0 have no vertex in the interval $(a_2; a_1)$, $|h(x) - f_0(x)| \le |h(a_2)| \le 1$ for $a_2 \le x \le a_1$, correspondingly $|h(x) - f_0(x)| \le 1$ for $b_1 \le x \le b_2$, and $|h(x) - f_0(x)| = 0$ for $a_1 \le x \le b_1$. We obtain $||\overline{f}|| \le 1$. Furthermore,

$$|F(\overline{f})| = |F(h - f_0)| \ge |F(h)| - |F(f_0)| \ge ||F|| - 2^{-n}$$

Therefore, J and \overline{f} exist.

It remains to show that J has the properties requested in the lemma. Obviously, $\overline{J} \subseteq I$ and length $(J) \leq 2^{-n}$. Suppose $h \in C[0; 1]$, $||h|| \leq 1$ and $\operatorname{NZ}(h) \subseteq J$. Since $\operatorname{NZ}(h)$ and $\operatorname{NZ}(\overline{f})$ are disjoint and of norm ≤ 1 , by Lemma 8, $|F(h)| + |F(\overline{f})| \leq ||F||$ hence $|F(h)| \leq ||F|| - |F(\overline{f})| < 2^{-n}$. Therefore, $||F||_J \leq 2^{-n}$. \Box

By iterating the function e from Lemma 18 in every open rational interval we can find some point $x \in PC_F$ and the value $g_F(x)$.

Lemma 19. The multi-function $G : (F, ||F||, I) \rightleftharpoons (x, g_F(x))$ mapping F, its norm and an interval $I \in \text{RI}$ to $(x, g_F(x))$ for some $x \in I \cap \text{PC}_F$ is computable.

Proof: Let $J_{-1} := I$. For every $n \in \mathbb{N}$ let J_n be a result of applying the multi-function e from Lemma 18 to $(F, ||F||, J_{n-1}, n)$. Then $(J_n)_{n \in \mathbb{N}}$ is a properly nested sequence of intervals with length $(J_n) \leq 2^{-n}$. It converges to some point $x \in I$. Since for all $n, x \in J_n$ and $||F||_{J_n} \leq 2^{-n}, x \in PC_F$. Furthermore, by Lemma 13, $|g_F(x) - F(s_{J_n})| \leq 2^{-n}$. Therefore $(F(s_{J_n}))_{n \in \mathbb{N}}$ converges fast to $g_F(x)$.

Let M_1 be a computable GTM computing the multi-function e from Lemma 18. From M_1 we can construct a computable GTM that on input (F, ||F||, I, n) computes in turn some J_0, J_1, \ldots, J_n and then $(J_n, F(s_{J_n}))$ as its result.

By [Weihrauch(2008), Theorem 35] the multi-function $(F, ||F||, I) \Rightarrow$

 $(J_n, F(s_{J_n}))_{n \in \mathbb{N}}$ is computable (where the canonical representation considered for sequences [Weihrauch(2000)]). Since the limit operations for nested sequences of intervals converging to a point and for fast converging Cauchy sequences of real numbers are computable [Weihrauch(2000)], $(x, g_F(x))$ can be computed from $(J_n, F(s_{J_n}))_{n \in \mathbb{N}}$. Therefore, the multi-function G is computable. \Box

We can now prove our computable version of the Riesz representation theorem.

Theorem 20 (computable Riesz representation).

The multi-function RRT : $(F, ||F||) \rightleftharpoons g$ mapping every functional $F : C[0; 1] \rightarrow \mathbb{R}$ and its norm to some function $g \in BVC$ such that

 $-F(h) = \int h dg \text{ (for all } h \in C[0;1]),$

-g is continuous on dom $(g) \setminus \{0,1\}$,

 $-g(0) = 0 \text{ and } ||F|| = \operatorname{Var}(g)$

is $([\delta_C \to \rho], \rho, \delta_{BVC})$ -computable.

Proof: Let L_0, L_1, \ldots be a canonical numbering of the set RI of open rational intervals. By Lemma 19 there is a computable function G' mapping (F, ||F||, n) to some $(x_n, y_n) \in \mathbb{R}^2$ where $(x_0, y_0) = (0, 0), (x_1, y_1) = (1, F(1))$ and $(x_n, y_n)) \in G(f, ||F||, L_n)$ if $n \ge 2$. Since $x_n \in PC_F$ and $y_n = g_F(x_n)$ for all $n \ge 2$, $\{(x_n, y_n) \mid n \in \mathbb{N}\}$ is the graph of a restriction g of g_F . Since $\{x_n \mid n \in \mathbb{N}\}$ is dense, $g \in BVC$. By Theorem 15, g is continuous on dom $(g) \setminus \{0, 1\}$ and Var(g) = ||F||. Obviously, g(0) = 0. By Theorem 16, $F(h) = \int hdg$ (for all $h \in C[0; 1]$).

By the type conversion theorem [Weihrauch(2008), Theorem 33], the multifunction $(F, ||F||) \rightleftharpoons ((x_n, y_n))_{n \in \mathbb{N}}$ is $([\delta_C \to \rho], \rho, [\nu_{\mathbb{N}} \to [\rho, \rho]])$ -computable. From a $[\nu_{\mathbb{N}} \to [\rho, \rho]]$ -name of the sequence $((x_n, y_n))_{n \in \mathbb{N}} = ((x_0, y_0), (x_1, y_1), \ldots)$ we can compute a $[\rho, \rho]^{\omega}$ - name [Weihrauch(2000), Lemma 3.3.16] which is a δ_{BVC} -name of g.

Finally, we prove that a reverse of the Riesz representation theorem is computable.

Theorem 21. The operator $T : (g, l) \mapsto F$, mapping every $g \in BVC$ and every $l \in \mathbb{N}$ with $Var(g) \leq 2^l$ to the functional F defined by $F(h) = \int h \, dg$ for all $h \in C[0; 1]$, is computable.

Proof: First we show that $(G, l, h) \mapsto \int h \, dg$ is computable. By Theorem 6.2.7 in [Weihrauch(2000)] a modulus $m : \mathbb{N} \to \mathbb{N}$ of continuity of h can be computed from h. let $\nu_{\rm fs}$ be a canonical notation of the finite sequences of natural numbers. The set of all $(g, (i_1, ..., i_{n-1}), j)$ such that $(0, x_{i_1}, ..., x_{i_{n-1}}, 1)$ is a partition for g of precision j is $(\delta_{BVC}, \nu_{fs}, \nu_{\mathbb{N}})$ -r.e. There is computable GTM on represented sets which on input (g, j) finds a sequence (i_1, \ldots, i_{n-1}) such that $(0, x_{i_1}, \ldots, x_{i_{n-1}}, 1)$ is a partition for g of precision j. Therefore from (g, h, k, l)we can compute a sequence (i_1, \ldots, i_{n-1}) such that $X := (0, x_{i_1}, \ldots, x_{i_{n-1}}, 1)$ is a partition for g of precision m(k+l+1). By Lemma 4, $|\int h \, dg - S(g,h,X)| \leq$ $2^{-l-k}V(g) \leq 2^{-k}$. The function $(g, h, X) \mapsto S(g, h, X)$ is computable (by a computable GTM). Therefore, from (g, l, h, k) a number y_k can be computed (multivalued) such that $|\int h \, dg - y_k| \leq 2^{-k}$. By [Weihrauch(2008), Theorem 33] the multi-function $(g, l, h) \rightleftharpoons (y_k)_{k \in \mathbb{N}}$ is computable. By [Weihrauch(2000), Theorem 4.3.7], $(g, l, h) \rightarrow \int h \, dg$ is $(\delta_{BVC}, \nu_{\mathbb{N}}, \delta_C, \rho)$ -computable. By [Weihrauch(2000), Theorem 3.3.15], $(g, l) \mapsto F$ such that $F(h) = \int h \, dg$ is $(\delta_{BVC}, \nu_{\mathbb{N}}, [\delta_C \to \rho])$ computable.

By Theorem 20, from F and ||F|| we can compute g such that $\operatorname{Var}(g) = ||F||$, and by Theorem 21, from g and an upper bound of $\operatorname{Var}(g)$ we can compute F.

References

- [Brattka et al.(2008)] Brattka, V., Hertling, P., Weihrauch, K.: "A tutorial on computable analysis"; S. B. Cooper, B. Löwe, A. Sorbi, eds., New Computational Paradigms: Changing Conceptions of What is Computable; 425–491; Springer, New York, 2008.
- [Goffman and Pedrick(1965)] Goffman, C., Pedrick, G.: First Course in Functional Analysis; Prentice-Hall, Englewood Cliffs, 1965.
- [Heuser(2006)] Heuser, H.: Funktionalanalysis; B.G. Teubner, Stuttgart, 2006; 4. edition.

[Lu and Weihrauch(2007)] Lu, H., Weihrauch, K.: "Computable Riesz representation for the dual of C[0; 1]"; Mathematical Logic Quarterly; 53 (2007), 4–5, 415–430.

[Schechter(1997)] Schechter, E.: Handbook of Analysis and Its Foundations; Academic Press, San Diego, 1997.

[Tavana and Weihrauch(2011)] Tavana, N., Weihrauch, K.: "Turing machines on represented sets, a model of computation for analysis"; Logical Methods in Computer Science; 7 (2011), 2, 1–21.

[Weihrauch(2000)] Weihrauch, K.: Computable Analysis; Springer, Berlin, 2000. [Weihrauch(2008)] Weihrauch, K.: "The computable multi-functions on multi-

- [Weihrauch(2008)] Weihrauch, K.: "The computable multi-functions on multirepresented sets are closed under programming"; Journal of Universal Computer Science; 14 (2008), 6, 801–844.
- [Weihrauch and Grubba(2009)] Weihrauch, K., Grubba, T.: "Elementary computable topology"; Journal of Universal Computer Science; 15 (2009), 6, 1381–1422.

Appendix

Proof of Lemma 4

Since there are partitions for g of arbitrary precision, I is unique if it exists. Next, we prove

$$|S(g,h,Z_1) - S(g,h,Z_2)| \le 2^{-k}V(g).$$
(24)

for any two partitions Z_1, Z_2 for g with precision m(k+1).

Let $Z_1 = (x_0, x_1, \dots, x_n)$ and let Z' be a refinement of Z_1 . Z' can be written as

$$x_0 = y_0^1, y_1^1, \dots, y_{j_1}^1 = x_1 = y_0^2, y_1^2, \dots, y_{j_2}^2 = x_2 \dots \dots = y_0^n, y_1^n, \dots, y_{j_n}^n = x_n$$

 $(j_1,\ldots,j_n\geq 1)$. Then

$$\begin{split} &|S(g,h,Z_{1}) - S(g,h,Z')| \\ &= \left| \sum_{i=1}^{n} h(x_{i}) \left(g(x_{i}) - g(x_{i-1}) \right) - \sum_{i=1}^{n} \sum_{l=1}^{j_{i}} h(y_{l}^{i}) \left(g(y_{l}^{i}) - g(y_{l-1}^{i}) \right) \right| \\ &= \left| \sum_{i=1}^{n} h(x_{i}) \sum_{l=1}^{j_{i}} \left(g(y_{l}^{i}) - g(y_{l-1}^{i}) \right) - \sum_{i=1}^{n} \sum_{l=1}^{j_{i}} h(y_{l}^{i}) \left(g(y_{l}^{i}) - g(y_{l-1}^{i}) \right) \right| \\ &= \left| \sum_{i=1}^{n} \sum_{l=1}^{j_{i}} \left(h(x_{i}) - h(y_{l}^{i}) \right) \left(g(y_{l}^{i}) - g(y_{l-1}^{i}) \right) \right| \\ &\leq \sum_{i=1}^{n} \sum_{l=1}^{j_{i}} \left| h(x_{i}) - h(y_{l}^{i}) \right| \left| g(y_{l}^{i}) - g(y_{l-1}^{i}) \right| \\ &\leq 2^{-k-1} \sum_{i=1}^{n} \sum_{l=1}^{j_{i}} \left| g(y_{l}^{i}) - g(y_{l-1}^{i}) \right| \\ &\leq 2^{-k-1} V(g) \end{split}$$

Now let Z' be a common refinement of Z_1 and Z_2 . Then $|S(g,h,Z_1) - S(g,h,Z_2)| \le |S(g,h,Z_1) - S(g,h,Z')| + |S(g,h,Z') - S(g,h,Z_2)| \le 2^{-k}V(g)$.

There is a sequence $(Z_k)_k$ of partitions for g such that Z_k has precision m(k+1). By (24) for j > k, $|S(g,h,Z_k) - S(g,h,Z_j)| \le 2^{-k}V(g)$. Let I be the limit of the Cauchy sequence $(S(g,h,Z_k))_k$. Let Z be a partition of precision m(k+1). Then for every i > k by (24),

$$|I - S(g, h, Z)| \le |I - S(g, h, Z_i)| + |S(g, h, Z_i) - S(g, h, Z)|$$

$$\le 2^{-i}V(g) + 2^{-k}V(g),$$

hence $|I - S(g, f, Z)| \le 2^{-k} V(g)$.