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Abstract: By the Riesz representation theorem, for every linear functional F : C[0; 1]
→ R there is a function g : [0; 1] → R of bounded variation such that

F (h) =

∫
hdg (h ∈ C[0; 1]) .

A computable version is proved in [Lu and Weihrauch(2007)]: a function g can be
computed from F and its norm, and F can be computed from g and an upper bound
of its total variation. In this article we present a much more transparent proof. We
first give a new proof of the classical theorem from which we then can derive the
computable version easily. As in [Lu and Weihrauch(2007)] we use the framework of
TTE, the representation approach for computable analysis, which allows to define
natural concepts of computability for the operators under consideration.
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1 Introduction

The Riesz representation theorem for continuous functionals on C[0; 1], the Ba-

nach space of continuous functions h : [0; 1] → R endowed with the supremum

norm, can be stated as follows

[Goffman and Pedrick(1965), Heuser(2006)]:

Theorem 1 (Riesz representation theorem). For every continuous linear

operator F : C[0; 1] → R there is a function g : [0; 1] → R of bounded varia-

tion such that

F (h) =

∫
h dg (h ∈ C[0; 1])

and

V (g) = ‖F‖ .

Here,
∫
h dg is the Riemann-Stieltjes integral [Schechter(1997)]. The reversal of

this theorem is almost trivial: the operator h 7→
∫
h dg is continuous and linear.
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A computable version of the Riesz representation theorem has been proved in

[Lu and Weihrauch(2007)]: a function g can be computed from F and its norm,

and F can be computed from g and an upper bound of its total variation. This

proof, however, is complicated and partly intransparent. In this article we present

a simpler and much more transparent proof which starts with a new proof of the

classical theorem from which the computable version can be derived easily.

The classical Riesz representation theorem can be proved as follows

[Goffman and Pedrick(1965), Heuser(2006)]: By the Hahn-Banach theorem, the

operator F has a continuous extension F to the Banach space B[0; 1] of bounded

functions h : [0; 1] → R such that ‖F‖ = ‖F‖. Then define g by g(x) := F (χ[0;x]),

where χ[0;x] is the characteristic function of [0;x]. In our proof, from F and ‖F‖

we define a dense set of points x in which g will be continuous. For these points

x we can compute F to χ[0;x], then we define g(x) := F (χ[0;x]).

In Section 2 we extend the definition of the Variation and the Riemann-

Stieltjes integral to partial functions g : ⊆ [0; 1] → R the domains of which are

dense in the unit interval. We observe that
∫
hdg can be defined already from

any restriction of g to a countable dense subset of it domain.

In Section 3 we introduce the set PCF of the points x which do not contribute

to ‖F‖ and define F (χ[0;x]) as the limit of F (hi) where (hi)i is a sequence of

continuous functons ”converging” to χ[0;x]. We prove that gF is continuous with

no continuous proper extension, and that its total variation is ‖F‖. Furthermore,

F (h) =
∫
hdgF for all continuous functions f : [0; 1] → R.

In Section 4 we shortly summarize the computability concepts used in the fol-

lowing. In particular we define our representation of the functions with countable

dense domain and finite variation.

Finally, in Section 5 we prove that from F and ‖F‖ a restriction g of gF can

be computed (a function of bounded variation representing F ), and that F can

be computed from g and a upper bound of Var(g).

2 The Riemann-Stieltjes integral

We recall the definition of the Riemann-Stieltjes integral. We study only the

special case of functions on the unit interval [0; 1]. Results for arbitrary intervals

[a; b] can be derived easily from the special case. In our context it seems to be

appropriate to generalize the definitions to partial functions g : ⊆ [0; 1] → R of

bounded variation.

A partition of the real interval [0; 1] is a sequence Z = (x0, x1, . . . , xn), n ≥ 1,

of real numbers such that 0 = x0 < x1 . . . < xn = 1. The partition Z has

precision k, if xi − xi−1 < 2−k for 1 ≤ i ≤ n. A partition Z ′ = (x′
0, x

′
1, . . . , x

′
m),

is finer than Z, if {x0, x1, . . . , xn}⊆{x′
0, x

′
1, . . . , x

′
m}. Z is a partition for g : ⊆

[0 : 1] → R if {x0, x1, . . . , xn}⊆dom(g). For a partition Z for g define
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S(g, Z) :=

n∑

i=1

|g(xi)− g(xi−1)|. (1)

The variation of g is defined by

V (g) := sup{S(g, Z)|Z is a partition for g}. (2)

The function g is of bounded variation if its variation V (g) is finite.

Definition 2. Let BV be the set of (partial) functions g : ⊆ [0; 1] → R of

bounded variation such that {0, 1}⊆dom(g) and dom(g) is dense in [0; 1].

The relation to the usual definitions with total functions g is given by the

following lemma.

Lemma3.

1. Let g, g′ ∈ BV such that g is a restriction of g′. Then V (g) ≤ V (g′).

2. For every function g ∈ BV the extension g : [0; 1] → R defined by

g(x) := lim
y∈dom(g), yրx

g(y) for x 6∈ dom(g) (3)

is of bounded variation such that V (g) = V (g).

Proof: (1) Obvious.

(2) Suppose this limit from below does not exist. Then there is an increasing

sequence (yi)i converging to x such that the sequence (g(yi))i does not converge,

hence there is some ε > 0 such that (∀i)(∃j > i) |g(yi) − g(yj)| > ε. Therefore,

for every n there is some partition Zn = (0, yi0 , yi1 , . . . , yin , 1) for g such that

S(g, Zn) > n · ε. But g is of bounded variation, hence g(x) exists.

Since dom(g)⊆dom(g), V (g) ≤ V (g). On the other hand suppose X := (0 =

x1, x2, . . . , xn = 1) is a partition for g and let ε > 0. For 1 ≤ i ≤ n there

are yi ∈ dom(g) such that xi−1 < yi < xi and |g(yi) − g(xi)| < ε/(2n), hence

for Y := (0, y1, y2, . . . , yn, 1), |S(g,X)−S(g, Y )| < ε. Therefore, V (g) ≤ V (g). ✷

On the space C[0; 1] of continuous functions h : [0; 1] → R the norm is

defined by ‖h‖ := supx∈[0;1] |h(x)|. On the space C′[0; 1] of the linear continuous

operators F : C[0; 1] → R the norm is defined by ‖F‖ := sup‖h‖≤1 |F (h)|.

In the following let h : [0; 1] → R be a continuous function and let g ∈ BV.

For any partition Z = (x0, x1, . . . , xn) of [0; 1] for g define

S(g, h, Z) :=

n∑

i=1

h(xi)(g(xi)− g(xi−1)). (4)
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Since h is continuous and its domain is compact, it has a (uniform) modulus

of continuity, i.e., a function m : N → N such that |h(x) − h(y)| ≤ 2−k if

|x− y| ≤ 2−m(k). We may assume that the function m is non-decreasing.

Lemma4 [Lu and Weihrauch(2007)]. Let h : [0; 1] → R be a continuous

function with modulus of continuity m : N → N and let g ∈ BV. Then there is a

unique number I ∈ R such that

|I − S(g, h, Z)| ≤ 2−kV (g)

for every partition Z for g with precision m(k + 1).

A proof is given in [Lu and Weihrauch(2007)]. A revised proof is given in the

appendix.

Definition 5. The number I from Lemma 4 is called the Riemann-Stieltjes in-

tegral and is denoted by
∫
h dg.

Notice that by Lemma 4 the integral
∫
f dg is determined already by the

values of the function g on an arbitrary set X that is dense in dom(g), since

there are partitions of arbitrary precision that contain of points only from the

set X .

Corollary 6. Let g, g′ ∈ BV. Suppose A⊆dom(g) ∩ dom(g′) is dense in [0; 1]

such that {0, 1}⊆A and (∀x ∈ A)g(x) = g′(x). Then
∫
h dg = h dg′ for every

h ∈ C[0; 1].

Proof: Obvious. ✷

3 Another proof of the classical theorem

In this section we present a proof of the (non-computable) Riesz representation

theorem which we will effectivize in Section 5. Let Pg be the (countable) set of

of polygon functions h : [0; 1] → R with rational vertices and let RI := {(a; b) |

a, b ∈ Q, 0 ≤ a < b ≤ 1} be the set of open rational subintervals of (0; 1). By

the Weierstraß approximation theorem Pg is dense in C[0; 1]. In the following

let F : C[0; 1] → R be a linear continuous functional.

Definition 7. For h ∈ C[0; 1], Y⊆[0; 1] , and x ∈ (0; 1) define NZ(h), ‖F‖Y and

PCF⊆(0; 1) as follows:

NZ(h) := {x ∈ [0; 1] | h(x) 6= 0} , (5)

‖F‖Y := sup{|F (h)| | h ∈ C[0; 1], ‖h‖ ≤ 1, NZ(h)⊆Y } , (6)

x ∈ PCF : ⇐⇒ inf{‖F‖J | x ∈ J ∈ RI} = 0 . (7)
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NZ(h) is the non-zero region of the function h, ‖F‖Y is the contribution of

the set Y to ‖F‖, and x ∈ PCF means that the contribution of x ∈ (0; 1) to

‖F‖ is 0. The points from PCF will be the points of continuity of the associated

function gF of bounded variation.

Lemma8. 1. ‖F‖Y ≤ ‖F‖Z if Y⊆Z,

2. ‖F‖J1
+ . . .+ ‖F‖Jn

≤ ‖F‖ if the Ji are pairwise disjoint.

3. |F (h1)|+ . . .+ |F (hn)| ≤ ‖F‖ if ‖hi‖ ≤ 1 for i = 1, . . . , n and the sets NZ(hi)

are pairwise disjoint.

Proof: (1) Obvious.

(2) Let ε > 0. For i = 1, . . . n there is a continuous functions hi such that

‖hi‖ ≤ 1, NZ(hi)⊆Ji and |F (hi)| ≥ ‖F‖Ji
− ε. We may assume F (hi) ≥ 0

(if F (hi) < 0, replace hi by −hi). Since the sets NZ(hi) are pairwise disjoint,

‖
∑

i hi‖ ≤ 1. We obtain

∑

i

‖F‖Ji
≤ nε+

∑

i

|F (hi)| = nε+
∑

i

F (hi) = nε+ F (
∑

i

hi) ≤ nε+ ‖F‖ .

This is true for all ε > 0, hence
∑

i ‖F‖Ji
≤ ‖F‖.

(3)This follows from (2). ✷

At most countably many points can have a positive contribution to ‖F‖.

Lemma9. The complement (0; 1) \ PCF of PCF is at most countable.

Proof: For n ∈ N let Tn be the set of all x ∈ (0; 1) such that inf{‖F‖J |

x ∈ J} > 2−n. Suppose, card(Tn) ≥ N > 2n · ‖F‖. Then there are N points

x1, . . . , xN ∈ Tn and pairwise disjoint intervals J1, . . . , JN such that xi ∈ Ji.

Since ‖F‖Ji
> 2−n for all i,

∑
i ‖F‖Ji

> N · 2−n > ‖F‖. But this is false by

Lemma 8. Therefore, Tn is finite for every n and (0; 1)\PCF =
⋃

n Tn is at most

countable. ✷

We define slanted step functions (Figure 2) as approximations of character-

istic functions χ[0;x] .

Definition 10. For I = (a; b) ∈ RI let sI ∈ Pg, the slanted step function at I,

be the polygon function whose graph has the vertices (0, 1), (a, 1), (b, 0), and

(1, 0).

Suppose J,K⊆L. Then NZ(sJ − sK)⊆L and ‖sJ − sK‖ ≤ 1, hence |F (sJ )−

F (sK)| = |F (sJ − sK)| ≤ ‖F‖L, therefore

|F (sJ)− F (sK)| ≤ ‖F‖L if J,K⊆L . (8)
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In the classical proof (Section 1) g(x) can be defined as F (χ[0;x]), where F is

the Hahn-Banach extension of F to the bounded real functions. We replace this

definition as follows considering only points of continuity:

Definition 11. Define a function gF : ⊆ R → R as follows: dom(gF ) := {0, 1}∪

PCF , g(0) := 0, g(1) := F (1). For x ∈ PCF let (Jn)n∈N be a sequence of

rational intervals such that x ∈ Jn+1⊆Jn and limn→∞ length(Jn) = 0. Then let

gF (x) := limn→∞ F (sJn
).

Since x ∈ PCF , limn→∞ ‖F‖Jn
= 0 by monotonicity in J of ‖F‖J . We show

that gF (x) exists and does not depend on the specific sequence(Jn)n∈N.

Lemma12. The function gF is well-defined.

Proof: For every ε > 0 there is some n such that ‖F‖Jn
< ε. By (8) for k > n,

|F (sJn
)− F (sJk

)| ≤ ‖F‖Jn
< ε, hence limn→∞ F (sJn

) exists.

Let (Ln)n∈N be another sequence of rational intervals such that x ∈ Ln+1⊆Ln

and limn→∞ ‖F‖Ln
= 0. Then limn→∞ F (sLn

) exists accordingly. Let Kn :=

Jn ∩ Ln. By (8), |F (sJn
)− F (sKn

)| ≤ ‖F‖Jn
and |F (sLn

) − F (sKn
)| ≤ ‖F‖Ln

,

hence |F (sJn
)− F (sLn

)| ≤ ‖F‖Jn
+ ‖F‖Ln

. Therefore,

limn |F (sJn
)− F (sLn

)| = 0 and finally limn F (sJn
) = limn F (sLn

). ✷

Lemma13. Suppose J,K,L ∈ RI, J,K⊆L and x, y ∈ PCF ∩ L. Then

|F (sJ)− F (sK)| ≤ ‖F‖L , (9)

|F (sJ )− gF (y)| ≤ ‖F‖L , (10)

|gF (x) − gF (y)| ≤ ‖F‖L . (11)

Proof:

(9): By (8).

(10): For every ε > 0 there is some K⊆L such that y ∈ K and |F (sK) −

gF (y)| ≤ ε. Then by (9), |F (sJ)−gF (y)| ≤ |F (sJ)−F (sK)|+ |F (sK)−gF (y)| ≤

‖F‖L + ε. Therefore |F (sJ )− gF (y)| ≤ ‖F‖L.

(11): For every ε > 0 there is some J⊆L such that x ∈ J and |F (sJ) −

gF (x)| ≤ ε. Then by (10), |gF (x)−gF (y)| ≤ |gF (x)−F (sJ )|+ |F (sJ )−gF (y)| ≤

‖F‖L + ε. Therefore |gF (x)− gF (y)| ≤ ‖F‖L. ✷

We will prove some further properties of the function gF . In the following,

limyրx gF (y) abbreviates limy∈dom(gF ), yրx gF (y) and limyցx gF (y) abbreviates

limy∈dom(gF ), yցx gF (y).

Lemma14. For all x ∈ (0; 1),
1. limyրx gF (y) and limyցx gF (y) exist,

2. | limyրx gF (y)− limyցx gF (y)| = infx∈J ‖F‖J .
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Proof:

(1) Suppose that limyրx gF (y) does not exist. Then there is an increasing se-

quence (yi)i from PCF converging to x such that the sequence (gF (yi))i does not

converge, hence there is some ε > 0 such that (∀N)(∃i, j > N) |gF (yi)−gF (yj)| >

ε. Therefore, for every N we can find yi0 < . . . < yi2N from the sequence

(yi)i such that |gF (yi2k) − gF (yi2k−1
)| > ε, for 1 ≤ k ≤ N . Hence there are

pairwise disjoint rational intervals J1, J2, . . . , JN such that yi2k−1
, yi2k ∈ Jk for

1 ≤ k ≤ N . Then by (11), ||F ||Jk
> ε for each 1 ≤ k ≤ N . By Lemma 8,

‖F‖ ≥
∑N

k=1 ‖F‖Jk
> N · ε. Since this is true for all numbers N , ||F || is un-

bounded. Contradiction.

(2) Let a = infx∈J ‖F‖J and δ > 0. There is some J ∈ RI such that

x ∈ J and | ‖F‖J − a| < δ . (12)

“≤”: By (11) and (12) for y1, y2 ∈ J∩PCF , |gF (y1)−gF (y2)| ≤ ‖F‖J < a+δ,

hence | limyրx gF (y) − limyցx gF (y)| ≤ a + δ. Since this is true for all δ > 0,

“≤” is true.

“≥”: An example of the functions, intervals etc. defined in the following is

shown in Figure 1. There is a rational polygon h such that

NZ(h)⊆J, ‖h‖ ≤ 1 and |F (h)− ‖F‖J | < δ .

The function h can be chosen such that

K⊆J ; x ∈ K and (∀y ∈ K) h(y) = c (13)

for some K ∈ RI and some c such that 0 < |c| ≤ 1. We may assume 0 < c ≤ 1

(if c < 0 replace h by −h). There are y<, y> ∈ K ∩PCF , y< < x < y> such that

| lim
yրx

gF (y)− gF (y<)| < δ and | lim
yցx

gF (y)− gF (y>)| < δ . (14)

There are L,R ∈ RI such that L,R⊆K, L < x < R, y< ∈ L, y> ∈ R and

‖F‖L < δ and ‖F‖R < δ . (15)

Let mL and mR be the center of L and R respectively. Let tL : [0; 1] → R be the

rational polygon whose graph has the vertices (0, 0), (inf L, 0), (mL, c), (supL, 0),

(1, 0) and let tR : [0; 1] → R be the rational polygon whose graph has the

vertices (0, 0), (inf R, 0), (mR, c), (supR, 0), (1, 0). Then |F (tL)| ≤ ‖F‖L < δ and

|F (tR)| ≤ ‖F‖R < δ.

Let h′ := h− tL − tR. Then

|F (h′)− F (h)| = |F (tL) + F (tR)| ≤ 2δ . (16)

Let N be the interval (mL;mR). Let h0 be the polygon function whose graph

has the vertices (0, 0), (mL, 0), (supL, c), (inf R, c), (mR, 0), (1, 0). Let h := h′ −

h0.
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Figure 1: The functions h,h0 and h′

We will show that |F (h)| is small and |F (h0)| ≈ a. There is some rational

polygon function h′
0 such that ‖h′

0‖ = 1, NZ(h′
0)⊆N and

| ‖F‖N − F (h′
0)| < δ . (17)

There are α, β ∈ {1,−1} such that |F (h′
0)| + |F (h)| = F (αh′

0) + F (βh) =

F (αh′
0+βh). Since NZ(h′

0)∩NZ(h) = ∅, ‖αh′
0+βh‖ ≤ 1, hence |F (h′

0)|+|F (h)| ≤

‖F‖J ≤ a+ δ. Since ‖FN‖ ≤ |F (h′
0)|+ δ and ‖F‖N ≥ a because of x ∈ N ,

|F (h′)− F (h0)| = |F (h)| ≤ a+ δ − |F (h′
0)| ≤ a+ δ − ‖F‖N + δ ≤ 2δ .

Therefore F (h) is small. From the above estimations,

|a| ≤ |a− ‖F‖J |+ | ‖F‖J − F (h)|+ |F (h)− F (h′)|+ |F (h′)− F (h0)|+ |F (h0)| ,

hence a ≤ δ + δ + 2δ + 2δ + |F (h0)|, that is,

a ≤ 6δ + |F (h0)| .

Therefore, |F (h0)| is big. By construction, 0 < c = ‖h0‖ ≤ 1. Let ĥ := h0/c.

Then a ≤ 6δ + |F (ĥ)|.
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Since ‖ĥ‖ = 1, ĥ = sT − sS where S = (mL; supL) and T = (inf R;mR). By

Lemma 13,

|gF (y<)− F (sS)| ≤ ‖F‖K and |gF (y>)− F (sT )| ≤ ‖F‖K ,

hence by Lemma 13,

a ≤ 6δ + |F (ĥ)|

= 6δ + |F (sT )− F (sS)|

≤ 6δ + |F (sT )− gF (y>)|+ |gF (y>)− lim
yցx

gF (y)|

+| lim
yցx

gF (y)− lim
yրx

gF (y)|+ | lim
yրx

gF (y)− gF (y<)|+ |gF (y<)− F (sS)|

≤ 6δ + ‖F‖R + δ + | lim
yցx

gF (y)− lim
yրx

gF (y)|+ δ + ‖F‖L

≤ | lim
yցx

gF (y)− lim
yրx

gF (y)|+ 10δ

Since this is true for all δ > 0, “≥” has been proved. ✷

Theorem 15.

1. gF is continuous on (0; 1) ∩ dom(gF ) = PCF ,

2. no proper extension g of gF is continuous on (0; 1) ∩ dom(g),

3. Var(g) = ‖F‖ for every restriction g ∈ BV of gF ,

4. Var(gF ) = ‖F‖.

Proof: 1. If x ∈ PCF then limyցx gF (y) = limyրx gF (y) by Lemma 14. There-

fore gF is continuous in x.

2. Let g be an extension of gF and let g be continuous in x ∈ dom(g). Then

limyցx gF (y) = limyրx gF (y), hence infx∈J ‖F‖J = 0 by Lemma 14, that is,

x ∈ PCF .

3. Var(g) ≤ ‖F‖: Let X := (x0, x1, . . . , xn) be a partition for g. Let ε > 0.

By the definition of gF for every 0 < i < n there is an interval Ki ∈ RI such

that xi ∈ Ki, supKi < infKi+1, ‖F‖Ki
< ε. Furthermore, for 0 < i < n there

are intervals Li, Ri ∈ RI such that Li, Ri⊆Ki and supLi < xi < inf Ri. Figure 2

shows the intervals and some corresponding slanted step functions. By Lemma 8

and Lemma 13,

S(g,X) = |g(x1)|+
n−1∑

i=2

|g(xi)− g(xi−1)|+ |g(1)− g(xn−1)|

≤ |F (sL1
)|+ ε+

n−1∑

i=2

(|F (sLi
− sRi−1

)|+ 2ε)

+|F (1− sRn−1
)|+ ε

≤ 2nε+ ‖F‖ .
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Figure 2: The intervals Ki, Li, Ri and corresponding slanted step functions.

Since this is true for all ε > 0, S(g,X) ≤ ‖F‖. Since this is true for all partitions

X for g, Var(g) ≤ ‖F‖.

3. ‖F‖ ≤ Var(g): First we show that for every rational polygon function

h0 ∈ Pg there are a partition X = (0 = x0, x1, . . . , xn−1, xn = 1) and intervals

Ki, Li, Ri such that for the function h2 (see Figure 3), F (h0) is close to F (h2)

if (xi − xi−1) and ‖F‖Ki
are sufficiently small for all 1 < i ≤ n. By Lemma 13

F (h2) can be related to S(g,X) (and to S(g, h0, X) in the proof of Theorem 16).

Let h0 ∈ Pg and k ∈ N. Let m : N → N be a modulus of continuity of h0.

Let n := 2m(k)+1 + 1. Since dom(g) is dense, there is a partition X = (0 =

x0, x1, . . . , xn−1, xn = 1) for g such that xi − xi−1 < 2−m(k)−1. Since all the

xi ∈ PCF , for every 0 < i < n there are rational intervals Ki, Li, Ri such that

xi ∈ Ki, 0 < infK1, supKi < infKi+1, supKn−1 < 1,

‖F‖Ki
< 2−k/n ,

inf Li = infKi, supLi < xi < inf Ri supRi = supKi .

Figure 3 shows an example of the left end of the unit interval with the function

h0 and the intervals.

For 1 ≤ i ≤ n define

ci := max{h0(x) | supRi−1 ≤ x ≤ inf Li} ,

(where supR0 := 0 and inf Ln := 1). Define a rational polygon function h1 by

the following sequence of vertices:

(supR0, c1), (inf L1, c1), (supR1, c2), (inf L2, c2), . . . , (supRn−1, cn), (inf Ln, cn)

(see Figure 3, notice that ci may be negative).

Suppose 1 ≤ i ≤ n and supRi−1 ≤ x ≤ inf Li. Then xi−1 ≤ x ≤ xi and

h1(x) = ci = h0(y) for some y with xi−1 ≤ y ≤ xi. Then |x− y| < 2−m(k), hence

|h1(x) − h0(x)| = |h0(y)− h0(x)| < 2−k.
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Figure 3: The functions h0, h1 and h2..

Suppose 0 < i < n and x ∈ Ki. Then h1(x) = h0(y) for some y such

that xi−1 < y < xi+1. Since xi−1 < x < xi+1, |x − y| < 2−m(k) and hence

|h1(x) − h0(x)| = |h0(y)− h0(x)| < 2−k.

Therefore, ‖h1 − h0‖ < 2−k and hence |F (h1)− F (h0)| ≤ ‖F‖ · 2−k.

Let 1 ≤ i ≤ n. Then ci = h0(y) for some xi−1 ≤ y ≤ xi. Since |xi − y| <

2−m(k), |h0(xi)− ci| = |h0(xi)− h0(y)| ≤ 2−k.

From h1 we construct a third function h2 by replacing for every 0 < i < n

the line segment from (inf Li, ci) to (supRi, ci+1) in the graph of h1 by the

polygon (inf Li, ci), (supLi, 0), (inf Ri, 0), (supRi, ci+1) (see Figure 3). Then

by Definition 10,

h2 = c1sL1
+

n−1∑

i=2

ci(sLi
− sRi−1

) + cn(1− sRn−1
) .

For 0 < i < n let di be the polygon function defined by the sequence of vertices

(0, 0), (inf Li, 0), (supLi, h1(supLi)), (inf R1, h1(inf R1)), (supRi, 0), (1, 0) .

Then h2 = h1 −
∑n−1

i=1 di. Since NZ(di)⊆Ki and ‖di‖ ≤ ‖h0‖,

|F (h2)− F (h1)| ≤
n−1∑

i=1

|F (di)| ≤
n−1∑

i=1

‖F‖Ki
· ‖h0‖ ≤ ‖h0‖ · 2

−k .

We prove ‖F‖ ≤ Var(g). There is some h0 ∈ Pg such that ‖h0‖ ≤ 1 and

‖F‖ ≤ |F (h0)|+ 2−k. Since |ci| ≤ 1 and by Lemma 13,
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‖F‖ ≤ |F (h0 − h1)|+ |F (h1 − h2)|+ |F (h2)|+ 2−k

≤ ‖F‖ · 2−k + ‖h0‖ · 2
−k + |F (h2)|+ 2−k

≤ |F (sL1
)|+

n−1∑

i=2

|F (sLi
− sRi−1

)|+ |F (1− sRn−1
)|

+(‖F‖+ 2) · 2−k

≤ |g(x1)|+ 2−k/n+

n−1∑

i=2

(|g(xi)− g(xi−1)|+ 2 · 2−k/n)

+|g(1)− g(xn−1)|+ 2−k/n+ (‖F‖+ 2) · 2−k

≤
n∑

i=1

|g(xi)− g(xi−1)|+ 2 · 2−k + (‖F‖+ 2) · 2−k

= S(g,X) + (‖F‖+ 4) · 2−k

≤ Var(g) + (‖F‖+ 4) · 2−k .

Since this is true for all k, ‖F‖ ≤ Var(g).

4. This follows from 3. ✷

Theorem 16. Let g ∈ BV be a restriction of gF . Then for every h ∈ C[0; 1],

F (h) =
∫
h dg.

Proof: Let h ∈ C[0; 1] and k ∈ N. There is a function h0 ∈ Pg such that

‖h − h0‖ ≤ 2−k. Let m,n,X,Ki, Li, Ri, ci, h1, h2 be the objects introduced in

the proof of Theorem 15.3. We prove that |F (h) − S(g, h,X)| is small. By the

results that we have already shown,

|F (h)− F (h2)| ≤ |F (h)− F (h0)|+ |F (h0)− F (h1)|+ |F (h1)− F (h2)|

≤ ‖F‖ · 2−k + ‖F‖ · 2−k + ‖h0‖ · 2
−k

= (2‖F‖+ ‖h0‖) · 2
−k

Since |F (sRi
) + B| ≤ |g(xi) + B| + ‖F‖Ki

etc. by Lemma 13, ci ≤ ‖h0‖, and

|h0(xi)− ci| ≤ 2−k,

|F (h2)− S(g, h0, X)|

≤
∣∣∣ c1F (sL1

) +

n−1∑

i=2

ci(F (sLi
)− FsRi−1

)) + cn(F (1)− F (sRn−1
))

−
n∑

i=1

h0(xi)(g(xi)− g(xi−1))
∣∣∣
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≤
∣∣∣ c1g(x1) +

n−1∑

i=2

ci(g(xi)− g(xi−1)) + cn(g(1)− g(xn−1))

−
n∑

i=1

h0(xi)(g(xi)− g(xi−1))
∣∣∣

+ |c1| ‖F‖K1
+

n−1∑

i=2

|ci|(‖F‖Ki
+ ‖F‖Ki−1

) + |cn| ‖F‖Kn−1

≤
∣∣∣

n∑

i=1

(ci − h0(xi))(g(xi)− g(xi−1))
∣∣∣+ 2 ‖h0‖ · 2

−k

≤
n∑

i=1

|ci − h0(xi)| · |g(xi)− g(xi−1)|+ ‖h0‖ · 2
−k+1

≤ 2−k · S(g,X) + ‖h0‖ · 2
−k+1

≤ 2−k ·Var(g) + ‖h0‖ · 2
−k+1

= (‖F‖+ 2 ‖h0‖) · 2
−k

Furthermore,

|S(g, h0, X)− S(g, h,X)| = |
n∑

i=1

(h0(xi)− h(xi))(g(xi)− g(xi−1))|

≤ 2−k−
n∑

i=1

|g(xi)− g(xi−1)|

= 2−k · S(g,X)

≤ 2−k ·Var(g)

= 2−k · ‖F‖ .

Combining these results we obtain

|F (h)− S(g, h,X)|

≤ |F (h)− F (h2)|+ |F (h2)− S(g, h0, X)|+ |S(g, h0, X)− S(g, h,X)|

≤ (2‖F‖+ ‖h0‖) · 2
−k + (‖F‖+ 2 ‖h0‖) · 2

−k + 2−k · ‖F‖

≤ (‖F‖+ ‖h‖+ 1) · 2−k+2

Since X has precision m(k), |
∫
h dg − S(g, h,X)| ≤ Var(g) · 2−k+1 by

Lemma 4. Therefore, |F (h) −
∫
h dg| ≤ (3‖F‖ + 2‖h‖ + 2) · 2−k+1. Since this

is true for all k, F (h) =
∫
h dg. ✷

4 Concepts from Computable Analysis

For studying computability we use the representation approach (TTE) for Com-

putable Analysis [Weihrauch(2000), Brattka et al.(2008)]. Let Σ be a finite al-
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phabet. Computable functions on Σ∗ (the set of finite sequences over Σ) and

Σω (the set of infinite sequences over Σ) are defined by Turing machines which

map sequences to sequences (finite or infinite). On Σ∗ and Σω finite or countable

tupling will be denoted by 〈 〉 [Weihrauch(2000)]. The tupling functions and the

projections of their inverses are computable.

In TTE, sequences from Σ∗ or Σω are used as “names” of abstract objects

such as rational numbers, real numbers, real functions or points of a metric

space. We consider computability of multi-functions w.r.t. multi-representations

[Weihrauch(2000)], [Brattka et al.(2008)], [Weihrauch(2008), Sections 3,6,8,9].

A representation of a set X is a function δ : ⊆ C → X where C = Σ∗ or

C = Σω. If δ(p) = x we call p a δ-name of x. If f : X ⇒ Y is a multi-function

(on represented sets) then f(x) is the set of y ∈ Y which are accepted as a result

of f applied to x. (Example: f : R ⇒ Q, f(x) := {a ∈ Q | x < a}, we may say:

“the multi-function f finds some rational upper bound of x”.)

For representations γ : ⊆ Y → M and γ0 : ⊆ Y0 → M0, a function h : ⊆ Y →

Y0 is a (γ, γ0)-realization of a multi-function f : ⊆ M ⇒ M0, iff for all p ∈ Y

and x ∈ M ,

γ(p) = x ∈ dom(f) =⇒ γ0 ◦ h(p) ∈ f(x) . (18)

Fig. 4 illustrates the definition.

s

s

s

s

✲✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳③

❄

✲

❄

p h(p)

x γ0 ◦ h(p) ∈ f(x)

h

f

γ γ0

Figure 4: h(p) is a name of some y ∈ f(x), if p is a name of x ∈ dom(f).

The multi-function f is called (γ, γ0) -computable, if it has a computable

(γ, γ0)-realization and (γ, γ0)-continuous if it has a continuous realization. The

definitions can be generalized straightforwardly to multi-functions f : M1× . . .×

Mn ⇒ M0 for represented sets Mi.
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For two representations δi : ⊆ Σω → Mi (i = 1, 2) the canonical representa-

tion [δ1, δ2] of the product M1 ×M2 is defined by

[δ1, δ2]〈p1, p2〉 = (δ1(p1), δ(p2)) . (19)

For two representations δi⊆Σω
⇒ Mi (i = 1, 2), δ1 ≤ δ2 (δ1 is reducible to δ2) iff

there is a computable function h : ⊆Σω → Σω such that (∀ p ∈ dom(δ1)) δ1(p) =

δ2h(p). (If p is a δ1-name of x then h(p) is a δ2-name of x.)

We use various canonical notations ν : ⊆ Σ∗ → X : νN for the natural num-

bers, νQ for the rational numbers, νPg for the polygon functions on [0; 1] whose

graphs have rational vertices, and νI for the set RI open subintervals (a; b)⊆(0; 1)

with rational endpoints. For functions m : N → N we use the canonical repre-

sentation δB : ⊆ Σω → B = {m | m : N → N} defined by δB(p) = m if

p = 1m(0)01m(1)01m(2)0 . . .. For the real numbers we use the Cauchy represen-

tation ρ : ⊆ Σω → R, ρ(p) = x if p is (encodes) a sequence (ai)i∈N of rational

numbers such that for all i, |x−ai| ≤ 2−i. By the Weierstraß approximation theo-

rem the countable set of Pg of polygon functions with rational vertices is dense in

C[0; 1]. Therefore, C[0; 1] with notation νPg of the set Pg is a computable metric

space [Weihrauch(2000)] for which we use the Cauchy representation δC defined

as follows: δC(p) = h if p is (encodes) a sequence (hi)i∈N of polygons hi ∈ Pg such

that for all i, ‖h−hi‖ ≤ 2−i [Weihrauch(2000)]. For the space C(C[0; 1],R) of the

continuous (not necessarily linear) functions F : C[0; 1] → R we use the canon-

ical representation [δC → ρ] [Weihrauch(2000), Weihrauch and Grubba(2009)].

It is determined uniquely up to equivalence by (U) and (S):

(U) the function APPLY : (F, h) 7→ F (h) is ([δC → ρ], δC , ρ)-computable,

(S) if for some representation δ of a subset of C(C[0; 1],R), APPLY is

(δ, δC , ρ)-computable then δ ≤ [δC → ρ].

(U) corresponds to the “universal Turing machine theorem” and (S) to the

“smn-theorem” from computability theory. Roughly speaking, [δC → ρ] is the

“poorest” representation of the set C(C[0; 1],R) for which the APPLY function

becomes computable.

For converting the classical proof mentioned in Section 2 we needed a repre-

sentation of the set B[0; 1] of bounded functions g : [0; 1] → R. Since it has a

cardinality bigger than that of Σω, it has no representation. To overcome this

difficulty it would suffice to extend F to the Banach space B1[0; 1] generated by

the continuous functions and all the characteristic function χ[0;x], 0 ≤ x ≤ 1.

However, since this space is not separable we do not know any reasonable rep-

resentation of it. We solve the problem by (implicitly) extending F only to

functions χ[0;x] from a countable dense set of points x in which g is continuous

and for which we can compute g(x) := F (χ[0;x]) from F and ‖F‖. Remember
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that every function of bounded variation has at most countably many points of

discontinuity.

Finally, for formulating a computable version of the Riesz representation

theorem we need a representation for functions of bounded variation. In our

context the only application of a function g of bounded variation is to compute

the Riemann-Stieltjes integral
∫
h dg for continuous functions h. By Corollary 6,

it suffices to know g on a countable dense set containing 0 and 1. Therefore it

will suffice to consider only functions from BV with countable domain.

Definition 17. Let BVC := {g ∈ BV | dom(g) is countable}. Define a repre-

sentation δBVC : ⊆ Σω → BVC as follows: δBVC(p) = g iff there are sequences

p0, q0, p1, q1, . . . ∈ Σω such that p = 〈〈p0, q0〉, 〈p1, q1〉, . . .〉, ρ(p0) = 0, ρ(p1) = 1

and graph(g) = {(ρ(pi), ρ(qi)) | i ∈ N}.

Informally, a δBVC-name of g is a list of its graph. For proving computability

of multi-functions on represented sets we use “generalized Turing machines”

(GTMs) [Tavana and Weihrauch(2011)]. We call a generalized Turing machine

M on represented sets computable, if all multi-functions on the represented sets

occurring in M are computable. We use the following result: the multi-function

fM computed by a computable GTM M on represented sets is computable.

For a representation δ : ⊆ Σω → Z a subset Y⊆Z is δ-r.e., iff there is a

Type-2 machine N such that for all p ∈ dom(δ),

N halts on input p ⇐⇒ δ(p) ∈ Y .

And Y⊆Z is δ -decidable, iff Y and Z \ Y are δ-r.e. [Weihrauch(2000)]. As an

example, x < y for real numbers is [ρ, ρ]-r.e.

5 The computable Riesz representation theorem

In the following “computable”, “recursively enumerable” and “decidable” means

computable, recursively enumerable and decidable, respectively, w.r.t. the nota-

tions and multi-representations mentioned in Section 4.

First, from F and ‖F‖ we will compute some g ∈ BVC such that F (h) =∫
hdg. By the next lemma for every rational interval I we can compute subin-

tervals J with arbitrarily small ‖F‖J .

Lemma18. There is a computable multi-function

e : (F, z, I, n) |⇒ J

that maps every continuous linear functional F : C[0; 1] → R, its norm z, every

open rational interval I = (a; b)⊆[0; 1] and every n ∈ N to some open rational

interval J such that J⊆I , length(J) ≤ 2−n and ‖F‖J ≤ 2−n.
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Precisely speaking, the multi-function e is ([δC → ρ], ρ, νI , νN, νI) - com-

putable.

Proof: By Lemma 9 there is some x ∈ I such that x ∈ PCF . By Definition 7

there is some J , x ∈ J ∈ RI, such that J⊆I , length(J) ≤ 2−n and ‖F‖J ≤ 2−n.

We show that the multi-function e is ([δC → ρ], ρ, νI , νN, νI)-computable.

For F , z = ‖F‖, I = (a; b), n ∈ N, J ∈ RI and f ∈ Pg consider the conditions

J⊆I, length(J) ≤ 2−n, (20)

f(x) = 0 for x ∈ J , (21)

‖f‖ ≤ 1 , (22)

|F (f)| > ‖F‖ − 2−n . (23)

Conditions (20-22) are decidable (relative to their representations). Since x < y

is [ρ, ρ]-r.e. and (F, f ) 7→ F (f) is computable, (23) is r.e. Therefore, here is a

Type 2-machine M that halts on input (p1, p2, u3, u4, u5, u6) iff

(F, ‖F‖, I, n, J, f) := ([δC → ρ], ρ, νI , νN, νI , νI , νPg)(p1, p2, u3, u4, u5, u6)

satisfies (20-23). From M a Type-2 machine N can be constructed which on

input (p1, p2, u3, u4) (by the usual step counting technique) searches for (u5, u6)

such that M halts on input (p1, p2, u3, u4, u5, u6).

First we show that J = νI(u5) and f = νPg(u6) exist.

Since Pg is dense in C[0; 1], ‖F‖ = sup{|F (h)| | h ∈ Pg, ‖h‖ ≤ 1}. Therefore,

there is a function h ∈ Pg with ‖h‖ ≤ 1 such that |F (h)| > ‖F‖− 2−n−1. As we

have shown (replace above n by n+1) there is a rational interval L⊆I such that

length(L) ≤ 2−n and ‖F‖L ≤ 2−n−1. Let (a2; b2)⊆L such that h has no vertex

in (a2; b2). Let a1 := a2 + (b2 − a2)/3, b1 := b2 − (b2 − a2)/3) and J := (a1; b1).

Define a function f0 ∈ Pg by its vertices as follows:

(0, 0), (a2, 0), (a1, h(a1)), (b1, h(b1)), (b2, 0), (1, 0)

and let f := h− f0. Then ‖f0‖ ≤ 1 and |F (f0)| ≤ 2−n−1 since NZ(f0)⊆L. Since

h and f0 have no vertex in the interval (a2; a1), |h(x) − f0(x)| ≤ |h(a2)| ≤ 1

for a2 ≤ x ≤ a1, correspondingly |h(x) − f0(x)| ≤ 1 for b1 ≤ x ≤ b2, and

|h(x)− f0(x)| = 0 for a1 ≤ x ≤ b1. We obtain ‖f‖ ≤ 1. Furthermore,

|F (f)| = |F (h− f0)| ≥ |F (h)| − |F (f0)| ≥ ‖F‖ − 2−n .

Therefore, J and f exist.

It remains to show that J has the properties requested in the lemma. Obvi-

ously, J⊆I and length(J) ≤ 2−n. Suppose h ∈ C[0; 1], ‖h‖ ≤ 1 and NZ(h)⊆J .

Since NZ(h) and NZ(f) are disjoint and of norm ≤ 1, by Lemma 8, |F (h)| +

|F (f)| ≤ ‖F‖ hence |F (h)| ≤ ‖F‖ − |F (f)| < 2−n. Therefore, ‖F‖J ≤ 2−n . ✷
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By iterating the function e from Lemma 18 in every open rational interval

we can find some point x ∈ PCF and the value gF (x).

Lemma19. The multi-function G : (F, ‖F‖, I) |⇒ (x, gF (x)) mapping F , its

norm and an interval I ∈ RI to (x, gF (x)) for some x ∈ I ∩PCF is computable.

Proof: Let J−1 := I. For every n ∈ N let Jn be a result of applying the

multi-function e from Lemma 18 to (F, ‖F‖, Jn−1, n). Then (Jn)n∈N is a prop-

erly nested sequence of intervals with length(Jn) ≤ 2−n. It converges to some

point x ∈ I. Since for all n, x ∈ Jn and ‖F‖Jn
≤ 2−n, x ∈ PCF . Furthermore,

by Lemma 13, |gF (x)−F (sJn
)| ≤ 2−n. Therefore (F (sJn

))n∈N converges fast to

gF (x).

Let M1 be a computable GTM computing the multi-function e from

Lemma 18. From M1 we can construct a computable GTM that on input

(F, ‖F‖, I, n) computes in turn some J0, J1, . . . , Jn and then (Jn, F (sJn
)) as its

result.

By [Weihrauch(2008), Theorem 35] the multi-function (F, ‖F‖, I) |⇒

(Jn, F (sJn
))n∈N is computable (where the canonical representation considered

for sequences [Weihrauch(2000)]). Since the limit operations for nested sequences

of intervals converging to a point and for fast converging Cauchy sequences of

real numbers are computable [Weihrauch(2000)], (x, gF (x)) can be computed

from (Jn, F (sJn
))n∈N. Therefore, the multi-function G is computable. ✷

We can now prove our computable version of the Riesz representation theorem.

Theorem 20 (computable Riesz representation).

The multi-function RRT : (F, ‖F‖) |⇒ g mapping every functional F : C[0; 1] →

R and its norm to some function g ∈ BVC such that

— F (h) =
∫
hdg (for all h ∈ C[0; 1]),

— g is continuous on dom(g) \ {0, 1},

— g(0) = 0 and ‖F‖ = Var(g)

is ([δC → ρ], ρ, δBVC)-computable.

Proof: Let L0, L1, . . . be a canonical numbering of the set RI of open rational

intervals. By Lemma 19 there is a computable function G′ mapping (F, ‖F‖, n)

to some (xn, yn) ∈ R2 where (x0, y0) = (0, 0), (x1, y1) = (1, F (1)) and (xn, yn)) ∈

G(f, ‖F‖, Ln) if n ≥ 2. Since xn ∈ PCF and yn = gF (xn) for all n ≥ 2, {(xn, yn) |

n ∈ N} is the graph of a restriction g of gF . Since {xn | n ∈ N} is dense, g ∈ BVC.

By Theorem 15, g is continuous on dom(g)\{0, 1} and Var(g) = ‖F‖. Obviously,

g(0) = 0. By Theorem 16, F (h) =
∫
hdg (for all h ∈ C[0; 1]).

By the type conversion theorem [Weihrauch(2008), Theorem 33], the multi-

function (F, ‖F‖) |⇒ ((xn, yn))n∈N is ([δC → ρ], ρ, [νN → [ρ, ρ]]) - computable.

From a [νN → [ρ, ρ]]-name of the sequence ((xn, yn))n∈N = ((x0, y0), (x1, y1), . . .)
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we can compute a [ρ, ρ]ω- name [Weihrauch(2000), Lemma 3.3.16] which is a

δBVC-name of g. ✷

Finally, we prove that a reverse of the Riesz representation theorem is com-

putable.

Theorem 21. The operator T : (g, l) 7→ F , mapping every g ∈ BVC and every

l ∈ N with V ar(g) ≤ 2l to the functional F defined by F (h) =
∫
h dg for all

h ∈ C[0; 1], is computable.

Proof: First we show that (G, l, h) 7→
∫
h dg is computable. By Theorem 6.2.7

in [Weihrauch(2000)] a modulus m : N → N of continuity of h can be com-

puted from h. let νfs be a canonical notation of the finite sequences of natural

numbers. The set of all (g, (i1, . . . , in−1), j) such that (0, xi1 , . . . , xin−1
, 1) is a

partition for g of precision j is (δBVC, νfs, νN)-r.e. There is computable GTM on

represented sets which on input (g, j) finds a sequence (i1, . . . , in−1) such that

(0, xi1 , . . . , xin−1
, 1) is a partition for g of precision j. Therefore from (g, h, k, l)

we can compute a sequence (i1, . . . , in−1) such that X := (0, xi1 , . . . , xin−1
, 1) is

a partition for g of precision m(k+ l+ 1). By Lemma 4, |
∫
h dg− S(g, h,X)| ≤

2−l−kV (g) ≤ 2−k. The function (g, h,X) 7→ S(g, h,X) is computable (by a com-

putable GTM). Therefore, from (g, l, h, k) a number yk can be computed (multi-

valued) such that |
∫
h dg − yk| ≤ 2−k. By [Weihrauch(2008), Theorem 33] the

multi-function (g, l, h) |⇒ (yk)k∈N is computable. By [Weihrauch(2000), Theorem

4.3.7], (g, l, h) →
∫
h dg is (δBVC, νN, δC , ρ)-computable. By [Weihrauch(2000),

Theorem 3.3.15], (g, l) 7→ F such that F (h) =
∫
h dg is (δBVC, νN, [δC → ρ])-

computable. ✷

By Theorem 20, from F and ‖F‖ we can compute g such that Var(g) = ‖F‖,

and by Theorem 21, from g and an upper bound of Var(g) we can compute F .
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Appendix

Proof of Lemma 4

Since there are partitions for g of arbitrary precision, I is unique if it exists.

Next, we prove

|S(g, h, Z1)− S(g, h, Z2)| ≤ 2−kV (g) . (24)

for any two partitions Z1, Z2 for g with precision m(k + 1).

Let Z1 = (x0, x1, . . . , xn) and let Z ′ be a refinement of Z1. Z
′ can be written

as

x0 = y10 , y
1
1 , . . . , y

1
j1

= x1 = y20 , y
2
1 , . . . , y

2
j2

= x2 . . . . . . = yn0 , y
n
1 , . . . , y

n
jn

= xn

(j1, . . . , jn ≥ 1). Then

|S(g, h, Z1)− S(g, h, Z ′)|

=

∣∣∣∣∣

n∑

i=1

h(xi)
(
g(xi)− g(xi−1)

)
−

n∑

i=1

ji∑

l=1

h(yil)
(
g(yil)− g(yil−1)

)
∣∣∣∣∣

=

∣∣∣∣∣

n∑

i=1

h(xi)

ji∑

l=1

(
g(yil )− g(yil−1)

)
−

n∑

i=1

ji∑

l=1

h(yil)
(
g(yil )− g(yil−1)

)
∣∣∣∣∣

=

∣∣∣∣∣

n∑

i=1

ji∑

l=1

(
h(xi)− h(yil)

)(
g(yil)− g(yil−1)

)
∣∣∣∣∣

≤
n∑

i=1

ji∑

l=1

∣∣h(xi)− h(yil)
∣∣ ∣∣g(yil)− g(yil−1)

∣∣

≤ 2−k−1
n∑

i=1

ji∑

l=1

∣∣g(yil)− g(yil−1)
∣∣ since |xi − yil | ≤ 2−m(k+1)

≤ 2−k−1V (g)

Now let Z ′ be a common refinement of Z1 and Z2. Then |S(g, h, Z1) −

S(g, h, Z2)| ≤ |S(g, h, Z1)− S(g, h, Z ′)|+ |S(g, h, Z ′)− S(g, h, Z2)| ≤ 2−kV (g).
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There is a sequence (Zk)k of partitions for g such that Zk has precision

m(k + 1). By (24) for j > k, |S(g, h, Zk)− S(g, h, Zj)| ≤ 2−kV (g). Let I be the

limit of the Cauchy sequence (S(g, h, Zk))k. Let Z be a partition of precision

m(k + 1). Then for every i > k by (24),

|I − S(g, h, Z)| ≤ |I − S(g, h, Zi)|+ |S(g, h, Zi)− S(g, h, Z)|

≤ 2−iV (g) + 2−kV (g) ,

hence |I − S(g, f, Z)| ≤ 2−kV (g). ✷
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