The Riesz Representation Operator on the Dual of $C[0 ; 1]$ is Computable

Tahereh Jafarikhah
(University of Tarbiat Modares, Tehran, Iran
t.jafarikhah@modares.ac.ir)

Klaus Weihrauch
(University of Hagen, Hagen, Germany
Klaus.Weihrauch@FernUni-Hagen.de)

Abstract

By the Riesz representation theorem, for every linear functional $F: C[0 ; 1]$ $\rightarrow \mathbb{R}$ there is a function $g:[0 ; 1] \rightarrow \mathbb{R}$ of bounded variation such that $$
F(h)=\int h \mathrm{~d} g \quad(h \in C[0 ; 1]) .
$$

A computable version is proved in [Lu and Weihrauch(2007)]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. In this article we present a much more transparent proof. We first give a new proof of the classical theorem from which we then can derive the computable version easily. As in [Lu and Weihrauch(2007)] we use the framework of TTE, the representation approach for computable analysis, which allows to define natural concepts of computability for the operators under consideration.

Key Words: computable analysis, Riesz representation theorem
Category: F.0, F.1.1

1 Introduction

The Riesz representation theorem for continuous functionals on $C[0 ; 1]$, the Banach space of continuous functions $h:[0 ; 1] \rightarrow \mathbb{R}$ endowed with the supremum norm, can be stated as follows
[Goffman and Pedrick(1965), Heuser(2006)]:
Theorem 1 (Riesz representation theorem). For every continuous linear operator $F: C[0 ; 1] \rightarrow \mathbb{R}$ there is a function $g:[0 ; 1] \rightarrow \mathbb{R}$ of bounded variation such that

$$
F(h)=\int h \mathrm{~d} g \quad(h \in C[0 ; 1])
$$

and

$$
V(g)=\|F\| .
$$

Here, $\int h \mathrm{~d} g$ is the Riemann-Stieltjes integral [Schechter(1997)]. The reversal of this theorem is almost trivial: the operator $h \mapsto \int h \mathrm{~d} g$ is continuous and linear.

A computable version of the Riesz representation theorem has been proved in [Lu and Weihrauch(2007)]: a function g can be computed from F and its norm, and F can be computed from g and an upper bound of its total variation. This proof, however, is complicated and partly intransparent. In this article we present a simpler and much more transparent proof which starts with a new proof of the classical theorem from which the computable version can be derived easily.

The classical Riesz representation theorem can be proved as follows [Goffman and Pedrick(1965), Heuser(2006)]: By the Hahn-Banach theorem, the operator F has a continuous extension \bar{F} to the Banach space $B[0 ; 1]$ of bounded functions $h:[0 ; 1] \rightarrow \mathbb{R}$ such that $\|F\|=\|\bar{F}\|$. Then define g by $g(x):=\bar{F}\left(\chi_{[0 ; x]}\right)$, where $\chi_{[0 ; x]}$ is the characteristic function of $[0 ; x]$. In our proof, from F and $\|F\|$ we define a dense set of points x in which g will be continuous. For these points x we can compute F to $\chi_{[0 ; x]}$, then we define $g(x):=\bar{F}\left(\chi_{[0 ; x]}\right)$.

In Section 2 we extend the definition of the Variation and the RiemannStieltjes integral to partial functions $g: \subseteq[0 ; 1] \rightarrow \mathbb{R}$ the domains of which are dense in the unit interval. We observe that $\int h \mathrm{~d} g$ can be defined already from any restriction of g to a countable dense subset of it domain.

In Section 3 we introduce the set PC_{F} of the points x which do not contribute to $\|F\|$ and define $F\left(\chi_{[0 ; x]}\right)$ as the limit of $F\left(h_{i}\right)$ where $\left(h_{i}\right)_{i}$ is a sequence of continuous functons "converging" to $\chi_{[0 ; x]}$. We prove that g_{F} is continuous with no continuous proper extension, and that its total variation is $\|F\|$. Furthermore, $F(h)=\int h \mathrm{~d} g_{F}$ for all continuous functions $f:[0 ; 1] \rightarrow \mathbb{R}$.

In Section 4 we shortly summarize the computability concepts used in the following. In particular we define our representation of the functions with countable dense domain and finite variation.

Finally, in Section 5 we prove that from F and $\|F\|$ a restriction g of g_{F} can be computed (a function of bounded variation representing F), and that F can be computed from g and a upper bound of $\operatorname{Var}(g)$.

2 The Riemann-Stieltjes integral

We recall the definition of the Riemann-Stieltjes integral. We study only the special case of functions on the unit interval $[0 ; 1]$. Results for arbitrary intervals $[a ; b]$ can be derived easily from the special case. In our context it seems to be appropriate to generalize the definitions to partial functions $g: \subseteq[0 ; 1] \rightarrow \mathbb{R}$ of bounded variation.

A partition of the real interval $[0 ; 1]$ is a sequence $Z=\left(x_{0}, x_{1}, \ldots, x_{n}\right), n \geq 1$, of real numbers such that $0=x_{0}<x_{1} \ldots<x_{n}=1$. The partition Z has precision k, if $x_{i}-x_{i-1}<2^{-k}$ for $1 \leq i \leq n$. A partition $Z^{\prime}=\left(x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right)$, is finer than Z, if $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subseteq\left\{x_{0}^{\prime}, x_{1}^{\prime}, \ldots, x_{m}^{\prime}\right\} . Z$ is a partition for $g: \subseteq$ $[0: 1] \rightarrow \mathbb{R}$ if $\left\{x_{0}, x_{1}, \ldots, x_{n}\right\} \subseteq \operatorname{dom}(g)$. For a partition Z for g define

$$
\begin{equation*}
S(g, Z):=\sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right| . \tag{1}
\end{equation*}
$$

The variation of g is defined by

$$
\begin{equation*}
V(g):=\sup \{S(g, Z) \mid Z \text { is a partition for } g\} . \tag{2}
\end{equation*}
$$

The function g is of bounded variation if its variation $V(g)$ is finite.
Definition 2. Let BV be the set of (partial) functions $g: \subseteq[0 ; 1] \rightarrow \mathbb{R}$ of bounded variation such that $\{0,1\} \subseteq \operatorname{dom}(g)$ and $\operatorname{dom}(g)$ is dense in $[0 ; 1]$.

The relation to the usual definitions with total functions g is given by the following lemma.

Lemma 3.

1. Let $g, g^{\prime} \in \mathrm{BV}$ such that g is a restriction of g^{\prime}. Then $V(g) \leq V\left(g^{\prime}\right)$.
2. For every function $g \in B V$ the extension $\bar{g}:[0 ; 1] \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\bar{g}(x):=\lim _{y \in \operatorname{dom}(g), y \nearrow x} g(y) \quad \text { for } x \notin \operatorname{dom}(g) \tag{3}
\end{equation*}
$$

is of bounded variation such that $V(g)=V(\bar{g})$.
Proof: (1) Obvious.
(2) Suppose this limit from below does not exist. Then there is an increasing sequence $\left(y_{i}\right)_{i}$ converging to x such that the sequence $\left(g\left(y_{i}\right)\right)_{i}$ does not converge, hence there is some $\varepsilon>0$ such that $(\forall i)(\exists j>i)\left|g\left(y_{i}\right)-g\left(y_{j}\right)\right|>\varepsilon$. Therefore, for every n there is some partition $Z_{n}=\left(0, y_{i_{0}}, y_{i_{1}}, \ldots, y_{i_{n}}, 1\right)$ for g such that $S\left(g, Z_{n}\right)>n \cdot \varepsilon$. But g is of bounded variation, hence $\bar{g}(x)$ exists.

Since $\operatorname{dom}(g) \subseteq \operatorname{dom}(\bar{g}), V(g) \leq V(\bar{g})$. On the other hand suppose $X:=(0=$ $x_{1}, x_{2}, \ldots, x_{n}=1$) is a partition for \bar{g} and let $\varepsilon>0$. For $1 \leq i \leq n$ there are $y_{i} \in \operatorname{dom}(g)$ such that $x_{i-1}<y_{i}<x_{i}$ and $\left|g\left(y_{i}\right)-\bar{g}\left(x_{i}\right)\right|<\varepsilon /(2 n)$, hence for $Y:=\left(0, y_{1}, y_{2}, \ldots, y_{n}, 1\right),|S(\bar{g}, X)-S(g, Y)|<\varepsilon$. Therefore, $V(\bar{g}) \leq V(g)$.

On the space $C[0 ; 1]$ of continuous functions $h:[0 ; 1] \rightarrow \mathbb{R}$ the norm is defined by $\|h\|:=\sup _{x \in[0 ; 1]}|h(x)|$. On the space $C^{\prime}[0 ; 1]$ of the linear continuous operators $F: C[0 ; 1] \rightarrow \mathbb{R}$ the norm is defined by $\|F\|:=\sup _{\|h\| \leq 1}|F(h)|$.

In the following let $h:[0 ; 1] \rightarrow \mathbb{R}$ be a continuous function and let $g \in \mathrm{BV}$. For any partition $Z=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ of $[0 ; 1]$ for g define

$$
\begin{equation*}
S(g, h, Z):=\sum_{i=1}^{n} h\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \tag{4}
\end{equation*}
$$

Since h is continuous and its domain is compact, it has a (uniform) modulus of continuity, i.e., a function $m: \mathbb{N} \rightarrow \mathbb{N}$ such that $|h(x)-h(y)| \leq 2^{-k}$ if $|x-y| \leq 2^{-m(k)}$. We may assume that the function m is non-decreasing.

Lemma $4[\mathbf{L u}$ and Weihrauch(2007)]. Let $h:[0 ; 1] \rightarrow \mathbb{R}$ be a continuous function with modulus of continuity $m: \mathbb{N} \rightarrow \mathbb{N}$ and let $g \in \mathrm{BV}$. Then there is a unique number $I \in \mathbb{R}$ such that

$$
|I-S(g, h, Z)| \leq 2^{-k} V(g)
$$

for every partition Z for g with precision $m(k+1)$.
A proof is given in [Lu and Weihrauch(2007)]. A revised proof is given in the appendix.

Definition 5. The number I from Lemma 4 is called the Riemann-Stieltjes integral and is denoted by $\int h \mathrm{~d} g$.

Notice that by Lemma 4 the integral $\int f \mathrm{~d} g$ is determined already by the values of the function g on an arbitrary set X that is dense in $\operatorname{dom}(g)$, since there are partitions of arbitrary precision that contain of points only from the set X.

Corollary 6. Let $g, g^{\prime} \in$ BV. Suppose $A \subseteq \operatorname{dom}(g) \cap \operatorname{dom}\left(g^{\prime}\right)$ is dense in $[0 ; 1]$ such that $\{0,1\} \subseteq A$ and $(\forall x \in A) g(x)=g^{\prime}(x)$. Then $\int h \mathrm{~d} g=h \mathrm{~d} g^{\prime}$ for every $h \in C[0 ; 1]$.

Proof: Obvious.

3 Another proof of the classical theorem

In this section we present a proof of the (non-computable) Riesz representation theorem which we will effectivize in Section 5. Let Pg be the (countable) set of of polygon functions $h:[0 ; 1] \rightarrow \mathbb{R}$ with rational vertices and let RI $:=\{(a ; b) \mid$ $a, b \in \mathbb{Q}, 0 \leq a<b \leq 1\}$ be the set of open rational subintervals of $(0 ; 1)$. By the Weierstraß approximation theorem Pg is dense in $C[0 ; 1]$. In the following let $F: C[0 ; 1] \rightarrow \mathbb{R}$ be a linear continuous functional.

Definition 7. For $h \in C[0 ; 1], Y \subseteq[0 ; 1]$, and $x \in(0 ; 1)$ define NZ $(h),\|F\|_{Y}$ and $\mathrm{PC}_{F} \subseteq(0 ; 1)$ as follows:

$$
\begin{align*}
\mathrm{NZ}(h) & :=\{x \in[0 ; 1] \mid h(x) \neq 0\}, \tag{5}\\
\|F\|_{Y} & :=\sup \{|F(h)| \mid h \in C[0 ; 1],\|h\| \leq 1, \mathrm{NZ}(h) \subseteq Y\}, \tag{6}\\
x \in \mathrm{PC}_{F} & : \Longleftrightarrow \inf \left\{\|F\|_{J} \mid x \in J \in \mathrm{RI}\right\}=0 . \tag{7}
\end{align*}
$$

$\mathrm{NZ}(h)$ is the non-zero region of the function $h,\|F\|_{Y}$ is the contribution of the set Y to $\|F\|$, and $x \in \mathrm{PC}_{F}$ means that the contribution of $x \in(0 ; 1)$ to $\|F\|$ is 0 . The points from PC_{F} will be the points of continuity of the associated function g_{F} of bounded variation.

Lemma 8. 1. $\|F\|_{Y} \leq\|F\|_{Z}$ if $Y \subseteq Z$,
2. $\|F\|_{J_{1}}+\ldots+\|F\|_{J_{n}} \leq\|F\|$ if the J_{i} are pairwise disjoint.
3. $\left|F\left(h_{1}\right)\right|+\ldots+\left|F\left(h_{n}\right)\right| \leq\|F\|$ if $\left\|h_{i}\right\| \leq 1$ for $i=1, \ldots, n$ and the sets $\mathrm{NZ}\left(h_{i}\right)$ are pairwise disjoint.

Proof: (1) Obvious.
(2) Let $\varepsilon>0$. For $i=1, \ldots n$ there is a continuous functions h_{i} such that $\left\|h_{i}\right\| \leq 1, \mathrm{NZ}\left(h_{i}\right) \subseteq J_{i}$ and $\left|F\left(h_{i}\right)\right| \geq\|F\|_{J_{i}}-\varepsilon$. We may assume $F\left(h_{i}\right) \geq 0$ (if $F\left(h_{i}\right)<0$, replace h_{i} by $-h_{i}$). Since the sets NZ $\left(h_{i}\right)$ are pairwise disjoint, $\left\|\sum_{i} h_{i}\right\| \leq 1$. We obtain

$$
\sum_{i}\|F\|_{J_{i}} \leq n \varepsilon+\sum_{i}\left|F\left(h_{i}\right)\right|=n \varepsilon+\sum_{i} F\left(h_{i}\right)=n \varepsilon+F\left(\sum_{i} h_{i}\right) \leq n \varepsilon+\|F\|
$$

This is true for all $\varepsilon>0$, hence $\sum_{i}\|F\|_{J_{i}} \leq\|F\|$.
(3)This follows from (2).

At most countably many points can have a positive contribution to $\|F\|$.
Lemma 9. The complement $(0 ; 1) \backslash \mathrm{PC}_{F}$ of PC_{F} is at most countable.
Proof: For $n \in \mathbb{N}$ let T_{n} be the set of all $x \in(0 ; 1)$ such that $\inf \left\{\|F\|_{J} \mid\right.$ $x \in J\}>2^{-n}$. Suppose, $\operatorname{card}\left(T_{n}\right) \geq N>2^{n} \cdot\|F\|$. Then there are N points $x_{1}, \ldots, x_{N} \in T_{n}$ and pairwise disjoint intervals J_{1}, \ldots, J_{N} such that $x_{i} \in J_{i}$. Since $\|F\|_{J_{i}}>2^{-n}$ for all $i, \sum_{i}\|F\|_{J_{i}}>N \cdot 2^{-n}>\|F\|$. But this is false by Lemma 8. Therefore, T_{n} is finite for every n and $(0 ; 1) \backslash \mathrm{PC}_{F}=\bigcup_{n} T_{n}$ is at most countable.

We define slanted step functions (Figure 2) as approximations of characteristic functions $\chi_{[0 ; x]}$.

Definition 10. For $I=(a ; b) \in \mathrm{RI}$ let $s_{I} \in \mathrm{Pg}$, the slanted step function at I, be the polygon function whose graph has the vertices $(0,1),(a, 1),(b, 0)$, and $(1,0)$.

Suppose $J, K \subseteq L$. Then $\mathrm{NZ}\left(s_{J}-s_{K}\right) \subseteq L$ and $\left\|s_{J}-s_{K}\right\| \leq 1$, hence $\mid F\left(s_{J}\right)-$ $F\left(s_{K}\right)\left|=\left|F\left(s_{J}-s_{K}\right)\right| \leq\|F\|_{L}\right.$, therefore

$$
\begin{equation*}
\left|F\left(s_{J}\right)-F\left(s_{K}\right)\right| \leq\|F\|_{L} \text { if } J, K \subseteq L \tag{8}
\end{equation*}
$$

In the classical proof (Section 1) $g(x)$ can be defined as $\bar{F}\left(\chi_{[0 ; x]}\right)$, where \bar{F} is the Hahn-Banach extension of F to the bounded real functions. We replace this definition as follows considering only points of continuity:

Definition 11. Define a function $g_{F}: \subseteq \mathbb{R} \rightarrow \mathbb{R}$ as follows: $\operatorname{dom}\left(g_{F}\right):=\{0,1\} \cup$ $\mathrm{PC}_{F}, g(0):=0, g(1):=F(1)$. For $x \in \mathrm{PC}_{F}$ let $\left(J_{n}\right)_{n \in \mathbb{N}}$ be a sequence of rational intervals such that $x \in J_{n+1} \subseteq J_{n}$ and $\lim _{n \rightarrow \infty} \operatorname{length}\left(J_{n}\right)=0$. Then let $g_{F}(x):=\lim _{n \rightarrow \infty} F\left(s_{J_{n}}\right)$.

Since $x \in \mathrm{PC}_{F}, \lim _{n \rightarrow \infty}\|F\|_{J_{n}}=0$ by monotonicity in J of $\|F\|_{J}$. We show that $g_{F}(x)$ exists and does not depend on the specific sequence $\left(J_{n}\right)_{n \in \mathbb{N}}$.

Lemma 12. The function g_{F} is well-defined.
Proof: For every $\varepsilon>0$ there is some n such that $\|F\|_{J_{n}}<\varepsilon$. By (8) for $k>n$, $\left|F\left(s_{J_{n}}\right)-F\left(s_{J_{k}}\right)\right| \leq\|F\|_{J_{n}}<\varepsilon$, hence $\lim _{n \rightarrow \infty} F\left(s_{J_{n}}\right)$ exists.

Let $\left(L_{n}\right)_{n \in \mathbb{N}}$ be another sequence of rational intervals such that $x \in L_{n+1} \subseteq L_{n}$ and $\lim _{n \rightarrow \infty}\|F\|_{L_{n}}=0$. Then $\lim _{n \rightarrow \infty} F\left(s_{L_{n}}\right)$ exists accordingly. Let $K_{n}:=$ $J_{n} \cap L_{n}$. By (8), $\left|F\left(s_{J_{n}}\right)-F\left(s_{K_{n}}\right)\right| \leq\|F\|_{J_{n}}$ and $\left|F\left(s_{L_{n}}\right)-F\left(s_{K_{n}}\right)\right| \leq\|F\|_{L_{n}}$, hence $\left|F\left(s_{J_{n}}\right)-F\left(s_{L_{n}}\right)\right| \leq\|F\|_{J_{n}}+\|F\|_{L_{n}}$. Therefore,
$\lim _{n}\left|F\left(s_{J_{n}}\right)-F\left(s_{L_{n}}\right)\right|=0$ and finally $\lim _{n} F\left(s_{J_{n}}\right)=\lim _{n} F\left(s_{L_{n}}\right)$.
Lemma 13. Suppose $J, K, L \in \mathrm{RI}, J, K \subseteq L$ and $x, y \in \mathrm{PC}_{F} \cap L$. Then

$$
\begin{align*}
\left|F\left(s_{J}\right)-F\left(s_{K}\right)\right| & \leq\|F\|_{L}, \tag{9}\\
\left|F\left(s_{J}\right)-g_{F}(y)\right| & \leq\|F\|_{L}, \tag{10}\\
\left|g_{F}(x)-g_{F}(y)\right| & \leq\|F\|_{L} \tag{11}
\end{align*}
$$

Proof:

(9): By (8).
(10): For every $\varepsilon>0$ there is some $K \subseteq L$ such that $y \in K$ and $\mid F\left(s_{K}\right)-$ $g_{F}(y) \mid \leq \varepsilon$. Then by $(9),\left|F\left(s_{J}\right)-g_{F}(y)\right| \leq\left|F\left(s_{J}\right)-F\left(s_{K}\right)\right|+\left|F\left(s_{K}\right)-g_{F}(y)\right| \leq$ $\|F\|_{L}+\varepsilon$. Therefore $\left|F\left(s_{J}\right)-g_{F}(y)\right| \leq\|F\|_{L}$.
(11): For every $\varepsilon>0$ there is some $J \subseteq L$ such that $x \in J$ and $\mid F\left(s_{J}\right)-$ $g_{F}(x) \mid \leq \varepsilon$. Then by (10), $\left|g_{F}(x)-g_{F}(y)\right| \leq\left|g_{F}(x)-F\left(s_{J}\right)\right|+\left|F\left(s_{J}\right)-g_{F}(y)\right| \leq$ $\|F\|_{L}+\varepsilon$. Therefore $\left|g_{F}(x)-g_{F}(y)\right| \leq\|F\|_{L}$.

We will prove some further properties of the function g_{F}. In the following, $\lim _{y \nearrow x} g_{F}(y)$ abbreviates $\lim _{y \in \operatorname{dom}\left(g_{F}\right), y \not \nearrow_{x} g_{F}(y) \text { and } \lim _{y \searrow x} g_{F}(y) \text { abbreviates }}$ $\lim _{y \in \operatorname{dom}\left(g_{F}\right), y \searrow x} g_{F}(y)$.

Lemma 14. For all $x \in(0 ; 1)$,

1. $\lim _{y \nearrow x} g_{F}(y)$ and $\lim _{y \searrow x} g_{F}(y)$ exist,
2. $\left|\lim _{y \nearrow x} g_{F}(y)-\lim _{y \searrow x} g_{F}(y)\right|=\inf _{x \in J}\|F\|_{J}$.

Proof:

(1) Suppose that $\lim _{y} \nearrow_{x} g_{F}(y)$ does not exist. Then there is an increasing sequence $\left(y_{i}\right)_{i}$ from PC_{F} converging to x such that the sequence $\left(g_{F}\left(y_{i}\right)\right)_{i}$ does not converge, hence there is some $\varepsilon>0$ such that $(\forall N)(\exists i, j>N)\left|g_{F}\left(y_{i}\right)-g_{F}\left(y_{j}\right)\right|>$ ε. Therefore, for every N we can find $y_{i_{0}}<\ldots<y_{i_{2 N}}$ from the sequence $\left(y_{i}\right)_{i}$ such that $\left|g_{F}\left(y_{i_{2 k}}\right)-g_{F}\left(y_{i_{2 k-1}}\right)\right|>\varepsilon$, for $1 \leq k \leq N$. Hence there are pairwise disjoint rational intervals $J_{1}, J_{2}, \ldots, J_{N}$ such that $y_{i_{2 k-1}}, y_{i_{2 k}} \in J_{k}$ for $1 \leq k \leq N$. Then by (11), $\|F\|_{J_{k}}>\varepsilon$ for each $1 \leq k \leq N$. By Lemma 8 , $\|F\| \geq \sum_{k=1}^{N}\|F\|_{J_{k}}>N \cdot \varepsilon$. Since this is true for all numbers $N,\|F\|$ is unbounded. Contradiction.
(2) Let $a=\inf _{x \in J}\|F\|_{J}$ and $\delta>0$. There is some $J \in \mathrm{RI}$ such that

$$
\begin{equation*}
x \in J \text { and }\left|\|F\|_{J}-a\right|<\delta . \tag{12}
\end{equation*}
$$

$" \leq ": B y(11)$ and (12) for $y_{1}, y_{2} \in J \cap \mathrm{PC}_{F},\left|g_{F}\left(y_{1}\right)-g_{F}\left(y_{2}\right)\right| \leq\|F\|_{J}<a+\delta$, hence $\left|\lim _{y \not \nearrow_{x}} g_{F}(y)-\lim _{y \searrow x} g_{F}(y)\right| \leq a+\delta$. Since this is true for all $\delta>0$, " \leq " is true.
" \geq ": An example of the functions, intervals etc. defined in the following is shown in Figure 1. There is a rational polygon h such that

$$
\mathrm{NZ}(h) \subseteq J,\|h\| \leq 1 \text { and }\left|F(h)-\|F\|_{J}\right|<\delta
$$

The function h can be chosen such that

$$
\begin{equation*}
K \subseteq J ; \quad x \in K \text { and }(\forall y \in K) h(y)=c \tag{13}
\end{equation*}
$$

for some $K \in \mathrm{RI}$ and some c such that $0<|c| \leq 1$. We may assume $0<c \leq 1$ (if $c<0$ replace h by $-h$). There are $y_{<}, y_{>} \in K \cap \mathrm{PC}_{F}, y_{<}<x<y_{>}$such that

$$
\begin{equation*}
\left|\lim _{y \nearrow x} g_{F}(y)-g_{F}\left(y_{<}\right)\right|<\delta \text { and }\left|\lim _{y \searrow x} g_{F}(y)-g_{F}\left(y_{>}\right)\right|<\delta . \tag{14}
\end{equation*}
$$

There are $L, R \in \mathrm{RI}$ such that $L, R \subseteq K, L<x<R, y_{<} \in L, y_{>} \in R$ and

$$
\begin{equation*}
\|F\|_{L}<\delta \text { and }\|F\|_{R}<\delta \tag{15}
\end{equation*}
$$

Let m_{L} and m_{R} be the center of L and R respectively. Let $t_{L}:[0 ; 1] \rightarrow \mathbb{R}$ be the rational polygon whose graph has the vertices $(0,0),(\inf L, 0),\left(m_{L}, c\right),(\sup L, 0)$, $(1,0)$ and let $t_{R}:[0 ; 1] \rightarrow \mathbb{R}$ be the rational polygon whose graph has the vertices $(0,0),(\inf R, 0),\left(m_{R}, c\right),(\sup R, 0),(1,0)$. Then $\left|F\left(t_{L}\right)\right| \leq\|F\|_{L}<\delta$ and $\left|F\left(t_{R}\right)\right| \leq\|F\|_{R}<\delta$.

Let $h^{\prime}:=h-t_{L}-t_{R}$. Then

$$
\begin{equation*}
\left|F\left(h^{\prime}\right)-F(h)\right|=\left|F\left(t_{L}\right)+F\left(t_{R}\right)\right| \leq 2 \delta . \tag{16}
\end{equation*}
$$

Let N be the interval $\left(m_{L} ; m_{R}\right)$. Let h_{0} be the polygon function whose graph has the vertices $(0,0),\left(m_{L}, 0\right),(\sup L, c),(\inf R, c),\left(m_{R}, 0\right),(1,0)$. Let $\bar{h}:=h^{\prime}-$ h_{0}.

Figure 1: The functions h, h_{0} and h^{\prime}

We will show that $|F(\bar{h})|$ is small and $\left|F\left(h_{0}\right)\right| \approx a$. There is some rational polygon function h_{0}^{\prime} such that $\left\|h_{0}^{\prime}\right\|=1, \mathrm{NZ}\left(h_{0}^{\prime}\right) \subseteq N$ and

$$
\begin{equation*}
\left|\|F\|_{N}-F\left(h_{0}^{\prime}\right)\right|<\delta \tag{17}
\end{equation*}
$$

There are $\alpha, \beta \in\{1,-1\}$ such that $\left|F\left(h_{0}^{\prime}\right)\right|+|F(\bar{h})|=F\left(\alpha h_{0}^{\prime}\right)+F(\beta \bar{h})=$ $F\left(\alpha h_{0}^{\prime}+\beta \bar{h}\right)$. Since NZ $\left(h_{0}^{\prime}\right) \cap \mathrm{NZ}(\bar{h})=\emptyset,\left\|\alpha h_{0}^{\prime}+\beta \bar{h}\right\| \leq 1$, hence $\left|F\left(h_{0}^{\prime}\right)\right|+|F(\bar{h})| \leq$ $\|F\|_{J} \leq a+\delta$. Since $\left\|F_{N}\right\| \leq\left|F\left(h_{0}^{\prime}\right)\right|+\delta$ and $\|F\|_{N} \geq a$ because of $x \in N$,

$$
\left|F\left(h^{\prime}\right)-F\left(h_{0}\right)\right|=|F(\bar{h})| \leq a+\delta-\left|F\left(h_{0}^{\prime}\right)\right| \leq a+\delta-\|F\|_{N}+\delta \leq 2 \delta
$$

Therefore $F(\bar{h})$ is small. From the above estimations, $|a| \leq\left|a-\|F\|_{J}\right|+\left|\|F\|_{J}-F(h)\right|+\left|F(h)-F\left(h^{\prime}\right)\right|+\left|F\left(h^{\prime}\right)-F\left(h_{0}\right)\right|+\left|F\left(h_{0}\right)\right|$, hence $a \leq \delta+\delta+2 \delta+2 \delta+\left|F\left(h_{0}\right)\right|$, that is,

$$
a \leq 6 \delta+\left|F\left(h_{0}\right)\right| .
$$

Therefore, $\left|F\left(h_{0}\right)\right|$ is big. By construction, $0<c=\left\|h_{0}\right\| \leq 1$. Let $\widehat{h}:=h_{0} / c$. Then $a \leq 6 \delta+|F(\widehat{h})|$.

Since $\|\widehat{h}\|=1, \widehat{h}=s_{T}-s_{S}$ where $S=\left(m_{L} ; \sup L\right)$ and $T=\left(\inf R ; m_{R}\right)$. By Lemma 13,

$$
\left|g_{F}\left(y_{<}\right)-F\left(s_{S}\right)\right| \leq\|F\|_{K} \text { and }\left|g_{F}\left(y_{>}\right)-F\left(s_{T}\right)\right| \leq\|F\|_{K}
$$

hence by Lemma 13,

$$
\begin{aligned}
a \leq & 6 \delta+|F(\widehat{h})| \\
= & 6 \delta+\left|F\left(s_{T}\right)-F\left(s_{S}\right)\right| \\
\leq & 6 \delta+\left|F\left(s_{T}\right)-g_{F}\left(y_{>}\right)\right|+\left|g_{F}\left(y_{>}\right)-\lim _{y \searrow x} g_{F}(y)\right| \\
& +\left|\lim _{y \searrow x} g_{F}(y)-\lim _{y \nearrow x} g_{F}(y)\right|+\left|\lim _{y \nearrow x} g_{F}(y)-g_{F}\left(y_{<}\right)\right|+\left|g_{F}\left(y_{<}\right)-F\left(s_{S}\right)\right| \\
\leq & 6 \delta+\|F\|_{R}+\delta+\left|\lim _{y \searrow x} g_{F}(y)-\lim _{y \nearrow x} g_{F}(y)\right|+\delta+\|F\|_{L} \\
\leq & \left|\lim _{y \searrow x} g_{F}(y)-\lim _{y \nearrow x} g_{F}(y)\right|+10 \delta
\end{aligned}
$$

Since this is true for all $\delta>0, " \geq "$ has been proved.

Theorem 15.

1. g_{F} is continuous on $(0 ; 1) \cap \operatorname{dom}\left(g_{F}\right)=\mathrm{PC}_{F}$,
2. no proper extension g of g_{F} is continuous on $(0 ; 1) \cap \operatorname{dom}(g)$,
3. $\operatorname{Var}(g)=\|F\|$ for every restriction $g \in \mathrm{BV}$ of g_{F},
4. $\operatorname{Var}\left(g_{F}\right)=\|F\|$.

Proof: 1. If $x \in \mathrm{PC}_{F}$ then $\lim _{y \searrow x} g_{F}(y)=\lim _{y} \lambda_{x} g_{F}(y)$ by Lemma 14. Therefore g_{F} is continuous in x.
2. Let g be an extension of g_{F} and let g be continuous in $x \in \operatorname{dom}(g)$. Then $\lim _{y \searrow x} g_{F}(y)=\lim _{y \nearrow x} g_{F}(y)$, hence $\inf _{x \in J}\|F\|_{J}=0$ by Lemma 14, that is, $x \in \mathrm{PC}_{F}$.
3. $\operatorname{Var}(\boldsymbol{g}) \leq\|\boldsymbol{F}\|$: Let $X:=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ be a partition for g. Let $\varepsilon>0$. By the definition of g_{F} for every $0<i<n$ there is an interval $K_{i} \in$ RI such that $x_{i} \in K_{i}, \quad \sup K_{i}<\inf K_{i+1},\|F\|_{K_{i}}<\varepsilon$. Furthermore, for $0<i<n$ there are intervals $L_{i}, R_{i} \in \mathrm{RI}$ such that $L_{i}, R_{i} \subseteq K_{i}$ and $\sup L_{i}<x_{i}<\inf R_{i}$. Figure 2 shows the intervals and some corresponding slanted step functions. By Lemma 8 and Lemma 13,

$$
\begin{aligned}
S(g, X)= & \left|g\left(x_{1}\right)\right|+\sum_{i=2}^{n-1}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\left|g(1)-g\left(x_{n-1}\right)\right| \\
\leq & \left|F\left(s_{L_{1}}\right)\right|+\varepsilon+\sum_{i=2}^{n-1}\left(\left|F\left(s_{L_{i}}-s_{R_{i-1}}\right)\right|+2 \varepsilon\right) \\
& \quad+\left|F\left(1-s_{R_{n-1}}\right)\right|+\varepsilon \\
\leq & 2 n \varepsilon+\|F\| .
\end{aligned}
$$

Figure 2: The intervals K_{i}, L_{i}, R_{i} and corresponding slanted step functions.

Since this is true for all $\varepsilon>0, S(g, X) \leq\|F\|$. Since this is true for all partitions X for $g, \operatorname{Var}(g) \leq\|F\|$.
3. $\|\boldsymbol{F}\| \leq \operatorname{Var}(\boldsymbol{g})$: First we show that for every rational polygon function $h_{0} \in \operatorname{Pg}$ there are a partition $X=\left(0=x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=1\right)$ and intervals K_{i}, L_{i}, R_{i} such that for the function h_{2} (see Figure 3), $F\left(h_{0}\right)$ is close to $F\left(h_{2}\right)$ if $\left(x_{i}-x_{i-1}\right)$ and $\|F\|_{K_{i}}$ are sufficiently small for all $1<i \leq n$. By Lemma 13 $F\left(h_{2}\right)$ can be related to $S(g, X)$ (and to $S\left(g, h_{0}, X\right)$ in the proof of Theorem 16).

Let $h_{0} \in \operatorname{Pg}$ and $k \in \mathbb{N}$. Let $m: \mathbb{N} \rightarrow \mathbb{N}$ be a modulus of continuity of h_{0}. Let $n:=2^{m(k)+1}+1$. Since $\operatorname{dom}(g)$ is dense, there is a partition $X=(0=$ $x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}=1$) for g such that $x_{i}-x_{i-1}<2^{-m(k)-1}$. Since all the $x_{i} \in \mathrm{PC}_{F}$, for every $0<i<n$ there are rational intervals K_{i}, L_{i}, R_{i} such that

$$
\begin{gathered}
x_{i} \in K_{i}, \quad 0<\inf K_{1}, \quad \sup K_{i}<\inf K_{i+1}, \quad \sup K_{n-1}<1 \\
\|F\|_{K_{i}}<2^{-k} / n \\
\inf L_{i}=\inf K_{i}, \quad \sup L_{i}<x_{i}<\inf R_{i} \quad \sup R_{i}=\sup K_{i}
\end{gathered}
$$

Figure 3 shows an example of the left end of the unit interval with the function h_{0} and the intervals.

For $1 \leq i \leq n$ define

$$
c_{i}:=\max \left\{h_{0}(x) \mid \sup R_{i-1} \leq x \leq \inf L_{i}\right\}
$$

(where $\sup R_{0}:=0$ and $\inf L_{n}:=1$). Define a rational polygon function h_{1} by the following sequence of vertices:
$\left(\sup R_{0}, c_{1}\right),\left(\inf L_{1}, c_{1}\right),\left(\sup R_{1}, c_{2}\right),\left(\inf L_{2}, c_{2}\right), \ldots,\left(\sup R_{n-1}, c_{n}\right),\left(\inf L_{n}, c_{n}\right)$ (see Figure 3, notice that c_{i} may be negative).

Suppose $1 \leq i \leq n$ and $\sup R_{i-1} \leq x \leq \inf L_{i}$. Then $x_{i-1} \leq x \leq x_{i}$ and $h_{1}(x)=c_{i}=h_{0}(y)$ for some y with $x_{i-1} \leq y \leq x_{i}$. Then $|x-y|<2^{-m(k)}$, hence $\left|h_{1}(x)-h_{0}(x)\right|=\left|h_{0}(y)-h_{0}(x)\right|<2^{-k}$.

Figure 3: The functions h_{0}, h_{1} and h_{2}..

Suppose $0<i<n$ and $x \in K_{i}$. Then $h_{1}(x)=h_{0}(y)$ for some y such that $x_{i-1}<y<x_{i+1}$. Since $x_{i-1}<x<x_{i+1},|x-y|<2^{-m(k)}$ and hence $\left|h_{1}(x)-h_{0}(x)\right|=\left|h_{0}(y)-h_{0}(x)\right|<2^{-k}$.
Therefore, $\left\|h_{1}-h_{0}\right\|<2^{-k}$ and hence $\left|F\left(h_{1}\right)-F\left(h_{0}\right)\right| \leq\|F\| \cdot 2^{-k}$.
Let $1 \leq i \leq n$. Then $c_{i}=h_{0}(y)$ for some $x_{i-1} \leq y \leq x_{i}$. Since $\left|x_{i}-y\right|<$ $2^{-m(k)},\left|h_{0}\left(x_{i}\right)-c_{i}\right|=\left|h_{0}\left(x_{i}\right)-h_{0}(y)\right| \leq 2^{-k}$.

From h_{1} we construct a third function h_{2} by replacing for every $0<i<n$ the line segment from $\left(\inf L_{i}, c_{i}\right)$ to $\left(\sup R_{i}, c_{i+1}\right)$ in the graph of h_{1} by the polygon $\left(\inf L_{i}, c_{i}\right),\left(\sup L_{i}, 0\right),\left(\inf R_{i}, 0\right),\left(\sup R_{i}, c_{i+1}\right)$ (see Figure 3). Then by Definition 10,

$$
h_{2}=c_{1} s_{L_{1}}+\sum_{i=2}^{n-1} c_{i}\left(s_{L_{i}}-s_{R_{i-1}}\right)+c_{n}\left(1-s_{R_{n-1}}\right)
$$

For $0<i<n$ let d_{i} be the polygon function defined by the sequence of vertices $(0,0),\left(\inf L_{i}, 0\right),\left(\sup L_{i}, h_{1}\left(\sup L_{i}\right)\right),\left(\inf R_{1}, h_{1}\left(\inf R_{1}\right)\right),\left(\sup R_{i}, 0\right),(1,0)$. Then $h_{2}=h_{1}-\sum_{i=1}^{n-1} d_{i}$. Since $\mathrm{NZ}\left(d_{i}\right) \subseteq K_{i}$ and $\left\|d_{i}\right\| \leq\left\|h_{0}\right\|$,

$$
\left|F\left(h_{2}\right)-F\left(h_{1}\right)\right| \leq \sum_{i=1}^{n-1}\left|F\left(d_{i}\right)\right| \leq \sum_{i=1}^{n-1}\|F\|_{K_{i}} \cdot\left\|h_{0}\right\| \leq\left\|h_{0}\right\| \cdot 2^{-k}
$$

We prove $\|F\| \leq \operatorname{Var}(g)$. There is some $h_{0} \in \operatorname{Pg}$ such that $\left\|h_{0}\right\| \leq 1$ and $\|F\| \leq\left|F\left(h_{0}\right)\right|+2^{-k}$. Since $\left|c_{i}\right| \leq 1$ and by Lemma 13,

$$
\begin{aligned}
\|F\| \leq & \left|F\left(h_{0}-h_{1}\right)\right|+\left|F\left(h_{1}-h_{2}\right)\right|+\left|F\left(h_{2}\right)\right|+2^{-k} \\
\leq & \leq\left|F\left\|\cdot 2^{-k}+\right\| h_{0} \| \cdot 2^{-k}+\left|F\left(h_{2}\right)\right|+2^{-k}\right. \\
\leq & \left|F\left(s_{L_{1}}\right)\right|+\sum_{i=2}^{n-1}\left|F\left(s_{L_{i}}-s_{R_{i-1}}\right)\right|+\left|F\left(1-s_{R_{n-1}}\right)\right| \\
& \quad+(\|F\|+2) \cdot 2^{-k} \\
\leq & \left|g\left(x_{1}\right)\right|+2^{-k} / n+\sum_{i=2}^{n-1}\left(\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+2 \cdot 2^{-k} / n\right) \\
& \quad+\left|g(1)-g\left(x_{n-1}\right)\right|+2^{-k} / n+(\|F\|+2) \cdot 2^{-k} \\
\leq & \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+2 \cdot 2^{-k}+(\|F\|+2) \cdot 2^{-k} \\
= & S(g, X)+(\|F\|+4) \cdot 2^{-k} \\
\leq & \operatorname{Var}(g)+(\|F\|+4) \cdot 2^{-k} .
\end{aligned}
$$

Since this is true for all $k,\|F\| \leq \operatorname{Var}(g)$.
4. This follows from 3.

Theorem 16. Let $g \in \mathrm{BV}$ be a restriction of g_{F}. Then for every $h \in C[0 ; 1]$, $F(h)=\int h \mathrm{~d} g$.

Proof: Let $h \in C[0 ; 1]$ and $k \in \mathbb{N}$. There is a function $h_{0} \in \operatorname{Pg}$ such that $\left\|h-h_{0}\right\| \leq 2^{-k}$. Let $m, n, X, K_{i}, L_{i}, R_{i}, c_{i}, h_{1}, h_{2}$ be the objects introduced in the proof of Theorem 15.3. We prove that $|F(h)-S(g, h, X)|$ is small. By the results that we have already shown,

$$
\begin{aligned}
\left|F(h)-F\left(h_{2}\right)\right| & \leq\left|F(h)-F\left(h_{0}\right)\right|+\left|F\left(h_{0}\right)-F\left(h_{1}\right)\right|+\left|F\left(h_{1}\right)-F\left(h_{2}\right)\right| \\
& \leq\|F\| \cdot 2^{-k}+\|F\| \cdot 2^{-k}+\left\|h_{0}\right\| \cdot 2^{-k} \\
& =\left(2\|F\|+\left\|h_{0}\right\|\right) \cdot 2^{-k}
\end{aligned}
$$

Since $\left|F\left(s_{R_{i}}\right)+B\right| \leq\left|g\left(x_{i}\right)+B\right|+\|F\|_{K_{i}}$ etc. by Lemma 13, $\quad c_{i} \leq\left\|h_{0}\right\|$, and $\left|h_{0}\left(x_{i}\right)-c_{i}\right| \leq 2^{-k}$,

$$
\begin{aligned}
& \quad\left|F\left(h_{2}\right)-S\left(g, h_{0}, X\right)\right| \\
& \left.\leq \mid c_{1} F\left(s_{L_{1}}\right)+\sum_{i=2}^{n-1} c_{i}\left(F\left(s_{L_{i}}\right)-F s_{R_{i-1}}\right)\right)+c_{n}\left(F(1)-F\left(s_{R_{n-1}}\right)\right) \\
& \quad-\sum_{i=1}^{n} h_{0}\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \mid
\end{aligned}
$$

$$
\begin{aligned}
& \leq \mid c_{1} g\left(x_{1}\right)+\sum_{i=2}^{n-1} c_{i}\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)+c_{n}\left(g(1)-g\left(x_{n-1}\right)\right) \\
& \quad-\sum_{i=1}^{n} h_{0}\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right) \mid \\
& \quad+\left|c_{1}\right|\|F\|_{K_{1}}+\sum_{i=2}^{n-1}\left|c_{i}\right|\left(\|F\|_{K_{i}}+\|F\|_{K_{i-1}}\right)+\left|c_{n}\right|\|F\|_{K_{n-1}} \\
& \leq\left|\sum_{i=1}^{n}\left(c_{i}-h_{0}\left(x_{i}\right)\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)\right|+2\left\|h_{0}\right\| \cdot 2^{-k} \\
& \leq \sum_{i=1}^{n}\left|c_{i}-h_{0}\left(x_{i}\right)\right| \cdot\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right|+\left\|h_{0}\right\| \cdot 2^{-k+1} \\
& \leq 2^{-k} \cdot S(g, X)+\left\|h_{0}\right\| \cdot 2^{-k+1} \\
& \leq 2^{-k} \cdot \operatorname{Var}(g)+\left\|h_{0}\right\| \cdot 2^{-k+1} \\
& =\left(\|F\|+2\left\|h_{0}\right\|\right) \cdot 2^{-k}
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
\left|S\left(g, h_{0}, X\right)-S(g, h, X)\right| & =\left|\sum_{i=1}^{n}\left(h_{0}\left(x_{i}\right)-h\left(x_{i}\right)\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)\right| \\
& \leq 2^{-k-} \sum_{i=1}^{n}\left|g\left(x_{i}\right)-g\left(x_{i-1}\right)\right| \\
& =2^{-k} \cdot S(g, X) \\
& \leq 2^{-k} \cdot \operatorname{Var}(g) \\
& =2^{-k} \cdot\|F\|
\end{aligned}
$$

Combining these results we obtain

$$
\begin{aligned}
& |F(h)-S(g, h, X)| \\
& \leq\left|F(h)-F\left(h_{2}\right)\right|+\left|F\left(h_{2}\right)-S\left(g, h_{0}, X\right)\right|+\left|S\left(g, h_{0}, X\right)-S(g, h, X)\right| \\
& \leq\left(2\|F\|+\left\|h_{0}\right\|\right) \cdot 2^{-k}+\left(\|F\|+2\left\|h_{0}\right\|\right) \cdot 2^{-k}+2^{-k} \cdot\|F\| \\
& \leq(\|F\|+\|h\|+1) \cdot 2^{-k+2}
\end{aligned}
$$

Since X has precision $m(k),\left|\int h \mathrm{~d} g-S(g, h, X)\right| \leq \operatorname{Var}(g) \cdot 2^{-k+1}$ by Lemma 4. Therefore, $\left|F(h)-\int h \mathrm{~d} g\right| \leq(3\|F\|+2\|h\|+2) \cdot 2^{-k+1}$. Since this is true for all $k, F(h)=\int h \mathrm{~d} g$.

4 Concepts from Computable Analysis

For studying computability we use the representation approach (TTE) for Computable Analysis [Weihrauch(2000), Brattka et al.(2008)]. Let Σ be a finite al-
phabet. Computable functions on Σ^{*} (the set of finite sequences over Σ) and Σ^{ω} (the set of infinite sequences over Σ) are defined by Turing machines which map sequences to sequences (finite or infinite). On Σ^{*} and Σ^{ω} finite or countable tupling will be denoted by \rangle [Weihrauch(2000)]. The tupling functions and the projections of their inverses are computable.

In TTE, sequences from Σ^{*} or Σ^{ω} are used as "names" of abstract objects such as rational numbers, real numbers, real functions or points of a metric space. We consider computability of multi-functions w.r.t. multi-representations [Weihrauch(2000)], [Brattka et al.(2008)], [Weihrauch(2008), Sections 3,6,8,9].

A representation of a set X is a function $\delta: \subseteq C \rightarrow X$ where $C=\Sigma^{*}$ or $C=\Sigma^{\omega}$. If $\delta(p)=x$ we call p a δ-name of x. If $f: X \rightrightarrows Y$ is a multi-function (on represented sets) then $f(x)$ is the set of $y \in Y$ which are accepted as a result of f applied to x. (Example: $f: \mathbb{R} \rightrightarrows \mathbb{Q}, f(x):=\{a \in \mathbb{Q} \mid x<a\}$, we may say: "the multi-function f finds some rational upper bound of x ".)

For representations $\gamma: \subseteq Y \rightarrow M$ and $\gamma_{0}: \subseteq Y_{0} \rightarrow M_{0}$, a function $h: \subseteq Y \rightarrow$ Y_{0} is a $\left(\gamma, \gamma_{0}\right)$-realization of a multi-function $f: \subseteq M \rightrightarrows M_{0}$, iff for all $p \in Y$ and $x \in M$,

$$
\begin{equation*}
\gamma(p)=x \in \operatorname{dom}(f) \Longrightarrow \gamma_{0} \circ h(p) \in f(x) \tag{18}
\end{equation*}
$$

Fig. 4 illustrates the definition.

Figure 4: $h(p)$ is a name of some $y \in f(x)$, if p is a name of $x \in \operatorname{dom}(f)$.

The multi-function f is called $\left(\gamma, \gamma_{0}\right)$-computable, if it has a computable $\left(\gamma, \gamma_{0}\right)$-realization and $\left(\gamma, \gamma_{0}\right)$-continuous if it has a continuous realization. The definitions can be generalized straightforwardly to multi-functions $f: M_{1} \times \ldots \times$ $M_{n} \rightrightarrows M_{0}$ for represented sets M_{i}.

For two representations $\delta_{i}: \subseteq \Sigma^{\omega} \rightarrow M_{i}(i=1,2)$ the canonical representation $\left[\delta_{1}, \delta_{2}\right.$] of the product $M_{1} \times M_{2}$ is defined by

$$
\begin{equation*}
\left[\delta_{1}, \delta_{2}\right]\left\langle p_{1}, p_{2}\right\rangle=\left(\delta_{1}\left(p_{1}\right), \delta\left(p_{2}\right)\right) \tag{19}
\end{equation*}
$$

For two representations $\delta_{i} \subseteq \Sigma^{\omega} \rightrightarrows M_{i}(i=1,2), \delta_{1} \leq \delta_{2}\left(\delta_{1}\right.$ is reducible to $\left.\delta_{2}\right)$ iff there is a computable function $h: \subseteq \Sigma^{\omega} \rightarrow \Sigma^{\omega}$ such that $\left(\forall p \in \operatorname{dom}\left(\delta_{1}\right)\right) \delta_{1}(p)=$ $\delta_{2} h(p)$. (If p is a δ_{1}-name of x then $h(p)$ is a δ_{2}-name of x.)

We use various canonical notations $\nu: \subseteq \Sigma^{*} \rightarrow X: \nu_{\mathbb{N}}$ for the natural numbers, $\nu_{\mathbb{Q}}$ for the rational numbers, ν_{Pg} for the polygon functions on $[0 ; 1]$ whose graphs have rational vertices, and ν_{I} for the set RI open subintervals $(a ; b) \subseteq(0 ; 1)$ with rational endpoints. For functions $m: \mathbb{N} \rightarrow \mathbb{N}$ we use the canonical representation $\delta_{\mathbb{B}}: \subseteq \Sigma^{\omega} \rightarrow \mathbb{B}=\{m \mid m: \mathbb{N} \rightarrow \mathbb{N}\}$ defined by $\delta_{\mathbb{B}}(p)=m$ if $p=1^{m(0)} 01^{m(1)} 01^{m(2)} 0 \ldots$. For the real numbers we use the Cauchy representation $\rho: \subseteq \Sigma^{\omega} \rightarrow \mathbb{R}, \rho(p)=x$ if p is (encodes) a sequence $\left(a_{i}\right)_{i \in \mathbb{N}}$ of rational numbers such that for all $i,\left|x-a_{i}\right| \leq 2^{-i}$. By the Weierstraß approximation theorem the countable set of Pg of polygon functions with rational vertices is dense in $C[0 ; 1]$. Therefore, $C[0 ; 1]$ with notation ν_{Pg} of the set Pg is a computable metric space [Weihrauch(2000)] for which we use the Cauchy representation δ_{C} defined as follows: $\delta_{C}(p)=h$ if p is (encodes) a sequence $\left(h_{i}\right)_{i \in \mathbb{N}}$ of polygons $h_{i} \in \mathrm{Pg}$ such that for all $i,\left\|h-h_{i}\right\| \leq 2^{-i}[$ Weihrauch $(2000)]$. For the space $C(C[0 ; 1], \mathbb{R})$ of the continuous (not necessarily linear) functions $F: C[0 ; 1] \rightarrow \mathbb{R}$ we use the canonical representation $\left[\delta_{C} \rightarrow \rho\right]$ [Weihrauch(2000), Weihrauch and Grubba(2009)]. It is determined uniquely up to equivalence by (\mathbf{U}) and (\mathbf{S}) :
(\mathbf{U}) the function APPLY : $(F, h) \mapsto F(h)$ is $\left(\left[\delta_{C} \rightarrow \rho\right], \delta_{C}, \rho\right)$-computable,
(S) if for some representation δ of a subset of $C(C[0 ; 1], \mathbb{R})$, APPLY is $\left(\delta, \delta_{C}, \rho\right)$-computable then $\delta \leq\left[\delta_{C} \rightarrow \rho\right]$.
(U) corresponds to the "universal Turing machine theorem" and (S) to the "smn-theorem" from computability theory. Roughly speaking, $\left[\delta_{C} \rightarrow \rho\right]$ is the "poorest" representation of the set $C(C[0 ; 1], \mathbb{R})$ for which the APPLY function becomes computable.

For converting the classical proof mentioned in Section 2 we needed a representation of the set $B[0 ; 1]$ of bounded functions $g:[0 ; 1] \rightarrow \mathbb{R}$. Since it has a cardinality bigger than that of Σ^{ω}, it has no representation. To overcome this difficulty it would suffice to extend F to the Banach space $B_{1}[0 ; 1]$ generated by the continuous functions and all the characteristic function $\chi_{[0 ; x]}, 0 \leq x \leq 1$. However, since this space is not separable we do not know any reasonable representation of it. We solve the problem by (implicitly) extending F only to functions $\chi_{[0 ; x]}$ from a countable dense set of points x in which g is continuous and for which we can compute $g(x):=\bar{F}\left(\chi_{[0 ; x]}\right)$ from F and $\|F\|$. Remember
that every function of bounded variation has at most countably many points of discontinuity.

Finally, for formulating a computable version of the Riesz representation theorem we need a representation for functions of bounded variation. In our context the only application of a function g of bounded variation is to compute the Riemann-Stieltjes integral $\int h \mathrm{~d} g$ for continuous functions h. By Corollary 6 , it suffices to know g on a countable dense set containing 0 and 1 . Therefore it will suffice to consider only functions from BV with countable domain.

Definition 17. Let BVC $:=\{g \in \mathrm{BV} \mid \operatorname{dom}(g)$ is countable $\}$. Define a representation $\delta_{\mathrm{BVC}}: \subseteq \Sigma^{\omega} \rightarrow \mathrm{BVC}$ as follows: $\delta_{\mathrm{BVC}}(p)=g$ iff there are sequences $p_{0}, q_{0}, p_{1}, q_{1}, \ldots \in \Sigma^{\omega}$ such that $p=\left\langle\left\langle p_{0}, q_{0}\right\rangle,\left\langle p_{1}, q_{1}\right\rangle, \ldots\right\rangle, \rho\left(p_{0}\right)=0, \rho\left(p_{1}\right)=1$ and $\operatorname{graph}(g)=\left\{\left(\rho\left(p_{i}\right), \rho\left(q_{i}\right)\right) \mid i \in \mathbb{N}\right\}$.

Informally, a δ_{BVC}-name of g is a list of its graph. For proving computability of multi-functions on represented sets we use "generalized Turing machines" (GTMs) [Tavana and Weihrauch(2011)]. We call a generalized Turing machine M on represented sets computable, if all multi-functions on the represented sets occurring in M are computable. We use the following result: the multi-function f_{M} computed by a computable GTM M on represented sets is computable.

For a representation $\delta: \subseteq \Sigma^{\omega} \rightarrow Z$ a subset $Y \subseteq Z$ is δ-r.e., iff there is a Type-2 machine N such that for all $p \in \operatorname{dom}(\delta)$,

$$
N \text { halts on input } p \Longleftrightarrow \delta(p) \in Y
$$

And $Y \subseteq Z$ is δ-decidable, iff Y and $Z \backslash Y$ are δ-r.e. [Weihrauch(2000)]. As an example, $x<y$ for real numbers is $[\rho, \rho]$-r.e.

5 The computable Riesz representation theorem

In the following "computable", "recursively enumerable" and "decidable" means computable, recursively enumerable and decidable, respectively, w.r.t. the notations and multi-representations mentioned in Section 4.

First, from F and $\|F\|$ we will compute some $g \in$ BVC such that $F(h)=$ $\int h \mathrm{~d} g$. By the next lemma for every rational interval I we can compute subintervals J with arbitrarily small $\|F\|_{J}$.

Lemma 18. There is a computable multi-function

$$
e:(F, z, I, n) \boxminus J
$$

that maps every continuous linear functional $F: C[0 ; 1] \rightarrow \mathbb{R}$, its norm z, every open rational interval $I=(a ; b) \subseteq[0 ; 1]$ and every $n \in \mathbb{N}$ to some open rational interval J such that $\bar{J} \subseteq I$, length $(J) \leq 2^{-n}$ and $\|F\|_{J} \leq 2^{-n}$.

Precisely speaking, the multi-function e is $\left(\left[\delta_{C} \rightarrow \rho\right], \rho, \nu_{I}, \nu_{\mathbb{N}}, \nu_{I}\right)$-computable.

Proof: By Lemma 9 there is some $x \in I$ such that $x \in \mathrm{PC}_{F}$. By Definition 7 there is some $J, x \in J \in \mathrm{RI}$, such that $\bar{J} \subseteq I$, length $(J) \leq 2^{-n}$ and $\|F\|_{J} \leq 2^{-n}$. We show that the multi-function e is $\left(\left[\delta_{C} \rightarrow \rho\right], \rho, \nu_{I}, \nu_{\mathbb{N}}, \nu_{I}\right)$-computable.

For $F, z=\|F\|, I=(a ; b), n \in \mathbb{N}, J \in \mathrm{RI}$ and $\bar{f} \in \operatorname{Pg}$ consider the conditions

$$
\begin{gather*}
\bar{J} \subseteq I, \quad \text { length }(J) \leq 2^{-n} \tag{20}\\
\bar{f}(x)=0 \text { for } x \in J, \tag{21}\\
\|\bar{f}\| \leq 1, \tag{22}\\
|F(\bar{f})|>\|F\|-2^{-n} \tag{23}
\end{gather*}
$$

Conditions (20-22) are decidable (relative to their representations). Since $x<y$ is $[\rho, \rho]$-r.e. and $(F, \bar{f}) \mapsto F(\bar{f})$ is computable, (23) is r.e. Therefore, here is a Type 2-machine M that halts on input $\left(p_{1}, p_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$ iff
$(F,\|F\|, I, n, J, \bar{f}):=\left(\left[\delta_{C} \rightarrow \rho\right], \rho, \nu_{I}, \nu_{\mathbb{N}}, \nu_{I}, \nu_{I}, \nu_{\mathrm{Pg}}\right)\left(p_{1}, p_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$
satisfies (20-23). From M a Type-2 machine N can be constructed which on input ($p_{1}, p_{2}, u_{3}, u_{4}$) (by the usual step counting technique) searches for (u_{5}, u_{6}) such that M halts on input $\left(p_{1}, p_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$.

First we show that $J=\nu_{I}\left(u_{5}\right)$ and $\bar{f}=\nu_{\mathrm{Pg}}\left(u_{6}\right)$ exist.
Since Pg is dense in $C[0 ; 1],\|F\|=\sup \{|F(h)| \mid h \in \mathrm{Pg},\|h\| \leq 1\}$. Therefore, there is a function $h \in \operatorname{Pg}$ with $\|h\| \leq 1$ such that $|F(h)|>\|F\|-2^{-n-1}$. As we have shown (replace above n by $n+1$) there is a rational interval $L \subseteq I$ such that length $(L) \leq 2^{-n}$ and $\|F\|_{L} \leq 2^{-n-1}$. Let $\left(a_{2} ; b_{2}\right) \subseteq L$ such that h has no vertex in $\left(a_{2} ; b_{2}\right)$. Let $\left.a_{1}:=a_{2}+\left(b_{2}-a_{2}\right) / 3, b_{1}:=b_{2}-\left(b_{2}-a_{2}\right) / 3\right)$ and $J:=\left(a_{1} ; b_{1}\right)$. Define a function $f_{0} \in \mathrm{Pg}$ by its vertices as follows:

$$
(0,0),\left(a_{2}, 0\right),\left(a_{1}, h\left(a_{1}\right)\right),\left(b_{1}, h\left(b_{1}\right)\right),\left(b_{2}, 0\right),(1,0)
$$

and let $\bar{f}:=h-f_{0}$. Then $\left\|f_{0}\right\| \leq 1$ and $\left|F\left(f_{0}\right)\right| \leq 2^{-n-1}$ since $\mathrm{NZ}\left(f_{0}\right) \subseteq L$. Since h and f_{0} have no vertex in the interval $\left(a_{2} ; a_{1}\right),\left|h(x)-f_{0}(x)\right| \leq\left|h\left(a_{2}\right)\right| \leq 1$ for $a_{2} \leq x \leq a_{1}$, correspondingly $\left|h(x)-f_{0}(x)\right| \leq 1$ for $b_{1} \leq x \leq b_{2}$, and $\left|h(x)-f_{0}(x)\right|=0$ for $a_{1} \leq x \leq b_{1}$. We obtain $\|\bar{f}\| \leq 1$. Furthermore,

$$
|F(\bar{f})|=\left|F\left(h-f_{0}\right)\right| \geq|F(h)|-\left|F\left(f_{0}\right)\right| \geq\|F\|-2^{-n} .
$$

Therefore, J and \bar{f} exist.
It remains to show that J has the properties requested in the lemma. Obviously, $\bar{J} \subseteq I$ and length $(J) \leq 2^{-n}$. Suppose $h \in C[0 ; 1],\|h\| \leq 1$ and $\mathrm{NZ}(h) \subseteq J$. Since $\mathrm{NZ}(h)$ and $\mathrm{NZ}(\bar{f})$ are disjoint and of norm ≤ 1, by Lemma $8,|F(h)|+$ $|F(\bar{f})| \leq\|F\|$ hence $|F(h)| \leq\|F\|-|F(\bar{f})|<2^{-n}$. Therefore, $\|F\|_{J} \leq 2^{-n}$.

By iterating the function e from Lemma 18 in every open rational interval we can find some point $x \in \mathrm{PC}_{F}$ and the value $g_{F}(x)$.

Lemma 19. The multi-function $G:(F,\|F\|, I) \mapsto\left(x, g_{F}(x)\right)$ mapping F, its norm and an interval $I \in \mathrm{RI}$ to $\left(x, g_{F}(x)\right)$ for some $x \in I \cap \mathrm{PC}_{F}$ is computable.

Proof: Let $J_{-1}:=I$. For every $n \in \mathbb{N}$ let J_{n} be a result of applying the multi-function e from Lemma 18 to $\left(F,\|F\|, J_{n-1}, n\right)$. Then $\left(J_{n}\right)_{n \in \mathbb{N}}$ is a properly nested sequence of intervals with length $\left(J_{n}\right) \leq 2^{-n}$. It converges to some point $x \in I$. Since for all $n, x \in J_{n}$ and $\|F\|_{J_{n}} \leq 2^{-n}, x \in \mathrm{PC}_{F}$. Furthermore, by Lemma $13,\left|g_{F}(x)-F\left(s_{J_{n}}\right)\right| \leq 2^{-n}$. Therefore $\left(F\left(s_{J_{n}}\right)\right)_{n \in \mathbb{N}}$ converges fast to $g_{F}(x)$.

Let M_{1} be a computable GTM computing the multi-function e from Lemma 18. From M_{1} we can construct a computable GTM that on input $(F,\|F\|, I, n)$ computes in turn some $J_{0}, J_{1}, \ldots, J_{n}$ and then $\left(J_{n}, F\left(s_{J_{n}}\right)\right)$ as its result.

By [Weihrauch(2008), Theorem 35] the multi-function $(F,\|F\|, I) \boxminus$ $\left(J_{n}, F\left(s_{J_{n}}\right)\right)_{n \in \mathbb{N}}$ is computable (where the canonical representation considered for sequences [Weihrauch(2000)]). Since the limit operations for nested sequences of intervals converging to a point and for fast converging Cauchy sequences of real numbers are computable [Weihrauch(2000)], $\left(x, g_{F}(x)\right)$ can be computed from $\left(J_{n}, F\left(s_{J_{n}}\right)\right)_{n \in \mathbb{N}}$. Therefore, the multi-function G is computable.

We can now prove our computable version of the Riesz representation theorem.

Theorem 20 (computable Riesz representation).

The multi-function RRT : $(F,\|F\|) \boxminus g$ mapping every functional $F: C[0 ; 1] \rightarrow$ \mathbb{R} and its norm to some function $g \in \operatorname{BVC}$ such that
$-F(h)=\int h \mathrm{~d} g($ for all $h \in C[0 ; 1])$,
$-g$ is continuous on $\operatorname{dom}(g) \backslash\{0,1\}$,
$-g(0)=0$ and $\|F\|=\operatorname{Var}(g)$
is $\left(\left[\delta_{C} \rightarrow \rho\right], \rho, \delta_{\mathrm{BVC}}\right)$-computable.
Proof: Let L_{0}, L_{1}, \ldots be a canonical numbering of the set RI of open rational intervals. By Lemma 19 there is a computable function G^{\prime} mapping ($F,\|F\|, n$) to some $\left(x_{n}, y_{n}\right) \in \mathbb{R}^{2}$ where $\left(x_{0}, y_{0}\right)=(0,0),\left(x_{1}, y_{1}\right)=(1, F(1))$ and $\left.\left(x_{n}, y_{n}\right)\right) \in$ $G\left(f,\|F\|, L_{n}\right)$ if $n \geq 2$. Since $x_{n} \in \mathrm{PC}_{F}$ and $y_{n}=g_{F}\left(x_{n}\right)$ for all $n \geq 2,\left\{\left(x_{n}, y_{n}\right) \mid\right.$ $n \in \mathbb{N}\}$ is the graph of a restriction g of g_{F}. Since $\left\{x_{n} \mid n \in \mathbb{N}\right\}$ is dense, $g \in$ BVC. By Theorem $15, g$ is continuous on $\operatorname{dom}(g) \backslash\{0,1\}$ and $\operatorname{Var}(g)=\|F\|$. Obviously, $g(0)=0$. By Theorem 16, $F(h)=\int h \mathrm{~d} g$ (for all $h \in C[0 ; 1]$).

By the type conversion theorem [Weihrauch(2008), Theorem 33], the multifunction $(F,\|F\|) \mapsto\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}$ is $\left(\left[\delta_{C} \rightarrow \rho\right], \rho,\left[\nu_{\mathbb{N}} \rightarrow[\rho, \rho]\right]\right)$ - computable. From a $\left[\nu_{\mathbb{N}} \rightarrow[\rho, \rho]\right]$-name of the sequence $\left(\left(x_{n}, y_{n}\right)\right)_{n \in \mathbb{N}}=\left(\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots\right)$
we can compute a $[\rho, \rho]^{\omega}$ - name [Weihrauch(2000), Lemma 3.3.16] which is a δ_{BVC}-name of g.

Finally, we prove that a reverse of the Riesz representation theorem is computable.

Theorem 21. The operator $T:(g, l) \mapsto F$, mapping every $g \in$ BVC and every $l \in \mathbb{N}$ with $\operatorname{Var}(g) \leq 2^{l}$ to the functional F defined by $F(h)=\int h \mathrm{~d} g$ for all $h \in C[0 ; 1]$, is computable.

Proof: First we show that $(G, l, h) \mapsto \int h \mathrm{~d} g$ is computable. By Theorem 6.2.7 in [Weihrauch(2000)] a modulus $m: \mathbb{N} \rightarrow \mathbb{N}$ of continuity of h can be computed from h. let ν_{fs} be a canonical notation of the finite sequences of natural numbers. The set of all $\left(g,\left(i_{1}, \ldots, i_{n-1}\right), j\right)$ such that $\left(0, x_{i_{1}}, \ldots, x_{i_{n-1}}, 1\right)$ is a partition for g of precision j is $\left(\delta_{\mathrm{BVC}}, \nu_{\mathrm{fs}}, \nu_{\mathbb{N}}\right)$-r.e. There is computable GTM on represented sets which on input (g, j) finds a sequence $\left(i_{1}, \ldots, i_{n-1}\right)$ such that $\left(0, x_{i_{1}}, \ldots, x_{i_{n-1}}, 1\right)$ is a partition for g of precision j. Therefore from (g, h, k, l) we can compute a sequence $\left(i_{1}, \ldots, i_{n-1}\right)$ such that $X:=\left(0, x_{i_{1}}, \ldots, x_{i_{n-1}}, 1\right)$ is a partition for g of precision $m(k+l+1)$. By Lemma $4,\left|\int h \mathrm{~d} g-S(g, h, X)\right| \leq$ $2^{-l-k} V(g) \leq 2^{-k}$. The function $(g, h, X) \mapsto S(g, h, X)$ is computable (by a computable GTM). Therefore, from (g, l, h, k) a number y_{k} can be computed (multivalued) such that $\left|\int h \mathrm{~d} g-y_{k}\right| \leq 2^{-k}$. By [Weihrauch(2008), Theorem 33] the multi-function $(g, l, h) \boxminus\left(y_{k}\right)_{k \in \mathbb{N}}$ is computable. By [Weihrauch(2000), Theorem 4.3.7], $(g, l, h) \rightarrow \int h \mathrm{~d} g$ is $\left(\delta_{\mathrm{BVC}}, \nu_{\mathbb{N}}, \delta_{C}, \rho\right)$-computable. By [Weihrauch(2000), Theorem 3.3.15], $(g, l) \mapsto F$ such that $F(h)=\int h \mathrm{~d} g$ is $\left(\delta_{\mathrm{BVC}}, \nu_{\mathbb{N}},\left[\delta_{C} \rightarrow \rho\right]\right)$ computable.

By Theorem 20, from F and $\|F\|$ we can compute g such that $\operatorname{Var}(g)=\|F\|$, and by Theorem 21, from g and an upper bound of $\operatorname{Var}(g)$ we can compute F.

References

[Brattka et al.(2008)] Brattka, V., Hertling, P., Weihrauch, K.: "A tutorial on computable analysis"; S. B. Cooper, B. Löwe, A. Sorbi, eds., New Computational Paradigms: Changing Conceptions of What is Computable; 425-491; Springer, New York, 2008.
[Goffman and Pedrick(1965)] Goffman, C., Pedrick, G.: First Course in Functional Analysis; Prentice-Hall, Englewood Cliffs, 1965.
[Heuser(2006)] Heuser, H.: Funktionalanalysis; B.G. Teubner, Stuttgart, 2006; 4. edition.
[Lu and Weihrauch(2007)] Lu, H., Weihrauch, K.: "Computable Riesz representation for the dual of $C[0 ; 1]$ "; Mathematical Logic Quarterly; 53 (2007), 4-5, 415-430.
[Schechter(1997)] Schechter, E.: Handbook of Analysis and Its Foundations; Academic Press, San Diego, 1997.
[Tavana and Weihrauch(2011)] Tavana, N., Weihrauch, K.: "Turing machines on represented sets, a model of computation for analysis"; Logical Methods in Computer Science; 7 (2011), 2, 1-21.
[Weihrauch(2000)] Weihrauch, K.: Computable Analysis; Springer, Berlin, 2000.
[Weihrauch(2008)] Weihrauch, K.: "The computable multi-functions on multirepresented sets are closed under programming"; Journal of Universal Computer Science; 14 (2008), 6, 801-844.
[Weihrauch and Grubba(2009)] Weihrauch, K., Grubba, T.: "Elementary computable topology"; Journal of Universal Computer Science; 15 (2009), 6, 1381-1422.

Appendix

Proof of Lemma 4

Since there are partitions for g of arbitrary precision, I is unique if it exists. Next, we prove

$$
\begin{equation*}
\left|S\left(g, h, Z_{1}\right)-S\left(g, h, Z_{2}\right)\right| \leq 2^{-k} V(g) \tag{24}
\end{equation*}
$$

for any two partitions Z_{1}, Z_{2} for g with precision $m(k+1)$.
Let $Z_{1}=\left(x_{0}, x_{1}, \ldots, x_{n}\right)$ and let Z^{\prime} be a refinement of $Z_{1} . Z^{\prime}$ can be written as

$$
x_{0}=y_{0}^{1}, y_{1}^{1}, \ldots, y_{j_{1}}^{1}=x_{1}=y_{0}^{2}, y_{1}^{2}, \ldots, y_{j_{2}}^{2}=x_{2} \ldots \ldots=y_{0}^{n}, y_{1}^{n}, \ldots, y_{j_{n}}^{n}=x_{n}
$$

$\left(j_{1}, \ldots, j_{n} \geq 1\right)$. Then

$$
\begin{aligned}
& \left|S\left(g, h, Z_{1}\right)-S\left(g, h, Z^{\prime}\right)\right| \\
= & \left|\sum_{i=1}^{n} h\left(x_{i}\right)\left(g\left(x_{i}\right)-g\left(x_{i-1}\right)\right)-\sum_{i=1}^{n} \sum_{l=1}^{j_{i}} h\left(y_{l}^{i}\right)\left(g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right)\right| \\
= & \left|\sum_{i=1}^{n} h\left(x_{i}\right) \sum_{l=1}^{j_{i}}\left(g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right)-\sum_{i=1}^{n} \sum_{l=1}^{j_{i}} h\left(y_{l}^{i}\right)\left(g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right)\right| \\
= & \left|\sum_{i=1}^{n} \sum_{l=1}^{j_{i}}\left(h\left(x_{i}\right)-h\left(y_{l}^{i}\right)\right)\left(g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right)\right| \\
\leq & \sum_{i=1}^{n} \sum_{l=1}^{j_{i}}\left|h\left(x_{i}\right)-h\left(y_{l}^{i}\right)\right|\left|g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right| \\
\leq & 2^{-k-1} \sum_{i=1}^{n} \sum_{l=1}^{j_{i}}\left|g\left(y_{l}^{i}\right)-g\left(y_{l-1}^{i}\right)\right| \\
\leq & 2^{-k-1} V(g)
\end{aligned} \quad \text { since }\left|x_{i}-y_{l}^{i}\right| \leq 2^{-m(k+1)}
$$

Now let Z^{\prime} be a common refinement of Z_{1} and Z_{2}. Then $\mid S\left(g, h, Z_{1}\right)-$ $S\left(g, h, Z_{2}\right)\left|\leq\left|S\left(g, h, Z_{1}\right)-S\left(g, h, Z^{\prime}\right)\right|+\left|S\left(g, h, Z^{\prime}\right)-S\left(g, h, Z_{2}\right)\right| \leq 2^{-k} V(g)\right.$.

There is a sequence $\left(Z_{k}\right)_{k}$ of partitions for g such that Z_{k} has precision $m(k+1)$. By (24) for $j>k,\left|S\left(g, h, Z_{k}\right)-S\left(g, h, Z_{j}\right)\right| \leq 2^{-k} V(g)$. Let I be the limit of the Cauchy sequence $\left(S\left(g, h, Z_{k}\right)\right)_{k}$. Let Z be a partition of precision $m(k+1)$. Then for every $i>k$ by (24),

$$
\begin{aligned}
|I-S(g, h, Z)| & \leq\left|I-S\left(g, h, Z_{i}\right)\right|+\left|S\left(g, h, Z_{i}\right)-S(g, h, Z)\right| \\
& \leq 2^{-i} V(g)+2^{-k} V(g)
\end{aligned}
$$

hence $|I-S(g, f, Z)| \leq 2^{-k} V(g)$.

