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Abstract: Observational transition systems (OTSs) are state machines that can be
described as behavioral specifications in CafeOBJ, an algebraic specification language
and processor. The OTS/CafeOBJ method uses OTSs and CafeOBJ for systems spec-
ification and verification. Simultaneous induction is intensively used to prove that an
OTS enjoys invariants in the method. To prove that two state predicates p and q are
invariants with respect to an OTS S, simultaneous induction generates the proof obli-
gations: (1) p(υ0) and p(υ) ∧ q(υ) ⇒ p(υ′), and (2) q(υ0) and p(υ) ∧ q(υ) ⇒ q(υ′) for
each initial state υ0, each state υ and each successor state υ′ of υ. Instead, we may
also use the proof obligations: (1) q(υ) ⇒ p(υ), and (2) q(υ0) and p(υ)∧ q(υ) ⇒ q(υ′).
The proof technique generating proof obligations like this is called semi-simultaneous
induction. The proof obligation is equivalent to (1) q(υ) ⇒ p(υ), and (2) q(υ0) and
q(υ) ⇒ q(υ′). But, the former may need less cases, making proofs shorter, than the
latter. More importantly, the former makes it possible to record the process in which
way lemmas have been conjectured. This article demonstrates some benefits of (semi-
)simultaneous induction, describes semi-simultaneous induction and justifies it.
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1 Introduction

Formal methods use mathematics and logics to formalize requirements, designs
and/or programs of systems, and verify that there are no inconsistencies in
requirements, designs enjoy requirements, and/or programs conforms to de-
signs [Woodcock et al, 2009]. Algebraic specification techniques have been devel-
oped in formal methods and several algebraic specification languages and proces-
sors have been proposed. CafeOBJ [Diaconescu and Futatsugi, 1998] is one such
language and processor. Behavioral specifications [Goguen and Malcolm, 2000,
Diaconescu and Futatsugi, 2000] are algebraic specifications of systems behav-
ior and can be described in CafeOBJ.
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Observational transition systems (OTSs) are state machines that can
be described as behavioral specifications. The OTS/CafeOBJ method
[Ogata and Futatsugi, 2003, Ogata and Futatsugi, 2006, Diaconescu et al, 2003]
uses OTSs and CafeOBJ for systems specification and verification. In the
OTS/CafeOBJ method, (1) a system design is formalized as an OTS, (2)
the OTS is described as a behavioral specification in CafeOBJ and sys-
tem requirements or properties are written in CafeOBJ, and (3) it is
proved that the OTS enjoys the properties by writing what are called
proof scores in CafeOBJ and executing them with the CafeOBJ processor.
The OTS/CafeOBJ method has been applied for specifications and verifica-
tion of a wide range of applications. Among such applications are security
protocols [Ogata and Futatsugi, 2010, Ouranos et al, 2010], e-government sys-
tems [Kong et al, 2010], mobile systems [Ouranos, 2007] and license choice algo-
rithms [Triantafyllou et al, 2010].

Proof scores are compositionally written in the OTS/CafeOBJ method. Let
us consider the proof that a state predicate p is an invariant with respect to
(wrt) an OTS S, namely the proof of (∀υ : RS)p(υ), where RS is the type
denoting the set of all reachable states wrt S. While writing the proof score
wrt p, we often need other state predicates. But, we do not need to throw away
the proof score wrt p constructed so far. All we have to do is to write the proof
scores wrt the other state predicates. While doing so, we may also need yet other
state predicates. Let us suppose that the proof score wrt p needs another state
predicate q. All we need to do is to write the proof score wrt q. The proof score
wrt p corresponds to the proofs of p(υ0) and p(υ) ∧ q(υ) ⇒ p(υ′), and the proof
score wrt q to the ones of q(υ0) and p(υ) ∧ q(υ) ⇒ q(υ′) for each initial state
υ0, each state υ and each successor state υ′ of υ. This way of writing proofs
(or proof scores) is called simultaneous induction [Ogata and Futatsugi, 2003,
Ogata and Futatsugi, 2006, Diaconescu et al, 2003]. The relations between p and
q in the proof can be depicted as Fig. 1 (1).

The proofs of p(υ0) and p(υ) ∧ q(υ) ⇒ p(υ′) may be replaced with the one
of q(υ) ⇒ p(υ). The relations between p and q in the proof modified can be
depicted as Fig. 1 (2). The proof technique that constructs proofs corresponding
to Fig. 1 (2) is called semi-simultaneous induction.

The proofs of q(υ0) and p(υ)∧q(υ) ⇒ q(υ′) can also be replaced with the ones
of q(υ0) and q(υ) ⇒ q(υ′) because q(υ) ⇒ p(υ). The relations between p and q

in the proof modified further can be depicted as Fig. 1 (3), which corresponds to
the INV rule [Manna and Pnueli, 1995].

The proof corresponding to Fig. 1 (2) is equivalent to the one to Fig. 1 (3), and
essentially so is the one to Fig. 1 (1). But, the proof corresponding to Fig. 1 (2)
may need less cases, making proof scores shorter, than the one to Fig. 1 (3). More
importantly, the proof corresponding to Fig. 1 (2) makes it possible to record the
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(1) (2) (3)

p q

p q

The inductive case wrt p uses q as an induction hypothesis.

p is deduced from q and S.

p qp q p q

Figure 1: Some relations between two state predicates in invariant proofs

process in which way lemmas have been conjectured. This improves readability
of proof scores for human users. High readability of proof scores is very important
because we think that proof scores should be part of specifications, which are
supposed to be read by human users. Note that we cannot conclude that p (and
q) is an invariant wrt S from the proofs of q(υ) ⇒ p(υ) and p(υ) ⇒ q(υ).

This article generalizes the proof corresponding to Fig. 1 (2) and justifies it,
and demonstrates some benefits of (semi-)simultaneous induction. The rest of the
article is organized as follows. Section 2 describes CafeOBJ with some examples.
Section 3 describes OTSs, and how to specify OTSs in CafeOBJ with a mutual
exclusion protocol as an example. Section 4 describes proof scores with verifica-
tion that the protocol enjoys the mutual exclusion property as an example. Sec-
tion 5 describes simultaneous induction. Section 6 describes semi-simultaneous
induction that can be used to conduct generalized proofs corresponding to Fig. 1
(2) and justifies it. Section 7 reports on another case study. Section 8 mentions
related work. Section 9 concludes the article.

2 CafeOBJ

This section briefly introduces specification and verification in CafeOBJ with
some concrete examples.

2.1 Specification

Basic units of CafeOBJ are modules. There are two kinds of modules in CafeOBJ:
tight modules and loose modules. A tight module only accepts the smallest
implementation that satisfies what are specified in the module, while a loose
module can accept any implementations that satisfy what are specified in the
module. A tight module is declared with the keyword mod!, and a loose module
with the keyword mod*. What are declared in modules are module imports, sorts,
operators, variables and equations. Some examples are used to describe them.

Process IDs are specified as the following module:
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mod* PID {

[Error Pid < Error&Pid]

op _=_ : Error&Pid Error&Pid -> Bool {comm}

vars EI EJ : Error&Pid

var I : Pid

var E : Error

eq (I = E) = false .

eq (EI = EI) = true .

ceq [o2m-Error&Pid]: EI = EJ if EI = EJ .

}

PID is the name given to this module. Error, Pid and Error&Pid are sorts.
Sorts can be partially ordered. Error and Pid are sub-sorts of Error&Pid. Any
term of either Error or Pid is also a term of Error&Pid. Pid corresponds to
the set of process IDs, Error to the set of error IDs, and Error&Pid to the
set of both IDs. The module does not explicitly import any modules but im-
plicitly does the built-in module BOOL, which is protected. Any user modules
implicitly import BOOL and BOOL is protected in those modules unless otherwise
stated. What are declared in BOOL include the sort Bool for truth values, the
two constants true and false of Bool denoting the truth values, and opera-
tors denoting logical connectives. Operators without any arguments are called
constants. Among operators denoting logical connectives are not_ for negation,
_and_ for conjunction, _or_ for disjunction, _implies_ for implication, _iff_
for equivalence and _xor_ for exclusive disjunction, where underscores indicate
places where arguments are put. One operator _=_ is declared in PID, which is a
user-defined equality predicate1. Operators can be given attributes such as comm
that specifies that the binary operator is commutative. Four variables, together
with their sorts, are declared in PID. We have three equations in PID. Each vari-
able in an equation is universally quantified and its scope is in the equation.
The first equation says that any process ID is different from any error ID in
terms of _=_. The second equation says that any ID equals itself in terms of _=_.
The third equation has the label o2m-Error&Pid and a condition. Equations
with conditions are called conditional equations. The third equation says that

1 The same symbol = is used as an operation name (the user-defined equality predicate)
and a language construct of which equations are made. In the last equation in PID,
the first occurrence of = is the language construct, while the second occurrence of =
is the user-defined equality predicate. _=_ is used to refer to the user-defined equality
predicate.

CafeOBJ provides the built-in equality predicate _==_ for each sort. The built-
in predicate works well for ground terms (terms without variables) in a specifi-
cation that is both terminating and confluent. Fresh constants are often added
to specifications in writing proof scores in CafeOBJ, making specifications non-
confluent. This is why we need to have user-defined equality predicates for some
sorts. Systematic ways to define such user-defined equality predicates have been
proposed[Nakamura and Futatsugi, 2007, Gutiérrez et al, 2012].
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if two IDs are equal in terms of _=_, then they are really equal. Since PID is a
loose module, it accepts multiple implementations. One implementation can use
natural numbers, where zero is used for Error and non-zero numbers for Pid.
Another implementation can use strings, where the null string is used for Error
and non-null strings for Pid.

Queues of process IDs are specified as the following module:

mod! QUEUE {

pr(PID)

[Empty NeQueue < Queue]

op empty : -> Empty {constr}

op _|_ : Pid Queue -> NeQueue {constr}

op _=_ : Queue Queue -> Bool {comm}

op top : Queue -> Error&Pid

op top : Empty -> Error

op top : NeQueue -> Pid

op enq : Queue Pid -> NeQueue

op deq : Queue -> Queue

op _\in_ : Pid Queue -> Bool

op _-_ : Queue Pid -> Queue

vars I J : Pid

vars Q Q1 Q2 : Queue

eq (Q = Q) = true .

eq (empty = J | Q2) = false .

eq (I | Q1 = J | Q2) = (I = J) and (Q1 = Q2) .

ceq [o2m-Queue]: Q1 = Q2 if Q1 = Q2 .

eq top(I | Q) = I .

eq enq(empty,I) = I | empty .

eq enq(J | Q,I) = J | enq(Q,I) .

eq deq(empty) = empty .

eq deq(I | Q) = Q .

eq I \in empty = false .

eq I \in (J | Q) = (I = J) or (I \in Q) .

eq empty - I = empty .

eq (J | Q) - I = (if J = I then Q else J | (Q - I) fi) .

}

The module QUEUE explicitly imports the module PID. Empty corresponds to the
set of the empty queue, and NeQueue to the set of non-empty queues. The con-
stant empty and the operator _|_ are the constructors of queues as the attribute
constr indicates. Given three process IDs i, j, k, the term “i | j | k | empty”
denotes the queue that consists of i, j, k such that i is the first element and k

is the last element. The operator _=_ is a user-defined equality predicate for
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queues. The three declarations for top say that top returns an error ID for the
empty queue, a process ID for a non-empty queue, and either a process ID or an
error ID for a queue. The three operators top, enq and deq denote the functions
for returning the top element in a given queue if any, enqueuing and dequeuing,
respectively. The operator _\in_ denotes the membership predicate of queues.
The operator _-_ denotes the function that takes a queue and an element, and
deletes one occurrence of the element nearest to the top from the queue if any.
The non-constructor operators, or some properties of the operators are defined
in equations.

The CafeOBJ processor uses equations as left-to-right rewrite rules to com-
pute (or reduce) a given term. Let us take a look at the following CafeOBJ
code:

open QUEUE

ops i j k : -> Pid .

eq (i = j) = false .

eq (i = k) = false .

eq (j = k) = false .

red (i | j | empty) = (i | k | empty) .

red top(i | j | k | empty) .

red enq(i | j | k | empty, j) .

red deq(i | j | k | empty) .

red j \in (i | j | k | empty) .

red (i | j | k | j | empty) - j .

close

The command open makes a given module available, and the command close

declares the end of the use of the module. The command red reduces a given
term with the equations available. The six red commands return false, i,
i | j | k | j | empty, j | k | empty, true, and i | k | j | empty.

2.2 Verification

Lists of process IDs are specified as the following module:

mod! LIST {

pr(PID)

[List]

op nil : -> List {constr}

op __ : Pid List -> List {constr}

op _=_ : List List -> Bool {comm}

op _@_ : List List -> List {assoc}

op rev : List -> List
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vars L L1 L2 : List

vars P P1 P2 : Pid

eq (L = L) = true .

eq (P1 L1 = P2 L2) = (P1 = P2) and (L1 = L2) .

eq L @ nil = L .

eq nil @ L = L .

eq (P1 L1) @ L = P1 (L1 @ L) .

eq rev(nil) = nil .

eq rev(P L) = rev(L) @ (P nil) .

}

The constant nil and the juxtaposition operator __ are the constructors of lists.
The operators _@_ and rev denote the concatenation function and the reverse
function of lists, respectively. The attribute assoc is given to _@_, specifying
that the operator is associative.

Let us prove a property on rev that for all lists l, rev(rev(l)) equals l. The
property is described in the following module:

mod! REVREV-LIST {

pr(LIST)

op th1 : List -> Bool

var L : List

eq th1(L) = (rev(rev(L)) = L) .

}

The proof is conducted by case analysis on L: (1) nil and (2) p l, where p is an
arbitrary process ID and l is an arbitrary list. The proof (called a proof score)
of the property in CafeOBJ is as follows:

open REVREV-LIST

-- check

red th1(nil) .

close

open REVREV-LIST

-- fresh constants

op p : -> Pid .

op l : -> List .

-- check

red lem1(l,p) implies th1(p l) .

close

A comment starts with double hyphens “--” and continues by the end of the line.
The proof uses the lemma lem1 declared and defined in the module REVREV-LIST
as follows:
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op lem1 : List Pid -> Bool

eq lem1(L,P) = (rev(rev(L) @ (P nil)) = P L) .

Since th1(p l) reduces to rev(rev(l) @ (p nil)) = p l in the open-close
fragment (called a proof passage), the lemma is straightforwardly conjectured.

If we try to prove lem1 by induction on L, we need to use a series of lemmas
that are similar to lem1. This is why we need to generalize lem1. A generalized
version of lem1 is as follows:

op lem2 : List List -> Bool

eq lem2(L,L1) = (rev(rev(L) @ L1) = rev(L1) @ L) .

lem1 can be deduced from lem2 as follows:

open REVREV-LIST

-- fresh constants

op p : -> Pid .

op l : -> List .

-- check

red lem2(l,p nil) implies lem1(l,p) .

close

The proof of lem2 is conducted by induction on L as follows:

open REVREV-LIST

-- fresh constants

op l1 : -> List .

-- check

red lem2(nil,l1) .

close

open REVREV-LIST

-- fresh constants

op p : -> Pid .

ops l l1 : -> List .

-- check

red lem2(l,p l1) implies lem2(p l,l1) .

close

where lem2(l,p l1) is an instance of the induction hypothesis (∀L1 :
List) lem2(l, L1).

Although lem2 could be directly used in the proof of the property, the use of
lem1 has some benefit in that we can record the process in which way lemmas
have been conjectured. Semi-simultaneous induction makes it possible to use this
benefit in a more general setting.
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3 Observational Transition Systems (OTSs)

We describe OTSs and how to specify an OTS as a behavioral specification in
CafeOBJ by using a mutual exclusion protocol called Qlock in this section.

3.1 Some Definitions

We suppose that there exists a universal state space denoted by Υ and that each
data type used in OTSs is provided. Υ is the set of all states. In this article, a set
may be regarded as the type corresponding to the set. The data types include
Bool for truth values. A data type is expressed as D with a subscript such as
Do1 and Do.

Definition 1 OTSs. An observational transition system (OTS) consists of

– O : A set of observers. Each observer is a function o : Υ Do1 . . . Dom → Do.
The equivalence between two states υ1, υ2 (denoted as υ1 =S υ2) is defined
wrt values returned by the observers: υ1 =S υ2 if and only if (iff) for each
o : O, o(υ1, x1, . . . , xm) = o(υ2, x1, . . . , xm) for all x1 : Do1, . . . , xm : Dom.

– I : The set of initial states such that I ⊆ Υ .

– T : A set of transitions. Each transition is a function t : Υ Dt1 . . . Dtn → Υ .
Each transition t, together with any other parameters y1, . . . , yn, preserves
the equivalence between two states: if υ1 =S υ2, then for each t : T ,
t(υ1, y1, . . . , yn) =S t(υ2, y1, . . . , yn) for all y1 : Dt1, . . . , yn : Dtn. Each t has
the effective condition c-t : Υ Dt1 . . . Dtn → Bool. If ¬c-t(υ, y1, . . . , yn), then
t(υ1, y1, . . . , yn) =S υ. t(υ, y1, . . . , yn) is called a successor state of a state υ.
We write υ �S υ′ iff a state υ′ ∈ Υ is a successor state of a state υ ∈ Υ .

Definition 2 Reachable states. Reachable states wrt an OTS S are induc-
tively defined as follows:

– Each initial state υ0 ∈ I is reachable wrt S.

– If a state υ is reachable wrt S, so is each successor state of υ.

Let RS denote the set of all reachable states wrt S.

Definition 3 Invariants. A state predicate p : Υ → Bool is called an invariant
wrt an OTS S if p holds in all reachable states wrt S, namely (∀υ : RS)p(υ).

Note that a state predicates is mainly constructed of observers because states in
OTSs are characterized by the values returned by observers in those states.

Definition 4 Inductive invariants. A state predicate p : Υ → Bool is called
an inductive invariant wrt an OTS S if p(υ0) holds for each initial state υ0 ∈ I
and p(υ) ⇒ p(υ′) holds for each state υ ∈ Υ and each successor state of υ.

Note that inductive invariants wrt an OTS S are invariants wrt S.
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3.2 Specification of OTSs in CafeOBJ

CafeOBJ is used to specify OTSs. Υ is denoted by a sort, say Sys. Each o ∈ O
is denoted by an operator (called an observation operator) declared as follows:

bop o : Sys Do1 ... Dom -> Do

where each D∗ is a sort corresponding to D∗.
An arbitrary initial state in I is denoted by an operator declared as follows:

op init : -> Sys {constr}

For each o ∈ O, the following equation is declared:

eq o(init,X1,...,Xm) = T o
X1,...,Xm

.

where each X∗ is a CafeOBJ variable of the sort D∗ and T o
X1,...,Xm

is a term
denoting the value returned by o, together with any other parameters, in an
arbitrary initial state2

Each t ∈ T is denoted by an operator (called a transition operator) declared
as follows:

bop t : Sys Dt1 ... Dtn -> Sys {constr}

For each o and t, a conditional equation is declared:

ceq o(t(S,Y1,...,Yn),X1,...,Xm) = o-tS,Y1,...,Yn,X1,...,Xm

if c-t(S,Y1,...,Yn) .

where c-t(S,...) corresponds to c-t(υ, . . .), and o-tS, . . . is a term whose sort
is the same as the sort of o and does not use any transition operators3. The
equation says how t changes the value observed by o if the effective condition
holds. If o-tS, . . . is always equal to o(S,X1,...,Xm), the condition may be
omitted.

For each t, one more conditional equation is declared:

ceq t(S,Y1,...,Yn) = S if not c-t(S,Y1,...,Yn) .

2 Although an arbitrary initial state is typically denoted by a constant, it may be
denoted by a non-constant operator. The value returned by o in an arbitrary initial
state may be defined by case analysis. For example, when m = 1 and Do1 is Queue, the
value returned by o is defined with the equations that look like eq o(init,empty) =
· · · . and eq o(init,P | Q) = · · · ., where P and Q are variables of Pid and Queue.
If you use an auxiliary operator declared as op aux-o : Queue -> Do and defined as
eq aux-o(empty) = · · · . and eq aux-o(P | Q) = · · · ., however, the same effect
can be obtained.

3 The operator c-t should be well-defined, namely that for all ground terms
s, y1, . . . , yn, c-t(s,y1,...,yn) must reduce to either true or false.

780 Ogata K., Futatsugi K.: Compositionally Writing Proof Scores ...



which says that t changes nothing if the effective condition does not hold.
As indicated by constr, init and each t are constructors of Sys4, which

corresponds to RS .
An example is used to describe how to specify an OTS in CafeOBJ. The

example used is a mutual exclusion protocol called Qlock.

Example 1 Qlock. The pseudo-code executed by each process i can be written as
follows:

Loop
Remainder Section

rs: enq(queue, i)
ws: repeat until top(queue) = i

Critical Section
cs: deq(queue)

where queue is the queue of process IDs shared by all processes. enq, top and
deq are the functions of queues for enqueuing, returning the top element in a
given queue if any, and dequeuing, respectively. The body (between repeat and
until) of the loop at label ws is empty. Initially, each process i is at the label
rs and queue is empty. Let Label, Pid and Queue be the types of labels (rs, ws
and cs), process IDs and queues of process IDs, respectively. We suppose that
queue is never used in Remainder Section and Critical Section.

On the assumption that each of the two statements at the labels rs and cs is
atomically executed and each iteration of the loop at the label ws is atomically
executed, Qlock is formalized as an OTS SQlock. SQlock uses two observers. The
corresponding observation operators are declared as follows:

op pc : Sys Pid -> Label

op queue : Sys -> Queue

Given a state s : Sys and a process ID i : Pid, pc(s,i) denotes the label at
which the process i is in the state s and queue(s) denotes the shared queue in
the state s.

In the rest of this section, let I, J and S be CafeOBJ variables of Pid, Pid
and Sys. We have the following two equations for init, the constant denoting
an arbitrary initial state:

eq pc(init,I) = rs .

eq queue(init) = empty .

4 Sys denotes RS but not Υ if the constructor-based logic[Gâinâ et al, 2009] is
adopted, which is the current logic underlying the OTS/CafeOBJ method. In this
setting, properties that we are interested in are only safety ones, especially invariants.
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SQlock uses three transitions. The corresponding transition operators are de-
clared as follows:

op want : Sys Pid -> Sys {constr}

op try : Sys Pid -> Sys {constr}

op exit : Sys Pid -> Sys {constr}

Given a state s : Sys and a process ID i : Pid, want(s,i) denotes the successor
state of s when i executes the statement at the label rs in s, try(s,i) denotes
the successor state of s when i executes one iteration of the loop at the label
ws in s, and exit(s,i) denotes the successor state of s when i executes the
statement at the label cs in s.

The set of equations for want is as follows:

ceq pc(want(S,I),J)

= (if I = J then ws else pc(S,J) fi) if c-want(S,I) .

ceq queue(want(S,I)) = enq(queue(S),I) if c-want(S,I) .

ceq want(S,I) = S if not c-want(S,I) .

where the operator c-want is declared and defined as follows:

op c-want : Sys Pid -> Bool

eq c-want(S,I) = (pc(S,I) = rs) .

The set of equations for try is as follows:

ceq pc(try(S,I),J)

= (if I = J then cs else pc(S,J) fi) if c-try(S,I) .

eq queue(try(S,I)) = queue(S) .

ceq try(S,I) = S if not c-try(S,I) .

where the operator c-try is declared and defined as follows:

op c-try : Sys Pid -> Bool

eq c-try(S,I) = (pc(S,I) = ws and top(queue(S)) = I) .

The set of equations for exit is as follows:

ceq pc(exit(S,I),J)

= (if I = J then rs else pc(S,J) fi) if c-exit(S,I) .

ceq queue(exit(S,I)) = deq(queue(S)) if c-exit(S,I) .

ceq exit(S,I) = S if not c-exit(S,I) .

where the operator c-exit is declared and defined as follows:

op c-exit : Sys Pid -> Bool

eq c-exit(S,I) = (pc(S,I) = cs) .
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One of the properties that Qlock should enjoy is the mutual exclusion prop-
erty, which can be expressed as an invariant wrt SQlock. The state predicate
concerned is denoted by the operator declared and defined as follows:

op inv1 : Sys Pid Pid -> Bool

eq inv1(S,I,J) = (pc(S,I) = cs and pc(S,J) = cs implies I = J) .

To verify that Qlock enjoys the mutual exclusion property, all we have to do is
to prove that (∀i, j : Pid) inv1(s,i,j) is an invariant wrt SQlock.

We suppose that SQlock is specified as a module QLOCK, and operators de-
noting state predicates such as inv1 are declared in a module PRED-QLOCK that
imports QLOCK.

4 Proof Scores of Invariants

In the OTS/CafeOBJ method, invariants are proved by writing proof scores
in CafeOBJ and executing them with its processor. We use the proof of (∀s :
Sys) (∀i, j : Pid) inv1(s,i,j) as an example to describe proof scores in the
OTS/CafeOBJ method.

4.1 Proof Scores by Simultaneous Induction

We suppose that we start to prove the formula by structural induction on s. In
the induction case where try is taken into account, the case is divided into five
sub-cases as follows:

1. c-try(s,k) = true, i = k, j = k

2. c-try(s,k) = true, i = k, (j = k) = false

3. c-try(s,k) = true, (i = k) = false, j = k

4. c-try(s,k) = true, (i = k) = false, (j = k) = false

5. c-try(s,k) = false

where s, k, i and j are constants of Sys, Pid, Pid and Pid, respectively. s is used
to denote an arbitrary state, and k, i and j arbitrary process IDs. Sub-cases 2
and 3 need to use another state predicate as an induction hypothesis. Another
state predicate is denoted by the operator declared and defined as follows:

op inv2 : Sys Pid -> Bool

eq inv2(S,I) = (pc(S,I) = cs implies top(queue(S)) = I) .

This state predicate is discovered while the proof passage corresponding to sub-
case 2 is being written [Ogata and Futatsugi, 2006].

The proof passage is as follows:
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open ISTEP-QLOCK

-- fresh constants

op k : -> Pid .

op q : -> Queue .

-- assumptions

-- eq c-try(s,k) = true .

eq pc(s,k) = ws .

eq queue(s) = k | q .

--

eq i = k .

eq (j = k) = false .

-- successor state

eq s’ = try(s,k) .

-- check

red inv2(s,j) implies istep1 .

close

where ISTEP-QLOCK is a module in which another module BASE-QLOCK is
imported and some constants such as istep1 are declared and defined. In
BASE-QLOCK, PRED-QLOCK is imported and the following constants are declared:

ops s s’ : -> Sys

ops i j k : -> Pid

They are used to denote arbitrary states and process IDs.
The constant q is used to denote an arbitrary queue. Instead of

c-try(s,k) = true, we use pc(s,k) = ws and queue(s) = k | q, which are
equivalent to c-try(s,k) = true. The constant istep1 of Bool is defined as
follows:

eq istep1 = inv1(s,i,j) implies inv1(s’,i,j) .

where inv1(s’,i,j) denotes the formula to prove in the induction case, and
inv1(s,i,j) and inv2(s,j) denote instances of the induction hypotheses used.
In this proof passage, s’ is try(s,k). The CafeOBJ processor returns true for
the proof passage, discharging the sub-case. It also returns true for the remaining
four sub-cases, discharging the induction case where try is taken into account.
We can write proof passages of the base case and the remaining induction cases
where want and exit are taken into account, which do not need any other state
predicates.

We need to prove (∀s : Sys) (∀i : Pid) inv2(s,i) to complete the proof.
(∀s : Sys) (∀i : Pid) inv2(s,i) is also proved by structural induction on s. In
the induction case where exit is taken into account, the case is divided into
three sub-cases as follows:
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1. c-exit(s,k) = true, i = k

2. c-exit(s,k) = true, (i = k) = false

3. c-exit(s,k) = false

Sub-case 2 needs to use inv1 as an induction hypothesis.
The proof passage corresponding to sub-case 2 is as follows:

open ISTEP-QLOCK

-- fresh constants

op k : -> Pid .

-- assumptions

-- eq c-exit(s,k) = true .

eq pc(s,k) = cs .

--

eq (i = k) = false .

-- successor state

eq s’ = exit(s,k) .

-- check

red inv1(s,i,k) implies istep2 .

close

The constant istep2 of Bool is defined as follows:

eq istep2 = inv2(s,i) implies inv2(s’,i) .

The CafeOBJ processor returns true for the proof passage, discharging the
sub-case. It also returns true for the remaining two sub-cases, discharging the
induction case where exit is taken into account. We can write proof passages of
the base case and the remaining induction cases where want and try are taken
into account.

When we notice that the proof score wrt inv1 needs inv2, we do not need
to start to write the proof score wrt inv2 before the proof score wrt inv1, nor
to throw away the proof score wrt inv1 constructed so far. We can complete
the proof score wrt inv1 and then start to write the proof score wrt inv2.
Simultaneous induction makes it possible to compositionally (or incrementally)
construct proof scores in this way. This is one benefit of simultaneous induction.

The proof scores described correspond to Fig. 1 (1).

4.2 Proof Scores by Semi-Simultaneous Induction

We notice that (∀s : Sys) (∀i, j : Pid) inv1(s,i,j) can be deduced from (∀s :
Sys) (∀i : Pid) inv2(s,i) under the specification of SQlock. Hence, we do not
need to use structural induction on s to write the proof score of (∀s : Sys) (∀i, j :
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Pid) inv1(s,i,j). It suffices to use case analysis to prove the formula. In the
proof, all we have to do is to take into account three cases:

1. queue(s) = empty

2. queue(s) = k | q, k = i

3. queue(s) = k | q, (k = i) = false

The proof passage of case 2 is as follows:

open BASE-QLOCK

-- fresh constants

op k : -> Pid .

op q : -> Queue .

-- assumptions

eq queue(s) = k | q .

eq k = i .

-- check

red inv2(s,i) and inv2(s,j) implies inv1(s,i,j) .

close

The CafeOBJ processor returns true for this proof passage, and does so for the
remaining two cases as well.

The proof score wrt inv2 described in the previous sub-section can be used
here. The proof scores correspond to Fig. 1 (2).

4.3 Proof Scores by the INV Rule

inv2 can be proved without use of inv1 as an induction hypothesis because inv1
can be deduced from inv2 under the specification of SQlock. If that is the case,
in the induction case where exit is taken into account, the case is divided into
five sub-cases as follows:

1. c-exit(s,k) = true, i = k

2. c-exit(s,k) = true, (i = k) = false, queue(s) = empty

3. c-exit(s,k) = true, (i = k) = false, queue(s) = l | q, l = k

4. c-exit(s,k) = true, (i = k) = false, queue(s) = l | q,
(l = k) = false

5. c-exit(s,k) = false

The proof passage of sub-case 4 is as follows:
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open ISTEP-QLOCK

-- fresh constants

ops k l : -> Pid .

op q : -> Queue .

-- assumptions

-- eq c-exit(s,k) = true .

eq pc(s,k) = cs .

--

eq (i = k) = false .

eq queue(s) = l | q .

eq (l = k) = false .

-- successor state

eq s’ = exit(s,k) .

-- check

red inv2(s,k) implies istep2 .

close

In addition to inv2(s,i), inv2(s,k) is used as an instance of the induction
hypothesis (∀i : Pid) inv2(s,i).

The proof score wrt inv1 described in the previous sub-section can be used
here. The proof scores correspond to Fig. 1 (3).

4.4 Comparison

The three proof techniques are compared in terms of how long the corresponding
proofs (or proof scores) are based on the example. Let PS1 be the proof score of

(∀s : Sys) (∀i : Pid) inv2(s,i) ⇒ (∀s : Sys) (∀i, j : Pid) inv1(s,i,j),

PS2 be that of

(∀i, j : Pid) inv1(init,i,j) and
(∀i, j : Pid) inv1(s,i,j) ∧ (∀i : Pid) inv2(s,i) ⇒ (∀i, j : Pid) inv1(s’,i,j)

for an arbitrary initial state init, an arbitrary state s and an arbitrary successor
state s’ of s, PS3 be that of

(∀i : Pid) inv2(init,i) and
(∀i, j : Pid) inv1(s,i,j) ∧ (∀i : Pid) inv2(s,i) ⇒ (∀i : Pid) inv2(s’,i)

for an arbitrary initial state init, an arbitrary state s and an arbitrary successor
state s’ of s, and PS4 be that of

(∀i : Pid) inv2(init,i) and
(∀i : Pid) inv2(s,i) ⇒ (∀i : Pid) inv2(s’,i)
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for an arbitrary initial state init, an arbitrary state s and an arbitrary successor
state s’ of s.

The proof scores by semi-simultaneous induction are shorter than those by
the INV rule, which are shorter than those by simultaneous induction. The reason
of the latter is that PS1 is shorter than PS2. The reason of the former is that
PS3 is shorter than PS4 because the induction case where exit is taken into
account is split into five sub-cases in PS4, while the case into three sub-cases
in PS3. This example demonstrates that the proof corresponding to Fig. 1 (2) is
equivalent to the one to Fig. 1 (3) but may need less cases, making proofs (or
proof scores) shorter, than the one to Fig. 1 (3).

Why does semi-simultaneous induction need less cases than the INV rule
in the induction case where exit is taken into account in the proof wrt inv2?
Although (∀s : Sys) (∀i : Pid) inv2(s,i) is equivalent to (∀s : Sys) (∀i, j :
Pid) inv1(s,i,j) ∧ (∀s : Sys) (∀i : Pid) inv2(s,i) under the specification
of SQlock, its proof needs case splitting. Hence, the two formulas reduce to
different irreducible forms in some cases. inv1(s,i,k) reduces to pc(s,i) =

cs xor true in Sub-case 2 in Subsection 4.1 and then inv1(s,i,k) implies

inv2(exit(s,k),i) reduces to true, discharging the case. On the other hand,
inv2(s,j) reduces to top(queue(s)) = k if j equals k and to (pc(s,j) = cs

and top(queue(s)) = j) xor pc(s,j) = cs xor true otherwise in the case.
Any instance of (∀i : Pid) inv2(s,i) does not lead to the discharge of the case
by reduction only.

5 Simultaneous Induction

The proof that a state predicate p0 is an invariant wrt an OTS S can be done
by finding an inductive invariant wrt S that implies p0 under S. This is the
INV rule [Manna and Pnueli, 1995]. Such an inductive invariant can be found
by connecting other state predicates p1, . . . , pn to p0 with conjunctions, namely,
making p0 ∧ p1 ∧ . . . ∧ pn. Let q be p0 ∧ p1 ∧ . . . ∧ pn. To prove that q is an
inductive invariant wrt S, all we have to do is to prove (1) q(υ0) holds for each
initial state υ0 ∈ I and (2) q(υ) ⇒ q(υ′) holds for each state υ, υ′ ∈ Υ such that
υ �S υ′.

The proof of (1) and (2) can be compositionally written, divided into n + 1
fragments wrt p0, p1, . . . , pn, respectively. That is, all we have to do is to prove
that

1. pi(υ0) holds for S for each υ0 ∈ I, and

2. (
∧

h∈Hi
h(υ)) ⇒ pi(υ′) holds for S for each υ, υ′ ∈ Υ such that υ �S υ′,

where Hi ⊆ {p0, . . . , pn},
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for each i ∈ {0, . . . , n}. This way of writing proofs is called si-
multaneous induction [Ogata and Futatsugi, 2003, Ogata and Futatsugi, 2006,
Diaconescu et al, 2003]. The proof of 1 and 2 is called the SI proof of pi wrt
S based on {p0, . . . , pn}. It may be called the SI proof of pi if S and {p0, . . . , pn}
are clear from the context. 1 is called the base case of the SI proof, and 2 is
called the (simultaneous) induction case of the SI proof. Each h(υ) such that
h ∈ Hi is called a simultaneous induction hypothesis for the SI proof of pi. Note
that only the SI proof of pi does not necessarily imply that pi is an invariant wrt
S, although all SI proofs of p0, . . . , pn imply that each pi is an invariant wrt S.

6 Semi-Simultaneous Induction

Let P and Q be the sets of state predicates such that P ∪Q = {p0, . . . , pn} and
P ∩Q = ∅. We assume that

1. there is the SI proof of each state predicate in P wrt S based on {p0, . . . , pn},
and

2. for each state predicate q ∈ Q and some R such that R ⊆ (P ∪ Q) \ {q},
q(υ) can be deduced from (

∧
r∈R r(υ)) under S for each υ ∈ Υ .

The proof of 2 is called the IMP(lication) proof of q wrt S based on {p0, . . . , pn}.
It may be called the IMP(lication) proof of q when S and {p0, . . . , pn} are clear
from the context. The state predicates in R are called premises of the IMP proof.

From the assumptions 1 and 2, are we able to conclude that p0 ∧ . . . ∧ pn is
an inductive invariant wrt S? To do so, we need a condition. Before describing
the condition, we define a graph that represents 1 and 2.

Definition 5 PII graphs. A pseudo inductive invariant (PII) graph of p0∧. . .∧
pn is as follows. The nodes of the PII graph are p0, . . . , pn. There are two kinds
of edges in the graph: SIH edges and IMP edges. For each pi ∈ {p0, . . . , pn}, pi

has one kind (either SIH or IMP) of outgoing edges but can have both kinds of
incoming edges.

That pi has SIH (IMP) outgoing edges means that there exists the SI (IMP)
proof of pi, which uses the destination state predicates of the SIH (IMP) edges
as the simultaneous induction hypotheses (premises). If pi has an SIH (IMP)
incoming edge, pi is used as a simultaneous induction hypothesis (a premise) of
the SI (IMP) proof of the source state predicate. Nodes that have SIH (IMP)
outgoing edges are called SIH (IMP) nodes. Nodes in P are SIH nodes and nodes
in Q are IMP nodes.

The condition concerned is as follows.
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an IMP node 1 an IMP node 2 an IMP node m+1

Figure 2: A path where IMP nodes occurs m + 1 times

Definition 6 II condition. The inductive invariant (II) condition of a PII
graph is that the graph has no cycles such that every edge in a cycle is an
IMP edge.

Before describing the main theorem, we prove the following lemma.

Lemma 7 A property of PII graphs. If a PII graph G of p0∧. . .∧pn satisfies
the II condition and the number m of the IMP nodes in G is greater than zero,
then there exists an IMP node such that the destinations of all the IMP outgoing
edges are SIH nodes.

Proof. By contradiction. We suppose that G does not have any IMP nodes such
that the destinations of all the IMP outgoing edges are SIH nodes. Then, each
IMP node has an IMP node as one of the destinations of the IMP outgoing
edges. Hence, we can find a path in G such that it consists of IMP nodes only
and IMP nodes occurs in it m + 1 times (see Fig. 2). Since the number of the
IMP nodes in G is m, there exists an IMP node in the path that occurs at least
twice. Therefore, G has a cycle that consists of IMP nodes only. ��

The following theorem guarantees that if a PII graph of p0 ∧ . . . ∧ pn has no
such cycles, p0 ∧ . . . ∧ pn is an inductive invariant wrt S.

Theorem 8 II condition of PII graphs. If a PII graph G of p0 ∧ . . . ∧ pn

satisfies the II condition, then p0 ∧ . . . ∧ pn is an inductive invariant wrt S.

Proof. By induction on the number of the IMP nodes in the PII graph G.
(I) For the base case, since the SI proof of every pi wrt S based on {p0, . . . , pn}

for i = 0, . . . , n can be conducted, p0 ∧ . . . ∧ pn is an inductive invariant wrt S.
(II) For the induction case, since G satisfies the II condition, from Lemma 7,

there exists an IMP node q such that the destinations r0, . . . , rm of all the IMP
outgoing edges are SIH nodes. Since the SI proof of each rj wrt S based on
{p0, . . . , pn} for j = 0, . . . ,m can be conducted, we can show that the following
formulas hold for S:

r0(υ0), . . . , rm(υ0) (1)

for each υ0 ∈ I, and

(
∧

a∈A0

a(υ)) ⇒ r0(υ′), . . . , (
∧

a∈Am

a(υ)) ⇒ rm(υ′) (2)
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for each υ, υ′ ∈ Υ such that υ �S υ′ and for some Aj ⊆ {p0, . . . , pn} for
j = 0, . . . ,m. Let A be A0 ∪ . . . ∪ Am.

Since the IMP proof of q wrt S based on {p0, . . . , pn} can be conducted, we
can also show that the following formula hods for S:

r0(υ) ∧ . . . ∧ rm(υ) ⇒ q(υ) (3)

for each υ ∈ Υ .
From (1) and (3), the following formula holds for S:

q(υ0) (4)

for each υ0 ∈ I.
From (2) and (3), the following formula holds for S:

(
∧

a∈A
a(υ)) ⇒ q(υ′) (5)

for each υ, υ′ ∈ Υ such that υ �S υ′.
From (4) and (5), it follows that the SI proof of q wrt S based on {p0, . . . , pn}

can be conducted.
Another PII graph G′ of p0 ∧ . . . ∧ pn can be constructed by deleting all the

IMP edges from q to each rj for j = 0, . . . ,m from G and adding an SIH edge
from q to each a ∈ A to G. The deletion of the IMP edges and the addition of
the SIH edges are shown in Fig. 3. Since G′ is constructed as described, G′ also
satisfies the II condition. The number of the IMP nodes in G′ is one less than
the number of the IMP nodes in G. From the induction hypothesis, therefore,
we conclude that p0 ∧ . . . ∧ pn is an inductive invariant wrt S. ��

Let us consider the proof of (∀s : Sys) (∀i : Pid) inv3(s,i), where inv3 is as
follows:

op inv3 : Sys Pid -> Bool

eq inv3(S,I)

= (I \in queue(S) implies pc(S,I) = ws or pc(S,I) = cs) .

We need (∀s : Sys) (∀i : Pid) inv3(s,i) to verify that Qlock enjoys
the lockout (or starvation) freedom property, which is a liveness prop-
erty [Ogata and Futatsugi, 2008].

While writing proof scores, we notice that the proof by simultaneous induc-
tion needs five more state predicates including (∀i, j : Pid) inv1(s,i,j) and (∀i :
Pid) inv2(s,i). The remaining three state predicates are (∀i : Pid) inv4(s,i),
(∀i : Pid) inv5(s,i) and (∀i : Pid) inv6(s,i), where inv4, inv5 and inv6 are
as follows:

791Ogata K., Futatsugi K.: Compositionally Writing Proof Scores ...



r0

rm

q
These IMP edges are deleted.

These SIH edges are added.

Figure 3: The induction case in the proof of the theorem

inv1 inv6

inv5inv4

inv3

inv2 inv1 inv6

inv3inv4

inv2

(1) By simultaneous induction (2) By semi-simultaneous induction

Figure 4: Relations of the state predicates in invariant proofs wrt SQlock

op inv4 : Sys Pid -> Bool

op inv5 : Sys Pid -> Bool

op inv6 : Sys Pid -> Bool

eq inv4(S,I) = (pc(S,I) = cs implies not(I \in deq(queue(S)))) .

eq inv5(S,I)

= (top(queue(S)) = I implies not(I \in deq(queue(S)))) .

eq inv6(S,I) = not(I \in queue(S) - I) .

Fig. 4 (1) shows the relations of the six state predicates in the proof by simulta-
neous induction.

We notice that the SI proof of (∀i : Pid) inv5(s,i) can be replaced with the
IMP proof of the state predicate because the state predicate can be deduced from
(∀i : Pid) inv6(s,i) under the specification of SQlock. We also notice that the
SI proof of (∀i : Pid) inv4(s,i) can be replaced with the IMP proof of the state
predicate because the state predicate can be deduced from (∀i : Pid) inv2(s,i)
and (∀i : Pid) inv5(s,i). Furthermore, inv6, instead of inv5, can be used in the
IMP proof of (∀i : Pid) inv4(s,i). Hence, we do not need inv5 anymore. Since
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we know that the SI proof of (∀i, j : Pid) inv1(s,i,j) can be replaced with the
IMP proof of the state predicate, the relations of the five state predicates in the
proof by semi-simultaneous induction can be depicted in Fig. 4 (2).

7 A Case Study

We report on a case study in which we have verified that Alternating Bit Protocol
(ABP) enjoys a property. The case study demonstrates that semi-simultaneous
induction makes it possible to record the process in which way state predicates
used (or lemmas) have been conjectured.

7.1 Alternating Bit Protocol (ABP)

ABP is a communication protocol that makes it possible to reliably deliver pack-
ets (expressed as natural numbers in this paper) to a destination (called Receiver)
from a source (called Sender) even under unreliable channels whose contents
may be lost and duplicated. ABP uses two channels. One channel (called fifo1)
is used for Sender to basically send packets to Receiver, and the other (called
fifo2) is used for Receiver to send Sender acknowledgements showing that some
packets have reached Receiver.

Sender has one bit (called bit1) and one natural number (called next), and
Receiver has one bit (called bit2) and one list of natural numbers (called list).
The truth values (true and false) are used as bits. Initially, bit1 is false, next is
0, bit2 is false, and list is nil. Sender repeatedly puts the pair 〈bit1, next〉 into
fifo1 at the bottom, which corresponds to send1 in Fig. 5. If fifo1 is not empty,
Receiver gets the top 〈b, x〉 from fifo1 and then if b is the same as bit2, bit2
is complemented and x is put into list at the top, which corresponds to rec2 in
Fig. 5. Receiver repeatedly puts bit2 into fifo2 at the bottom, which corresponds
to send2 in Fig. 5. If fifo2 is not empty, Sender gets the top b from fifo2 and
then if b is different from bit1, bit1 is complemented and next is incremented,
which corresponds to rec1 in Fig. 5.

Fig. 5 shows a snapshot of ABP, where t and f stand for true and false. In the
snapshot, three natural numbers (0, 1 and 2) have been delivered to Receiver.
The bit true has not reached Sender although 2 was delivered to Receiver, and
then bit1 and next remain false and 2.

Each content in each channel may be lost and duplicated. But, we suppose
that such unreliable phenomena can been seen only if each content becomes top
in each channel. So, if fifo1 (or fifo2) is not empty, only the top content may
be lost and duplicated.
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<f,2> ... <f,2>

f ... f t .... t

Sender Receiver

fifo1

fifo2

bit1: f
next: 2

bit2: t
list: (2, 1, 0)

send1

rec1

rec2

rec2

Figure 5: A snapshot of ABP

7.2 Specification of ABP

ABP is formalized as an OTS SABP in which channels are formalized as queues.
SABP uses six observers that are used to observe fifo1. fifo2, bit1, bit2, next

and list, respectively. The corresponding observation operators are declared as
follows:

bop fifo1 : Sys -> PFifo

bop fifo2 : Sys -> BFifo

bop bit1 : Sys -> Bool

bop bit2 : Sys -> Bool

bop next : Sys -> Nat

bop list : Sys -> List

where PFifo, BFifo, Nat and List are sorts for queues of pairs of bits and
natural numbers, queues of bits, natural numbers and lists of natural numbers,
respectively.

We have the following six equations for init, a constant denoting an arbitrary
initial state:

eq fifo1(init) = empty .

eq fifo2(init) = empty .

eq bit1(init) = false .

eq bit2(init) = false .

eq next(init) = 0 .

eq list(init) = nil .

SABP uses eight transitions. The corresponding transition operators are de-
clared as follows:

bop send1 : Sys -> Sys

bop rec1 : Sys -> Sys

bop send2 : Sys -> Sys

bop rec2 : Sys -> Sys
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bop drop1 : Sys -> Sys

bop dup1 : Sys -> Sys

bop drop2 : Sys -> Sys

bop dup2 : Sys -> Sys

The first six transition operators correspond to send1, rec1, send2 and rec2 in
Fig. 5, respectively. The lost of the first content in fifo1 (or fifo2) is formalized
as drop1 (or drop2), and the duplication of the first content in fifo1 (or fifo2)
is formalized as dup1 (or dup2).

The set of equations for send1 is as follows:

eq fifo1(send1(S)) = enq(fifo1(S),< bit1(S),next(S) >) .

eq fifo2(send1(S)) = fifo2(S) .

eq bit1(send1(S)) = bit1(S) .

eq bit2(send1(S)) = bit2(S) .

eq next(send1(S)) = next(S) .

The set of equations for rec2 is as follows:

ceq fifo1(rec2(S)) = deq(fifo1(S)) if c-rec2(S) .

eq fifo2(rec2(S)) = fifo2(S) .

eq bit1(rec2(S)) = bit1(S) .

ceq bit2(rec2(S)) = (if bit2(S) = fst(top(fifo1(S)))

then not fst(top(fifo1(S)))

else bit2(S) fi)

if c-rec2(S) .

eq next(rec2(S)) = next(S) .

ceq list(rec2(S)) = (if bit2(S) = fst(top(fifo1(S)))

then (snd(top(fifo1(S))) list(S))

else list(S) fi)

if c-rec2(S) .

ceq rec2(S) = S if not c-rec2(S) .

where the operator c-rec2 is declared and defined as follows:

op c-rec2 : Sys -> Bool

eq c-rec2(S) = not(fifo1(S) = empty) .

Given a pair, the operator fst returns the first element and the operator snd

returns the second element.
The set of equations for drop1 is as follows:

ceq fifo1(drop1(S)) = deq(fifo1(S)) if c-drop1(S) .

eq fifo2(drop1(S)) = fifo2(S) .

eq bit1(drop1(S)) = bit1(S) .
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eq bit2(drop1(S)) = bit2(S) .

eq next(drop1(S)) = next(S) .

eq list(drop1(S)) = list(S) .

ceq drop1(S) = S if not c-drop1(S) .

where the operator c-drop1 is declared and defined as follows:

op c-drop1 : Sys -> Bool

eq c-drop1(S) = not(fifo1(S) = empty) .

The set of equations for dup1 is as follows:

ceq fifo1(dup1(S)) = top(fifo1(S)) | fifo1(S) if c-dup1(S) .

eq fifo2(dup1(S)) = fifo2(S) .

eq bit1(dup1(S)) = bit1(S) .

eq bit2(dup1(S)) = bit2(S) .

eq next(dup1(S)) = next(S) .

eq list(dup1(S)) = list(S) .

ceq dup1(S) = S if not c-dup1(S) .

where the operator c-dup1 is declared and defined as follows:

op c-dup1 : Sys -> Bool

eq c-dup1(S) = not(fifo1(S) = empty) .

The set of equations for each of the remaining transition operators can be
declared likewise.

7.3 Verification of ABP

One of the properties that ABP should enjoy is the reliable communication prop-
erty: whenever Receiver receives n natural numbers, they are the first n natural
numbers that Sender has sent and the order in which the n natural numbers
have been sent is preserved. The property can be expressed as an invariant wrt
SABP . The state predicate concerned is denoted by the operator declared and
defined as follows:

op inv1 : Sys -> Bool

eq inv1(S)

= (bit1(S) = bit2(S)

implies mk(next(S)) = (next(S) list(S))) and

(not(bit1(S) = bit2(S))

implies mk(next(S)) = list(S)) .
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Figure 6: Relations of the state predicates in invariant proofs wrt SABP

Given a natural number n, the operator mk produces the list n n − 1 . . . 0 nil

of natural numbers.
We used 14 more state predicates to prove (∀s : Sys) inv1(s) by semi-

simultaneous induction. Fig. 6 shows the relations of the 15 state predicates
in the proof by semi-simultaneous induction. The state predicates are found in
the rest of this section and Appendix A.

The state predicates inv8 is as follows:

op inv8 : Sys Bool Bool Bool BFifo -> Bool

eq inv8(S,BIT1,BIT2,BIT3,BFIFO)

= ((fifo2(S) = BIT1 | BIT2 | BFIFO and not(BIT1 = BIT2))

implies ((BIT3 \in BFIFO implies BIT2 = BIT3)

and BIT2 = bit2(S))) .

In the SI proof of inv8, we need to take into account cases in which the second
and third bits in fifo2 are different, the third and fourth bits in fifo2 are
different, and so on. Therefore, we needed to generalize inv8 to proceed on the
proof. The generalized version of inv8 is inv10 that is as follows:

op inv10 : Sys Bool Bool Bool BFifo BFifo -> Bool

eq inv10(S,BIT1,BIT2,BIT3,BFIFO1,BFIFO2)

= ((fifo2(S) = BFIFO1 @ (BIT1 | BIT2 | BFIFO2)

and not(BIT1 = BIT2))

implies ((BIT3 \in BFIFO2 implies BIT2 = BIT3)

and BIT2 = bit2(S))) .

Proofs often need such generalization. The SI proof of inv4 could use inv10

instead of inv8, but lets us directly come up with inv8 but not inv10. It is
useful to record the process in which way state predicates used (or lemmas)
have been conjectured, which can be done by use of both inv8 and inv10 with

797Ogata K., Futatsugi K.: Compositionally Writing Proof Scores ...



semi-simultaneous induction. The same argument can be applied to inv9 and
inv11.

The state predicates inv12 is as follows:

op inv12 : Sys Bool -> Bool

eq inv12(S,BIT)

= ((not(fifo1(S) = empty)

and bit2(S) = fst(top(fifo1(S))))

implies (BIT \in fifo2(S) implies bit2(S) = BIT)) .

In the SI proof of inv12, we need to take into account the second pair in fifo1,
the third pair in fifo1, and so on. Therefore, we needed to conjecture some other
state predicates (which are expected to hold in all reachable states wrt SABP)
from which, together with SABP, inv12 is deduced. Like inv8, inv12 could be
generalized to conjecture the following state predicate:

(PAIR \in fifo1(S) and bit2(S) = fst(PAIR))

implies (BIT \in fifo2(S) implies bit2(S) = BIT))

We can also use the following two state predicates:

op inv14 : Sys Bool -> Bool

eq inv14(S,BIT)

= ((bit1(S) = bit2(S))

implies (BIT \in fifo2(S) implies BIT = bit2(S))) .

op inv15 : Sys BNPair -> Bool

eq inv15(S,PAIR)

= (not(bit1(S) = bit2(S))

implies (PAIR \in fifo1(S)

implies PAIR = < bit1(S),next(S) >)) .

If bit1 equals bit2, the conclusion of inv12 is deduced from inv14, and otherwise
the negation of the premise of inv12 is deduced from inv15. Like the SI proof
of inv4, the SI proof of inv10 could use inv14 and inv15 instead of inv12, but
lets us directly come up with inv12 but neither inv14 nor inv15. inv14 and
inv15 can also be used to deduce inv13. This is why we prefer inv14 and inv15

to the generalized version of inv12.

8 Related Work

(Semi-)Simultaneous induction makes it possible to compositionally (or incre-
mentally) write the proof that p0 ∧ . . . ∧ pn is an inductive invariant wrt an
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OTS S, or each pi is an invariant wrt an OTS S such that the proof is di-
vided into multiple fragments wrt p0, . . . , pn, respectively. There has been pro-
posed another proof technique that allows to compositionally write invariant
proofs [Rushby, 2000].

In the proof technique, to prove that a state predicate G is an invariant wrt
a state machine, all you have to do is to prove the following:
∨

j Ci,j(s) for each state s,
G′

i(s) ∧ T (s, t) ∧ Ci,j(s) ⇒ G′
j(t)

for each state s, t and for each i, j ∈ {1, . . . , m},
I(s) ⇒ G′

1(s) ∨ . . . ∨ G′
m(s) for each state s, and

G′
1(s) ∨ . . . ∨ G′

m(s) ⇒ G(s) for each state s,

where T is the transition relation of the state machine and I is the initiality
predicate. Ci,j is called a transition condition, and G′

i is called a configuration.
A configuration can be regarded as an abstract state represented by a state
predicate. Let Gm

∨ be G′
1 ∨ . . . ∨ G′

m. The first two formulas imply Gm
∨ (s) ∧

T (s, t) ⇒ Gm
∨ (t) for each state s, t. From this and the third formula, we conclude

that Gm
∨ is an inductive invariant wrt the state machine. Therefore, from the

fourth formula, G is an invariant wrt the state machine. The proofs of the first
and second formulas for each G′

i can be independently written from the others.
In the proof technique, it is proved that a disjunction G′

1 ∨ . . . ∨ G′
m is an

inductive invariant wrt a state machine, while it is proved that a conjunction
G1 ∧ . . . ∧ Gn is an inductive invariant wrt a state machine in a typical proof
technique of invariants. Therefore, the proof technique may be called the dis-
junctive invariant proof technique. Let Gn

∧ be G1∧ . . .∧Gn. John Rushby writes
the following [Rushby, 2000]:

. . . the inadequacy of Gi
∧ only becomes apparent through failure of the

attempted proof of its inductiveness—and proof of the putative induc-
tiveness of Gi+1

∧ must then start over.

It is proved that a conjunction p0 ∧ . . . ∧ pi is an inductive invariant in (semi-
)simultaneous induction. When we need another state predicate pi+1, however,
the entire proof of the inductiveness of p0∧ . . .∧pi+1 does not have to start over.
All we have to do is to write the proof fragment wrt pi+1.

Another difference between the disjunctive invariant proof technique and
(semi-)simultaneous induction is that the targets of the former are synchronous
systems, while those of the latter are asynchronous systems. It must be worth try-
ing to apply the former to asynchronous systems, and the latter to synchronous
systems.

Since OTSs are described as behavioral specifications in the OTS/CafeOBJ
method such that each in T and O is regarded as a behavioral operator, it must
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be worth mentioning what are mainly concerned in behavioral specifications,
namely behavioral equivalence. Several proof methods have been proposed for be-
havioral equivalence. Among them are context induction [Hennicker, 1990], coin-
duction [Goguen and Malcolm, 2000, Diaconescu and Futatsugi, 2000] and cir-
cular coinduction [Roşu and Lucanu, 2009]. Behavioral equivalence =S in OTSs
is given by the definition: υ1 =S υ2 iff for each o : O, o(υ1, x1, . . . , xm) =
o(υ2, x1, . . . , xm) for all x1 : Do1, . . . , xm : Dom. Although we may have to use
some proof method for behavioral equivalence to prove that a given specification
conforms to the definition of OTSs, it is straightforward to carry out the proof
if an OTS is specified according to what is described in Section 3.

Given an OTS S and a state predicate p, let us consider a behavioral specifi-
cation such that each in T ∪ {p} is regarded as a behavioral operator. Let ∼ be
the behavioral equivalence in this behavioral specification. Let [υp] be an equiv-
alence class of υp ∈ Υ in the quotient set Υ/∼ such that p(υp) holds and for each
t ∈ T , t(υp, y1, . . . , yn) ∼ υp for all y1 : Dt1, . . . , yn : Dtn. If υ0 ∼ υp for each
υ0 ∈ I, then p is an invariant wrt S. Note that p is not necessarily an inductive
invariant wrt S because there may be υ1 ∈ Υ \ [υp] such that p(υ1) holds but
p(t(υ1, y1, . . . , yn)) does not for some t ∈ T and some y1 : Dt1, . . . , yn : Dtn. If
we use this approach to prove that a given state predicate p is an invariant wrt
a given OTS S, then (1) the behavioral equivalence ∼ is constructed, (2) υp ∈ Υ

is found such that p(υp) holds and for each t ∈ T , t(υp, y1, . . . , yn) ∼ υp for all
y1 : Dt1, . . . , yn : Dtn and (3) it is checked that υ0 ∼ υp for each υ0 ∈ I. It is
not straightforward to carry out (1) and (2).

Let q be a state predicate such that for each υ ∈ Υ , q(υ) holds and
q(t(υ, y1, . . . , yn)) holds for each t ∈ T and all y1 : Dt1, . . . , yn : Dtn. Then,
{υq ∈ Υ | p(υq)} is the equivalence class of υq ∈ Υ in Υ/∼ such that p(υq) holds.
If υ0 ∼ υq for each υ0 ∈ I, then q is an inductive invariant wrt S. If q ⇒ p, then
p is an invariant wrt S. Although we do not need to carry (1) and (2) in this
approach, this approach needs to find an inductive invariant q wrt S such that
q ⇒ p, which is the standard approach to proving invariants. It may be worth
investigating whether there are some cases such that the approach described in
the previous paragraph is superior to the standard approach.

9 Conclusion

Although simultaneous induction is folklore in mathematics [Jouannaud, 2005]
and treated in an undergraduate text in mathematics [Lovász et al.(2003)],
mathematicians do not seem to use it actively. This seems to be because mathe-
maticians do not use long formulas [Lamport, 2005]. Although semi-simultaneous
induction must be folklore in mathematics as well, we have not found any written
documents on it. (Semi-)simultaneous induction is just another way of organiz-
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ing a traditional deductive invariant proof as the disjunctive invariant proof
technique, but has some advantages over the standard way of doing so:

1. (Semi-)simultaneous induction makes it possible to compositionally (or in-
crementally) write proofs of invariants. Proofs (or proof scores) in progress
do not have to be thrown away and only proof fragments wrt new state
predicates have to be written.

2. Semi-simultaneous induction makes proofs by only simultaneous induction
more concise, and may need less cases, making proof shorter, than the tra-
ditional deductive invariant proof technique.

3. Semi-simultaneous induction makes it possible to record the process in which
way lemmas have been conjectured.

Some lessons learnt on how to use (semi-)simultaneous induction are as fol-
lows:

1. Mostly conduct SI proofs to prove that an OTS enjoys invariants, and con-
duct IMP proofs when you need to generalize state predicates. This is be-
cause it is possible to record the process in which way lemmas have been
conjectured, making proof scores readable for human users. This is very im-
portant because we think that proof scores should be part of specifications,
which are supposed to be read by human users.

2. After the completion of the proof, try to find a state predicate such that its
SI proof has been conducted and it can be deduced from some other state
predicates together with an OTS concerned, and if such a state predicate is
found, replace the SI proof with the IMP proof of the state predicate. This
makes proof scores shorter.

The second lesson may erase records of how to conjecture lemmas. This is
because information on case analysis in induction cases is one important source
of how to conjecture lemmas and may be deleted by use of the second lesson. If
it is crucial to record the process in which way lemmas have been conjectured,
the second lesson should not be used.

We have summarized some tips on writing proof scores in the OTS/CafeOBJ
method in [Ogata and Futatsugi, 2006]. It may be worth noting that those tips
can be effectively used to write proof scores by semi-simultaneous induction.

Although compositionally writing proof scores with (semi-)simultaneous in-
duction makes it possible to reduce the burden of interactive theorem proving,
it is unrealistic to manage much larger proof scores manually. Therefore, a proof
assistant has been being designed and developed for the OTS/CafeOBJ method.
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A Other State Predicates Used for ABP Verification

op inv2 : Sys -> Bool

eq inv2(S)

= (not(fifo2(S) = empty) and not(bit1(S) = top(fifo2(S))))

implies (bit2(S) = top(fifo2(S))) .

op inv3 : Sys -> Bool

eq inv3(S)

= (not(fifo1(S) = empty) and bit2(S) = fst(top(fifo1(S))))

implies (bit1(S) = fst(top(fifo1(S)))

and next(S) = snd(top(fifo1(S)))) .

op inv4 : Sys Bool -> Bool

eq inv4(S,BIT)

= (not(fifo2(S) = empty) and not(bit1(S) = top(fifo2(S)))

and BIT \in fifo2(S))

implies (top(fifo2(S)) = BIT) .

op inv5 : Sys Bool -> Bool

eq inv5(S,BIT)

= (not(fifo2(S) = empty) and BIT \in fifo2(S)

and not(bit1(S) = BIT))

implies (bit2(S) = BIT) .
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op inv6 : Sys BNPair -> Bool

eq inv6(S,PAIR)

= (not(fifo1(S) = empty) and bit2(S) = fst(top(fifo1(S)))

and PAIR \in fifo1(S))

implies (top(fifo1(S)) = PAIR) .

op inv7 : Sys BNPair -> Bool

eq inv7(S,PAIR)

= (not(fifo1(S) = empty) and PAIR \in fifo1(S)

and bit2(S) = fst(PAIR))

implies (bit1(S) = fst(PAIR) and next(S) = snd(PAIR)) .

op inv9 : Sys BNPair BNPair BNPair PFifo -> Bool

eq inv9(S,PAIR1,PAIR2,PAIR3,PFIFO)

= ((fifo1(S) = PAIR1 | PAIR2 | PFIFO and not(PAIR1 = PAIR2))

implies ((PAIR3 \in PFIFO implies PAIR2 = PAIR3)

and PAIR2 = < bit1(S),next(S) >)) .

op inv11 : Sys BNPair BNPair BNPair PFifo PFifo -> Bool

eq inv11(S,PAIR1,PAIR2,PAIR3,PFIFO1,PFIFO2)

= ((fifo1(S) = PFIFO1 @ (PAIR1 | PAIR2 | PFIFO2)

and not(PAIR1 = PAIR2))

implies ((PAIR3 \in PFIFO2 implies PAIR2 = PAIR3)

and PAIR2 = < bit1(S),next(S) >)) .

op inv13 : Sys BNPair -> Bool

eq inv13(S,PAIR)

= ((not(fifo2(S) = empty) and not(bit1(S) = top(fifo2(S))))

implies

(PAIR \in fifo1(S) implies PAIR = < bit1(S),next(S) >)) .
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