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Abstract: In this paper the dynamic interaction strategy based on the Population
Learning Algorithm (PLA) for the A-Team solving the Resource-Constrained Project
Scheduling Problem (RCPSP) is proposed and experimentally validated. The RCPSP
belongs to the NP-hard problem class. To solve this problem a team of asynchronous
agents (A-Team) has been implemented using multiagent system. An A-Team is the
set of objects including multiple agents and the common memory which through in-
teractions produce solutions of optimization problems. These interactions are usually
managed by some static strategy. In this paper the dynamic learning strategy based on
PLA is suggested. The proposed strategy supervises interactions between optimization
agents and the common memory. To validate the proposed approach computational
experiment has been carried out.
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1 Introduction

The Resource Constrained Project Scheduling Problem (RCPSP) has attracted
a lot of attention and many exact, heuristic and metaheuristic solution methods
have been proposed in the literature in recent years [Hartmann, 06], [Agarwal, 11],
[Paraskevopoulos, 12], [Fang, 12]. The current approaches to solve these prob-
lems produce either approximate solutions or can only be applied for solving
instances of the limited size. Hence, searching for more effective algorithms and
solutions to the problems is still a lively field of research. One of the promising
directions of such research is to take advantage of the parallel and distributed
computation solutions, which are features of the contemporary multiagent sys-
tems [Wooldridge, 09].
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Modern multiagent system architectures are an important and intensively ex-
panding area of research and development. There is a number of multiple-agent
approaches proposed to solve different types of optimization problems. One of
them is the concept of an A-Team, originally introduced in [Talukdar, 96]. The
idea of the A-Team was used to develop the software environment for solv-
ing a variety of computationally hard optimization problems called JABAT
[Jedrzejowicz, 06], [Barbucha, 09]. JADE based A-Team (JABAT) system sup-
ports the construction of the dedicated A-Team architectures. Agents used in
JABAT assure decentralization of computation across multiple hardware plat-
forms. Parallel processing results in more effective use of the available resources
and ultimately, a reduction of the computation time.

Population Learning Algorithm (PLA) proposed in [Jedrzejowicz, 99] is a
population-based method inspired by analogies to the social education systems
in which a diminishing number of individuals enter more and more advanced
learning and improvement stages. PLA divides the process of solving the problem
into stages, in which the considered optimization problem is solved using a set
of independent learning/improvement procedures.

A-Team is a system composed of the set of objects including multiple agents
and the common memory which through interactions produce solutions of opti-
mization problems. Several strategies controlling the interactions between agents
and memories have been recently proposed and experimentally validated. The in-
fluence of such interaction strategy on the A-Team performance was investigated
in [Barbucha, 10]. In [Jedrzejowicz, 14], [Jedrzejowicz, 15] the dynamic interac-
tion strategy based on Reinforcement Learning for A-Team solving the RCPSP
and MRCPSP has been proposed. The similar topics were also considered for
different multi-agent systems, e.g. [Pelta, 06], [Cadenas, 09].

In this paper the PLA based dynamic interaction strategy for the A-Team
solving the RCPSP is proposed and experimentally validated. PLA strategy is
used to control the parameters and manage the process of searching for solutions
to the RCPSP instances by a team of agents. In this approach the parameters
depend on the current state of the environment and the stage of learning. Both
are being changed dynamically during the computation.

The proposed A-Team produces solutions to the RCPSP instances using four
kinds of the optimization agents. They include simple local search, tabu search
metaheuristic, crossover search and path relinking procedures.

The paper is constructed as follows: Section 2 contains the RCPSP formula-
tion. Section 3 gives some information on JABAT environment. Section 4 con-
tains the general idea of the PLA construction. Section 5 provides details of
the proposed PLA dynamic interaction strategy and its implementation in JA-
BAT. Section 6 describes settings of the computational experiment carried-out
with a view to validate the proposed approach and contains a discussion of the



858 Jedrzejovicz P., Ratajczak-Ropel E.: PLA Based Strategy ...

computational experiment results. Finally, Section 7 contains conclusions and
suggestions for future research.

2 Problem Formulation

A single-mode resource-constrained project scheduling problem (RCPSP) con-
sists of a set of n activities, where each activity has to be processed without in-
terruption to complete the project. The dummy activities 1 and n represent the
beginning and the end of the project. The duration of an activity j, 7 =1,...,n
is denoted by d; where d; = d,, = 0. There are r renewable resource types. The
availability of each resource type k in each time period is 7y units, k =1,...,r.
Each activity j requires 7;; units of resource k£ during each period of its dura-
tion, where 71 = rnr, = 0, k = 1,...,r. All parameters are non-negative integers.
There are precedence relations of the finish-start type with a zero parameter
value (i.e. F'S = 0) defined between the activities. In other words activity i
precedes activity j if j cannot start until 7 has been completed. The structure
of a project can be represented by an activity-on-node network G = (SV, SA),
where SV is the set of activities and SA is the set of precedence relationships.
SS; (SP;) is the set of successors (predecessors) of activity j, j = 1,...,n. It is
further assumed that 1 € SP;, j =2,...,n,andn € S5S; ,j=1,...,n—1. The
objective is to find a schedule S of activities starting times [sy, ..., s,], where
s1 = 0 and resource constraints are satisfied, such that the schedule duration
T(S) = sy, is minimized.

The objective is to find a minimal schedule in respect of the makespan that
meets the constraints imposed by the precedence relations and the limited re-
source availabilities.

The above formulated problem as a generalization of the classical job shop
scheduling problem belongs to the class of NP-hard optimization problems,
see [Blazewicz, 83]. The considered problem class is denoted as PS|prec|Cpmaz
[Brucker, 99] or m, 1|cpm|Ciqee [Demeulemeester, 02].

3 The JABAT Environment

JABAT is the software environment facilitating the design and implementation
of the A-Team architecture for solving various combinatorial optimization prob-
lems. The problem-solving paradigm on which the proposed system is based can
be best defined as the population-based approach.

JABAT produces solutions to combinatorial optimization problems using a
set of optimization agents, each representing an improvement algorithm. Each
improvement (optimization) algorithm when supplied with a potential solution
to the problem at hand, tries to improve this solution. The initial population of
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solutions (individuals) is generated or constructed. Individuals forming the initial
population are, at the following computation stages, improved by independently
acting optimization agents. The main functionality of the proposed environment
includes organizing and conducting the process of search for the best solution.

The behavior of the A-Team is controlled by the, so called, interaction strat-
egy defined by the user. An A-Team uses a population of individuals (solutions)
and a number of optimization agents. All optimization agents within the A-Team
work together to improve individuals from their population in accordance with
the interaction strategy.

Important classes in JABAT include TaskManager and PlatformManager which
are used to initialize the agents and maintain the system. Objects of these classes
also act as agents:

TaskManager - is responsible for initializing the process of solving the problem
instance. It creates other agents (e.g. PlatformManager, SolutionManager) and
reads all system and data parameters needed.

PlatformManager - organizing the process of migrations between different plat-
forms. It creates copies of agents.

To adapt the proposed architecture for solving the particular problem, the
following classes of agents need to be designed and implemented:

SolutionManager - represents and manages the process of solving the problem
instance by the A-Team e.g. the set of optimization agents and the popula-
tion of solutions stored in the common memory.

OptiAgent - represents a single improving algorithm (e.g. local search, simulated
annealing, genetic algorithm etc.).

To describe the problem Task class representing the instance of the problem
and Solution class representing the solution is used. Classes describing the prob-
lem are responsible for reading the data, preprocessing the data and generating
random instances of the problem. Additionally, an interaction strategy based on
the PLA is used to managing and maintaining a population of current solutions
in the common memory, as described in section 4.

JABAT has been designed and implemented using JADE (Java Agent De-
velopment), which is a software framework proposed by TILAB [Bellifemine, 03]
supporting the implementation of the multiagent systems. More detailed infor-
mation about the JABAT environment and its implementations can be found in
[Jedrzejowicz, 06], [Barbucha, 09], [Barbucha, 11].

4 Population Learning Algorithm (PLA)

Population Learning Algorithm introduced originally in [Jedrzejowicz, 99] is a
population-based method inspired by analogies to a phenomenon of social edu-
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cation processes in which a diminishing number of individuals enter more and
more advanced learning stages. PLA take advantage of the following features
common to organized education systems:

— A huge number of individuals enter the system.

— Individuals learn through organized tuition, interaction, self-study, trials and
errors.

— Learning process is inherently parallel (different schools, curricula, teachers,
etc.).

— Learning process is divided into stages.

— More advanced stages are entered by a diminishing number of individuals
from the initial population.

— At higher stages more advanced learning and improvement techniques are
used.

— A final stage is reached by only a fraction of the initial population.

In PLA an individual represents a coded solution, or a part of it, of the consid-
ered problem. Initially, a number of individuals, known as the initial population,
is randomly generated or constructed using some construction heuristics. Once
the initial population has been generated, individuals enter the first learning
stage. It involves applying some, possibly basic and elementary, improvement
schemes. These can be based, for example, on some local search procedures.
The improved individuals are then evaluated and better ones pass to subsequent
stages. A strategy of selecting better or more promising individuals at each
stage must be defined and duly applied. At following stages the whole cycle is
repeated. Individuals are subject to improvement and learning, either individu-
ally or through information exchange, and the selected ones are again promoted
to a higher stage with the remaining ones dropped-out from the process. At the
final stage the remaining individuals are reviewed and the best one represents a
solution to the problem at hand.

5 A-Team with the Dynamic Interaction Strategy Controlled
by PLA

JABAT was successfully used by the authors for solving RCPSP and MR-
CPSP (see [Jedrzejowicz, 08]) as well as RCPSP /max and MRCPSP /max (see
[Jedrzejowicz, 09]), where static interaction strategies have been used.
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In [Jedrzejowicz, 14], [Jedrzejowicz, 15] the dynamic interaction strategies
based on Reinforcement, Learning have been proposed and successfully used. In
this approach the dynamic interaction strategy based on PLA is proposed.

To adapt JABAT to solving RCPSP the sets of classes and agents were
implemented. The first set includes classes describing the problem. They are
responsible for reading and preprocessing of the data and generating random
instances of the problem. The set includes:

RCPSPTask inheriting from the Task class and representing the instance of the
problem,

RCPSPSolution inheriting from the Solution class and representing the solution
of the problem instance,

Activity representing the activity of the problem,
Resource representing the renewable or nonrenewable resource.

The second set includes classes describing the optimization agents. Each of
them includes the implementation of an optimization algorithm used to solve
the RCPSP. All of them are inheriting from the OptiAgent class. Optimization
agents are implementations of specialized algorithms: CA, PRA, LSAm, LSAe,
TSAm and TSAe described below. The prefix Opti is assigned to each agent
with its embedded algorithm:

OptiCA - implementing the Crossover Algorithm (CA),
OptiPRA - implementing the Path Relinking Algorithm (PRA).
OptiLSAm - implementing the Local Search Algorithm (LSAm),
OptiLSAe - implementing the Local Search Algorithm (LSAe),
OptiTSAm - implementing the Tabu Search Algorithm (TSAm),
OptiTSAe - implementing the Tabu Search Algorithm (TSAe),

The CA is an algorithm based on the idea of the one point crossover operator.
For a pair of solutions one point crossover is applied. The additional parame-
ter determines the frequency the operation is performed. The best schedule is
remembered and finally returned.

The PRA is an implementation of the path-relinking algorithm. For a pair
of solutions a path between them is constructed. The path consists of schedules
obtained by carrying out a single move from the preceding schedule. The move
is understood as moving one of the activities to a new position in the schedule.
For each schedule in the path the value of the respective solution is checked. The
best schedule is remembered and finally returned.
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The LSAm and LSAe are a local search algorithms which find local optimum
either by moving each activity to all possible places in the schedule (in LSAm)
or by exchanging pairs of activities (in LSAe). For each combination of activities
the value of possible solution is calculated. The best schedule is remembered and
finally returned.

The TSAm and TSAe are implementations of the tabu search metaheuristic.
TSAm finds local optimum by moving each activity to all possible places in the
schedule. TSAe finds local optimum by exchanging each two activities in the
schedule (the neighborhood of the schedule). The best move from the neigh-
borhood of the solution, which is not tabu, is chosen and performed. The best
schedule is remembered and finally returned.

In our earlier approaches to manage the interaction between agents and com-
mon memory the static strategies were used, including:

Basic - where the random solution from the population is read and sent to the
optimization agent. Next, the solution sent by the agent replaces a random
solution from the population.

Blockingl - where additionally, all the solutions send to optimization agents are
blocked. If the number of non blocked solutions is less than the number of
solutions needed by optimization agent the blocked solutions are released.

Blocking2 - where randomly selected worse solution from the population is re-
placed by the one sent by the optimization agent. Moreover, one new solution
is generated randomly every fixed number of iterations, which replaces the
worst solution from the population.

The dynamic strategies considered in our previous approaches are based on
the Reinforcement Learning (RL) where four reinforcement rules are considered:

RL1 - controlling the replacement of one individual from the population by
other randomly generated one.
RL2 - controlling the method of selecting an individual for replacement.

RL3 - controlling the method of selecting a group of individuals from the pop-
ulation (individuals are grouped according to certain features).

RL4 - controlling the method of selecting an individual from the particular

group for particular OptiAgent.

The best dynamic interaction strategies proposed in our previous approaches
[Jedrzejowicz, 15] were based on the Blocking2 strategy and include:

RL123 - in which, RL1 and RL2 and RL3 are used.
RL1234 - in which, RL1 and RL2 and RL3 and RL4 are used.



Jedrzejovicz P., Ratajczak-Ropel E.: PLA Based Strategy ... 863

The strategy proposed in this paper is based on the Blocking?2 strategy where
the PLA idea together with the reinforcement learning features have been com-
bined. The basic features of the PLA based dynamic interaction strategy are as
follows:

— All the individuals in the initial population of solutions are generated ran-
domly and stored in the common memory.

— The individuals for improvement are selected from the common memory
randomly and blocked which means that once selected individual (or indi-
viduals) cannot be selected again until the OptiAgent to which they have
been sent returns the solution or the learning stage is finished.

— The returning individual, which represent the feasible solution, replaces its
original version before the attempted improvement. It means that the so-
lutions are blocked for the particular OptiAgent and the returning solution
replaces the blocked one or the worst from the blocked one. If none of the
solutions is worse, the random one is replaced. All solutions blocked for the
considered OptiAgent are released and returned to the common memory.

— The new feasible solution is generated with fixed probability P, and re-
places another one. The methods of generating and replacing solutions in
the population are described below.

— For each level of learning the environment state is remembered and used in
the learning scheme. This state includes: the best individual and the pop-
ulation average diversity, weights and probabilities. The state is calculated
every fixed number of iterations nI/Tns. To reduce the computation time,
average diversity of the population is evaluated by comparison with the best
solution only. Diversity of two solutions for the RCPSP problem is evaluated
as the sum of differences between activities starting times in a project.

— Computations are divided into learning stages. In each stage different pa-
rameter settings, different set of optimization agents and different stopping
criteria are used.

To describe the proposed PLA-based strategy the following notation will be
used:

P - population of individuals;
avgdiv(P) - current average diversity of the population P;

nITwi - number of iterations without an improvement of the goal function
carried out by LSA and TSA which is used to stop their computation;
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nITns - number of iterations after which a new environment state is calculated;
cT'ime - computation time (minutes);
nLS - number of learning stages in the PLA.
Additionally, two probability measures have been used:
DPmg - probability of selecting the method mg for selection of a new individual;

Pmr - probability of selecting the method mr for replacing an individual in the
population;

There are four possible methods of generating a new individual:
mgr - randomly;
mgrc - using one point, crossover operator for two randomly chosen individuals;
mgb - random changes of the best individual in the population;

mgbe - using crossover operator for two randomly chosen individuals from the
five best individuals from the population.

The weight w,,, for each method is calculated, where mg € Mg, Mg =
{mgr,mgre, mgp, mgpc }. The wmgr and wmgre are increased where the popu-
lation average diversity decreases and they are decreased in the opposite case.
The Wy,gp and wy,gpe are decreased where the population average diversity in-
creases and they are increased in the opposite case. The probability of selecting
the method mg is calculated as

Prmg = e
mg — .
EmgGMg Wimng
There are three methods of replacing an individual from the population by

a new one:
mrr - new solution replaces the random one in the population;
mrw - new solution replaces the random worse one in the population;
mrt - new solution replaces the worst solution in the population.

Experiments show that replacing the worse and worst solution is benefi-
cial to intensify exploitation while replacing the random one intensifies ex-
ploration. The weight w,,, for each method is calculated, where mr € Mr,
Mr = {mrr,mrw,mrt}. The wy,, is increased where the population average
diversity decreases and it is decreased in the opposite case. The W,y and Wy,
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is decreased where the population average diversity decreases and they are in-
creased in the opposite case. The probability of selecting the method mr is
calculated as
Pmr = & .
ZmrEMr Wy
The current environment state parameters are updated after any significant
change: generating a new solution, receiving the solution from OptiAgent and

replacing solution in the population. The update includes:

— set Wmgr; Wmgre, Wmgb, Wmgbc;

— set Wmrry Wmrw, Wmrt;

remember the best solution;

— calculate the avgdiv(P) .

PLA strategy
{
generate the initial population P
calculate environment state
for(i=0;i < nLS;i=1i+1)
{
while(none of the stopping criteria is met)
{
use OptiAgents to improve solutions
generate a new solution Sye., With ppyg
replace the individual in P by Spew With pp,,
calculate environment state

Figure 1: General schema of the PLA based strategy

The general schema of the proposed PLA strategy for the A-Team is pre-
sented in Figure 1. It is worth noticing that computations performed inside
while loop are carried out independently and possibly in parallel, within the
agent environment used.
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6 Computational Experiment

6.1 Settings

To evaluate the effectiveness of the proposed approach the computational exper-
iment has been carried out using benchmark instances of RCPSP from PSPLIB'
- test sets: sm30 (single mode, 30 activities), sm60, sm90, sm120. Each of the
first three sets includes 480 problem instances while set sm120 includes 600
instances. The experiment involved computation with a fixed number of opti-
mization agents, fixed population size, and the stopping criteria indicated by the
environment state. Some of the parameters depend on the computation stage.
In the experiment the following global parameters have been used:

|P| =30
nlTns =5
nLS=1,2o0r3

To enable comparisons with other algorithms known from the literature, the
number of schedules generated during computation is calculated. In the pre-
sented experiments the number of schedules denoted as nSGS is limited to
5000.

To validate the approach three PLA based strategies are checked: PLA1S
with one learning stage, PLA2S with two stages and PLA3S with three stages.
In each stage a different set of parameters and OptiAgents are used. These sets
of settings are shown in the Tab. 1-3.

Stage 1
initial weights Wingr = 29, Wingre = 29, Wingph = 25, Wingpe = 25
Winrr = 34, Wimrw = 33, Winrt = 33
optimization agents OptCA, OptPRA, OptLSAm(10), OptLSAe(10),
OptTSAm(20), OptTSAe(20)
stopping criteria avgdiv(P);0.05 and nSGS;5000

Table 1: PLA1S

To calculate weights an effective approach based on reinforcement learning
proposed in [Jedrzejowicz, 14] have been used. In case of the positive reinforce-
ment the additive adaptation for the weights is used: w = w + 1, and in case of

! See PSPLIB at http://www.om-db.wi.tum.de/psplib/
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Stage 1

initial weights

optimization agents
stopping criteria

Wingr = 90, Wingre = 90, Wingpy = 0, Wygpe =0
Winrr = 100, Wyyrw = 0, Wit =0

OptCA, OptPRA, OptLSAm(10), OptLSAm(10)
avgdiv(P);0.1 or nSGS;2500

Stage 2

initial weights

optimization agents
stopping criteria

Wingr = 29, Wingre = 29, Wingh = 25, Wingpe = 25
Winpr = 34, Winrw = 33, Winpe = 33
OptLSAe(20), OptTSAm(20), OptTSAe(20)
avgdiv(P);0.05 and nSGS;j2500

Table 2: PLA2S

Stage 1

initial weights

optimization agents
stopping criteria

Wingr = 90, Wingre = 90, Wingpy = 0, Wygpe =0
Winrr = 100, Wyyrw = 0, Wit =0

OptCA, OptPRA

avgdiv(P);0.1 and nSGS{2000

Stage 2

initial weights

optimization agents
stopping criteria

Wmgr = 25, Wmgre = 29, Wngh = 25, Wngpe = 25
Winrr = 34, Wimrw = 33, Winrt = 33
OptLSAm(10), OptLSAe(10)

avgdiv(P);0.5 and nSGS;1500

Stage 3

initial weights

optimization agents
stopping criteria

Wimgr = 0, Wngre = 0, Wigp = 50, Wygpe = 50
Wirr = 0, Wirw = 20, Wy = 80
OptTSAm(20), OptTSAe(20)

avgdiv(P);0.05 and nSGS;{1500

Table 3: PLA3S

the negative reinforcement the additive w = w — 1 or root adaptation w = \/w is
used. If the utility value falls below 1, it is reset to 1; if the utility value exceeds
a certain max,,, it is reset to max,, if the utility value is assigned a non-integer

value, it is rounded down.

The parameters values have been chosen experimentally based on earlier
experiments for the RCPSP in JABAT and the preliminary experiments for the
PLA strategy conducted using data set sm60.
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The experiment has been carried out using nodes of the cluster Holk of the
Tricity Academic Computer Network built of 256 Intel Itanium 2 Dual Core 1.4
GHz with 12 MB L3 cache processors and with Mellanox InfiniBand intercon-
nections with 10Gb/s bandwidth. During the computation one node per four
optimization agents was used.

6.2 Results

Experiment results are summed up in Tab. 4-7.

Strategy MRE MCT [s] MTCT [s]

Blocking2 0.028% 6.43 72.62
RL123 0.018% 2.18 34.96
PLA1S 0.021% 2.31 38.24
PLA2S 0.017% 2.34 36.86
PLA3S 0.016% 2.45 37.53

Table 4: Results for benchmark test set sm30 (RE from the optimal solution)

MRE from the MRE from
Strategy best known solution the CPLB MCT s} MTCT [s]
Blocking2 0.64% 11.44% 32.70 75.56
RL123 0.51% 11.16% 12.50 62.30
PLA1S 0.51% 11.17% 12.55 62.32
PLA2S 0.47% 11.09% 12.35 61.52
PLA3S 0.48% 11.10% 13.12 62.45

Table 5: Results for benchmark test set sm60 (MRE from the best known solution
and CPLB)

During the experiment the following characteristics of the computational re-
sults have been calculated and recorded: Mean Relative Error (MRE) calculated
as the deviation from the optimal solution for sm30 set or from the best known
results and the Critical Path Lower Bound (CPLB) for sm60, sm90 and sm120
sets, Mean Computation Time (MCT) needed to find the best solution and Mean
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MRE from the MRE from
Strategy best known solution the CPLB MCT s} MTCT [s]
Blocking?2 1.19% 11.38% 36.05 74.51
RL123 0.98% 10.91% 24.23 77.29
PLA1S 0.99% 10.95% 25.11 77.41
PLA2S 0.95% 10.45% 23.43 75.13
PLA3S 0.94% 10.41% 23.39 75.36

Table 6: Results for benchmark test set sm90 (MRE from the best known solution
and CPLB)

MRE from the MRE from
Strategy best known solution the CPLB MCT [s] MTCT [s]
Blocking2 3.17% 34.43% 78.38 137.10
RL123 2.91% 33.27% 88.11 202.41
PLA1S 2.87% 33.02% 90.27 200.56
PLA2S 2.51% 32.19% 89.47 197.29
PLA3S 2.49% 32.20% 89.51 199.32

Table 7: Results for benchmark test set sm120 (MRE from the best known
solution and CPLB)

Total Computation Time (MTCT) needed to stop all optimization agents and
the whole system. The number of schedules generated by SGS heuristics is lim-
ited to 5000 for all optimization agents used during search for the solution for
each problem instance. Each instance has been solved five times and the results
have been averaged over these solutions.

In each case all solutions were feasible. The results generated by the proposed
approach are good and very promising. The mean relative errors for PLA3S and
RL1234 below 1% in case of 30, 60 and 90 activities and below 2.5% in case of 120
activities have been obtained. The maximum relative error is below 6% and 8%
respectively. It should be noted that in case of the PLALS with a single learning
stage the results are very similar to these obtained by the RL123 where similar
reinforcement learning rules are used. In Figure 2 it can be seen that introducing
more learning stages improves the results but the differences between PLA2S and
PLA3S are very small.

Simultaneously, it can be observed that introducing more complex interac-
tion strategy for the A-Team insignificantly influences computation time. Hence
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Algorithm Authors MRE MCT [s] Computer
Set sm30
Decompos. & local opt Palpant et al. 0.00 10.26 2.3 GHz
Filter and fan Ranjbar 0.00 - -
Event list-based EA Paraskevopoulos et al.  0.00 0.19 1.33 GHz
VNS-activity list Fleszar, Hindi 0.01 5.9 1.0 GHz
this approach 0.02  2.458 1.4 GHz
Local search—critical Valls et al. 0.06 1.61 400 MHz
Set sm60
Filter and fan Ranjbar 10.50 - -
Event list-based EA Paraskevopoulos et al. 10.54 16.31  1.33 GHz
Decompos. & local opt Palpant et al. 10.81 38.8 2.3 GHz
Population—based Valls et al. 10.89 3.7 400 MHz
this approach 11.10 13.12 1.4 GHz
Local search—critical Valls et al. 11.45 2.8 400 MHz
Set sm90
Filter and fan Ranjbar 10.11 - -
Decomposition based GA Debels, Vanhoucke 10.35 - -
this approach 10.41  23.39 1.4 GHz
GA-hybrid, FBI Valls at al. 10.46 - -
Set sm120
Event list-based EA Paraskevopoulos et al. 30.78 123.45 1.33 GHz
Filter and fan Ranjbar 31.42 - -
Population-based Valls et al. 31.58 59.4 400 MHz
this approach 32.20 89.51 1.4 GHz
Decompos. & local opt.  Palpant et al. 3241 2079 2.3 GHz
Local search—critical Valls et al. 34.53 17.0 400 MHz

Table 8: Literature reported results [Hartmann, 06], [Ranjbar, 08], [Agarwal, 11],
[Paraskevopoulos, 12]

additional and other learning stages or methods could be considered. Addition-
ally, the shorter computation times are observed in comparison to the Blocking2
strategy. It is the result of changeable stopping criteria, which in case of the
proposed PLA-based strategy are based on the environment state parameters.
The presented results are comparable with the results reported in the lit-
erature. In Table 8 results obtained by the heuristic algorithms compared in
[Agarwal, 11], [Hartmann, 06], [Ranjbar, 08] are presented. However in case of
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Figure 2: The graphical representation of the mean relative errors from the best or
the best known solutions presented in Tables 4-7.

the agent based approach it is difficult to directly compare computation times as
well as numbers of schedules. In the proposed agent-based approach computa-
tion times as well as number of schedules differ between nodes and optimization
agent algorithms working in parallel. Results obtained by a single agent may
or may not influence those obtained by other agents. Additionally, computation
times include times used by agents to prepare, send and receive messages.

The experiment results show that the proposed implementation is effective
and using Population Learning Algorithm to control the dynamic interaction
strategy in the A-Teams architecture is beneficial.

7 Conclusions and Future Work

The computational experiment results show that the proposed dedicated A-
Team architecture supported by the Population Learning Algorithm to control
the interaction strategy is an effective and competitive tool for solving instances
of the RCPSP. Presented results are comparable with solutions known from the
literature and in some cases outperform them. It can be also noted that they
have been obtained in a comparable computation time and number of schedules.

The presented experiment could be extended to examine different and ad-
ditional parameters of the environment state and solutions as well as iteration
numbers, probabilities and weights. On the other hand the additional or other
learning stages should be examined. The kind and number of optimization agents
(OptiAgents) used in each stage should be interesting to investigate. Addition-
ally, an effective method for tuning optimization agents parameters including a
number of iterations needed should be developed.
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