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Abstract: Network-on-Chip (NoC) is a growing and promising communication para-
digm for Multiprocessor-System-On-Chip (MPSoC) design, because of its scalability
and performance features. In designing such systems, mapping and scheduling are be-
coming critical stages, because of the increase of both size of the network and appli-
cation’s complexity. Some reported solutions solve each issue independently. However,
a conjoint approach for solving mapping and scheduling allows to take into account
both computation and communication objectives simultaneously. This paper shows a
mapping and scheduling solution, which is based on a Population-Based Incremental
Learning (PBIL) algorithm. The simulation results suggest that our PBIL approach
is able to find optimal mapping and scheduling, in a multi-objective fashion. A 2-D
heterogeneous mesh was used as target architecture for implementation, although the
PBIL representation is suited to deal with more complex architectures, such as 3-D
meshes.
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1 Introduction

Modern embedded systems are based on Multiprocessor-System-on-Chip (MP-

SoC), in order to deal with the increasing performance requirements and af-

fordable power consumption [Ceng et al. 2008, Wolf 2004]. MPSoC integrates

several processing elements or PEs in a single chip. These PEs can be different

from each others, namely, heterogeneous. For connecting this set of PEs, usu-

ally a communication network is used, which is referred to as Network-on-Chip

(NoC).

When designing an embedded system, mapping and scheduling are critical

stages. These stages affect, sometimes simultaneously, several figures of merit
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that are often in conflict [Hu and Marculescu 2004, Zhang et al. 2006]. Some

approaches treat with mapping and scheduling independently, for the sake of

dealing with its complexity [Ghosh et al. 2009, Raina and Muthukumar 2009,

Holzenspies et al. 2008]. Some other reported solutions are able to solve mapping

and scheduling at once, but only for homogeneous architectures [Chen et al. 2008,

Shin and Kim 2004, Xian et al. 2007, Xu et al. 2007]. In the same way, there are

some reported solutions which do not take into account the communication over-

head [Goraczko et al. 2008, Yang et al. 2009].

The work described in [Singh et al. 2011] performs mapping and schedul-

ing for heterogeneous architectures. A hybrid strategy is used, in order to deal

with both complexity and performance requirements. Hybrid means that part

of the optimization job is done in design time, and the remaining job is done

dynamically, at execution time. The computation of tradeoff points and resource

throughput analysis is performed in design time, because these computations are

the most computing-intensive. A run-time optimizer chooses the best tradeoff

point for a given application which is going to run in the system. This approach

provides dynamical behavior and adaptability for different sets of applications.

The main problem with this approach is related with its inability for finding new

tradeoff points, if new applications need to be mapped onto the NoC.

The work reported in [Huang et al. 2011] describes design time static task

mapping for heterogeneous MPSoC systems. Computation and communication

aspects are taken into account in the optimization process as well as energy-aware

objectives. Part of the design is treated as an optimization problem, which is

solved by using a simulated annealing algorithm. In such a kind of algorithms,

a single solution is adjusted progresively in order to perform the design space

search, which may lead to local-optimum issues [Bertsimas and Nohadani 2010].

By adjusting several solutions at once, population-based approaches are more

robust in the optimization of complex search spaces, since it is easier to scape

from local optimums [Bai and Zhao 2006, Pindoriya et al. 2010]. This parallel

feature also facilitates dealing with multi-objective problems.

[Ramin et al. 2011] describes a solution based on genetic algorithms for map-

ping and scheduling, for heterogeneous architectures. Genetic algorithms are the

most known instance of population-based techniques. The algorithm optimizes

the power consumption of the final implementation, while deals with timing con-

straints. The target architecture is a 2-D mesh, and a wormhole routing schema

has been considered for simulating the system. Instead of representing each pop-

ulation individual independently, as is usual in genetic algorithms, Population-

Based Incremental Learning (PBIL) algorithms use a compact representation

for the whole population. This feature may lead to speed up the convergence

process [Pang et al. 2006].

This paper presents the results of simulating a PBIL algorithm, aimed to
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perform mapping and scheduling of tasks onto an NoC, which is organized as a

2-D heterogeneous mesh. An adaptive and multi-objective version of the PBIL

approach was implemented. A simple X-Y routing algorithm was chosen for

simulation of the potential solutions, although more elaborated routing schemes

may be included. Four objectives were considered in the optimization process:

Total completion time for application’s tasks, total power consumption, peak

bandwidth, and number of hops in the communication network.

The remaining sections of the paper are organized as follows. Section 2 de-

fines briefly the optimization problem, concerning mapping and scheduling of

executable tasks over a 2-D mesh. Section 3 describes the basic PBIL algorithm

and the modifications proposed in order to make it suitable for the problem at

hand. Section 4 shows the simulation results. Concluding remarks and future

work appear on Section 5.

2 Task Mapping and Scheduling

Figure 1 shows an Acyclic Directed Annotated Graph (ADAG) which represents

an application by means of a set of executable tasks, and their dependencies.

Tasks are represented by vertices in the graph, while dependencies or links among

tasks are represented by the edges. Annotations provide information about the

potential implementation of each given task or dependence in the available re-

sources, and serves for guiding the optimization process, supplying a way for

comparing several solutions. Such information may include, but is not restricted

to power consumption, execution time, bandwidth, and any other result of im-

plementing tasks or links on available resources of the target architecture.

The proposed PBIL algorithm was tested by means of several synthetic prob-

lems, generated by the TGFF software tool [Valerio 2008]. These problems re-

semble several mapping and scheduling scenarios, i.e. applications of different

sizes and complexities, several mesh sizes and availability of different kind of

implementation resources. TGFF generates ADAGs in a pseudo-random way,

and it is widely used for synthetic benchmarking. The ADAG depicted in Figure

1, and all the input instances used for testing the PBIL algorithm described in

this paper, were generated using TGFF.

Although a conjoint approach is proposed in this paper, mapping and schedul-

ing are going to be described independently, for the sake of clarity.

2.1 Scheduling of tasks

Since the target architecture is heterogeneous, there is a set of potential resources

available for each task’s implementation. The first issue to solve is choosing a

specific resource for implementing each task on the system. Scheduling deals

with this issue, as well as with the timing order of each task on specific PEs. It
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Figure 1: An ADAG generated by TGFF.

is assumed that the tasks are executed sequentially on each PE, and that the

execution of a given task is not interrupted until such task finishes.

Figure 2: Scheduling example in a heterogeneous context.

Figure 2 depicts the scheduling process in a heterogeneous context, where

the tasks of a given input ADAG are allocated to a set of available resources

for implementation. As in Figure 1, the input application is comprised of five
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tasks (namely from T 01 to T 05) and there is a total of four resources available

for task’s implementation: two of them are generic microprocessors, and the re-

maining ones are a Digital Signal Processor (DSP), and an Intellectual Property

(IP) block.

A complete scheduling solution must provide a binding among each task on

the input ADAG and an available resource in the target architecture. In our

scheduling approach, the only constraint imposed to the solutions is the number

of total resources necessary for system’s implementation. No prior assumption

is made about the amount of resources of each kind that must be present on the

solution. For instance, although in Figure 2 there can be up to four PE’s, nothing

precludes that all the PE’s to be generic microprocessors or DSPs. Each schedul-

ing solution affects directly the timing features for each task on the system, as

well as the power consumption associated with computations.

2.2 Core Mapping

Figure 3 shows the process that follows to the scheduling step. It is referred as

core mapping or simply mapping, and consists of placing each of the PEs on a

specific place (tile) of a 2D mesh of finite size. The left side of Figure 3 is called

a core graph, and corresponds to the previous stage’s output, i.e. scheduling.

The core graph depicts all PEs involved with system’s implementation (each

vertex in Figure 3 represents a single PE) and the dependencies among such

PEs (depicted as edges in that figure). The mapping process is aimed to choose

a specific tile on the mesh for each PE in the core graph.

Figure 3: Core mapping on a tile mesh.
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As can be seen, mapping affects power consumption and delay for the com-

munications, as well as the bandwidth requirements for the physical links on the

mesh. Core mapping has a direct impact in completion time of tasks, because of

the delays induced by the network links. In the same way, mapping may affect

the power consumption drastically, because as reported in [He et al. 2011], in a

mesh network, the communications power may represent up to 25% of the total

power consumption. For the optimization of several figures of merit, mapping

and scheduling are strongly related processes. Next section describes a PBIL

algorithm for performing mapping and scheduling in a conjoint fashion, taking

into account several figures of merit at the same time.

3 The PBIL algorithm

PBIL algorithms are stochastic search methods that obtain directional informa-

tion from the previous best solutions. Such algorithms have been used in de-

sign automation for embedded systems with promising results [Fan et al. 2007,

Bolanos et al. 2010]. PBIL techniques are a special case of a larger group of op-

timization approaches based on population. The heart of PBIL approach is an

array of probabilities which converges progressively to an optimal solution. In

the case of binary problems, the PBIL array takes the form of a vector, which

stores a probability value for each attribute of the problem to be optimized.

In the case of non-binary problems, where there are more than two potential

choices for each attribute, it is necessary to work with a probability matrix, in

order to take into account all the solutions space. In both cases, the idea is to

update iteratively the probability values in the array. As the PBIL algorithm

converges, some values in the array become higher (i.e. some attributes become

more probable), which means that the array is close to approximate an optimal

solution.

Let us suppose an optimization problem that can be completely solved by

answering a set of N questions or attributes. For each attribute, there can be up

to M decision choices. A PBIL probability matrix for this problem is depicted

in Figure 4. In such a figure, P (i, j) represents the probability of attribute j of

being optimized using choice i.
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Figure 4: A PBIL probability matrix.

Algorithm 1: Basic PBIL algorithm.

Input: An M ×N probability matrix, called P

Output: An optimized solution for the problem at hand

begin

P (i, j) = 1
M ; ∀ 1 ≤ i ≤ M and 1 ≤ j ≤ N ;

repeat

Pop = Create Population (P );

Fitness = Evaluate Population (Pop);

Best = Choose Best (Pop, F itness);

E = Entropy (P );

LR = Learning Rule (E);

P = Update Array (P,Best, LR);

until (E > Tolerance);

return Best;

end

A basic version of the adaptive PBIL approach is shown in Algorithm 1.

Algorithm 1 starts with a probability array, namely P , with dimensions M by

N as shown in Figure 4. The probabilities on the array are initialized to 1/M ,
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which is the value that ensures maximum population diversity, in such a way

that at first, all potential solutions to the problem are being considered in a

equitative way.

At each algorithm’s iteration, a new population (Pop) is generated, based on

the probabilities of the array, by means of the Create Population routine. Those

attributes with highest probability values will be more frequently present on

the populations individuals. All the individuals of the population just created,

are meant to be assessed, using the Evaluate Population function. The fitness

values allow to choose the best solution for the optimization problem at hand.

The Choose Best routine is used to this end.

The learning rate parameter or LR, is a way to control the convergence

speed of the PBIL algorithm. Higher values of LR will lead to fast convergences,

although the quality of the solutions might not be satisfactory. If LR is reduced,

quality will improve at the expenses of longer convergence time.

In our adaptive approach, the LR parameter must be adjusted dynamically in

order to allow both exploration and exploitation of the PBIL search space. The

entropy (E ) of the probability array is calculated and used as an estimation of

the population’s diversity. In Algorithm 1, routine Learning Rule represents the

way in which the LR parameter is tuned as a function of the P array’s entropy.

Once the LR parameter is calculated, the P array must be updated in order to

adjust the probabilities, according to the best solutions found in the population.

Function Update Array is used with this aim.

The value of the E parameter in Algorithm 1 is calculated as the systemic

entropy of the PBIL array, just as is done in information theory. Equation (1)

depicts the calculations performed inside the Entropy routine, aimed to entropy

calculation.

E = − 1

N
×

M∑
i=1

N∑
j=1

P(i,j) × LogM
(
P(i,j)

)
(1)

According to Equation (1) entropy values are going to be in the range from

0 to 1. E = 1 means that there is maximum population’s diversity (this only

happens when all values on the PBIL matrix are equal to 1/M). When E = 0, it

means that the PBIL matrix points to a unique and completely defined solution.

Since the Entropy’s magnitude decreases as the algorithm converges to a

given solution (i.e. the values of probability tend to be concentrated on unique

entries of each column of the P array), an usual termination condition for the

PBIL algorithm is to compare the value of E with a given tolerance, close to zero.

Testing if the entropy value is equal to zero is a restrictive and time-consuming

condition for the PBIL algorithm’s termination.

The way in which the LR parameter is changed as a function of entropy is

often referred as the learning rule. Figure 5 shows a linear learning rule, which
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Figure 5: Linear Learning rule.

was used inside the Learning Rule routine. The idea is to keep the LR parameter

low at the beginning of the algorithm, when there is a higher population’s di-

versity and the values of E are close to one. When entropy’s value decreases, i.e.

when the population approaches to a given optimal, LR parameter is increased

to speed up the convergence process.

For each attribute of the optimization problem or, equivalently, for each col-

umn in the PBIL array, the function Update Array must increase the probability

associated with the attribute which resulted to be the best solution. Since each

single column in the PBIL matrix represents a conjoint probability event, the

probabilities sum along such a column must be equal to one. Therefore, when

a given probability in the array is increased, the remaining ones in that column

must be decreased accordingly. Equation (2) shows the probability’s updating

formulae, which are based on the Hebbian learning rule [White 1991]. In Equa-

tion (2), it is supposed that for a given attribute j, the best solution obtained

is the choice k.

P(i,j)NEW =

⎧⎨
⎩

P(i,j)OLD +
(
1− P(i,j)OLD

)× LR if i = k
(
1− P(k,j)NEW

)× P(i,j)OLD

1− P(i,j)OLD
if i �= k

(2)

The PBIL matrix depicted in Figure 4 is not suitable for representing the is-

sues related to mapping and scheduling, as described in the prior section. Figure

6 shows a proposed PBIL representation for the mapping and scheduling com-

bined optimization problem. In this case, two probability matrixes are required,
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although these arrays do not represent the mapping and scheduling processess

directly. The first matrix, with dimensions M by N , defines which type of re-

source or PE, is going to be placed on each of the available tile spaces. That

means that there could be up to M different kinds of PEs and that there are N

places in the network for PE allocation. The second matrix, with dimensions N

by T , defines where the tasks of the initial specification will be executed. The

number T defines the total number of tasks on the system.

Figure 6: Proposed PBIL matrix representation.

The two sets of probabilities in Figure 6, namely, P and Q, may be updated

accordingly with the optimization process described in Algorithm 1, with very

slight modifications. The initialization of these probabilities must be performed

according to each array’s dimensions, as explained before. A complete solution

for the mapping and scheduling problem may be derived by using the probability

values of each column on both arrays. The total entropy can be calculated as

the mean of the entropies for both matrixes.
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Regarding the multi-objective implementation of the algorithm, an aggrega-

tion approach was used to join all the algorithm’s objectives on a unique repre-

sentative value. By means of a weighting vector in the aggregation calculation,

the designer may give more relative importance to some optimization objectives,

above the remaining ones. In order to obtain several solutions with different

tradeoffs among the optimization objectives, Algorithm 1 is executed several

times in a sequential way. A kernel approach based on distance [Silverman 1986]

was used for avoiding that different executions of the algorithm converge to the

same optimal results.

4 Simulation Results

Figure 7 shows the evolution of the four objectives considered as a function of

the number of iterations of the optimization process, as described in Algorithm

1. The mapping and scheduling shown in Figure 7, were performed with an input

task graph with thirty tasks, over a target 2-D mesh with a size of 5 by 5 tiles.

The learning rate (LR parameter) was settled to change between 0.15 and 0.4.

In Figure 7, the completion time, which is given in seconds, is calculated as the

sum of the individual completion time for each task on the system. The power

consumption is given in watts. The peak bandwidth values are normalized with

respect to a reference value of 100 MHz.

Figure 7: Evolution of the four objectives considered.
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Figure 7 shows how the four objectives converge progresively toward their

minimum values, as the algorithm iterates. The evolution of the bandwidth ob-

jective exhibits step changes, as integer numbers, because such objective is cal-

culated with respect to a reference (base) value. The knees exhibited by some of

the graphics (such as the one shown in the Completion Time objective, around

the iteration 700), are a consequence of the algorithm climbing out of a local

minima and falling back to lower values.

Some previous works suggest that the performance of the PBIL convergence is
a predictable function of the size of the optimization problem [Bolanos et al. 2010].

Figure 8 shows the convergence time for optimization problems of several sizes.

In Figure 8, the X axis represents the size of the problem, in terms of the number

of tasks of the input specification, with the remaining conditions as described

for the Figure 7.

Figure 8: Relationship between convergence time and problem’s size.

Figure 8 shows that convergence times have a behavior very close the quadratic

fitting function. This might be explained by inspecting Figure 6. Such figure

shows that the size of the problem (number of tasks in the application) is one

of the dimensions of the PBIL array, which is the representation that such algo-

rithm uses for the population of solutions. If one of the dimensions is increased,

it is logical to expect that the number of operations that the algorithm must
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perform on the whole array, shall be increased accordingly.

Figure 9: Relationship between convergence time and network’s size.

In order to further inspect this idea, Figure 9 shows the dependence between

the convergence time and the size of the tile network. Several instances of the

algorithm were executed with the amount of tasks fixed and equal to thirty.

The tile network size were changed from 9 (3 by 3 mesh) to 49 (7 by 7 mesh),

letting the rest of parameters unaltered. Again, there seems to be a quadratic

relationship between these two values, since the tile network size is also one of

the dimensions of the PBIL matrix representation. Similar tests were conducted

regarding the dependence of convergence time with respect to the number of

resource types. The quadratic behaviour appeared again.

5 Conclusions and Future Work

A mapping and scheduling algorithm based on PBIL has been developed and

simulated, with promising results. The main features of this algorithm are:

– The proposed PBIL representation, as depicted in Figure 6, does not rely in a

specific network topology, despite a mesh network was used for simulations
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in this paper. Any other topology, such as a 3-D network, might be used

without drastic changes in the population’s representation, because such

representation deals only with the size of the network (number of tile spaces).

– Similarly, the proposed technique is able to perform mapping and schedul-

ing by including more elaborated routing schemes. The only limitation is

the ability to simulate the routing conditions in a reasonable time, because

several potential solutions must be assessed before the algorithm reaches an

optimal solution, as depicted in Figure 7.

– The proposed approach does not require excessive formalization. The PBIL

algorithm exhibits less complexity and more flexibility, when compared with

some other reported approaches, such as ILP [Derin et al 2011]. Figures 8

and 9 depict a quadratic behavior of the convergence time with respect to the

problem size, in contrast to the exponential behavior of the ILP algorithms,

in which some speedup strategies must be introduced, in order to make it

feasible for practical applications [He et al. 2011].

– The results suggest that, the proposed PBIL technique may be used online

(i.e. at execution time). This would allow to adjust the mapping and schedul-

ing schemas to changing conditions, such as failures in the resources of the

network.
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